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STELA NIKOLOVA

Cmera Huxorosa. JONMYCTHUMbIE @Y HKIIMOHAJIBI B ABCTPAKTHOM CTPYK-
TYPE HPOMU3BOJABHOUW MOIITHOCTHU

B pabBore npennaraercs oaun cnocob obobimenus noustus Jonycrumoit (V-pexyp-
cupnoi {2]) dynxkumwu ana abCTpaKTHBIX CTPYKTYP NPOM3BONLHOM MomuocTn. Jlna atoro
3J1eCh BBOJMTCH M M3Yy4aeTCH NOHATUA JlonycruMore dynkunonana. [lpu ero nomouiu onpe-
AenseTcA NMoHATUE NONYCTUMOCTH A YaCTUUHO-MHOTO3HAYHONW QYRKUMUK B NPOMIBOJLKO
MOLHOW abeTpakTHOR cTpyKTYpe. Y CTAHOBAHETCH, YTO YACTUUHO-MHOTO3HAYHAN DYy HKIMA
ACTYCTHUMA TOrZd@ ¥ TOABKO TOI'JIa, KOFAa OHa abconioTHO TOUMCKOBO BBIYKUCIMMA.

Stela Nikolova. ADMISSIBLE FUNCTIONALS IN ABSTRACT STRUCTURES WITH ARBI-
TRARY POWER

A way for generalizing the notion of admissible (or V-recursive [2]) function for the case
of arbitrary (not only denumerable) abstract structure is considered. For this purpose a notion
of admissible functional is introduced and studied in the paper. Using this notion, a concept
of admissibility for partial multiple valued function over arbitrary structure is introduced. It is
established that a function is admissible if and only if it is absolutely search computable.

In the present paper we suggest a certain way for generalizing the notion of V-
recursiveness for the case of abstract structures with arbitrary power. The notion of
V-recursive predicate, introduced by Lacombe [2], is aimed at describing effectively
definable relations on denumerable structures with equality. Later on Moschovakis
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proved that it is equivalent to search computability with constants [3]. In some
recent works of Soskov [11-13] a certain modification of the original definition of
V-recursiveness is suggested. It is used there as a basis for an uniform and very
natural classification of several well-known concepts of abstract computability —
prime and search computability [4], computability by means of effectively definable
schemes (EDS) of Friedman [1] etc. What is more, the equality relatxon is not
- already supposed to be among the initial predicates.

Since the notion of V-recursiveness incorporates different numberings of the
data domain, in each of the above mentioned works the structures are supposed to
be at most denumerable. Exactly, to embrace the general case of arbitrary domains,
the notion of admissible functional is designed.

There are several versions of the notion in question, depending on the kind of
relative recursiveness over the naturals that we have taken as basic and according to
our understanding of the expression “function, computable in a given structure A",
Here we study one, in a sense the easiest to examine, of these versions, the other
cases being considered in [5, 6]. We shall regard as basic the broadest notion of
relative recursiveness over the set of all natural numbers — the partial recursiveness.
Moreover, given A, we shall assume that some “oracle” for the data domain (along
with “oracles” for the initial functions and predicates of ) is available.

1. PRELIMINARIES

Assume that a partial structure 2 = (B;¢1,...,94; R1, ..., Rs) of some fixed
signature 0 = (f1,..., fa; P1,..., Py) is given. Suppose first that B is at most denu-
merable. An enumeration of U is any ordered pair (x,B), where B=(N; ¥y, ..., ¥q;
Q1,...,Qs) is a o-structure over the set N of all natural numbers and x is a total
mapping from N onto B, the fo}lowing conditions being satisfied:

w(i(zy,.. . &)~ @z(x(m) y#(z)) forallzy,...,z;, in N, 1 £4 £ a;

Qi(zr, ..., tm;) = Ri(#(zy),. (.’l?m ))forallzy,...,zn, in N, 1 £ 5 <6

Suppose now that m s a structure wnh arbitrary power. [t is clear that in
this case we cannot speak about enumerations of 2. Nevertheless a notion of
admissibility in 2 is still possible. The key to it is the observation that every
computational path is at most countable, hence no more than countably many
elements of B can be involved in the course of the computation. Our idea is to
break 2 into some suitable denumerable parts, to enumerate them and to combine
all these parts in some reasonable way.

We begin with some notational conventions. The elements of the basic set
B will be denoted by s, p, v, possibly with indexes; as usual (s1,...,s¢) will
be abbreviated to 5. We shall use small greek letters to denote sequences —
4, § will range over the class of all infinite sequences of elements of B (to be
denoted by BY), while o, ¥ will denote infinite sequences of natural numbers
(which sometimes will be viewed as total functions in N). For any A C B set
T(A) = {p|p=ra(Xi1/s1,...,Xn/sn), where (X1, ..., X, ) is a o-term with vari-
ables among Xi,..., X, and s1,...,s, are elements of A}. In particular, the set
T({s1,. .-, sk}u{ﬁ(n) | n € N}) will be denoted by T(5, 8). This set is closed under
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the initial functions of %A, so there exists a substructure of A with domain 7(5, 3),
which we shall denote by 2(5, 8). Notice that (3, 3) is at most denumerable and
hence it can be enumerated.

Let B = (N;91,..., %, Q1,...,Qs) be some structure over the natural num-
bers (further B will always denote such structures). Whenever I' is an enu-
meration operator (cf. [8]) of appropriate arity, we shall write ['(B) to denote
the set I'(Y1,...,%q,Q1,...,@Q;), where Q7 is the characteristic function of the
predicate ;. Further I'("8) will be looked upon rather as the partial multiple-
valued function with a graph I'("B). If « is a function in N, we shall set also
Bo=(Nsa,¢1, ..., %a; Q1 -, Q). »

Let » be a total mapping from N into B, M C N, T € N¥ and o« € NV.
By #(M), #(%) and (o) we shall denote {x{z) | z € M}, (x(z;),..., »(z})) and
{%(a(n))}n, respectively. |

Suppose now that a computational process over 2 at some input ¥ is initiated.
As we have mentioned above, we assume that an oracle © for the data domain B
may also be used during this computation, operating in the following way: whenever
some question to O is asked, it returns (generates) an arbitrary element of B and
1its answers do not depend on the current configuration. Now it is clear that if the
answers of Q are tq,...,t,, (or t;,ta, ... 1f the process is infinite and infinitely many
questions are put to @), then each p € B, which appears during the execution, is
an element of J(s, 3), where 8(n) = t, forn =1,2,...

We shall use mappings F' of the set B¥ x BV to describe mathematically the
“behavior of non-deterministic algorithms over % with £ input variables. For every
(3,8) € B* x BN F(3,8) will be interpreted as the result obtained when such an
algorithm is applied at the input 5, provided for every n = 1,2,... the answer to
the n-th question to the oracle has been equal to A(n) (see also [10, ch. 2, § 5.1] for
additional motivation).

The intuitive remarks just maid justify the introduction of the following defi-
nition: :

F: B¥xBY — 2B issaid to be admissible (in ) iff there exists an enumeration
operator T such that for every (3,8) € B¥ x BY and for every enumeration (x, B)
of (S, B) the equality

| x(I(B4)(Z)) = F(5, )
holds for each (F,a) € N¥ x NV such that »(T) = 5 and x(a) = 8.

Now taking into account the interpretation of F', we come to the following
notion of admissible function:

The partial multiple-valued (p.m.v.) function ¢ : B*¥ — 2P is said to be
admissible (in ) iff there exists an admissible functional F' such that for every
(s1,...,8k,p) € B¥*! the following is true:

pew(slz“':sk) ~ 3}3(?6 F(Slx“‘a‘sk)ﬁ))‘

In order to formulate an explicit characterization of the notions introduced so
far, some syntactical constructions will be needed.

Let Py be a new unary predicate symbol which is intended to represent the
predicate Az.true. Throughout the paper a o-formula will be any finite conjunction
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of atomic formulas in the extended signature (fi,..., fa; Po, P1,..., Py) or their
negations. An expression of the form & = =, where ¢ is a o-formula and 7 is a
o-term, will be called a o-clause. Every recursively enumerable set of o-clauses we
shall call, following [9], recursively enumerable (r.e.) scheme.

Let ¥ be some expression with variables X, ..., Xz and sq, ..., s; be arbitrary
elements of B. We shall write Wo(X1/sy,..., Xe/sk) (¥a(5) for short) to denote
the value (if it exists) of ¥ on A when X; 1s replaced by s;, i = 1,..., k. If ¥isa
term or a formula, the meaning of Wy(5) is the usual one. In the case when ¥ is
& = 7, ¥o(5) is introduced by the equivalence

(@ = m)a(5) ~p ff Pyu(3) ~tand r93) > p.
Here and further “t” stands for “true”.

Let A = {®¥ = 7 | w € W} be some set of clauses with variables
Xy, Xe, Yo, Y1, ... (le. for every w € W the variables of ¥ = 7% are among
Xi1,.... Xk, Y0,Y1,...). A determines a mapping Aq : B x BY — 28 defined by
the following condition:

p € Ay(5, B) & Jwyew ((PY = 7)a(5,8) >~ p).
Here (®¥ = 7%)a(5, B3) is an abbreviation for (&% = 7%)a(X1/s1,..., X&/sk,
Yi /B(1), - Y5 /B(n)), where Xy, ... X, Y;,...,Y;, 1s a list containing all
variables of ¥ = 7v.

We shall say that the functional F : B% x BY — 27 is definable iff there exists
a r.e. scheme A with variables Xy, ..., X, Yo, Y1, ... such that FF = Aq.

In order to save space, in the following we shall assume that the initial functions
and predicates of U are unary.

2. CONSTRUCTING A RECURSIVELY ENUMERABLE SCHEME
FOR A GIVEN ADMISSIBLE FUNCTIONAL

Denote by o+ the signature o U {S,0, =} with the commonly accepted seman-
tics of the additional symbols S, 0, = over the naturals. Set also of = ot U {fo},
fo being a new unary function symbol.

From now on we shall suppose that some admissible functional F' : B*¥ x BY —
28 is fixed. Without any loss of generality we may assume that k = 1. In this
section we are going to construct a r.e. scheme A, for which we shall establish later
that F' = Ag.

Indeed, since F’ is admissible, there exists an enurneration operator I' such that
for every (s, ) and every cnumeration (x,B) of (s, 5) the equality

#(L'(Ba)(z)) = F(s,5)
is satisfied for each z,o: #(x) = s and »(a) = S. In the present paper we shall
use an equivalent characterization of enumeration operators from [9, Thm. 7.5].

According to it there exists a r.e. set A® of o -clauses with one variable X, such
that for every =, o and B

(2.0) [(B.)(z) = A%_(2).
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Moreover, each clause of A is of the form
X=m&fiy(m)=n& ... &fi.(m.)=1n,&® = m,,
where ¢ 2 0 and @ is a (possibly empty) conjunction of formulas of the kind P;(n)

or =P;(n) (here as usual k stands for §*(0)). We may also suppose that in one
and the same clause of AY there are not repeating conjuncts as well as conjuncts
of the kind fi(k) = n and f;(k) = n' with n # n’. ‘

Our main task in this section will be to remove from A® function and predicate
symbols which are not in o, preserving at the same time (a part of) the information
about F that A° bears. This will be done in a few steps.

At the first step we eliminate fy. . For that purpose choose some sequence
Yp, Y, ... of different variables and replace each conjunct of the kind fo(n) = n’
by Y, = n’. This reduces A° to a r.e. scheme A' which variables arc among
X, Y, Y1, ... Furthermore, for every z, a, B
(2.1) A, (2) = Dp(z, ),
which follows immediately from the appropriate definitions and the equivalences

(foln) = n')g, (&) 2 t & a(n) =1’ & (Yo=n))g(r,a) =t

Let us now fix some injective recursive function o such that N \ Range(a) 1s
infinite and decidable. Fix also an arbitrary = which is not in Range(a). Let set
for brevity y; = a(d), i = 0,1,..., and M = {z,y0,y1,...}. In A' we make the
following transformations: first remove each clause containing conjuncts X = m

(Y; = n), where m # = (n # y;); then delete every conjunct of the kind X = z
or ¥; =y, or replace it by FPp(X) if it is the unique conjunct in the clause. This

procedure vields a set A? = {A®) = ¢®) | w € W} which is also r.e. (since o
is recursive), the following condition being satisfied for all o-structures B and for
already fixed z and a:

(2.2) Ak(z, ) = A4(z, o).

Now let us fix some clause A™) = a{®) from A?. It has the form f;, (m,) =
n, & ... &fi.(im,.) =n, &P = m,, where f;,,..., fi. are already function sym-
bols from o.

We shall say that the index w of A®™) = al®) is suitable iff the following
conditions hold:

(1) {ny,...,n} SN\ M,

(i) mj < nj forevery j=1,... ¢

(ii1) ny, ..., n, are different natural numbers.

Now set A% = {A™) = 4(*¥) | w is suitable }. Each of the conditions (i),
(ii), (iii) is decidable, hence A3 is r.e., too. Clearly, for every structure B over the
naturals we have

(2.3) ALz, a) D A%z, a).

The opposite inclusion of (2.3) is not always true. In what follows we shall
“define a non-empty class of enumerations (x, B) such that A(z, a) = Ak(z, @)
holds for every B from this class.
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Indeed, for an arbitrary (s,) € B x BY denote by X, 4 the class of those
enumerations (3, B = (N;¥1,...,%q;Q1,...,Qs)) of A(s, B) which satisfy the con-
ditions:

0) #(z) = s and x(a) =

1) Range($:) C N\ M, 1<i < a; |

2) if ¥;(m) 1s defined, then ¥;(m) >m, 1 £1 £ q;

3) Range(+;) N Range(v;) =D, 4,5 € {1,...,a} and i # j;

4) +; is injective, 1 < ¢ £ a.

Let us first check the following

Lemma 2.1. For cvery s, 3 the class X, g is not empty.

Proof. Clearly, one can choose x satisfying 0) and the requirement: for every
g € T(s,8) the set N\ = {n|n e N\M&x(n) = q} is infinite. Let n{?,

ngf), ... be the list of all elements of N{9) put in ascending order. Now for every ¢ =

1,...,a define ¢; as follows: if ¢;{x(m)) ~ q, set ¥;(m) = nSj”, where k& = 2t 3™ if
wi(#(m)) is undefined, set 1;(m) to be undefined, too. Set also @;(m) ~ R;(x(m))
for every m € N and j € {1,...,b}.

We have by definition

i(m) & lpi(x(m)) and  Wi(m) = x(i(m)) = x(ni”) = ¢ = gi(x(m)),
which together with the choice of @y, ..., @, shows that the pair
("3% -_— (N)wl; . "7¢G;Q17'~'}Q5))

is an enumeration of (s, 7). Now the conditions 0) and 1) are obviously true and

the validity of 2) follows from the observation ng}) 2k > (k); = m. We shall
simultaneously prove that 3) and 4) are also true. To do this, we assume that
Yi(m) = ¥;(m’') = n. We have to prove that i = j and m = m’. Indeed, using the
equalities #(1;(m)) = »(y;(m')) = #(n) = ¢ we get n@} = ¥i(m) = ¢;(m') = ngﬁ,),
where k = 2.3™ and k' = 2/.3™. Since there are no repetitions in the sequence

n(f), ngﬂ, ..., the equality n(@ = ngcq,) implies k = k', 1.e. 7= j and m = m’.
Now define X as |J{XK; 5 | (5,8) € B x BVN}. We are going to check that
(2.4) A%(z,a) = A(z, )

for every B such that (x,B) € X. Indeed, take some (x,B) from X and hence
from XK, g for some s, 8. Clearly, (2.4) will be proven if we succeed in verifying the
following statement: whenever (A®) = a(®))g(z, @) ~ y, then w is suitable. As-
sume (A(®) = a(®))g(z, ) ~ y; then in particular Ag;')(a:, o)~ t ie (fi,(m;) =
ni& ... &fi.(m,)=n, &®)p(r,a) =t Hence (fi;(m;) =n;)u(z,a)t, which
means that ;. (m;) = n; for every 1 £ j < e. These equalities together with con-
ditions 1) and 2) of the definition of X 5 ensure the validity of (i) and (it). To see
that (iii) 1s also true, use along with 3) and 4) the supposition made in the begin-
ning of this section, namely that there are no two conjuncts of the kind f;(k) =n
and f;(k) = n’' in one and the same clause of A?,
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Now we gather up (2.0)-(2.4) to conclude:

Lemma 2.2. For every o-structure B the following is true:
a) T(Ba)(2) 2 Af(z, a);
b) if there exists x such that (x,B) € X, then T'(B,)(z) = Ad(z,a).

Our next task is to remove the symbols §, 0 and = from A2. To this end let
us fix some suitable w. We are going to introduce certain auxiliary notion of depth
of n € N with respect to this index w. Let us remind that A®) = a{%) is of the
form f;,(m;)=n,& ... & fi,(m,)=n,&® = m,. Now set

O =N\{ni,...,n};
NF = {n;|3j(1 £ j<e& mje N)}fori=0,1,...

Lemma 2.3. NUN!'U...= N and N'NN¥ = & whenever i # k.

Proof. Suppose first that for some i # k N' N N*¥ # &, We may assume
that 7 is the least number satisfying this condition. Take some n € N* N N¥, We

have k > 7 2 0 and therefore k 2 1, hence there exists some j € {1,...,e} such
that n = n; and m; € N*~!. Now n = n; € N givesus N'N{ny,...,n.} # 9,
i.e. 1 > 0. It means that there exists some ¢ € {1,...,e} such that n = n, and

m, € N'~1. The equalities n = nj = n, imply j = ¢ (w is a suitable index!). Thus
we get m; € N'~1 N N¥~1 which contradicts the choice of i.

Now let us assume that there exists some n € N such thatn ¢ N°UN'U. .. and
let n be the least with this property. Apparently, n = n; for some j € {1,... e}.
Again from the fact that w is suitable we obtain m; < n; = n and therefore
m; € N' for some i. This implies nj; € N i+1 — a4 contradiction with the choice
of n.

Lemma 2.3 makes the following definition correct. Let us call a depth of n
with respect 1o w (in symbols: |n|,) the unique natural number i such that n € N*.
Let us notice here the obvious observation that there is an effective way for every
n € N and every suitable index w to find |n|,.

Suppose now that some additional list of different variables Zy, Z1, ... is
chosen. Fix some suitable w. By mductlon on |njy, we define a sequence {7"}, of
terms in the following way:

X, in=z,
If |nly =0,set ™ = VY;, ifn=uy,
Z, otherwise. _
~ When |n]y, = i > 0, then by definition n = n;, the depth of m; being 7 — 1.
Set in this case " = f; (7™]).

Before explaining the basic property of r™ we introduce a notational conven-
tion. Whenever ¥ is a o-expression with variabies XY, .. Y, 2, ..., 2.,
M is an arbitrary o-structure and (s, 3,48) € |M| x !imlN lﬁR]N, we shall write
Yam(s,3,8) as an abbreviation for

Yo (X/8,Y;,/B(51), -+ Yie/ BU), 21, /6(1); - -, 21 [6(1m)).-
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From now on v will denote the identity function on N. Let B = (N;y,.. ., 1,;

Q1,..., @) be a structure over N. A routine induction on the depth of n convince
us that N
(2.5) 'rg‘}(x,a}'y) =n provided ¥;,(my)=ny,..., % (m.) = n..

Now we are in position to remove the symbols §, 0 and = from A(*) = o),
Indeed, let @' is obtained from @ by replacing each conjunct P;(n) (=F;(n)) of ® by
Pi(v™) (=P;(r™)) and denote by B*) = 6(*) the clause Po(r"1) & ... & Po(t7¢) &
¢’ = 7. Notice that BM) = »®) is already a o-clause. Moreover, (B =
BN gz, o, y) is equal to (A} = al*))g(z, @) under certain condition aboit

B=(N;¢1,...,%s;@1,...,Qp), namely:
Lemma 2.4. Suppose that ¢; (my) =ny, ..., ¥ (me) = ne. Then
(B™) = b)) g(z,a,7) ~ (A™) = a“Ng(z,a).
Proof. Tt is obvious if we take into account the observation (2.5)

Let us mention here the following almost obvious fact, which will be used in
the next section:

Lemma 2.5. If Z, is a variable of B®) = b®) then n ¢ {x,y0,v1,.. .} U
{m, <oy Rg}.

Proof. 1If Z, 1s a variable of Bw) = b(w), then Z, is a variable of 7(™) for
some m. Now use a straightforward induction on the depth of m with respect
to w.

Variables of each clause B(%) = b(*) are among X, Yo, Y1, ..., Z0, Z1, ... Our
final transformation aims to eliminate the variables from the list Zy, Z1, ... Let us
fix some effective enumeration p% p!, ... of all o-terms with variables among X,
Yo, Y1, ... (i.c. such that the function which assigns to each n the Godel number

of p" is recursive). For every m > ( denote by C’,ng) = cgﬁfj the clause which
is obtained from B(®) = b(*) by replacing each variable Z, by p{"™=. Now set

= {C(w> = ol [ m > 0 and w is suitable}. Due to the choice of the sequence
{p }n, Ats ar.e scheme. In the next section we shall establish that F' = Aq.

3. EXPLICIT CHARACTERIZATION OF ADMISSIBILITY

Theorem 3.1. F 15 admissible in U off F' 1s definable.

Proof. The converse part is almost obvious. Let F' = Ay for some r.e. scheme

= {0¥ = 7 | w e W}. Define T(Bs)(z) as {y | Iwwew (¥ = ™¥)g(z, ) =~

y} A straightforward verlﬁcatlon convinces us that for every (s,3) € B x BY the
equahty

(3.0) #(I'(Ba)(2)) = F(s,5)
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holds for every enumeration (x, B) of %(s, 8) and for every (z, @) such that »(z) = s
and #(a) = 0.

Now suppose that /' i1s admissible. Then there exists an enumeration operator
I' such that the equality (3.0) is true. Let A be the r.e. scheme for F', constructed
in the previous section. Fix some (s, #) — an arbitrary element of B x BY. We
are going to prove that

(3.1) PEF(s,8) < peAyls B).

Indeed, assume first that p € F{s, 8). Let choose some enumeration (x, B =
(N; U1, ¥e; @1, ..., Q) from X, 5 which is not empty according to Lemma
2.1. By the choice of (#,B) we have »(z) = s and x{c) = B. Therefore by (3.0)
#(T(Bo)(z)) = F(s, ) and hence there exists y € N such that y € T'("B,)(z) and
#(y) = p. By Lemma 2.2 y € A (z, @) or, equivalently, (A} = o)y (2, 0) =y
for some suitable index w. In partlcular Yi,(my) =ny, ..., ¥, (me) = n,, hence
Lemma 2.4 can be applied. As a result we obtain (B®) = bW¥Hg(z a,y) =~
(A®) = a®Ng(z,a) =y, that is

(3.2) Bg”}(;ﬁ, a,v) ~t and b%“)(x,&,'y) ~y.
Define the sequence é as follows: 8(n) = x(n) for n = 0,1,... We have »(y) = ¢
as well as »(z) = s and »(a) = 3, and therefore B(w)(s B, 6) B%”)(:c}cx,}') and
bgv)(s,,@, §) o~ x(b%})(x,a,'y)). ‘These equalities combined with (3.2) and the fact
that x(y) = p give us
(3.3) (BYW) = b(¥)g(s,8,6) ~ p

Let Z,, ..., Zk, be all variables of B™) = p(®) from the list Zg, Z;, ... For
i = 1,...,n we set for short »(k;) = r;. Each r; belongs to Range(x) = (s, 3),

hence r; = pg'(s, ) for some term p™+ from the sequence {p"}n, fixed in the
end of the previous section. Now take some m € N such that (m),, = m; for

1 £ i £ n and consider the clause C( w) = cg{ff) By definition it 1s obtained from
B = p() by stmultaneous replacement of each Zy, by p{Mx: e by p™ in our
case. Notice that

(Zi)a(s, B,8) = 6(k:) = i = p (s, ).
So we get ‘
(CE) = ¥ Nals, B) = (B®) = () (s, 8, 6)

and by (3.3) (C,gff} = oy )g(s B) ~ p. The last, according to our choice of A,
means that p € Ag(s, 7), which completes the verification of the first direction of

(3.1).
Assume now that p € Aq(s,3). The only way to force p € F(s, §) is to show
that there is some enumeration (x, B) of 2(s, 3) such that

(3.4) - #(z)=35, x(a)=F and pe€ x(I'(By)(z)),

where, of course, z and « are again those already fixed in Sec. 2, because A convey
certain information about I' at the point (z, ) only.
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‘The assumption p € Aq(s, 3) is equal to ( };1" = Crg})m( ,B) =~ p for

some smtable index w, whence in particular each of the expressions C'“ Ql(s B)

and c (3 /3) is defined. Now having in mind the construction of o) = v ), we

may conclude that for each n, such that Z, is a variable of B(*) = p(w) p(m)" (s, 8)
is defined. Let us define a sequence 6 € BY in the following way:

§(n) = {pm )"(s B), if Z, is a variable of B(*) = b{“’)
otherwise.

It is clear that (B(*) = b(¥))y(s, 3, 6) ~ (C,(nw) = cﬁf})g(a‘, B) and hence
(3.5) (B®) = 6®)a(s, 4,6) ~ p

We have in particular that B‘g&w)(s,ﬁl 6) is defined. From here, since each
Py(r™), 1 £ i € e, is a conjunct of B(®*), : '

(3.6) To (5,0, 6) is defined for every i = 1,.

Now we can explain how to construct an enumeration (x,8) of (s, 3) sat-
isfying the requirement (3.4). We begin with the definition of x. Set x(z) = s,
#(yi) = B(i) for i = 0,1,..., x(n) = é(n) for every n such that n is a variable of
B™) = %) and x(n;) = 15°(s,5,6) for j = 1,..., e (notice that by (3.6) each
7o' (5,08, 6) is defined). To see that this settings are correct, recall our choice of a
(« is injective and = ¢ Range(a)), take into account the fact that w is a suitable
index (and hence n1, ..., n. are different natural numbers which do not belong to
M = {z,y0,11,...}) and consider Lemma 2.5.

Now we have to extend the definition of » onto the whole V. Since N\Range(a)
is infinite, this can be done in such a way that {#(n) | n € N} = T(s,B), i.e. so
- that  is a mapping onto T{(s, §). In addition, » has one very important property,
namely

(3.7) #(n;) = @i (#(m;)) forevery j=1,... e.
We shall separately consider the two cases for the depth of m; (with respect

to w): 1t 1s 0; and it 1s pqsitive. In the second case by definition m; € {ny,...,n¢}
and hence x(m;j) = 757(s,8,6). We have also " = f; (™) and therefore

2(5,8,8) = (fyy(™))a(s,5,8) = i, (v (5,8,8)) = s, (x(m;). This, com-
bined with x(n;) = 757°(s, 8, 6), completes the verification of (3.7) for the case when
|mjly > 0. If {m;{w = 0, there are three possibilities: m; = &, m; € {yo,y1,...},
and m; € N\ {z,y0,%1,...JU{ny,...,n.}. If mj = z, then by deﬁnition i = X
and 7" = f; (X). Further

x(nj) = 1y’ (5,8,6) = (fi,(X)a(s, 8,8) = i, (5) = @i, (x(x)) = i, (x(m;)).

In the case m; € {yo,¥1,...} we proceed analogously. In the last case we have
T = Zm, and ™ = f; (Z,,,), respectively. Let us notice that by construction

Pg(:rnj) is a conjunct of BM™) and Zm, 1s a variable of B)_ Therefore by definition
#(m;) = 8(m;). Now, similarly to the previous case, we get

37(5,8,8) = (fi;(Zm,))a(s, B, 6) = ¢1,(8(m;)) = i, (x(m;)).
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Now define the structure B as follows: ¥;.(m;) = n; for every j = 1,...,¢;
Yi(m) =~ un{x(n) ~ ;(x(m})] in the remaining cases, i.e. when (i,m) # (¢;, m;)
for each 1 £ j £ €; Qi(m) ~ Ri(»(m)) for every m& N and1 £ ¢ £ b.

In order to show that (x,B) is an enumeration of %A(s, ) it suffices to check that
#(¢;(m)) ~ @i(#(m)). Indeed, whenever (i, m) = (;, m;) for some j € {1,..., e},
this equality is true on the grounds of (3.7). Suppose now that (i,m) # (i;, m;)
for every j € {1,...,e} and assume, first, that ¢;(%(m)) is defined. We have
#(m) € T(s,B) and next p;(x(m)) € T(s,3). Since x is a mapping onto T(s, 3),
there exists n such that #(n) = p;(#(m)) and hence ;(m) is defined. Further

*(Pi(m)) = #(un[x(n) = @i(x(m))]) = @i(x(m)).

Whenever ¢;(x(m)) is undefined, ¥;(m) is undefined by definition.

A straightforward verification convinces us that »(Vg(z, «,v)) = Va(s, 8,6)
for every variable V of B(*) = p(*) Thus we may conclude that

«((B™) = 6()p(z,@,7)) = (B™) = b09)a(s,8,6)

and by (3.5) #((B®) = b*))g(z,a,7)) ~ p. It means that there exists y € N
such that

(3.8) (B™) = 5N g(z,a,7) ~y and x(y) = p.

On the other hand, owing to the special construction of 8, Lemma 2.4 can be
applied. So we get (A®™) = ¢(¥))g(z,a) ~ (B™) = b¥))g(z,a,v) and therefore
by (3.8) (A = a(“))g(z,a) ~ y. Since A¥) = ol is a clause of A3, y €
A%(z,a). Finally, using Lemma 2.2 we come to the conclusion that y € T(Ba)(z).
We have also #(z) = s and x(a) = § and hence by (3.0) x(y) € F(s, ), that is
p € F(s,8) by (3.8). This completes the verification of the first direction of the
theorem. As we noticed above, the opposite is straightforward. Thus the proof of
the theorem is completed.

As a consequence of the above theorem we get the following characterizations
of the admissible functions, which agree with the corresponding result from [11,
Thm. 4], obtained for the case of denumerable :

Theorem 3.2. ¢ : B — 28 is admissible in U iff it is absolutely search
computable over 2. ‘ . S

Proof. We shall use the following normal form theorem for absolutely search
computable (ASC) functions [7, Cor. 3]. A k-ary p.m.v. function ¢ is ASC in 2
iff there exists r.e. scheme A = {3Y;,...3Y;, (®*¥ = ) | w € W} with free
variables X1, ..., X; such that for every 5 € B* the following is true: ¢(3) 2 p iff

Bp,h Epgwn(q)w = Tw)Q{(Xl/Slz . - ka/sk:Y}i/pjm s ‘!y}wn/pjwn) =P

Now the proof of the theorem is straightforward if we take into account Theorem
3.1.
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4. STABLE FUNCTIONALS

Admissible functionals were introduced as a mathematical description of algo-
rithms over 2, which use an additional input from the data domain B. A certain
way to separate amongst them those F' which do not depend on B is to postulate

(4.0) F(35,8) = F(5,8') forevery € B* and 8,3 € BY.

We shall say that F is stable if it is admissible and satisfy (4.0).
The next characterization of the stable functionals follows directly from The-
orem 3.1.

Proposition 4.1. F : B* x BN — 28 is stable iff there is a r.e. scheme A
with variables Xy, ..., Xy such that

F(3,8) = Aa(3) for every (5,5) € B* x BY.
Proof. If F 1s stable, then F'is admissible and according to Theorem 3.1 it is

definable by some r.e. scheme © with variables X, ..., Xk, Yo, Y1, ... Replace in
© each variable Y; by X; and denote the scheme obtained in this way by A.
Now let us fix some (s1,...,s%) and define fo € BY as By(n) = s, for every

n. Clearly, ©(3, 80) = Aa(5). We have F(5,8) = F(3,80) = O(5,6) = Aal3).
If the right hand side of the proposition holds, then F' is definable and therefore
admissible. Obviously, F(3,8) = F(5, ') for every 3,4 in BV, which means that
F is stable.

For any stable F' we define ¢p by setting
¢r(s) = F(5,8) forany g€ B".

wF may be thought as the function, computable by ', so it is reasonable to expect
that the following proposition will be true.

Proposition 4.2. If F is stable, then pp is computable by means of some
recursively enumerable definitional scheme (REDS) of Shepherdson [9].

Proof. 1t is a straightforward consequence of Proposition 4.2.
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