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Andrei Arsov. TWO CUT-FREE MODAL SEQUENT CALCULI

In this paper the modal approach to concept languages is considered. Two sequent-style
calculi for the modal systems AL and ALN are introduced and the cut-elimination property is
proved.

1. INTRODUCTION

In recent years there has been a growing interest in presenting formalisms and
languages that will be able to express various knowledge in a domain of discourse.
One such example are the so-called terminological or concept languages. The brief
overview that we will present uses the conventions established in [1}. In the con-
cept languages expressions are built from concepts and roles, which are interpreted
as subsets and binary relations on a given universe. Further one can define com-
pound expressions from the primitive concepts using a number of constructs. Two
such constructs are intersection and complement of concepts (restricted and unre-
stricted). Roles are used in the so-called restricted quantification. The restricted
quantification of a concept C over a role I gives a concept whose elements z are
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such that if « 1s R-connected to an element y, this y is in C.

Another construct used in most concept languages is the number restriction.
The number restriction over a role K gives a set of objects or a concept, the elements
of which have at least or at most a certain number of R-connectious.

As far as we know, the almost obvious connection between modal languages
and concept languages was considered for the first time in [5]. In {l] a whole
hierarchy of such languages is built —- the AL-languages — and their relation
with modal languages and systems is used to obtain some complexity results on
the satisfaction for the AL-languages. In [4] special modal axiomatic systems are
developed for these languages and they are also viewed from the perspective of
generalized quantifiers. In the next section we present the precise definition and
semantics of the languages we shall be interested in, as well as the axiomatic systems
taken from the above mentioned paper.

The axiomatic systems, known up to now, for the terminological languages lack
one important feature. What we have in mind 1s that they are not very suitable
for practical derivations. This 1s quite important since we would like to be able to
derive 1n practice some knowledge that is implicitly embedded on the facts that are
known up to a certain moment.

In section 3 we present sequent-style axiomatizations of the validity we have
in mind, and we prove one important property ol the systems — namely, that the
cut-rule can be eliminated from them. It is this feature that makes the derivations
in such systems somewhat more feasible.

2. THE MODAL SYSTEMS AL AND ALN

Definition 2.1. Following Van der Hoek & De Rijke, {4], let us define the
basic modal language AL. It has the following elements:

e VAR — a denumerable set of propositional variables;
e T and L — propositional constants;
e — and A -— classical propositional connectives;

o (R) and [} — modal operators for every binary relation R taken from a
collection R.

Now we can define the set ® of formulas in this language in the following way
(we denote the formulas by ¢, ¢, ... ):

o if pc VAR, then p€ ® and —p € ®;
e Tedand 1 € ®;

e if 1, ¢y € @, then also (d) A ¢2) € D;
o if RER, then (R)T € &;
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e if ReR and ¢ € &, then [R]p € .

Models for AL have the form M = (W, { R }grer, V'), where W is a non-empty
set, each K 1s a binary relation on W, and V is a valuation, that i1s: a function
assigning subsets of W to proposition letters in the language. Next we define the
truth value of a formula ¢ in @ at a given point = in a model M (this fact is
designated by M,z |= ¢) We have that for every 2 M,z T, and for no x
M,z = L. The other elements of ® are treated as follows:

M,z lk=p & » € V(p),

MizlE-p & M, zlp,

Jw,xt:(gf)ll\*f)g) <> M,.’L’}::cf)] and M,:l}}i:s;ﬁg}
M,z = [Rlp < Vy(Rey = My = ¢),

M,z = (R)T & Jylry.

Observe that Aﬁ is a very weak language; it lacks full complementation and
full disjunction. It also lacks a full dual to the modal operator [R].

Van der Hoek and De Rijke have proposed an axiomatic system for the language
AL and have proved that it completely captures all validities of the form [ ¢,
where I' U ¢ is a finite set. Such sequents are considered valid in the models if the
following 1s true:

MzETFd M zeET =Mz ¢).

They call this the systemy AL. The axioms of this system are:
(A1) o F o,
(AQ) p,mp - _L,
(A3) &+ T.
(A4) LEo,
(AB) o, ¥ F oAy,
(A6) ¢AYF¢and gAY 1,
(AT) [R]IL(R)TF L.
Further this system has some rules. Since they also appear in our systems, we refer
the reader to the rules (Mon), (Cut), (Distr) and (Compl), presented in subsection
3.1 of section 3.
The next language that we shall consider is given in the following definition:
Definition 2.2. The language ALN has all the elements of AL plus two other
modal operators for every n, which we write as [R), and (R),. The set of formulas
is further expanded by adding for every n and every relation R in R the formulas
[R],, L and (R), T with the following semantics:

Mo (Rl i {y: Reg)<n
Mz E={(R),T iff [{y:Rxy}| >n

Observe that in ALN the standard modal diamond (R)- is the special case of
(R}, with n = 0.
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To capture again all valid sequents, Van der Hoek and De Rijke have devised the
following below axiomatic system and called it ALN. It has as axioms all the
axioms of the system AL plus the following ones:
(A8) (R)pp1 TH(R),T and [R],LF [R]ns1 L,
(A9) [R],L (R}, TF L.
The rules of ALN are the same as those of AL with the exception that the

rule (Compl) in section 3.1 is replaced by the respective rule (Compl) in sec-
tion 3.2.

3. SEQUENT CALCULI AND CUT ELIMINATION

In this section, which is the heart of the paper, we present the promised cut-
free systems in the languages AL and ALN. These new systems are connected to
the systems developed by Van der Hock and De Rijke and further it is shown in
what way. '

3.1. THE SYSTEM SAL AND THE CUT ELIMINATION PROOF FOR IT

As before, we use the capital Greek letters T') A ..., to refer to finite sets of
formulas, and ¢, ¥, ..., to refer to single formulas. A sequent in the language AL

is an expression I' F ¢. The axiomatic system SAL is given by the next axioms
and rules:

‘Axioms:
(A1) oo
(A2) p, k¢,
(A3) [R]L, (R)T F ¢.
Rules:
I't
(Mon) WEF)—(—,
(Cut) Lo - le’f)x{cﬁ} X
vintrl) TS Eeagiy
(A-intr-R) L ;sz iy ii;— ?i’)
(T-drop) 21;3, pl‘ovidea [' is non-empty,
(Luse) T,
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I'pF¢ I',pFé [ [RILF ¢ PARTH¢

(Compl) TFd T
o Tk y

PR R (R

{(Comb) brd

(RIT (R)T F L

Remark 3.1. Using the completeness of AL it is easy to sec that the both
systems SAL and AL prove the same sequents.

3.1.1. Cut elimination for SAL. Now we turn to presenting the proof
for cut elimination of the system SAL. Here 1s a brief outline of the proof. We
define a notion of weight of a derivation in the system SAL, which will associate
to every derivation a natural number. By induction on this weight we show that
every derivation can be transformed into a cut-free proof of the same conclusion.
During the induction we shall need to make quite a few case distinctions, most of
which will be left out, however, either because they are trivial or because they are
similar to cases that we do consider.

Convention 3.2. If d is an arbitrary derivation, then by r(d) we mean the
conclusion, or the last sequent in d.

If T is a set of formulas, then [RT = {[R]¢ : ¢ € ['}.

In an application of the cut rule as in the derivation d below we call the sequent
I'y = ¢ the lefl premise of the cut rule, and the sequent 'y, ¢ & x its right premase:

Ly F¢ T2, 0 F x
I‘I:FZ}—X .

d:

We need the next lemma.

Lemma 3.3. Assume thal the derivation d satisfies the following conditions:
1. The last rule applied in d 1s the cut rule, and this is the only application of
cut 1 d.
2. The left premase of the last rule 1s an aziom.
Then there is a dertvation d' of r(d), which does notl use the cut rule.

Proof. There are 3 }ﬁossibilities for the axtom occurring as the left premise of
the cut rule. Suppose first that it is (A1). Then the derivation has the form

d - B
ok ¢ I', oty

' ékx

But then d’ is already a cut-free derivation of 7(d), as required. The cases when
the axiom is (A2) or (A3) are similar, so we consider only one of them: (A2). Then

d:
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the derivation d has the form displayed below, which can be transformed into a
derivation d’ with the same conclusion:

), p b ¢ ok v , p o
d: pr - o X = d': (Mon) b PT X .
', p, pkFx ' I'.p, pk x

This completes the proof.

As announced before, we use a notion of weight to carry through our proof of
cut elimination.

Definition 3.4 (weight of a derivation). We define the weight w of a
derivation d in SAL by induction: A

o If d consists of a single axiom, then w({d) = 1.

o If the last rule which is applied in d has only one premise, that is if d has the
form '

d: —

TRy
d: ——»———————-«-X,

'y

then w(d) = w(d") + 1.

o If the last rule which is applied in d has two premisecs, that s i d has the
form *

d" - d":

3

'k y

d:

then w(d) = w(d') +w(d"’) + 1.

Theorem 3.5. SAL admaits a cut elimination.

Proof. The proof is by induction on the weight of derivations. As every deriva-
tion d has w(d) > 1, the induction starts with w(d) = 1. In that case the derivation
consists of a single cut-free axiom. ,

Next, suppose that for every derivation d of weight less than n, a cut-free
derivation can be found of the same conclusion; we proceed to show that the same
is true also for derivations of weight n. Let d be any derivation of weight n. Let (R)
be the last rule applied in d. If (R) is not the cut rule, then the derivation without
the last rule (R) will be of smaller weight, so by our inductive hypothesis it can be
transformed into a cut-free derivation(s) of the same conclusion(s}. Subsequently
applying (R) yields a cut-free derivation of the conclusion of d.
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Now for the main case: the last rule applied in a derivation of weight n is the
cut rule. By our inductive hypothesis we can assume that the derivations of the
premises of the cut rule are cut-free. We distinguish several cases. If the derivation
of the left premise of the cut rule consists of a single axiom, we need only to apply
Lemma 3.3 to find a cut-free derivation of the same conclusion.

So assume that the derivation of the left premise does not consist of a single
axiom, and constder the different cases for the last rule in this derivation. Let us
first consider the case when this rule is such that the formula on the right hand
side of the conclusion is the same as the formula on the right hand side of the
premises. Such rules are (Mon), (A-intr-L), (T-drop), (Compl), and (Comb). Since
the required transformations in these cases are similar, we consider only one of
them, that of (Mon). In this case we perform.the following transformation, denoted
by =: ‘

o ; " My F o [y, {¢} F x
'y Uldvlibko o, {o} v o I AP AP ol
d: UAYI - : {¢} A = (Mon) - f 2T X
Iy, Uy, vk x Ly, Ty b x

We have that w(d’') < w{d), because d’ consists of one step less than d, so using the
induction hypothesis we can transform d’ into a cut-free derivation, but this yields
a cut-free derivation of r(d) as well.

The remaining cases are ones in which the last rule applied in the derivation
of the left sequent is either (L-use), (A-intr-R), or (Distr). Let us first see what
happens when the rule is (L-use). We can apply the following transformation:

s

I F : T, F

d: — (p,‘ - 207X = (Mon)—:w'-}—-\—-i—.
11,12}“){ 11,121“,\{

As the derivation of I'y + L is cut-free, the derivation d can be transformed into a
cut-free one.

In case one of (A-intr-R) and (Distr) is the last rule applied to obtain the left
premise of the cut rule, we have to dig into the derivation of the right premise of
the cut rule. As the arguments for (A-intr-R) and (Distr) are similar, we present
the details for only one of them, viz. (Distr). Pirst, suppose that the right premise
of the cut rule is an axtom. If this axiom is (A1), then the derivation has the form

'y

TORCFR U (R
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Now d’ is a cut-free derivation of r(d), so we are done. Clearly, the axiom cannot
be (A2), since the left part of the right sequent should contain a formula of the
form [R]x. Hence, the next possibility is (A3), then the derivation has the form of
the derivation d below:

TF L . FE L
[RIT F [R]L [RIL, (R)T F x (Comb) e TR T 1

d: RIT, (R)T I x = 4 s T Ty

Since the derivation of I' F L is cut-free, the above derivation d can be transformed
into the cut-free derivation d’ of r(d).

Next we proceed to deal with the cases when the right premise of the cut rule
is the result of applying one of the rules of SAL. We consider all these rules one at
a time.

(Mon) The derivation must have the form of the derivation d below.

* N

I k¢ Iy b x
[R]F F [K]¢ MU {y}tx
[RITy, (T2 U {y}\[R]lo F x

d:

To be able to apply the cut rule, we must have [R]¢ € I';U{%}. We again distinguish
two cases: [R]¢ € 'y or [R]j¢ = ¢. Suppose first that 'y = I', U {[R]¢}. Then we
can transformn d into the derivation d' below. As the sub-derivation d” of d’ has
w(d"”) < w(d), it can be transformed into a cut-free derivation, and hence, so can

d:

TiF¢ :
[RIT) F [R]é Iy, [Rl¢+ x
[R]Ty, Ty F x

ER]Fh F’E? ¢ - X

ah'l .

d

Next, assume that i = [R]¢. Then we have (T, U{y})\[R]¢ = I's, so we can derive
r(d) as in the derivation d":

[y x

d": (Mon .
(O)WFh%FX
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(A-intr-R), (T-drop), (L-use), (Compl) Since the transformations we per-
form on the derivations in these cases are similar, we consider only one of them.
Suppose the rule that is last applied in the derivation of the right premise of the
cut rule i1s (A-intr-R), i.e. the derivation d has the form

['Fy ko Po b
C[RTE [R]x [y, Tok Ay
[RIT, (T1 UT2)\[B]x F ¢ A

As the last step in d is an application of the cut rule, we must have that [R]x € T'; |
or [R]x € I's. Assume first that {[R]x € 'y and [R]x & [2; then I'y has the form
I = T U{[Rlx} and (I'y UT2)\[R]x = I'' UT'5. Now we can derive r(d) as follows:

'y
[RIT'F [R]x I, [Rlxt ¢ .
[RIT, 17+ ¢ | Ty F 4
[RIT, I}, T2 - ¢ At '

d

As before we can transform d' into a cut-free derivation, and thus get a cut-free
derivation of r(d). For the cases when [Rjx € I's, [R]x € 'y, and [R]y € I'y and
[R]x € I's, we can perform similar transformations to arrive at the required result.

(A-intr-L)  We only consider one of the rules of this kind, the first one. The form
of our initial derivation d in this case is

'y E A [y, 6k x

[RITLF [RI) 2, oA X

[RITy, To\[RIA, 6 A Y+ x

Since [R]A # ¢ Ay, we must have [y = I, U {[R]A}. Using this, we can also derive
r(d) in the following way:

Ty F A ;
[R)Ly F [R] Iy U{[R]A}, 6+ x
[R]Fla ri{a ¢ = X

d

As before, this derivation can be turned into a cut-free one of r(d).
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(Distr), (Comb) 1In these cases the transformations that we perform on the
derivations are again similar, so we treat only one of them: (Distr). Then d has
the form

'k Xl ‘ ok oxo
[RIy F [Rjx) [R]T2 b [R]x
[RITy, [RIT2\[R]x1 - [R]x2

Since [R]xy1 € [R]'y, we must have y; € 'y, so we can transform the derivation
to the following one, which can be turned into a cut-free one using the induction
hypothesis:

'y x P U{xi} B oxe
FI) Iﬂz - X2
AT, [RITS F (AIxs

d -

(Distr)

Summing up, any derivation in the system SAL can be transformed into a
derivation of the same conclusion in which the cut rule 1s not used. -

3.2, THE SYSTEM SALN AND I'TS CUT ELIMINATION

[n this section we present a cut-free sequential system, the logic ALN in [4].
Since the system ALN is in fact the systemm AL with added a few more axioms,
our system SALN will be very much like the system SAL. We shall only present
in detail the axioms and rules that are new or differ {rom the corresponding ones
in SAL.

The axioms (A1) and (A2) arc the same as in SAL, only (A3) is changed to
the following form:

(A3) (Rl (R)TFS, n>L |

The rules (Mon), (A-intr-L), (A-intr-R), (L-drop), (T-use) and (Distr) are
again the same in SALN as in SAL. The second part of the rule (Compl) and the
rule (Comb) arc changed to the following forms:

[ [RlnLFx [ (R)TFx
Ty .

(Compl)

" r-_1L
(Comb) LT (R, TF L n>1.

Now the next three rules that we present are new ones, specific of the system
SALN.

IR, Tk

(R g, n2l
U R, TF
't {R},L

(R]+) FH}%T}M, n> 1



Before begiuning the proof that the system SALN admits a cut. elimination,
let us briefly outline how we are going to proceed. First, we proof a lemma which
n effect claims that a somewhat restricted form of the cut rule can be eliminated
and then we proof that also the general form of the {Cut) is dispensable. To prove
both of these claims, we use the technique that we used to prove the cut elimination
for the systemi SAL, namely induction on the weight of the derivation containing
(Cut). Since the most cases will emerge as similar to the respective ones in the cut
elimination proof of SAL, we shall be more concise in our exposition and we shall
treat in detail only some of the different cases.

Lemma 3.6. The following rule can be eliminaled from cvery SALN-deriva-
tion.

(Cutmn) I ! F [R}mj‘ FZ) {R]ni F (,?3

'y, ok ¢ ’

where m < n.

Proof. We prove this claim following the same pattern we used before. Suppose
d 1s some derivation and (Cut,,,) 18 applied only at the last step of this derivation.
Further suppose that the left premise of (Cuty,y,) is an axiom. The ouly case of
any interest is the case of (Al). Then d has the form

[RlmL b [Rlnl R, L TF¢
[RlmLl I'F & ‘

Now, since we have applied the rule (Cuty,, ), we have mm < n. If rn = n, then
we can use the derivation of the right premise as the Cut,,, -free derivation of r(d).
I{ 7n < n, then to the right premise we apply (n — m) times the rule ([R]-) and we
shall have the desired derivation. ’

Further we have to consider the cases when the left premise appeared by an
application of some rule. The transformations we do are similar to those presented
so far, so to diminish the risk of becoming boring we shall present only those we
think most unusual.

([R]4) In this case we do the following transformation:

' F [RjmL

Iy [R]m+1i Iy, [R}n_l_ F ¢
L'y, o

Iy - (R],L Uy, [R], L1 ¢
Fla F?. }-(;é .

175



Now, since we have applied (Cut,,,) in the first place, it is true that m+ 1 < n, so
m < n, and the application of (Cuty,) in d' is legal. Using also that w(d'} < w(d),
we can conclude the result.

(Distr) Our derivation which we want to turn into a Cut,,,~free one in this case
has the form

Fl - .
[R]I‘l - [R]J. sy, [R}ni o
[R][, Ty k¢ ‘

In this case as before we have to dig into the derivation of the right premise. To deal
with the axioms (A1) and (A3), we use the rules ([R]+) and (Comb), respectively.
Next we should turn to considering the cases when we have applied one of the rules
in the derivation of the right premise. As an example we shall consider only one
case which 1s the most instructive. Suppose the last rule applied in the derivation
of the right premise is the rule ([R]-). We do the following transformation on the
dertvation d:

d:

I kL Fy, [Rlng1 LF 6
[RII; F[R]L o, [RlnlF ¢
[RITy, Ty F ¢

d:

«

I‘l + :
[RITy - [R]L Uy, (Rln1d F 6
(R, Dok ¢ '

= d:

We have that the derivation d’ is of lesser weight than d, so we can apply the
induction hypothesis to get the result. ,

Now all the cases for the type of the last rule in the derivation of the left
premise of the (Cut,,,) are considered and the proof is finished.

Further we turn to the proof that the whole version of the cut rule can be
eliminated in the system SALN, that is to the proof of the next theorem.

Theorem 3.7. SALN admits a cut elimination.

Proof. We shall use again in the proof our well-worked induction on the weight
of the derivation with the different cases for the structure of the last steps of the
derivations of the premises of the cut rule.

First, we consider the form of teh derivation of the left premise. The case when
this derivation consists of a single axiom presents no difficulty. Let us turn to the
case when the last step in the derivation of the left premise consists of applying
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some rule. The rules that are the same as in SAL or the formula on the right hand
side of the conclusion is the same as that on the right hand side of the premise(s),
create no difficulty. Such rules are (Mon), (A-intr-L), (A-intr-R), (T-drop), (L-use),
(Compl), ((R)4+), ([R]—), and (Comb).

If the last rule is ([R]+), then since the cut formula is of the form [R],, 1, we
must only apply Lemma 3.6.

Now we turn to the most difficult to treat rule, namely (Distr). As usual, in
this case we consider the cases for the form of the derivation of the right premise
of the cut rule. The axioms and the rules that are present in SAL are treated as
in this system. We need only to show that nothing goes wrong if the last rule in
the derivation of the right premise is one of the new or changed rules. For ({R)+),
([R]+) and (Comb) we do quite obvious transformations, using the fact that we
can locate where the cut formula belongs. The only case that remains is that of
([R]+). But we can use the fact that the cut formula in this case is of the form
[R]m-, and applying Lemma 3.6 we conclude the proof.

So we can now state that the presented sequent system SALN indeed admits
elimination of the cut rule.
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