FOAVIUHUK HA COPUMNCKUA YHUBEPCUTET »CB. KIIMMEHT OXPUICKHU™
PAKYHTET MO MATEMATUKA U UHPOPMATHUKA

Kunra 1 — MaremaTuka
Tom 87, 1993

ANNUAIRE DE L’UNIVERSITE DE SOFIA | ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 87, 1993

AN EXAMPLE OF A FINITE NUMBER OF RECURSIVELY
ENUMERABLE m-DEGREES CONTAINING AN INFINITE
SEQUENCE OF RECURSIVELY ENUMERABLE SETS

ELKA BOJKOVA

Eaxe Bowcxoea. [ITPUMEP KOHEYHOI'O YUCJIA PEKYPCHWBHO NNEPEYUCIA-
EMBIX m-CTEINEHEW, CONEPAUIMX BE3KOHEYHYIO MOCHEAOBATENb-
HOCTb PEKYPCUBHO IIEPEUYMNCIHAEMbBIX MHOYKECTB

Henb 2Toll cTaTbu NOCTPOMTL AN MPOU3BOJLHOIO HATYPAJIBHOIO UMCJIA L PEKY PCUB-
Ho mepeuucisemoe (p. 1.} MHoxkecTBO A, Takoro utobur muoxkecrsa A, A%, ..., A" upu-
HajJUIeKaAW PA3HEIM M-CTeleHAM, a MHOxecTBa A", A"T1 A2 onuoli u Toit ke
m-cTeneun. Takum o6pa3oM MbI nonydyaeM HpUMep JUISL i Pa3HBIX p. M. m-cTeneHeid dm(A4),
dm(/iz), coey dm (AT, dm(A™), npunannexammux x oguoit btt-crenenu (Tounee, c-crenenmn
~— ctenenb de(A) muoxkecrsa A cosnagatoman ¢ do(A?), ..., dc(A™), ...). Jlas aroro moc-
TATOUHO N0Ka3aTh, UTo MHOoecTBo A™T! m-cBommmo k mHoxectTsy A7, a MHOWecTBO A"
ne m-csoaumo k MmuokecTry A", Jlna aTolf mesu cosamaeM cxemy Juia MOCTPOEHUA p. .

MHOXecTBa A, CONOCTaAaBMMOrO NOCHENOBATEALHOCTN p. NII. MHOXecTB Ag, A1, A2, ..., Tak
yToBGbl NepBoe ycsioBue ObIJIO BHINONHEHO He3aBUCHMO OT BhIGOopa MuoxkecTB Ag, Ay, A,
. Hocne aToro mur crpoum muoxkecrsa Ag, A1, Az, ... 10 &Tanam, NoAL3IYACk METOAOM

npuopureTra, MTOOH! BRINONHMTE BTOPOE YCHOBHE.

Elka Bojkova. AN EXAMPLE OF A FINITE NUMBER OF RECURSIVELY ENUMERABLE
m-DEGREES CONTAINING AN INFINITE SEQUENCE OF RECURSIVELY ENUMERABLE

SETS )

The aim of this paper is to construct for an arbitrary natural number n a recursively enu-
merable (r. e.) set A such that the sets A4, A%, ..., A" belong to different m-degrees and the sets
A", A"t A2 belong to the same m-degree. That will provide an example of n distinct
r.e. m-degrees dm(A4), dm(A?), ..., dm(A™) belonging to one r.e. bit-degree (more precisely,
c-degree, the degree dc(A) of the set A coincidental with dc(A?), ..., dc(A™), ...). It suffices to
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prove that the set A"*! is m-reducible to the sct A™, but the set A™ is not m-reducible to the
set A"~ For this purpose we construct a scheme for building a r. e. set A, corresponding to a
sequence of r. e. sets Ay, Ay, Ay, ..., such that the first condition holds regardless the choice of
Ag, Ay, Az, ... Further we build the sets Ag, Ay, A2, ... by steps, using the priority argument
to ensure the second condition.

In (1] Fischer proves that the reducibilities <,, and <4, differ on the re-
cursively enumerable (r.e.) non-recursive sets. He constructs an example of a r.e.
htt-degree containing infinitely many distinct m-degrees. In [2] Odifreddi asks if
cvery r.e. tt-degree contains one or infinitely many r.e. m-degrees. Downey [3]
solves Qdifreddi’s question by constructing a r.e. {{-degree containing exactly 3 r.e.
m-degrees. Rogers [4] and Odifreddi [5] summarize the obtained results about the
structure of the different kinds of degrees.

In this paper we construct (for an arbitrary natural number n) a r.e. set A
such that

A < AE < L AT =, An-H =, An+2 =,

That will provide an example of n distinct r.c. m-degrees (dn,, (A), dn(A?), ...,
dn (A" 1) and d,,(A™)) belonging to one r.e. bit-degree (more precisely, c-degree
----- the degree d.(A) of the set A coincidental with d.(A%), ..., d.(A™), ...).

Obviously, all the recursive sets belong to one t{-degree and one m-degree, 1.c.
for any recursive set 13 the following equivalencies hold:

B =m -82 =m B’J =m
Now, we have to find a set A such that the sets A, A% ..., A" belong to

different m-degrees and the sets A™, A"t A?*+2  belong to the same m-degree.
[t suffices for this purpose to prove

(1) AL < AP
and
(2) ~ A" < AL

The method elaborated by Ditchev in [6] is used to construct the set responding
to both conditions. First, we construct a scheme for building a r.e. set A corre-
sponding to a sequence of r.e. sets Ag, Ay, Aa, ... (answering to some conditions),
such that (1) holds regardless the choice of Ag, Ay, Ao, ... After that we build the
sets Ag, Ay, Aa, ... by steps, using the priority argument to ensure (2).

<3

* k¥

(1.1) Definition. Let A and B be sets of natural numbers:
a) We say that the set A is “m-reducible” to the set B (A <., B) if there exists
a recursive function f : N — N such that

Vr (¢ € A < f(:::)EB);
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b) We say that the sets A and B are “m-equivalent” (A =,, B) if
AgmB and B <A
We shall denote by “A <,, B” the fact that A <, B but A #,, B.

Let for any natural number n the recursive functions J", JI*, J¥, ..., J be
such that for any n and for any z there exists a single tuple z;, ..., z, such that
(1.2) | r=J"zy, ..., &)
and
(1.3) VircisnJ{7 (I (20, oo, 20)) = 4]

(1.4) Definition. Let A be an arbitrary set of natural numbers. For any natural
number n we define the set A™:

AT ={JM&y, ..., zn) | Ty € AL .. &z, € A}.
Obviously, for any set A
A émAz ém émAn gmAn+1 gmAn“%B §m"',

i. ¢. the essential part of the problem is to find a set A such that:
(1) for every i, 1<ign — 1, = A < A%

(?) for every i, i2n, At <, A%
[t is easy to prove the following two lemmas:

(1.5) Lemma. Let A be an arbitrary subset of N and n be an arbitrary natural
number. Then A™t! <., A™ iff there ezist recursive functions f; : N*t1 — N,
fo: NPHL o N fo s NMPL S N such that

(16) 331614&..‘&3:”_1\.1614
= i@, ing1) €AL& fa(21, o Eap1) € A

Proof. Using the fact that one unary function g reduces A”*! to A™ iff for the
(n+ 1)-ary functions fi, ..., fn, defined as follows:

filzr oo, Eng1) = ST @, 2, ngn))), P= 1,2,
the condition (1.6) holds, one can easily verify that Lemma (1.5) is true.
(1.7) Lemma. a) If A"~ <,,, A", then for any m, 2sm<n - 1:

AMU <A™
b) If A® =, A"t then for any m, m > n:

AT =, AT
Hence to solve our problem, it is enough to pfove

An-1 <m A = An-}-l'
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* %k k¥

Let n be an arbitrary natural number*, n > 1. We shall find a set A such that
A(mAQ <m "'<m Aﬂ Em Aﬂ+l EmAn+2 ‘Em e

(2.1) Definition. Let L, be a language with the following alphabet:

— ¢g, €1, - .. — infinite sequence of constants;
— &1, ..., p — n variables;
— Fy, ..., F, — (n+ 1)-ary functional symbols.

Terms are defined by means of the following inductive clauses:
a)c;is aterm, i € N; ; 1s a term, 1<ign;
by if 71, ..., 7"*1 are terms, then Fy(r!, ..., r"*1) is a term, 1<i<n.

(2.2) Definition. For any term 7 we define subterms of 7:
a)if 7 =¢;, 1€ N, ¢; is asubterm of 7; if 7 = z;, 1<i<n, z; is a subterm
of r; A
b) if 7 = Fy(r,..., 7)) 1<i<n, then the term 7 and the subterms of
1 ..., %! are subterms of 7.

(2.3) Definition. For any term 7 we define deepness dp(r) of 7
a)if r=1¢;, 1€ NorT=uw; 1Zign, then dp(r) = 1; ‘

by if 7 = Fy(rt, ..., T"T), 1<ign, and dp(r!), ..., dp(+"*1) are defined,
then dp(7) =1+ 1<max+x dp(77).
SIEn

(2.4) Definition. We will call a partial structure every ordered (n + 1)-tuple
U={(N;0,...,0,), where 8y, ..., 0, are partial functions of n + 1 variables.

(2.5) Definition. Let U = (N;6;,...,0,) be a partial structure. We define the
value Ty of the term 7 in the partial structure U:

a)ifr=c¢;, p(ty, ..., tp) =iforany ¢y, ..., t,, 1 € N;
fr=ua; y(ty, ..., ta) =t; forany &y, ..., t,, 1<i<n;
b)ifr = Fy(r!, ..., "), 1gisn, €N, ..., t, € Nand 7, ..., 3t are
defined, then
Tt o ) Z0(H (), o TR, L ).

(2.6) Definition. We define the cod c¢d(r) of the term 7
a)if r=¢;, i €N, cd(r) = JX0, i); if r = z;, 1<i<n, cd(7) = J2(1, i),
b)if r = Fi(r!,...,7"*), 1gign, cd(r) = J*F2(i 4+ 1,cd(r1), ..., cd(rH1)).
That coding allows us to verify for any natural number whether it is a cod of
any term and if so, to find this term.

Theorem 1. Let M = {2k | k € N}. There ezists a partial structure U =
(N,0y,...,0,) such that the functions 81, ..., 8, are recursive and:

* n is fixed till the end of this paper.
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1) Vi,e N ... Vfﬂ+1 €N,

() (thheM& .. &typ1€M
= Oi(ty, ... tag1) E M& .. &Ou(t1,. . tat) € M);
V(.. —terms) 3t €N, ..., t, €N,
(*x) ﬂ(ﬁléM&...&tnéM
= rh(t, ) EME L &, L 1) € M)).
Proof. We shall say that for the partial functions wy, ..., wn the condition (%)
holds if domw; = - -- = domw, and the condition (%) holds for domw;.
We build the functions 8;, ..., 8, by steps: at any step s =0, 1, 2, ... we build
the functions 6%3), e 2,” as finite extensions of 8&3“1}, e ,gf_l) such that for
@ﬁ”, Co 6%5} the condition (¥) holds. For s = 0 we accept 6§"1) == Hﬁ;l) = .

(The domain of @ is empty.)
Finally, 6; = U 6, i=1, ..., n.

seN

I. By the even steps s = 2p we shall ensure that the functions 9&5), Ce 8&3)
are defined in (J7'(p), ..., Jn¥(p)) and therefore the functions 6y, ..., 6, will
be total.

1) If (JP(p), ..., JF1(p)) ¢ dom6{*™"), then for all I, 1<I<n,

it e M& .. &I (p)eM,

8(3) Jn+1 o Jn+l — {2: 1 1 p n+1 ’

{ ( 1 (p)) Y Yn4l (p)) 3) otherwise}
and |

~ pls—1 .
0 (ys, -, Yngr) 26} Wy, ooy Yngr)y Ty, o Y1) # 2

2 I (I7H(p), ..., J7F (1)) € dom b5, then Virgign [0 = 6071

II. By the odd steps s = 2p+ 1, p € N, if there are not terms o, Tl
such that p = J*= (cd(r!) ..., cd(r™ 1)), we take Vi <i<n [658’ = 658"1}]. If such
terms exist, we shall find t1, ..., £, such that the condition (#*) holds. In addition
we obtain that the condition (%) holds for any terms 7!, ..., 777 1.

In the second case we first verify whether some of the terms 71, ..., 777! is
a constant with a value — an odd number. If so, for any n-tuple of even numbers
t1, ..., tn the condition (*#) holds and we do nothing; i. e. we take 63(3} = 3?5"1) for
all I, 1<l <n. If all the terms 71, ..., 7"}, which are constants, have the values —
even numbers, we shall ensure (x*) by finding ¢, ..., t, and building QSS), ey o)
such that: .

—rhlt, ) EM&. . & (b, o ) €M,

mtlgM \/..‘theM.
Every term is a constant, a variable, or its deepness is bigger than 1.
(1) For all the terms 7%, ..., 7*~1 which are constants, we have that their values

belong to M.
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(2) For these ones, which are variables, we shall choose the corresponding numbers
t1, ..., ty (which are values of such terms) to be even and these terms also will
satisfy the condition. Because there is at least one number among ¢;, ..., ¢, which
is not a value of any term, let this number be odd and by this way ¢;, ..., ¢, also
will satisfy the condition. In both cases we shall take ¢, ..., t,, big enough not
to belong to the domains of QES_U) ., 6571 and thus to the values of the terms
with deepness bigger than |. ,

(3) For the terms with deepness bigger than 1 we need an auxiliary lemma —
Lemma 1. It will be applied for the partial structure |

U = (v, 60D, L) forrt L Gt

(obtained from (2) or, if there are no terms with deepness 1, we take t1, ..., {,
big enough and such that t; ¢ M V...V t, € M) and {or one term 7 among the
terms 7', ..., 771 dp(7) > 1. Using this lemma we shall obtain the functions
f?gs), o 0% such that 955"1@9?), 1 <2< n, the condition (%) holds and the value
of the term 7 for (¢1, ..., t,) is an even number. If at the same time (t1, ..., ¢,)
enters in the domain of the value of some other term among 7!, ..., 7"~ (except
7), we have to ensure that the value of the other term in (¢1, ..., ¢,) is also an

even number.

Lemma 1. Let the terms ', ... 771 be qiven. For any partial structure I/ =
) ) ! yp

(N;01,...,0,) with finite functions satisfying (%), for any term 7 with dp(7)22,
for any natural number m, and for any n-tuple of natural numbers (t1, ..., t,) such
that _

(¢, ..., tuygdomry and LEgM V. Vi, €M

there crists a partial structure U' = (N, 01, ..., 0),) with finile recursive functions
salisfying (%), such that:
(i) 0:20; for everyi, 1<isn;

(i) (ti, ..., tp)y €dom 7y and Ty, (ly, ..., tn) > 2z,

where z = max({m, max(l,(dom 6))), ..., max(I,+1(dom #{))});

(i) if (¢1, ..., {n) € (dom Tg;, \ dom Tg;), then rgi”(th oLt EM,
7=1 ..., n—1L

We shall apply this lemma successively for all the terms among 71, ... 771

with deepness bigger than 1 and we shall obtain

Tt o ) EME L &TIN ), L ) € M;

heEMV.. Vi, édM

The idea to prove Lemma 1 is to find for the term 7 = Fi(a?, ..., o"*1) a
partial structure V = (N, 87, ..., 0], ) such that ¥j, 1<jsn+1, ({1,..., tn) €

dom ol z; =03, (ty, ..., t,) and (21, ..., zng1) & dom 0/ . In this case we shall

build the functions 8, ..., 6, such that 61267, ..., 0;,,,20,,,, dom 8}, =
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dom 0], U{(z1, ..., za41)}. and the values of the functions in (z;, ..., z,4,) are
defined as follows (z is big enough):

NItz e M&. . &2,41 € M, the values of all the functions are 2z;

Dz, € MV...Vzyy & M, and for some term 77 among 7}, ..., 7771 there
exist a number I, 1<[<n, and terms ¢!, ..., e"t! such that 77 = Fy(e!, ..., e"t?),
then the value of the function 6} is also 2z;

3) In the other cases the values of the functions are 2z + 1.

So we ensure that (%) is true for the new partial structure (if 71 ¢ M V...V
Zni1 @ M, because the terms 7!, ... 7”71 are n — | and the symbols Iy, ..., F,
are n, al least one of the functions is in the case 3} and its value is 2z + 1).
Except that we ensure 1y (¢1, ..., i) to be big enough and for any of the terms
i, j=1,...,n=1 such that (¢;,...,t,) € (dom 7, \ dom7}), rg”(tl? oot EM
is true. The last follows from 2), but not evidently. So we need an auxiliary lemma,
-~ Lemma (2.7). '

With this lemma we have Lo prove that for some [, 121<n, 7,(t;, ..., t) =
0y(zy, ..., zn+1) and 01 1s in case 2), and therefore Té;(il, ody) =22 € M.
[n the general case the lemmma can not be proved for the term 77, 1t is only true
that therc exists a subterm of 77 for which the condition holds, but in this concrete
application of Lemma (2.7) in Lemma 1 we can prove that this subterm may be

only the term 7.

(2.7) Lemma. For any {wo p{zfrtia{ structures U = (N, 6y, ..., 0,) and U’ =

(N, 0, ... 0., for any lerm ¢ and for any natural numbers yy, ..., Ynsi;
tio..., Ly, such that:
a) dom #; = --- = dom 0, and thal is a finile sel;
b) dom 0/ = dom &; U{(y1, ..., yn41)}, i=1, ..., nyand (y1, .-, Y1) €
dom 81; ’
)by S0, ..., 0, L0,
d) (t1, ..., ta) € (dom oy \ domoy),
there erist a subterm o of o, i € {1, ..., n}, and terms et ..., e"*! such that:
(i) o =Kk, .t
(}l) 5%;;("513 cea, tn) Y1, €gjl(il, R in) = Ynd-

Proof. By the definitions (2.3) and (2.5) we have
(2.8) Vr-term, YU -partial structure [dp(7) = 1 = 77 is a total function].

From condition d} we have ({1, ..., t,) ¢ dom oy. Therefore dp(r)22 and
from (2.3) it follows that there exist k, 1Sk<n, and terms ol, ..., 0"t such that
Fi(ot, ..., 0"t ) = 0.

We have two cases: _ ‘

Casel Yigjgns1((ti, ..., 1n) € dom o] Let z; = o;(tr. ..., tn), J =
1, ..., n+1. From d) it follows that (21, ..., zn41) & dom 6 and (21, ..., zap1) €
dom #, and from b) we obtain zy = y1, ..., Zn41 = Yn41. From c) it follows that

Vj;§j§n+1[§"§j,(?1} ey in) = G'“g)r (tl,‘ Cey inﬂ'
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We obtatined G’gjs(ili, cey in) = Y1, ..y Ug?"l(il, Ceay tﬁ) = Yn41, 1.e. the

conditions (i) and (ii) hold for o/ = o and e/ =07, j =1, ..., n+ 1.
C as e Il. We apply induction on dp(o):
1) dp(¢) = 2. Then dp(¢') = - -- = dp(¢™*!) = 1 and the lemma follows from

(2.8) and Case I;

2) Let it be true for the terms with deepness less than dp(c);

3) We shall prove it for 0 = Fi(o!, ..., ¢"*1). The terms o!, ..., o™ *! have
smaller deepness. We have (t1, ..., t,) € dom oy. Two cases are possible:

Case 1. Fjrcjgns1l{ts, ., ta) & dom of;]. But (t, ..., t,) € dom oy =
(t1,...,tn) € dom cr{;,, and by the induction hypothesis for ¢/ we obtain that there
exists a o’-subterm of o/, 4, €', ..., ¢"*! such that o/ = Fi(e!, ..., ") and
Vmicmsnti1 € (E1, .o, th) = ym]. But o' is a subterm of 07| so ¢/ is a subterm of
o also and in this case the lemma is proved.

Case 2. Vjigjsn41[(t1, ..., tn) € dom o};]. Then Lemma (2.7) follows from
Case 1.

* X ok

- (3.1) Definition. The total functions ¢y, ..., v, of n+ 1 variables are defined as
follows:

(pi(tla Cey iﬂ+l)z<]n+2(is tl: "'rin%*l); 1= 1: sy Ty tl GN; "';tn“}—l eN.

(3.2) Definition. Let Ny = N\ ({J Range {(¥;)).
i=1

(3.3) Definition. Let {A;};en be a sequence of disjoint subsets of Ny. The se-
quence {[A;]}ien of disjoint subsets of N and the set A are defined as follows:

a)if pe A;, thenp € [Ai], p€ Ny, 1 €N,

b) 1fp1 - [Ail]&\..&}'?nw}.] € [A§n+l]&9k(i1, ce in+1) = m, 1§k’§.?’£, then
@e(p1, -+, Pat1) € [Am];

c) A= |J [4i]. (Weremind that M = {2k | k € N}.)

1€EM

Note. If the set {(p, i) | p € Ai} isr.e., then A is also r.e. In this case we say
that we have a r.e. sequence of r.e. sets,

We can prove the following lemma.:

(3.4) Lemma. Let {A;}ien be a sequence of disjoint subsets of Ny and the set A
be obtained by Definition (3.3). Then for any n + 1 naeturel numbers py, ..., pns1
it is true that

P1 EA&...&pn+1 €A < 301(;91,‘...,pn+1)€A&..,&<pn(p1, ...,pn+1) € A.

(3.5) Corollary. Let {A;}icn be a sequence of disjoint subsets of Ny and the set
A be obtained by Definition (3.3). Then A1, A™.
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(3.6) Definition. We define a correspondence between two terms 7 and o as
follows: ' ‘ ‘
a) if 7 has not a subterm that is a constant, then 7 corresponds with ¢ = 7;
by if ¢, ..., ci, are all the subterms of 7 which are constants, i1 € [4,,], ...,
iy € [A,.], then 7 corresponds with the term o, where o is obtained from 7 by
replacing ¢;,; with ¢, for any j € {1, ..., k}.
We need this correspondence to have the following

(3.7) Lemma. If {A;}ien i5 a sequence of disjoint subsels of No, 7 is a lerm,
P1, ..., Pn are arbitrary natural numbers, and:

a) for any constant c; which is a sublerm of 7 we have a number i € N such
that j € [A@};

b) 7 corresponds with o by Definition (3.6);
and

C) P € {Ah}& . &pn € {Ain]&g{j(il, sy Zn) = m,
then v (p1, ..., pn) € [Am].

(3.8) Lemnma. Let V = (N, @1, ..., ¢p). For any natural number z there is
an effective way 1o find a term 7 that have not subterms which are variables (for
r ¢ No, 7 # constant ¢;) such that z = ry(zy, ..., zn) and the values of all the
constants — subterms of 7, belong to Ng. : :

We prove this lemma by defining the function ||z|| for any z € N:

1) if z € Ng, then ljzf| = 0;

2)if z = ¢1(z1, ..., zn41), then {zfj =1+ | JTBE |z;1], 1gi<n,

(3.9)

and applying induction on [{z|[.
We shall build a r.e. sequence of disjoint r.e. subsets Ag, A1, Az, ... of Np such
that for the set A obtained by Definition (3.3) it holds
(3.10) A FEm AT
Then it follows from Lemma (1.7) and Corollary (3.5) that A is the set we need.
We shall build the sets {A4;}ien by steps — at any step s we build {Ag")}gew,
ensuring that (A“))”‘ 1s not m-reducible to (A(""))”‘1 by the e-th recursive function,
e = J2(s). (AL) is obtained from {AS”},;EN by Definition (3.3).)
OO
At the end we take A; = | Ags)} i € N. For this purpose at any step s we shall
s=0
find numbers z1, ..., z, such that if ¢, is the e-th partial recursive function, e =
JE(s), J(“)(ale, ..., Ty) € dom ey, and we(J(")(:Bl, e ZTn)) = J(“"l)(zl, ey Zn—1),
one of both conditions holds:
(i) T EA&..,&LL'n EA&Eilgiénﬁl(zi Q;’A),
(i) (;i¢AV.. Ve, gAN&zn€cA&k.. &1 € A.
If for this purpose we put the numbers z1, ..., z, 10 some sets Aiyy oo A,
we create a positive e-requirement {z1, ..., z,}, and if some numbers y1, ..., Y&
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must not belong to some set, we create a negative e-requirement {y;, ..., yx}. We
shall use the priority argument: if at the step s we need one number = to belong
to some set and at a step ¢ — not to belong, the smaller between JZ(s) and J3(t)
has a priority. So, when we choose zy, ..., , at the step s, they must not belong
to any negative requirements created at some steps ¢ < s such that J2(¢) < J2(s),
but they may belong to negative requirements created at steps r < s such that
JE(r) > J{(s). In the second case the J¥(r)-requirement is injured and we need at
some later step ', JZ(r') = J{(r), to create a new J2(r)-requirement.

If one J{(s)-requirement is not injured at a step r > s, it is called active at
this step. If 1t 1s active at every step r > s, it is called constant. At the end we
shall prove that for any ¢ the condition ((i) V (ii)) is injured only finite times.

Now we shall describe the construction of the sets {A;}ien.

(311)Step s=0. Let Ny = Ny UN,, where Ny and Ny are infinite disjoint
recursive sets and Ny = {ag < a; < ---}. Let r’ be a monotonically increasing
tunction such that Ran(r') = Ny and r(z) = r'(n.2* + z). Let

Pe,s(z) = {

Let AEO) ={a;}, 1 € N. So, all the sets are not empty. |
Step s>0. e= Jis). First we verify whether there exists an active
e-requirement. 1f such a requirement cxists, then we do nothing, i.e. we take
A<b) /1(8 1), i € N. Otherwise we verify whether there exist z; € Ny, ..,
tn € Ni,zp >r(e)&. . &z, >r(e), J'z1, ..., zn) € domep, ,, belonging neither
to U Ags'l) nor to any active negative requirement, created at a step ¢ < s such
1EN
that J7(t) < J#(s). If such numbers do not exist, we do nothing. If there are such

we(x), if z € dome, and @, (z) is countable for less than s steps,
not defined, otherwise.

numbers z, ..., z,, we take the smallest — :1:%8'), o ( ) From the choice of J”
there exist z;, ..., z,-1 such that
&Qe(]n( (f’) L .?:?(%C))) — Jn-l(zj) o zn—l}'

1t follows from Lemma (3.8), applied for z;, ..., z,_1, that there exist terms
w1, .., v" ! such that
(3.12) z =Yy (xy, ..., Tp), i:l,..*,n-—l./

We consider these numbers among zy, ..., zp-1 for which the constants-
subterms of the corresponding terms 1!, ..., ¥"~! already belong to some sets

AES'”, i € N. Let that be z1, ..., z,.

Case [ Jigicqy 3k € N(z € {A(;k;?]) ie. zi € A and in this case we
satisfy (1). Let A(S) = Ag;"l) U {Z‘ge\}, j =1, ..., n and Ags) = ‘453"1) for
I ¢{2,4,6,..., 2n}. We create a positive e-requirement {x§€>, o ng)h which
1s also constant.

Case Il. 2; € Ais)&‘...&zq e AG),
IT1. ¢ = n — 1. Then we satisfy (ii).
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Let A< )= 4(5 b U{:r{g)} J=1,...,n,and Am A(‘s—l) fortg {1,..., n}.

We create a positive e-requirement {:r.l N }} which is also constant.
112 . g<n—-1 ,
I1.2.1. 3p1gpgn-1 (¥p has a subterm-constant with a value 37,

V¢ (ENAE‘“% 9 2O,

For simplicity let p = n — 1. We satisfy (i) — we put x( 9 2% into 4 and
create a negative requirement such that z,_; stays always out, of A.

We take Ai A A{s REV {:};(e)} J=1 ..., n and Agﬂ A(S”U for | ¢
{2,4,6,..., 2n}. We create a positive e-requirement {.’L ', Y. ) )} and a negative

e- requxrement {7~ Y,
11.2.2.¥p1gpen—1 (¥p has asubterm-constant with value i, o7 ¢ (J A(S—U

€N
= uf € {331 I ) )}) We find the terms ¢!, ..., ¥~ ! corresponding to the
terms 74, ..., 7771 according to Definition (3.6). From Theorem 1 for the terms
7t ..., 77! there exist natural numbers i;, ..., i, such that
heEM& . &in €M < (i1, .., i) EM& ... &1} 1,...,in) EM

does not hold, i.e. one of the following holds:
(313) 1 EM& . &in € M&(Th(ir, ... in) EM V..V TE i, 0,) € M),
(3.14) (L @M V.. Vi, g M)&Th(iy,. .. in) € M& .. &7 (ir,...,1,) € M,
Let m; = rg}(il, coy i), 1€5€n — 1. We take: Ags) = A=y {:zt(-e)},
je{in, . in}, and A = APV for 1 g {3y, ... in ).
If (3.13) holds, then by Definition (3.3¢) we have
X9 e A g2l e A®)
and from Lemma (3.7):
a=up(al?, . 2l)) € [A0)],
and therefore z; & AG) v ...V z,_; ¢ A, so in this case (i) is true.
If (3.14) holds, then m; € M&.. & m,_1 € M and therofore 7 € AW & .

& zp-y € AG). Wehave also iy € M V.. Vi, ¢ M and then x; (e) ¢ AB) vy |y J:Ef} Q
Al e, (ii) is trae.
We create a positive e- requlrement {ac e :rgf)}, which is also constant.
At the end we take 4; = J Ags , 1 € N. Now we have to prove that the set

s=0
A satisfies the condition of our problem for n.

(3.15) Lemma. For any e-number of a p.r. function the condition ((i) V (i1)) s
injured only 2¢ — 1 fmes, 1.e. we creale not more than 2° e-requirements.

Proof. We shall use induction on e.
1) For e = 0 we have that the e-requirement can not be injured, because there

is no requirement with higher priority and 2°— 1 = 0.
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For e = 1 we can injure the e-requirement only once when we create the single
O-requirement (if it exists) and 2! — 1 = 1.

2) Let the statement hold for all the numbers smaller than e.

3) Let e be a number of a p.r. function. The condition ((i) V (i1)) for ¢ is injured
when a requirement with number between 0 and e — 1 is created, i.e. not more than
20 421 4. 42671 =2 — 1 times.

The lemma 1s proved.

(3.16) Lemma. The set N1\ A is infinite.

Proof. Let (N1), = {y |y € Ni&y < z}. We shall prove that the set

(N1)rz) N{N1 \ A) contains at least z elements.
(Mrey ={ylyeM&y<r(@)t={yly e M&y<r'(n2" +z)}

and because 7(0) < (1) < -+ < P(n2 +z—-1) < P(n2 +x) < -,
the elements of the set (N}),(z) are n.2% + z. Between them only G-, 1-, ..., & — I~
requirements may be elements of A (the others are bigger than r(z)), i.e. not more
than n.2°+n.2'+ - 4+ n.2°7! = 2% Therefore, the elements of (N1),(;) N(N1\ A)
are at least n.2% + r — n.2" = z and the lemma is proved. ~

(3.17) Lemma. For any natural number ¢ such that Ny C domep, (and espe-
cially for any e which is a number of recursive function) there exists a constant
e-requirement.

Proof. Let e € N and NI* C dom .. Let us assume that there i1s not a constant
e-requirement. We find sg such that at the step sq all e,-requirements for e; < e
are already built.

From Lemma (3.16) we have that there exist z; € Ny \ A4, ..., z, € N} \ A
such that z; > r(e)& ... &z, > r(e). Let s > so and J™(z1, ..., z,) € dome, ;.
There at the step s a constant e-requirement is created.

The lemma is proved.

Let A be obtained from {A;};en according to Definition (3.3). According the
construction, A is a r.e. set, A" #, A"} and A"t! <, A", ie. the needed set is
built. ‘
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