ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика Том 87, 1993

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques Tome 87, 1993

AN EXAMPLE OF A FINITE NUMBER OF RECURSIVELY ENUMERABLE m-DEGREES CONTAINING AN INFINITE SEQUENCE OF RECURSIVELY ENUMERABLE SETS

ELKA BOJKOVA

Елка Божкова. ПРИМЕР КОНЕЧНОГО ЧИСЛА РЕКУРСИВНО ПЕРЕЧИСЛЯ-ЕМЫХ m-СТЕПЕНЕЙ, СОДЕРЖАЩИХ БЕЗКОНЕЧНУЮ ПОСЛЕДОВАТЕЛЬ-НОСТЬ РЕКУРСИВНО ПЕРЕЧИСЛЯЕМЫХ МНОЖЕСТВ

Цель этой статьи построить для произвольного натурального числа n рекурсивно перечисляемое (р. п.) множество A, такого чтобы множества A, A^2 , ..., A^n принадлежали разным m-степеням, а множества A^n , A^{n+1} , A^{n+2} , ... — одной и той же m-степени. Таким образом мы получаем пример для n разных р. п. m-степеней $d_m(A)$, $d_m(A^2)$, ..., $d_m(A^{n-1})$, $d_m(A^n)$, принадлежащих к одной btt-степени (точнее, c-степени — степень $d_c(A)$ множества A совпадающая с $d_c(A^2)$, ..., $d_c(A^n)$, ...). Для этого достаточно доказать, что множество A^{n+1} m-сводимо к множеству A^n , а множество A^n не m-сводимо к множеству A^{n-1} . Для этой цели создаем схему для построения р. п. множества A, сопоставимого последовательности р. п. множеств A_0 , A_1 , A_2 , ..., так чтобы первое условие было выполнено независимо от выбора множеств A_0 , A_1 , A_2 , ... После этого мы строим множества A_0 , A_1 , A_2 , ... по этапам, пользуясь методом приоритета, чтобы выполнить второе условие.

 $Elka\ Bojkova.$ AN EXAMPLE OF A FINITE NUMBER OF RECURSIVELY ENUMERABLE m-DEGREES CONTAINING AN INFINITE SEQUENCE OF RECURSIVELY ENUMERABLE SETS

The aim of this paper is to construct for an arbitrary natural number n a recursively enumerable (r. e.) set A such that the sets A, A^2, \ldots, A^n belong to different m-degrees and the sets $A^n, A^{n+1}, A^{n+2}, \ldots$ belong to the same m-degree. That will provide an example of n distinct r. e. m-degrees $d_m(A), d_m(A^2), \ldots, d_m(A^n)$ belonging to one r. e. btt-degree (more precisely, c-degree, the degree $d_c(A)$ of the set A coincidental with $d_c(A^2), \ldots, d_c(A^n), \ldots$). It suffices to

prove that the set A^{n+1} is m-reducible to the set A^n , but the set A^n is not m-reducible to the set A^{n-1} . For this purpose we construct a scheme for building a r. e. set A, corresponding to a sequence of r. e. sets A_0, A_1, A_2, \ldots , such that the first condition holds regardless the choice of A_0, A_1, A_2, \ldots Further we build the sets A_0, A_1, A_2, \ldots by steps, using the priority argument to ensure the second condition.

In [1] Fischer proves that the reducibilities \leq_m and \leq_{btt} differ on the recursively enumerable (r.e.) non-recursive sets. He constructs an example of a r.e. btt-degree containing infinitely many distinct m-degrees. In [2] Odifreddi asks if every r.e. tt-degree contains one or infinitely many r.e. m-degrees. Downey [3] solves Odifreddi's question by constructing a r.e. tt-degree containing exactly 3 r.e. m-degrees. Rogers [4] and Odifreddi [5] summarize the obtained results about the structure of the different kinds of degrees.

In this paper we construct (for an arbitrary natural number n) a r.e. set A such that

$$A <_m A^2 <_m \cdots <_m A^n \equiv_m A^{n+1} \equiv_m A^{n+2} \equiv_m \cdots$$

That will provide an example of n distinct r.e. m-degrees $(d_m(A), d_m(A^2), \ldots, d_m(A^{n-1})$ and $d_m(A^n)$ belonging to one r.e. btt-degree (more precisely, c-degree — the degree $d_c(A)$ of the set A coincidental with $d_c(A^2), \ldots, d_c(A^n), \ldots$).

Obviously, all the recursive sets belong to one tt-degree and one m-degree, i.e. for any recursive set B the following equivalencies hold:

$$B \equiv_m B^2 \equiv_m B^3 \equiv_m \cdots$$

Now, we have to find a set A such that the sets A, A^2, \ldots, A^n belong to different m-degrees and the sets $A^n, A^{n+1}, A^{n+2}, \ldots$ belong to the same m-degree. It suffices for this purpose to prove

$$A^{n+1} \le_m A^n$$

and

$$(2) \qquad \neg A^n \leq_m A^{n-1}.$$

The method elaborated by Ditchev in [6] is used to construct the set responding to both conditions. First, we construct a scheme for building a r.e. set A corresponding to a sequence of r.e. sets A_0, A_1, A_2, \ldots (answering to some conditions), such that (1) holds regardless the choice of A_0, A_1, A_2, \ldots After that we build the sets A_0, A_1, A_2, \ldots by steps, using the priority argument to ensure (2).

* * *

(1.1) **Definition.** Let A and B be sets of natural numbers:

a) We say that the set A is "m-reducible" to the set B $(A \leq_m B)$ if there exists a recursive function $f: N \to N$ such that

$$\forall x \ (x \in A \iff f(x) \in B);$$

b) We say that the sets A and B are "m-equivalent" $(A \equiv_m B)$ if

$$A \leq_m B$$
 and $B \leq_m A$.

We shall denote by " $A <_m B$ " the fact that $A \leq_m B$ but $A \not\equiv_m B$.

Let for any natural number n the recursive functions J^n , J_1^n , J_2^n , ..., J_n^n be such that for any n and for any x there exists a single tuple x_1, \ldots, x_n such that

$$(1.2) x = Jn(x1, ..., xn)$$

and

(1.3)
$$\forall i_{1 \le i \le n} [J_i^n(J^n(x_1, \ldots, x_n)) = x_i].$$

(1.4) **Definition.** Let A be an arbitrary set of natural numbers. For any natural number n we define the set A^n :

$$A^{n} = \{J^{n}(x_{1}, \ldots, x_{n}) \mid x_{1} \in A\& \ldots \& x_{n} \in A\}.$$

Obviously, for any set A

$$A \leq_m A^2 \leq_m \cdots \leq_m A^n \leq_m A^{n+1} \leq_m A^{n+2} \leq_m \cdots,$$

- i.e. the essential part of the problem is to find a set A such that:
 - (1) for every $i, 1 \le i \le n 1, \neg A^{i+1} \le m A^i$;
 - (2) for every $i, i \ge n, A^{i+1} \le m A^i$.

It is easy to prove the following two lemmas:

(1.5) **Lemma.** Let A be an arbitrary subset of N and n be an arbitrary natural number. Then $A^{n+1} \leq_m A^n$ iff there exist recursive functions $f_1: N^{n+1} \to N$, $f_2: N^{n+1} \to N$, ..., $f_n: N^{n+1} \to N$ such that

(1.6)
$$x_1 \in A \& \dots \& x_{n+1} \in A$$

$$\iff f_1(x_1, \dots, x_{n+1}) \in A \& \dots \& f_n(x_1, \dots, x_{n+1}) \in A.$$

Proof. Using the fact that one unary function g reduces A^{n+1} to A^n iff for the (n+1)-ary functions f_1, \ldots, f_n , defined as follows:

$$f_i(x_1, x_2, \dots, x_{n+1}) = J_i^n(g(J^{n+1}(x_1, x_2, \dots, x_{n+1}))), i = 1, 2, \dots, n,$$

the condition (1.6) holds, one can easily verify that Lemma (1.5) is true.

(1.7) **Lemma.** a) If $A^{n-1} <_m A^n$, then for any m, $2 \le m \le n-1$:

$$A^{m-1} <_m A^m;$$

b) If $A^n \equiv_m A^{n+1}$, then for any m, m > n:

$$A^m \equiv_m A^{m+1}.$$

Hence to solve our problem, it is enough to prove

$$A^{n-1} <_m A^n \equiv_m A^{n+1}.$$

Let n be an arbitrary natural number^{*}, n > 1. We shall find a set A such that

$$A <_m A^2 <_m \cdots <_m A^n \equiv_m A^{n+1} \equiv_m A^{n+2} \equiv_m \cdots$$

- (2.1) **Definition.** Let L_n be a language with the following alphabet:
 - $-c_0, c_1, \ldots$ infinite sequence of constants;
 - $-x_1, \ldots, x_n n$ variables;
 - $-F_1, \ldots, F_n (n+1)$ -ary functional symbols.

Terms are defined by means of the following inductive clauses:

- a) c_i is a term, $i \in N$; x_i is a term, $1 \le i \le n$;
- b) if $\tau^1, \ldots, \tau^{n+1}$ are terms, then $F_i(\tau^1, \ldots, \tau^{n+1})$ is a term, $1 \le i \le n$.
- (2.2) **Definition.** For any term τ we define *subterms* of τ :
- a) if $\tau = c_i$, $i \in \mathbb{N}$, c_i is a subterm of τ ; if $\tau = x_i$, $1 \le i \le n$, x_i is a subterm of τ ;
- b) if $\tau = F_i(\tau^1, \dots, \tau^{n+1})$, $1 \le i \le n$, then the term τ and the subterms of $\tau^1, \dots, \tau^{n+1}$ are subterms of τ .
- (2.3) **Definition.** For any term τ we define deepness $dp(\tau)$ of τ :
 - a) if $\tau = c_i$, $i \in N$ or $\tau = x_i$, $1 \le i \le n$, then $dp(\tau) = 1$;
- b) if $\tau = F_i(\tau^1, \ldots, \tau^{n+1})$, $1 \le i \le n$, and $dp(\tau^1), \ldots, dp(\tau^{n+1})$ are defined, then $dp(\tau) = 1 + \max_{1 \le j \le n+1} dp(\tau^j)$.
- (2.4) **Definition.** We will call a partial structure every ordered (n+1)-tuple $U = \langle N; \theta_1, \ldots, \theta_n \rangle$, where $\theta_1, \ldots, \theta_n$ are partial functions of n+1 variables.
- (2.5) **Definition.** Let $U = \langle N; \theta_1, \dots, \theta_n \rangle$ be a partial structure. We define the value τ_U of the term τ in the partial structure U:
 - a) if $\tau = c_i$, $\tau_U(t_1, \ldots, t_n) = i$ for any t_1, \ldots, t_n , $i \in N$; if $\tau = x_i$, $\tau_U(t_1, \ldots, t_n) = t_i$ for any t_1, \ldots, t_n , $1 \le i \le n$;
- b) if $\tau = F_i(\tau^1, \ldots, \tau^{n+1})$, $1 \le i \le n$, $t_1 \in N$, ..., $t_n \in N$ and $\tau_U^1, \ldots, \tau_U^{n+1}$ are defined, then

$$\tau_U(t_1, \ldots, t_n) \cong \theta_i(\tau_U^1(t_1, \ldots, t_n), \ldots, \tau_U^{n+1}(t_1, \ldots, t_n)).$$

- (2.6) **Definition.** We define the cod $cd(\tau)$ of the term τ :
 - a) if $\tau = c_i$, $i \in \mathbb{N}$, $cd(\tau) = J^2(0, i)$; if $\tau = x_i$, $1 \le i \le n$, $cd(\tau) = J^2(1, i)$;
 - b) if $\tau = F_i(\tau^1, \dots, \tau^{n+1}), \ 1 \le i \le n, \ \operatorname{cd}(\tau) = J^{n+2}(i+1, \operatorname{cd}(\tau^1), \dots, \operatorname{cd}(\tau^{n+1})).$

That coding allows us to verify for any natural number whether it is a cod of any term and if so, to find this term.

Theorem 1. Let $M = \{2k \mid k \in N\}$. There exists a partial structure $U = \langle N, \theta_1, \dots, \theta_n \rangle$ such that the functions $\theta_1, \dots, \theta_n$ are recursive and:

^{*} n is fixed till the end of this paper.

1)
$$\forall t_{1} \in N \dots \forall t_{n+1} \in N$$
,
(*) $(t_{1} \in M \& \dots \& t_{n+1} \in M \iff \theta_{1}(t_{1}, \dots, t_{n+1}) \in M \& \dots \& \theta_{n}(t_{1}, \dots, t_{n+1}) \in M)$;
2) $\forall (\tau^{1}, \dots, \tau^{n-1} - \text{terms}) \exists t_{1} \in N, \dots, t_{n} \in N,$
(**) $\neg (t_{1} \in M \& \dots \& t_{n} \in M \iff \tau_{U}^{1}(t_{1}, \dots, t_{n}) \in M)$.

Proof. We shall say that for the partial functions $\omega_1, \ldots, \omega_n$ the condition $(\tilde{*})$ holds if $\text{dom } \omega_1 = \cdots = \text{dom } \omega_n$ and the condition (*) holds for $\text{dom } \omega_1$.

We build the functions $\theta_1, \ldots, \theta_n$ by steps: at any step $s = 0, 1, 2, \ldots$ we build the functions $\theta_1^{(s)}, \ldots, \theta_n^{(s)}$ as finite extensions of $\theta_1^{(s-1)}, \ldots, \theta_n^{(s-1)}$ such that for $\theta_1^{(s)}, \ldots, \theta_n^{(s)}$ the condition $(\tilde{*})$ holds. For s = 0 we accept $\theta_1^{(-1)} = \cdots = \theta_n^{(-1)} = \emptyset$. (The domain of \emptyset is empty.)

Finally,
$$\theta_i = \bigcup_{s \in N} \theta_i^{(s)}, \quad i = 1, \ldots, n.$$

I. By the even steps s=2p we shall ensure that the functions $\theta_1^{(s)}, \ldots, \theta_n^{(s)}$ are defined in $(J_1^{n+1}(p), \ldots, J_{n+1}^{n+1}(p))$ and therefore the functions $\theta_1, \ldots, \theta_n$ will be total.

1) If
$$(J_1^{n+1}(p), \ldots, J_{n+1}^{n+1}(p)) \notin \text{dom } \theta_1^{(s-1)}$$
, then for all $l, 1 \le l \le n$,

$$\theta_l^{(s)}(J_1^{n+1}(p), \ldots, J_{n+1}^{n+1}(p)) = \begin{cases} 2, & \text{if } J_1^{n+1}(p) \in M \& \ldots \& J_{n+1}^{n+1}(p) \in M, \\ 3, & \text{otherwise,} \end{cases}$$

and

$$\theta_l^{(s)}(y_1, \ldots, y_{n+1}) \cong \theta_l^{(s-1)}(y_1, \ldots, y_{n+1}), \text{ if } J^{n+1}(y_1, \ldots, y_{n+1}) \neq p.$$

2) If
$$(J_1^{n+1}(p), \ldots, J_{n+1}^{n+1}(p)) \in \text{dom } \theta_1^{(s-1)}, \text{ then } \forall l_{1 \le l \le n} \left[\theta_l^{(s)} = \theta_l^{(s-1)} \right].$$

II. By the odd steps $s=2p+1,\ p\in N$, if there are not terms τ^1,\ldots,τ^{n-1} such that $p=J^{n-1}(\operatorname{cd}(\tau^1)\ldots,\operatorname{cd}(\tau^{n-1}))$, we take $\forall l_{1\leq l\leq n}\left[\theta_l^{(s)}=\theta_l^{(s-1)}\right]$. If such terms exist, we shall find t_1,\ldots,t_n such that the condition (**) holds. In addition we obtain that the condition (**) holds for any terms τ^1,\ldots,τ^{n-1} .

In the second case we first verify whether some of the terms $\tau^1, \ldots, \tau^{n-1}$ is a constant with a value — an odd number. If so, for any n-tuple of even numbers t_1, \ldots, t_n the condition (**) holds and we do nothing, i. e. we take $\theta_l^{(s)} = \theta_l^{(s-1)}$ for all $l, 1 \le l \le n$. If all the terms $\tau^1, \ldots, \tau^{n-1}$, which are constants, have the values — even numbers, we shall ensure (**) by finding t_1, \ldots, t_n and building $\theta_1^{(s)}, \ldots, \theta_n^{(s)}$ such that:

$$-\tau_{U(s)}^{1}(t_{1}, \ldots, t_{n}) \in M \& \ldots \& \tau_{U(s)}^{n-1}(t_{1}, \ldots, t_{n}) \in M; -t_{1} \notin M \vee \ldots \vee t_{n} \notin M.$$

Every term is a constant, a variable, or its deepness is bigger than 1.

(1) For all the terms $\tau^1, \ldots, \tau^{n-1}$, which are constants, we have that their values belong to M.

- (2) For these ones, which are variables, we shall choose the corresponding numbers t_1, \ldots, t_n (which are values of such terms) to be even and these terms also will satisfy the condition. Because there is at least one number among t_1, \ldots, t_n which is not a value of any term, let this number be odd and by this way t_1, \ldots, t_n also will satisfy the condition. In both cases we shall take t_1, \ldots, t_n big enough not to belong to the domains of $\theta_1^{(s-1)}, \ldots, \theta_n^{(s-1)}$ and thus to the values of the terms with deepness bigger than 1.
- (3) For the terms with deepness bigger than 1 we need an auxiliary lemma Lemma 1. It will be applied for the partial structure

$$U^{(s-1)} = \langle N, \, \theta_1^{(s-1)}, \, \dots, \, \theta_n^{(s-1)} \rangle \text{ for } \tau^1, \, \dots, \, \tau^{n-1}, \, t_1, \, \dots, \, t_n$$

(obtained from (2) or, if there are no terms with deepness 1, we take t_1, \ldots, t_n big enough and such that $t_1 \notin M \vee \ldots \vee t_n \notin M$) and for one term τ among the terms $\tau^1, \ldots, \tau^{n-1}$, $dp(\tau) > 1$. Using this lemma we shall obtain the functions $\theta_1^{(s)}, \ldots, \theta_n^{(s)}$ such that $\theta_i^{(s-1)} \leq \theta_i^{(s)}$, $1 \leq i \leq n$, the condition $(\tilde{*})$ holds and the value of the term τ for (t_1, \ldots, t_n) is an even number. If at the same time (t_1, \ldots, t_n) enters in the domain of the value of some other term among $\tau^1, \ldots, \tau^{n-1}$ (except τ), we have to ensure that the value of the other term in (t_1, \ldots, t_n) is also an even number.

Lemma 1. Let the terms $\tau^1, \ldots, \tau^{n-1}$ be given. For any partial structure $U = \langle N; \theta_1, \ldots, \theta_n \rangle$ with finite functions satisfying $(\tilde{*})$, for any term τ with $dp(\tau) \geq 2$, for any natural number m, and for any n-tuple of natural numbers (t_1, \ldots, t_n) such that

$$(t_1, \ldots, t_n) \not\in \text{dom } \tau_U \text{ and } t_1 \not\in M \vee \ldots \vee t_{n+1} \not\in M$$

there exists a partial structure $U' = \langle N, \theta'_1, \ldots, \theta'_n \rangle$ with finite recursive functions satisfying $(\tilde{*})$, such that:

- (i) $\theta'_i \ge \theta_i$ for every i, $1 \le i \le n$;
- (ii) $(t_1, \ldots, t_n) \in \text{dom } \tau_{U'} \text{ and } \tau_{U'}, (t_1, \ldots, t_n) > z,$

where $z = \max(\lbrace m, \max(I_1(\text{dom } \theta'_1)), \ldots, \max(I_{n+1}(\text{dom } \theta'_1))\rbrace);$

(iii) if
$$(t_1, \ldots, t_n) \in (\text{dom } \tau_{U'}^j \setminus \text{dom } \tau_U^j)$$
, then $\tau_{U'}^j(t_1, \ldots, t_n) \in M$, $j = 1, \ldots, n-1$.

We shall apply this lemma successively for all the terms among $\tau^1, \ldots, \tau^{n-1}$ with deepness bigger than 1 and we shall obtain

$$\tau_{U(s)}^{1}(t_{1}, \ldots, t_{n}) \in M \& \ldots \& \tau_{U(s)}^{n-1}(t_{1}, \ldots, t_{n}) \in M;$$

$$t_{1} \notin M \vee \ldots \vee t_{n} \notin M.$$

The idea to prove Lemma 1 is to find for the term $\tau = F_i(\sigma^1, \ldots, \sigma^{n+1})$ a partial structure $V = \langle N, \theta_1'', \ldots, \theta_{n+1}'' \rangle$ such that $\forall j, 1 \leq j \leq n+1, (t_1, \ldots, t_n) \in \text{dom } \sigma_V^j, z_j = \sigma_V^j(t_1, \ldots, t_n)$ and $(z_1, \ldots, z_{n+1}) \notin \text{dom } \theta_{n+1}''$. In this case we shall build the functions $\theta_1', \ldots, \theta_{n+1}'$ such that $\theta_1' \geq \theta_1'', \ldots, \theta_{n+1}' \geq \theta_{n+1}''$, dom $\theta_{n+1}' = \theta_1''$

dom $\theta''_{n+1} \cup \{(z_1, \ldots, z_{n+1})\}$, and the values of the functions in (z_1, \ldots, z_{n+1}) are defined as follows (z is big enough):

- 1) If $z_1 \in M \& ... \& z_{n+1} \in M$, the values of all the functions are 2z;
- 2) If $z_1 \notin M \vee ... \vee z_{n+1} \notin M$, and for some term τ^j among $\tau^1, ..., \tau^{n-1}$ there exist a number $l, 1 \leq l \leq n$, and terms $\varepsilon^1, ..., \varepsilon^{n+1}$ such that $\tau^j = F_l(\varepsilon^1, ..., \varepsilon^{n+1})$, then the value of the function θ'_l is also 2z;
 - 3) In the other cases the values of the functions are 2z + 1.

So we ensure that $(\tilde{*})$ is true for the new partial structure (if $z_1 \notin M \vee \ldots \vee z_{n+1} \notin M$, because the terms $\tau^1, \ldots, \tau^{n-1}$ are n-1 and the symbols F_1, \ldots, F_n are n, at least one of the functions is in the case 3) and its value is 2z+1). Except that we ensure $\tau_{U'}(t_1, \ldots, t_n)$ to be big enough and for any of the terms $\tau^j, j=1,\ldots,n-1$, such that $(t_1,\ldots,t_n)\in (\text{dom }\tau_U^j)\setminus \text{dom }\tau_U^j$, $\tau_{U'}^j(t_1,\ldots,t_n)\in M$ is true. The last follows from 2), but not evidently. So we need an auxiliary lemma—Lemma (2.7).

With this lemma we have to prove that for some $l, 1 \le l \le n, \tau_{U'}^j(t_1, \ldots, t_n) = \theta_1(z_1, \ldots, z_{n+1})$ and θ_1 is in case 2), and therefore $\tau_{U'}^j(t_1, \ldots, t_n) = 2z \in M$. In the general case the lemma can not be proved for the term τ^j , it is only true that there exists a subterm of τ^j for which the condition holds, but in this concrete application of Lemma (2.7) in Lemma 1 we can prove that this subterm may be only the term τ^j .

- (2.7) **Lemma.** For any two partial structures $U = \langle N, \theta_1, \ldots, \theta_n \rangle$ and $U' = \langle N, \theta'_1, \ldots, \theta'_n \rangle$, for any term σ and for any natural numbers y_1, \ldots, y_{n+1} ; t_1, \ldots, t_n , such that:
 - a) dom $\theta_1 \equiv \cdots \equiv \text{dom } \theta_n \text{ and that is a finite set};$
- b) dom $\theta'_i = \text{dom } \theta_i \cup \{(y_1, \ldots, y_{n+1})\}, i = 1, \ldots, n, and (y_1, \ldots, y_{n+1}) \notin \text{dom } \theta_1;$
 - c) $\theta_1 \leq \theta'_1, \ldots, \theta_n \leq \theta'_n;$
- d) $(t_1, \ldots, t_n) \in (\text{dom } \sigma_{U'} \setminus \text{dom } \sigma_U),$ there exist a subterm σ' of σ , $i \in \{1, \ldots, n\}$, and terms $\varepsilon^1, \ldots, \varepsilon^{n+1}$ such that:
 - (i) $\sigma' = F_i(\varepsilon^1, \ldots, \varepsilon^{n+1});$
 - (ii) $\varepsilon_{U'}^1(t_1,\ldots,t_n)=y_1,\ldots,\varepsilon_{U'}^{n+1}(t_1,\ldots,t_n)=y_{n+1}.$

Proof. By the definitions (2.3) and (2.5) we have

(2.8) $\forall \tau$ -term, $\forall U$ -partial structure $[dp(\tau) = 1 \Rightarrow \tau_U \text{ is a total function}].$

From condition d) we have $(t_1, \ldots, t_n) \notin \text{dom } \sigma_U$. Therefore $\text{dp}(\tau) \geq 2$ and from (2.3) it follows that there exist $k, 1 \leq k \leq n$, and terms $\sigma^1, \ldots, \sigma^{n+1}$ such that $F_k(\sigma^1, \ldots, \sigma^{n+1}) = \sigma$.

We have two cases:

C as e I. $\forall j_{1 \leq j \leq n+1}[(t_1, \ldots, t_n) \in \text{dom } \sigma_U^j]$. Let $z_j = \sigma_U^j(t_1, \ldots, t_n)$, $j = 1, \ldots, n+1$. From d) it follows that $(z_1, \ldots, z_{n+1}) \notin \text{dom } \theta_k$ and $(z_1, \ldots, z_{n+1}) \in \text{dom } \theta_k'$ and from b) we obtain $z_1 = y_1, \ldots, z_{n+1} = y_{n+1}$. From c) it follows that

$$\forall j_{1 \leq j \leq n+1} [\sigma_{U'}^{j}(t_1, \ldots, t_n) = \sigma_{U}^{j}(t_1, \ldots, t_n)].$$

We obtained $\sigma_{U'}^1(t_1, \ldots, t_n) = y_1, \ldots, \sigma_{U'}^{n+1}(t_1, \ldots, t_n) = y_{n+1}$, i.e. the conditions (i) and (ii) hold for $\sigma' = \sigma$ and $\varepsilon^j = \sigma^j$, $j = 1, \ldots, n+1$.

C as e II. We apply induction on $dp(\sigma)$:

- 1) $dp(\sigma) = 2$. Then $dp(\sigma^1) = \cdots = dp(\sigma^{n+1}) = 1$ and the lemma follows from (2.8) and Case I;
 - 2) Let it be true for the terms with deepness less than $dp(\sigma)$;
- 3) We shall prove it for $\sigma = F_k(\sigma^1, \ldots, \sigma^{n+1})$. The terms $\sigma^1, \ldots, \sigma^{n+1}$ have smaller deepness. We have $(t_1, \ldots, t_n) \notin \text{dom } \sigma_U$. Two cases are possible:
- Case 1. $\exists j_1 \leq j \leq n+1[(t_1, \ldots, t_n) \notin \text{dom } \sigma_U^j]$. But $(t_1, \ldots, t_n) \in \text{dom } \sigma_{U'} \Rightarrow (t_1, \ldots, t_n) \in \text{dom } \sigma_{U'}^j$, and by the induction hypothesis for σ^j we obtain that there exists a σ' -subterm of σ^j , $i, \varepsilon^1, \ldots, \varepsilon^{n+1}$ such that $\sigma' = F_i(\varepsilon^1, \ldots, \varepsilon^{n+1})$ and $\forall m_1 \leq m \leq n+1[\varepsilon_{U'}^m(t_1, \ldots, t_n) = y_m]$. But σ' is a subterm of σ^j , so σ' is a subterm of σ also and in this case the lemma is proved.
- Case 2. $\forall j_{1 \leq j \leq n+1}[(t_1, \ldots, t_n) \in \text{dom } \sigma_U^j]$. Then Lemma (2.7) follows from Case I.

* * *

(3.1) **Definition.** The total functions $\varphi_1, \ldots, \varphi_n$ of n+1 variables are defined as follows:

$$\varphi_i(t_1,\ldots,t_{n+1})=J^{n+2}(i,t_1,\ldots,t_{n+1}),\ i=1,\ldots,n;\ t_1\in N,\ldots,t_{n+1}\in N.$$

- (3.2) **Definition.** Let $N_0 = N \setminus (\bigcup_{i=1}^n \text{ Range } (\varphi_i))$.
- (3.3) **Definition.** Let $\{A_i\}_{i\in N}$ be a sequence of disjoint subsets of N_0 . The sequence $\{[A_i]\}_{i\in N}$ of disjoint subsets of N and the set A are defined as follows:
 - a) if $p \in A_i$, then $p \in [A_i]$, $p \in N_0$, $i \in N$;
- b) if $p_1 \in [A_{i_1}] \& \ldots \& p_{n+1} \in [A_{i_{n+1}}] \& \theta_k(i_1, \ldots, i_{n+1}) = m$, $1 \le k \le n$, then $\varphi_k(p_1, \ldots, p_{n+1}) \in [A_m]$;
 - c) $A = \bigcup_{i \in M} [A_i]$. (We remind that $M = \{2k \mid k \in N\}$.)

Note. If the set $\{(p, i) \mid p \in A_i\}$ is r.e., then A is also r.e. In this case we say that we have a r.e. sequence of r.e. sets.

We can prove the following lemma:

(3.4) **Lemma.** Let $\{A_i\}_{i\in\mathbb{N}}$ be a sequence of disjoint subsets of N_0 and the set A be obtained by Definition (3.3). Then for any n+1 natural numbers p_1, \ldots, p_{n+1} it is true that

$$p_1 \in A \& \dots \& p_{n+1} \in A \iff \varphi_1(p_1, \dots, p_{n+1}) \in A \& \dots \& \varphi_n(p_1, \dots, p_{n+1}) \in A.$$

(3.5) Corollary. Let $\{A_i\}_{i\in N}$ be a sequence of disjoint subsets of N_0 and the set A be obtained by Definition (3.3). Then $A^{n+1} \leq_m A^n$.

- (3.6) **Definition.** We define a correspondence between two terms τ and σ as follows:
 - a) if τ has not a subterm that is a constant, then τ corresponds with $\sigma = \tau$;
- b) if c_{i_1}, \ldots, c_{i_k} are all the subterms of τ which are constants, $i_1 \in [A_{r_1}], \ldots, i_k \in [A_{r_k}]$, then τ corresponds with the term σ , where σ is obtained from τ by replacing c_{i_j} with c_{r_j} for any $j \in \{1, \ldots, k\}$.

We need this correspondence to have the following

- (3.7) **Lemma.** If $\{A_i\}_{i\in N}$ is a sequence of disjoint subsets of N_0 , τ is a term, p_1, \ldots, p_n are arbitrary natural numbers, and:
- a) for any constant c_j which is a subterm of τ we have a number $i \in N$ such that $j \in [A_i]$;
- b) τ corresponds with σ by Definition (3.6); and
- c) $p_1 \in [A_{i_1}] \& \ldots \& p_n \in [A_{i_n}] \& \sigma_U(i_1, \ldots, i_n) = m$, then $\tau_V(p_1, \ldots, p_n) \in [A_m]$.
- (3.8) **Lemma.** Let $V = \langle N, \varphi_1, \ldots, \varphi_n \rangle$. For any natural number x there is an effective way to find a term τ that have not subterms which are variables (for $x \notin N_0$, $\tau \neq constant c_x$) such that $x = \tau_V(x_1, \ldots, x_n)$ and the values of all the constants subterms of τ , belong to N_0 .

We prove this lemma by defining the function ||z|| for any $z \in N$:

(3.9) 1) if
$$z \in N_0$$
, then $||z|| = 0$;
2) if $z = \varphi_1(z_1, \ldots, z_{n+1})$, then $||z|| = 1 + \max_{1 \le j \le n+1} ||z_j||, 1 \le i \le n$,

and applying induction on ||x||.

We shall build a r.e. sequence of disjoint r.e. subsets A_0, A_1, A_2, \ldots of N_0 such that for the set A obtained by Definition (3.3) it holds

$$(3.10) A^n \not\equiv_m A^{n-1}.$$

Then it follows from Lemma (1.7) and Corollary (3.5) that A is the set we need.

We shall build the sets $\{A_i\}_{i\in N}$ by steps — at any step s we build $\{A_i^{(s)}\}_{i\in N}$, ensuring that $(A^{(s)})^n$ is not m-reducible to $(A^{(s)})^{n-1}$ by the e-th recursive function, $e = J_1^2(s)$. $(A^{(s)})$ is obtained from $\{A_i^{(s)}\}_{i\in N}$ by Definition (3.3).)

At the end we take $A_i = \bigcup_{s=0}^{\infty} A_i^{(s)}$, $i \in N$. For this purpose at any step s we shall find numbers x_1, \ldots, x_n such that if φ_e is the e-th partial recursive function, $e = J_1^2(s), J^{(n)}(x_1, \ldots, x_n) \in \text{dom } \varphi_e \text{ and } \varphi_e(J^{(n)}(x_1, \ldots, x_n)) = J^{(n-1)}(z_1, \ldots, z_{n-1})$, one of both conditions holds:

(i)
$$x_1 \in A \& ... \& x_n \in A \& \exists i_{1 \le i \le n-1} (z_i \notin A);$$

(ii)
$$(x_1 \notin A \vee \ldots \vee x_n \notin A) \& z_1 \in A \& \ldots \& z_{n-1} \in A.$$

If for this purpose we put the numbers x_1, \ldots, x_n in some sets A_{i_1}, \ldots, A_{i_n} , we create a positive e-requirement $\{x_1, \ldots, x_n\}$, and if some numbers y_1, \ldots, y_k

must not belong to some set, we create a negative e-requirement $\{y_1, \ldots, y_k\}$. We shall use the priority argument: if at the step s we need one number x to belong to some set and at a step t— not to belong, the smaller between $J_1^2(s)$ and $J_1^2(t)$ has a priority. So, when we choose x_1, \ldots, x_n at the step s, they must not belong to any negative requirements created at some steps t < s such that $J_1^2(t) < J_1^2(s)$, but they may belong to negative requirements created at steps r < s such that $J_1^2(r) > J_1^2(s)$. In the second case the $J_1^2(r)$ -requirement is injured and we need at some later step r', $J_1^2(r') = J_1^2(r)$, to create a new $J_1^2(r)$ -requirement.

If one $J_1^2(s)$ -requirement is not injured at a step r > s, it is called active at this step. If it is active at every step r > s, it is called constant. At the end we shall prove that for any e the condition $((i) \lor (ii))$ is injured only finite times.

Now we shall describe the construction of the sets $\{A_i\}_{i\in N}$.

(3.11) S tep s=0. Let $N_0=N_1\cup N_2$, where N_1 and N_2 are infinite disjoint recursive sets and $N_2=\{a_0< a_1<\cdots\}$. Let r' be a monotonically increasing function such that $\operatorname{Ran}(r')=N_1$ and $r(x)=r'(n.2^x+x)$. Let

 $\varphi_{e,s}(x) \cong \begin{cases} \varphi_e(x), & \text{if } x \in \text{dom } \varphi_e \text{ and } \varphi_e(x) \text{ is countable for less than } s \text{ steps,} \\ & \text{not defined, otherwise.} \end{cases}$

Let $A_i^{(0)} = \{a_i\}, i \in \mathbb{N}$. So, all the sets are not empty.

Step s>0. $e=J_1^2(s)$. First we verify whether there exists an active e-requirement. If such a requirement exists, then we do nothing, i.e. we take $A_i^{(s)}=A_i^{(s-1)},\ i\in N$. Otherwise we verify whether there exist $x_1\in N_1,\ldots,x_n\in N_1,x_1>r(e)\&\ldots\&x_n>r(e),J^n(x_1,\ldots,x_n)\in \mathrm{dom}\,\varphi_{e,s},$ belonging neither to $\bigcup_{i\in N}A_i^{(s-1)}$ nor to any active negative requirement, created at a step t< s such that $J_1^2(t)< J_1^2(s)$. If such numbers do not exist, we do nothing. If there are such numbers x_1,\ldots,x_n , we take the smallest $-x_1^{(e)},\ldots,x_n^{(e)}$. From the choice of J^n there exist z_1,\ldots,z_{n-1} such that

$$\varphi_e(J^n(x_1^{(e)}, \ldots, x_n^{(e)})) = J^{n-1}(z_1, \ldots, z_{n-1}).$$

It follows from Lemma (3.8), applied for z_1, \ldots, z_{n-1} , that there exist terms $\psi^1, \ldots, \psi^{n-1}$ such that

(3.12)
$$z_i = \psi_V^i(x_1, \ldots, x_n), \quad i = 1, \ldots, n-1.$$

We consider these numbers among z_1, \ldots, z_{n-1} for which the constants-subterms of the corresponding terms $\psi^1, \ldots, \psi^{n-1}$ already belong to some sets $A_i^{(s-1)}$, $i \in \mathbb{N}$. Let that be z_1, \ldots, z_q .

Case I. $\exists i_{1 \leq i \leq q} \ \exists k \in N (z_i \in [A_{2k+1}^{(s-1)}])$, i.e. $z_i \notin A$ and in this case we satisfy (i). Let $A_{2j}^{(s)} = A_{2j}^{(s-1)} \cup \{x_j^{(e)}\}, \ j = 1, \ldots, n$, and $A_l^{(s)} = A_l^{(s-1)}$ for $l \notin \{2, 4, 6, \ldots, 2n\}$. We create a positive e-requirement $\{x_1^{(e)}, \ldots, x_n^{(e)}\}$, which is also constant.

Case II.
$$z_1 \in A^{(s)} \& ... \& z_q \in A^{(s)}$$
.
II.1. $q = n - 1$. Then we satisfy (ii).

Let $A_j^{(s)} = A_j^{(s-1)} \cup \{x_j^{(e)}\}, j = 1, \ldots, n, \text{ and } A_l^{(s)} = A_l^{(s-1)} \text{ for } l \notin \{1, \ldots, n\}.$ We create a positive e-requirement $\{x_1^{(e)}, \ldots, x_n^{(e)}\}$, which is also constant.

II.2. q < n - 1.

II.2.1. $\exists p_{1 \leq p \leq n-1} \ (\psi_p \text{ has a subterm-constant with a value } y_j^p$,

$$y_j^p \notin (\bigcup_{i \in N} A_i^{(s-1)} \cup \{x_1^{(e)}, \ldots, x_n^{(e)}\})).$$

For simplicity let p = n - 1. We satisfy (i) — we put $x_1^{(e)}, \ldots, x_n^{(e)}$ into A and create a negative requirement such that z_{n-1} stays always out of A.

We take $A_{2j}^{(s)}=A_{2j}^{(s-1)}\cup\{x_j^{(e)}\},\ j=1,\ldots,n,$ and $A_l^{(s)}=A_l^{(s-1)}$ for $l\notin\{2,4,6,\ldots,2n\}$. We create a positive e-requirement $\{x_1^{(e)},\ldots,x_n^{(e)}\}$ and a negative e-requirement $\{y_j^{n-1}\}$;

II.2.2. $\forall p_{1 \leq p \leq n-1} \ (\psi_p \text{ has a subterm-constant with value } y_j^p, \ y_j^p \notin \bigcup_{i \in N} A_i^{(s-1)}$

 $\Rightarrow y_j^p \in \{x_1^{(e)}, \dots, x_n^{(e)}\}$). We find the terms $\psi^1, \dots, \psi^{n-1}$ corresponding to the terms $\tau^1, \dots, \tau^{n-1}$ according to Definition (3.6). From Theorem 1 for the terms $\tau^1, \dots, \tau^{n-1}$ there exist natural numbers i_1, \dots, i_n such that

 $i_1 \in M \& \ldots \& i_n \in M \iff \tau_U^1(i_1,\ldots,i_n) \in M \& \ldots \& \tau_U^{n-1}(i_1,\ldots,i_n) \in M$ does not hold, i.e. one of the following holds:

 $(3.13) \ i_1 \in M \& \ldots \& i_n \in M \& \left(\tau_U^1(i_1, \ldots, i_n) \notin M \lor \ldots \lor \tau_U^{n-1}(i_1, \ldots, i_n) \notin M\right),$

 $(3.14) \ (i_1 \notin M \vee \ldots \vee i_n \notin M) \& \tau_U^1(i_1, \ldots, i_n) \in M \& \ldots \& \tau_U^{n-1}(i_1, \ldots, i_n) \in M.$

Let $m_j = \tau_U^j(i_1, \ldots, i_n), \ 1 \le j \le n-1$. We take: $A_j^{(s)} = A_j^{(s-1)} \cup \{x_j^{(e)}\}, j \in \{i_1, \ldots, i_n\}, \text{ and } A_l^{(s)} = A_l^{(s-1)} \text{ for } l \notin \{i_1, \ldots, i_n\}.$

If (3.13) holds, then by Definition (3.3c) we have

$$x_1^{(e)} \in A^{(s)} \& \dots \& x_n^{(e)} \in A^{(s)}$$

and from Lemma (3.7):

$$z_i = \psi_V^i(x_1^{(e)}, \ldots, x_n^{(e)}) \in [A_{m_i}^{(s)}],$$

and therefore $z_1 \notin A^{(s)} \vee ... \vee z_{n-1} \notin A$, so in this case (i) is true.

If (3.14) holds, then $m_1 \in M \& ... \& m_{n-1} \in M$ and therefore $z_1 \in A^{(s)} \& ... \& z_{n-1} \in A^{(s)}$. We have also $i_1 \notin M \lor ... \lor i_n \notin M$ and then $x_1^{(e)} \notin A^{(s)} \lor ... \lor x_n^{(e)} \notin A^{(s)}$, i.e. (ii) is true.

We create a positive e-requirement $\{x_1^{(e)}, \ldots, x_n^{(e)}\}$, which is also constant.

At the end we take $A_i = \bigcup_{s=0}^{\infty} A_i^{(s)}$, $i \in N$. Now we have to prove that the set A satisfies the condition of our problem for n.

(3.15) **Lemma.** For any e-number of a p.r. function the condition ((i) \vee (ii)) is injured only $2^e - 1$ times, i.e. we create not more than 2^e e-requirements.

Proof. We shall use induction on e.

1) For e = 0 we have that the e-requirement can not be injured, because there is no requirement with higher priority and $2^0 - 1 = 0$.

For e = 1 we can injure the e-requirement only once when we create the single 0-requirement (if it exists) and $2^1 - 1 = 1$.

- 2) Let the statement hold for all the numbers smaller than e.
- 3) Let e be a number of a p.r. function. The condition ((i) \vee (ii)) for e is injured when a requirement with number between 0 and e-1 is created, i.e. not more than $2^0 + 2^1 + \cdots + 2^{e-1} = 2^e 1$ times.

The lemma is proved.

(3.16) **Lemma.** The set $N_1 \setminus A$ is infinite.

Proof. Let $(N_1)_x = \{y \mid y \in N_1 \& y < x\}$. We shall prove that the set $(N_1)_{r(x)} \cap (N_1 \setminus A)$ contains at least x elements.

 $(N_1)_{r(x)} = \{y \mid y \in N_1 \& y < r(x)\} = \{y \mid y \in N_1 \& y < r'(n.2^x + x)\}$ and because $r'(0) < r'(1) < \cdots < r'(n.2^x + x - 1) < r'(n.2^x + x) < \cdots$, the elements of the set $(N_1)_{r(x)}$ are $n.2^x + x$. Between them only 0-, 1-, ..., x-1-requirements may be elements of A (the others are bigger than r(x)), i.e. not more than $n.2^0 + n.2^1 + \cdots + n.2^{x-1} = 2^x$. Therefore, the elements of $(N_1)_{r(x)} \cap (N_1 \setminus A)$ are at least $n.2^x + x - n.2^x = x$ and the lemma is proved.

(3.17) **Lemma.** For any natural number e such that $N_1 \subseteq \text{dom } \varphi_e$ (and especially for any e which is a number of recursive function) there exists a constant e-requirement.

Proof. Let $e \in N$ and $N_1^n \subseteq \text{dom } \varphi_e$. Let us assume that there is not a constant e-requirement. We find s_0 such that at the step s_0 all e_1 -requirements for $e_1 < e$ are already built.

From Lemma (3.16) we have that there exist $x_1 \in N_1 \setminus A, \ldots, x_n \in N_1 \setminus A$ such that $x_1 > r(e) \& \ldots \& x_n > r(e)$. Let $s > s_0$ and $J^n(x_1, \ldots, x_n) \in \text{dom } \varphi_{e,s}$. There at the step s a constant e-requirement is created.

The lemma is proved.

Let A be obtained from $\{A_i\}_{i\in N}$ according to Definition (3.3). According the construction, A is a r.e. set, $A^n \not\equiv_m A^{n-1}$, and $A^{n+1} \subseteq_m A^n$, i.e. the needed set is built.

REFERENCES

- 1. Fischer, P. C. A note on bounded-truth-table reducibility. Proc. Amer. Math. Soc., 14, 1963, 875-877.
- 2. Odifreddi, P. Strong reducibilities. Bulletin of the American Math. Society, 4, No. 1, 1981.
- 3. Downey, R. G. Recursively enumerable m- and tt-degrees. I: The quantity of m-degrees.

 J. Symbolic Logic, 54, No 2, 1989.
- 4. Rogers, H. Jr. Theory of recursive functions and effective computability. Mc Graw-Hill Book Company, 1967.
- 5. Odifreddi, P. Classical Recursion Theory. North Holland, 1989.
- 6. Ditchev, A. V. Some results on bounded truth-table degrees. Zeitschr. für math. Logik und Grundlagen der Math., 36, 1990, 263-271.

Received on 16.05.1994