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INFINITESIMAL BENDINGS OF ROTATIONAL SURFACES
WITH CHANGING SIGNS CURVATURE”

IVANKA IVANOVA-KARATOPRAKLIEVA

Heanxa Haanovea-Kapamonpaxauvesa. BECKOHEUYHO MAJIBIE UBTUBAHWUSA [TOBEP-
XHOCTEN BPAILIEHUA 3HAKONIEPEMEHHOW KPUBU3HB]

Uccenenosano muaoxkecTBo nubBMaHHOBBIX lapajisiesieil nepporo nopsagka HexXeCTKOH
noBepXHOCTH Bpalledma S 3nakonepemennoit xkpusuansl K. S — szamxuyran (pona 0 nu-
6o 1) nubo ¢ kpaem. Iloxasauo, uro na S, bHe e€ vacTel, KOTOPBIE ABAAKTCH KPYIOBBIMYU
HAAMHAPAMY, HMEETCH CUETHOE MHOMeCTBO AMGMaHHOBBIX Napaiienedt, ecnu S5 umeer Bec-
KOHEUHOE YMCJIO HETPUBUANBHBIX GyHNaMEeHTAaNbLHBIX Nonelt uarunbanna. Ha xaxnom nosice
¢ K < 0 oty napajfnenu pacnofioxeHbl Besne naotao. Ha kaxaom nosace So = Spgr,
¢ K 2 0, orpaumyennoil acumuToTnueckoi napannensio Lo, cymecrnyioT naubmanHoBble

o~

napaJjienu TOrJAa M TOJbLKO TOrAa, xorga Sp comepywuT noamonc Sg = Sp=p, (L* camas
NpaBas MAKCMMAsbHaf Napanfend Ha So). Bce o1y napansenu obpasyioT cYETHOE MHG-

HECTBO, NpUHANIIENAT 50 7 cryma;o'rcn k L*. Iasb nocraTounnie YCNOBUA AJIA XeCT-
KOCTHU 5.

lvanka Ivanove~K amtopmkhgw INFINITESIMAL BENDINGS OF ROTATIONAL SURFACES
WITH CHANGING SIGNS CURVATURE ,

The set of Liebmann’s paraliels of first order on a non-rigid rotational surface S with changing
signs curvature K is investigated. S is closed (of genus 0‘or 1) or with a boundary. It is proved
that there is a countable set of Liebmann’s parallels on S ‘sutside of its parts whlch are circular
cylinders if S has got an infinite number non-trivial fundamental fields of bending./On each belt
with K < O these parallels are everywhere densely. On each-belt 55 = 5 Loﬁ'i/ with K 2 0
bordered by an asymptotic parallel Ly, there exist Liebmann's paraltels if andonly if Sy contains
a subbelt §g = Sp«r, (L* is the most right maximal parallel of Sp). The Liebmann’s parallels
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a subbelt §0 = Sp«r, (L* is the most right maximal parallel of S5). The Liebmann’s parallels

on Sp are a countable set, belong to S; and are condensed to L*. Some sufficient conditions for
rigidity of S are given.

1. PRELIMINARIES

If S is a rotational surface with changing signs curvature, then the domains
with positive Gaussian curvature on S are separated from the domains with nega-
tive Gaussian curvature by belts with zero curvature or by parabolic parallels, i.c.
parallels on which the Gaussian curvature of S is zero. Those parallels are from
first, second or third type [1]. A parallel from first type is described by a point of
rectification of the meridian ¢ of S (a point of inflection or not) at which the tangent
of ¢ is not perpendicular to the rotational axis. The principal curvatures of S at
an arbitrary point of a parabolic parallel from first type are vmer = 0, vpar 0. A
parabolic parallel from second type is described by such a point of ¢ which is not
a point of rectification but the tangent of ¢ at this point is perpendicular to the
rotational axis. We have vmer # 0, Vpar = 0 at an arbitrary point of such a parallel.
A parabolic parallel from third type is described by a point of rectification of ¢ (a
point of inflection or not) at which the tangent to ¢ is perpendicular to the rota-
tional axis too. Any point of such a parallel is planar one for S (Vmer = Vpar = 0).
Any parabolic parallel Lo from second (respectively third) type is an asymptotic
line of S because the plane of Lj is tangent of first (respectively higher) order to
the surface at any point of Ly. That is why we shall call the parabolic parallels
from second and third type in short asymptotic parallels.

Let S be an arbitrary rotational surface with not more than a finite number
of asymptotic parallels. .S can be closed (of genus zero or one) or with a boundary
{consisting of one or two parallels). Let S be from the class C?, ¢ > 2, out of its
poles (if it has such ones).If the surface has not got any planar domains, so its
meridian ¢ can be represented as a union of a finite number of arcs such that each
of them can be projected one-to-one on the rotational axis. If the surface has got
some planar domains, so such a representation is possible for ¢ without those of
its parts which are segments, perpendicular to the rotational axis (exactly, they
describe the planar domains of S by the rotation of ¢ around the rotational axis).

Let the meridian ¢ of S be in the co-ordinate plane Quy and let it has got a
finite number of points of inflection. If the point Py € ¢ describes an asymptotic
parallel Ly, then either a) Py is a point of inflection (see Fig. 1), or b) P is not a
point of inflection (see Fig. 2). Let us note that in the case a) there is a two-sided
neighbourhood on ¢ which can be projected one-to-one on the rotation axis and in
the case b) there is not such a neighbourhood. We denote by ¢; and ¢y the arcs
of ¢ bordering on Py which can be projected one-to-one on the rotation axis. We
shall consider only the case when ¢; and ¢» have not inner points which describe
asymptotic parallels because the other case obviously is reduced to that one. We
assume that in a neighbourhood of the point Py(ug, 7o) the meridian ¢, i. e. ¢; and
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¢9, has a representation
(1) w=(xy Fro)" froly) +uo, n 22, fia(re) #0,
| fL € CAro, o +€),  fa € CHrg—¢, 7.
Then we have

(2) ¢ y=ri(w), j=1,2, ri(ug) =ra(us), r1(u) € Cluy, u1) N C¥ug, uy),
ro(u) € Clug, ug) N C¥Wus, uo), linua r§;2(u) = 400,

and in a neighbourhood of ug
ny ~ . 1
ri(u) = (u—uo)™ G1(u) +ro, r2=(uo—u)" Pa(u)+ro, n1=

Gi(u) #0, 7=1,2, Pi(u) € Cuo, uo + €], P2(u) € Cluo — €, uol, ¢ 2 2,
when Py is a point of inflection, and
) cj ry=ri(u), j=1,2, ri(ug) = r2(wo), r1{u) > ra(u)
for u € (uo, ui] N (uo, uz,
r12(w) € Clug, u1,2) N C¥ug, ui,2), u}-i-»rg{, r1,2(u) = £oo,

and in a heighbourhood of ug
. . |
ri(u) = (u —ug)™ @;(u) +ro, $j(ue) #0, n1 = — @i(u) € Cug, uo + €],
i=1,29¢22
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when Py 1s not a point of inflection.

If the meridian ¢ has other points which describe asymptotic parallels, then n
a neighbourhood of any of them we assume that analogical conditions to those in
(1) are satlsﬁed Finally, let us amplify that if the surface S has got one or two
poles Py’ 2(@: , 0) — smooth or conic, then we assume that in a neighbourhood of
any of them analogical conditions to those for ¢; in (1) (see [3, 5]) are satisfied.

We assume that the surface S 1s non-rigid of first order with a field U of
infinitesimal bending (inf.b.) which is continuous on the whole surface and belongs
to the class C! out of its poles (if S has such ones). It is well-known that such
non-rigid of first order rotational surfaces — closed or with a boundary, exist and
each of them, which has got asymptotic parallels, is rigid of second order (see for
example [1 — 4]).

In this paper we shall investigate the set of Liebmann’s parallels of first order
on S, 1.e., those parallels which remain in their planes by inf.b. of first order. We
shall give some sufficient conditions for rigidity of S too.

2. PROPERTIES OF THE FUNDAMENTAL FIELDS Ug(u, v), k 2 2

We represent the parts 5; C S obtained by rotation of the arcs ¢; C ¢, 7 =1, 2
(see Fig. 1 and 2) with the vectorial parametric equation

(4) | z(u, v) = u.e + r(u).a(v)

(here for simplicity we have denoted r;(u), j = 1, 2, with r(u)), where: u belongs
to the indicated in (2) and (3) intervals, v € [0, 2x], e is the unit vector of the
rotational axis Ou, and a(v) is a unit vector perpendicular to Ou and twisted at an
angle v from QOy). Let Ur(u, v), k£ 2 2 be a non-trivial fundamental field of inf. b.
of first Qrder of the surface S. Then [1] we have on S;, j =1, 2,

Ur(u, v) = e**v <[<pk(u').8 + xe(u).a + Yr(u).a’]
(5) | +v6“£kv (@1 (w).e + X (w).a + ¥y (u).a']

ei(u) + 7' (W) x3(u) =0,
(6) xi(u) + ik p(u) =0,
ik or(u) +r'(u) [ik xe(u) — ()] + r(u) Yi(u) = 0, k22,
from where we obtain for the function x;(u) the differential equation
(7) r(u) Xi(w) + (6* = 1) r"(w) xe(w) = 0, & 2 2.
Using the condition (1), we obtain
u'(y) ¢i (¥) + X (y) = 0,
(6) xk(y) + ik ve(y) =0,
Tk W/ () o (y) + ik xe(y) — ve(v) +y¥i(y) =0, k22,
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and

(7 yd WXy —yu" (@)XW — (6 - D () xe(y) =0, k22,
in a neighbourhood of the point Py(ug, o).

From the equalities (6) and from the assumption that the field U of inf. b. of
S belongs to class C! out of the poles and the meridian ¢ € C9, ¢ 2 2, it follows
immediately that the fundamental field Ug(u, v), & 2 2, of S}, J =1, 2, belongs
to the class C'7, ¢ 2 2, out of the asymptotic paralle} Lg. It 1s seen from (6) that
Xe(W)ly=roe = X%(¥)|y=r, = 0 and therefore the fundamental field Ux(u, v), & 2 2,
satisfies the equality “

(8) Xk(uﬁ) - 03 k ,,Z_ 2:
1. e
(8" Ur(uo, v) = [ Y o (ug) + etk k(uo)] e, k=2

along the asymptotic parallel Lg.

Since the function xi(u), & 2 2, is a solution of the equation (7), so in the
intervals, where »”(0) £ 0, it is not oscillating, i. e. it has not more than one null,
it has neither a positive maximum nor a negative minimum and its graph is convex
to the rotational axis Ou. Let us remind that in these intervals the meridian ¢
is convex above and the corresponding belt of the surface S has got Gaussian
curvature K > 0. The equation (7) has a singularity in the point uy. Taking y for
an independent variable in a neighbourhood of ug, (7) passes to the equation (7')
which is from Fuchs’ type. We have proved in [4] that the problem (7), (8) has got
a non-trivial solution xx(u) and in a neighbourhood of ug it has the form

(9) Xk(a) = (u - U(})X%(Z&), Xg(u(?) “_f‘/- 0,

where x2(u) = @7(u) Py [ro + (u — uo)™ $1(u)], Py is an analytic function of y

:T’Q+(u-u0)n’ @1(u) a
Remark 1. If the surface S has got a pianar dc}mam So, so Sp is a disk or an

annulus bounded by asymptotic parallels Lc Cu= uo 2of S (even all the parallels
on Sy are asymptotic). In this case Uklg, L Sy (see [6)), i.e. xe(¥)ls, = Ye(y)ls,

= 0 and consequently the condition (8) is satisfied on LJ'. |
Remark 2. If the rotational surface S has got poles P,'? so the function

xx(u), which correspondes to the non-trivial fundamental field Uk(u, v) of S, also
satisfies the equality (8) (see for example [3, 5]).

Lemma 1. Let u = o and u = 3 be two sequential nulls of xx(u), k 2 2.

a) If the belt Syp of S does not contain a subbelt with extremal parallels of S,
so the function pr(u), k 2 2, has got ezactly one null in (o, 5).

b) If S has got a subbelt Sysys with extremal parallels, then either pr(u), k
has got exactly one null in («, §) and it is in (a, B)\[u}, u3) or o () =0, k
in [, ug) but gi(u) # 0 in (@, A)\ [u], u3)-

Proof. From (6) we find

v v

r(u U k(U - Dri(u
(10) or(u) = ,()_Zfﬁﬁ._)f (v), fr(u)= i:g& + (% 7.(113) (u)
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in the interval («, 3}, wherefrom we obtain directly

(11) fé(u)z~{(3‘-§@>z+(i¢2~1) (r’(""))zl

Xk (u) r(u)

From here and from fi(a+0) = 400, fi(8—0) = —oc it follows that in the case a)
ox (1) has got exactly one null in the interval («, f#). The statement in b) follows
directly from (6'), (10) and (11).

Lemma 2. Lel the belt Sg, 5, C S has gol negative Gaussian curvature and
u', u'" are two arbitrary points from the interval [y, Up]. There exists kg 2 2 such
that the function pp{u), k 2 ko, has got a null in (u', ") if Ug, k 2 ko, s «a
non-trwvial field of bending of S.

Proof. We write the equation (7) for the interval [@;, @] in the form

(12) Xp(u) + Ge(u) xn(u) =0, k22,
where : ) W
. (k=1 r"(u
Grlu) = ) .
We have
. (k* —1)m

where m = minr”(u), M = maxr(u) when u € [@;, %,]. We choose k¢ so that

(14) (lc%;/jl)m><uNH )2’

" oy
where N 2 2. We consider the equation
(15) Y'u)+p*Y(u)=0
with p = NI Since the solution Y = sin p(u — u') of (15) has got N +1 2 3

u’ — u!
nulls in [v/, v”] and Gx(u) > p? holds for k 2 ko in v/, u”] because of (13) and
(14), then from the Sturm’s theorem it follows that every solution xi(u), k£ 2 ko,
of (12) has My 2 N 2z 2nullsin [v/, «”]. Then from Lemma 1 it follows that every
function @i (u), k 2 ko, has got at least one null in (u/, u”).

Lemma 3. Let the belt Sy C S has a non-negative Gaussian curvature and
0Sp = LoU Ly, where Ly is the asympiotic parallel described by the point Py(ug, o)
and Ly is the parallel* described by the neighbour point of inflection Py(ul, rl) of
Po. At cach fized u € (Uo, uj], @ > uo, for which r(u) > r(iy) the following
property is true: '

Xk (1)

VI = 1) xe(w)

L, is a non-asymptotic parallel since the surface S is non-rigid (see [2]).

(16) the number sequence is bounded
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if each Uy, k 2 2, 15 a non-trivial field of bending of S.

Proof. Let xi,(u) and xi,(u) are solutions of the problem (7), (8) at £ = k;
and k£ = ky, correspondingly, k1 < ky. We multiply (7) at k = ky by (k3 — 1) x4, (u)
and (7) at k = ko by (k¥ — 1) x, (u), subtract the obtained equalities and integrate
the result from ug to u € (ug, ui]. We obtain

X (w) X, () )
=D (w) (k= 1) xr,(y)

(= )(# - D) 0,0 (g

= (k2 — k2) / o, () X, (1) d.

Ug

Since xx(u)x4{w) > 0 in {ug, u}}, we conclude from here that at each fixed u
€ (ug, ul] the inequality

X, (1) X, ()

(17) &7~ 1) xen (@)~ (K2 1) xea (@)

for ki < ky

holds.
Multiplying (7) by 2x)(u) we obtain

18) ) = [0 o] @ -

Let @p > ug, U € (ig, uj), and N 2 2 be an integer. Since yi(u), k¥ > 2, has not
a null in (ug, uj], so there exists a constant M > 0 such that

/
X (1) <M

(NT= 1) x (@) in [to, u).
From here because of (17) we have
7
(19) X () < M in [, ©] for each k¥ 2 N.

(B2 = 1) xx(u)
From (18) and (19) we obtain
(r(w) X3 * (W) < (I (W] M ~ 27" (u)) (k% = 1) () X3 (w)
<2 My (k? = 1) xe(w) X (),
where M is a suitable constant. Integrating (20) from g to v € (%o, ui] we find
X (u) [ r(tio) X'}cz(ﬁo)} M, [ Xﬁ(fio)}
1 — P PR 9A5.28 R N
(k2 = 1) xi(u) r(u) xp*(w) o r(u) xi(u) -
From here and from

(20)

(21)

127~ 2¢5
X}i 2(%&{)) <1, X}c2(u0) <1
X5 (u) X (w)

we obtain

xe2(u) . B
(22) (k2 —f:l)xg(u) [r(uv) = r(do)] < M1, wu€ (o, ui], k 2 N,
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from where the statement in Lemma 3 follows immediately.
Corollary 1. For each fized u € (g, ui], @o > uo, such that r(u) > r(tg)

s valid

0.

, : Xp(w)
(23) Jm (k% — 1) xe(u)

Remark 3. If we multiply (7) at £ = k; and at k = ks by x&,(u) and xg, (u),
correspondingly, subtract the obtained equalities and integrate the result from wug
to u € (uop, ui], we obtain that the inequality

X () _ ()
Xkl(u) Xﬁ?z(u),
holds at each fixed u € (ug, ul].

Remark 4. The properties (24), (17), (16) and (23) of the fundamental fields
Ur(u, v), k 2 2, are proved by E. Rembs [7] for the case when the belt Sy is simply
connected, i.e. when 05y = L1, and the point Py is a smooth non-parabolic pole
of Sg. They are also valid in the case when the pole Py is parabolic or conic (see
[5] and for a generalization see [2]). Proving these properties here for the doubly-
connected belt Sp, we have used the equalities (8). That is why these properties
will also be valid in the case when the tangent at P, to ¢ is not perpendicular to
the rotational axis, i.e. when the parallel Lg is not asymptotic but the fields of the
bending satisfy the conditions (8). From Remark 1 it is clear that we can ensure
the conditions (8) sticking the boundary of a disk Sy along Lo and assuming that
the field of inf.b. of the surface S U Sy is continuous on it and from class C! on S
and Sg.

Remark 5. If the belt Sy is obtained for v € [u}, up), i.e. if instead of ¢;
and c¢q at Fig. 1 and 2 we have theirs orthogonally symmetric curves with respect
to the line by Py, which is parallel to the axis Oy, then obviously Lemma 3 and
Corollary 1 — the properties (16) and (23), are valid too, but xx(u) x%(u) < 0 and
the inequalities (24) and (17) are inverted.

(24) k1 < k2,

3. MAIN RESULTS

If Ug(u, v), £ 2 2, 1s a fundamental field of inf.b. of the surface S for which

the parallel L : u=1is Liebmann’s, i.e. L remains in its plane, then we say that
Ur(u, v) is a field of inf.b. with sliding along L. It is clear from (5) and (6) that

Ur(u, v) is a field of inf.b. with shding along L exactly when
(25) ez =0, k22
The following statements are valid:

Theorem 1. On the rotational surface S, oulside of her belts of extremal
parallels (if S has got such belts) there exists a countable set of Licbmann's parallels.
Moreover:
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a) On each belt with negative Gaussian curvature the Liebmann’s parallels are
everywhere densely,

b) There are Lichmann’s parallels on every bell Sy with non-negative Gaussian
curvature, which belt is simply connected with a pole and a boundary 65y = L,
or doubly connected with a boundary 0S5, = Lg U Ly, where Lo 1s an asym;pioizc
parallel, if and only if Sy contains a subbelt Sp = Sy- .1, (respectively, So = Sp,re)
bounded by the most right (respectively, the most left) mazimal parallel L* of Sy

and the parallel Ly. All these Liebmann’s parallels are a countable set, belong to Sg

and are condensed to L™ if S has got an infinite number non-irivial fundamental
fields of bending?.

Corollary 2. The surface S is rigid wilth respect to inf.b. with sliding along
an asymptotic parallel of S.

Corollary 3. The surface S 15 rigid with respect to inf.b. with sliding along a
parallel L € Sp 1f the belt Sy has not got a subbelt Sy, and along a parallel L € S5\ So

if the belt So has a subbelt Sy.

Proof. These statements follow directly from the lemmas. In fact, the existance
of a countable set of Liebmann’s parallels on S follows from the condition (25),
Lemma 1 and from the facts that the non-trivial fundamental fields Uy (u, v), £ 2 2,
of § are a countable set and any function yg(u), k 2 2, can have only a finite
number nulls in a closed interval. The statement a) follows from (25) and Lemma
2. We shall pause in detail on the proof of the statement b).

For concreteness let Sy be obtained by u € (ug, ul]. If the belt Sy is simply
connected, so the statement b) is well-known (see [3, 5, 7]). Let Sy be a doubly
connected belt. It is seen from (10) that the function ¢i(u), k 2 2, is annuled in
(ug, ui) if and only if fr(u), & 2 2, is annuled. Because of (11) the function

_ (g2 X (4) ?"'(u)}
0 e == [ + 1
is monotonically decreasing, as fi(ug + 0) = 400 and fi(u*) > 0 for each k > 2,
where L* : u = u” is the most right maximal parallel of S;. Since (26) and

i
Corollary 1 hold and Z((::)) < 0in (u*, @], u £ u}, it follows that for each fixed
u € (u*, uj] such that r(@) > r(io) there exists an integer Ny 2 2 such that
fr(u) < 0 for any k > N,. Consequently, for each k > N; there exists ug € (u*, )
such that fi(ug) = 0, i.e. @r(ux) = 0. Moreover, if k; < ko, then from (17)

r(u)
r(u)

follows ug, < ug,. Thus for each & 2 N; there exists a Liebmann’s parallel L; in
(u*, @). In addition, for k; > ki the Liebmann’s parallel Ly,, corresponding to

*

and from the fact that is a monotonically decreasing function in {u*, wi] it

2 Such surfaces exist — for example, if S is simply connected and it has not an asymptotic
parallel, or S is doubly connected with not more than one asymptotic parallel, then it has gdt a

countable number non-trivial fundamental fields of bending (see {2], [3]).
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the fundamental field Ug,(u, v), is situated more to the left than the Liebmann’s
parallel L, , corresponding to the fundamental field Uy, (u, v). All these Liebmann’s
parallels condense to the most right maximal parallel L* : v = u* of Sy. In order
to verify this it is sufficient to take @ = u* + ¢ < ul, where ¢ is a small enough
positive number, and to repeat the considerations which we have just done.

Remark 6. The statement a) for a rotational surface S with a negative
curvature is proved in {8]. There are such investigations in (9] and (11] too, but the
formulated results contradict to [8] and to our statement a) here.

Remark 7. The statement in Corollary 2 follows from the well-known lemma
of Minagawa and Rado (see [2]). It is proved in [10] (see also [3, 9, 11]) and here
we formulate it for completeness. That statement is proved in [9] (see Theorem &
there) by the method “a, b, ¢” under a lot of restrictions on the surface.

Remark 8. The statement in Corollary 3 is proved as well in [12} and [9]. In
[12] the asymptotic parallel is not of second type (as it is said there) — it is of third
type, and in [9] (see Corollary 3 there) the statement is proved by the method “a,
b, ¢” under a lot of restrictions on the surface.
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