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1. INTRODUCTION AND STATEMENT OF THE RESULTS

For the purposes of numerical integration, the definite integral

I[f ] :=

1∫

0

f(x) dx (1.1)

is approximated by a quadrature formula, i.e., a linear functional of the form

Q[f ] =
n∑

i=0

ai f(xi), 0 ≤ x0 < x1 < · · · < xn ≤ 1 . (1.2)
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Quadrature formula (1.2) is said to have algebraic degree of precision m (in
short, ADP (Q) = m), if its remainder

R[Q; f ] := I[f ]−Q[f ]

vanishes whenever f ∈ πm, and R[Q; f ] 6= 0 when f is a polynomial of degree m+1.
Here and henceforth, πk stands for the set of algebraic polynomials of degree not
exceeding k.

We are interested in definite quadrature formulae.

Definition 1. Quadrature formula (1.2) is said to be definite of order r, r ∈ N,
if there exists a real non-zero constant cr(Q) such that its remainder functional
admits the representation

R[Q; f ] = I[f ]−Q[f ] = cr(Q) f (r)(ξ)

for every real-valued function f ∈ Cr[0, 1], with some ξ ∈ [0, 1] depending on f .

Furthermore, Q is called positive definite (resp., negative definite) of order r,
if cr(Q) > 0 (cr(Q) < 0).

The importance of the definite quadrature formulae of order r stems in the fact
that they provide one-sided approximation to I[f ] whenever f (r) has a permanent
sign in the integration interval. For brevity sake, we adopt the following

Definition 2. A real-valued function f ∈ Cr[0, 1] is called r−positive (resp.,
r−negative) if f (r)(x) ≥ 0 (resp. f (r)(x) ≤ 0 ) for every x ∈ [0, 1].

If {Q+, Q−} is a pair of a positive and a negative definite quadrature formula
of order r and f is an r-positive function, then for the true value of I[f ] we have
the inclusion Q+[f ] ≤ I[f ] ≤ Q−[f ]. This simple observation serves as a base for
derivation of a posteriori error estimates and rules for termination of calculations
(stopping rules) in the algorithms for automatic numerical integration (see [3] for a
survey). Most of quadratures used in practice (e.g., quadrature formulae of Gauss,
Radau, Lobatto, Newton-Cotes) are definite of certain order.

Perhaps, the best known definite quadrature formulae are the midpoint and
the trapezium rules,

QMi
n [f ] =

1

n

n∑

k=1

f
(2k − 1

2n

)
, QTr

n+1[f ] =
1

2n

(
f(0) + f(1)

)
+

1

n

n−1∑

k=1

f
(k
n

)
,

they are respectively positive and negative definite of order two. Moreover, QMi
n

and QTr
n+1 are the optimal definite quadrature formulae of order two. The latter

means that c2(Q
Mi
n ) = 1

24n2 is the smallest possible error constant of a n-point
positive definite quadrature formula of order two, and c2(Q

Tr
n+1) = − 1

12n2 is the
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largest possible error constant of a (n + 1)-point negative definite quadrature for-
mulae of order two. Additional advantages of QMi

n and QTr
n+1 are that they use

equispaced nodes and equal weights.

The optimal definite quadrature formulae of higher order are not known ex-
plicitly, although their existence and uniqueness is known, see [10, 4, 6, 7]. In [10]
Schmeisser [10] constructed optimal definite quadrature formulae of even order with
equidistant nodes. Köhler and Nikolov [5] showed that certain Gauss-type quadra-
tures for spaces of polynomial splines with double equidistant knots are asymp-
totically optimal definite quadrature formulae, and based on this result, Nikolov
[8] proposed an algorithm for the construction of asymptotically optimal definite
quadrature formulae of order four. In a recent paper [1] two of the authors con-
structed sequences of asymptotically optimal definite quadrature formulae of order
four with all but few boundary nodes being equidistant; moreover, for suitable pairs
of such definite quadrature formulae they derived a posteriori error estimates.

The simplest example of a pair of definite quadrature formulae of odd order is
the left- and the right- rectangle rules,

Q+[f ] =
1

n

n−1∑

k=0

f
(k
n

)
, Q−[f ] =

1

n

n∑

k=1

f
(k
n

)
,

which are a positive and a negative definite quadrature formula, respectively, of
order one. Indeed, if f is an 1−positive (or simply nondecreasing) function, then
R[Q+; f ] ≥ 0, R[Q−; f ] ≤ 0, and

|R[Q±[f ]| ≤ Q−[f ]−Q+[f ] =
1

n

(
f(1)− f(0)

)
. (1.3)

We observe some differences with the definite quadrature formulae of even or-
der: while, most often, definite quadrature formulae of even order are symmetrical,
the left and the right rectangles formulae are non-symmetrical. Furthermore, each
of them is obtained from the other one by a reflection.

Definition 3. Quadrature formula (1.2) is called:

• symmetrical, if

ak = an−k , k = 0, . . . , n ; (1.4)

xk = 1− xn−k , k = 0, . . . , n ; (1.5)

• nodes-symmetrical, if only condition (1.5) is satisfied;

• Quadrature formula

Q̃[f ] = Q̃[Q; f ] :=
n∑

k=0

ak f(xn−k) (1.6)

is called the reflected quadrature formula to (1.2).
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Thus, a quadrature formula Q is symmetrical if and only if it coincides with
its reflected, Q̃ . By adding (if necessary) nodes with weights equal to zero, each
quadrature formula may be considered as nodes-symmetrical.

The following simple statement shows that our observations about the left- and
the right- rectangle rules apply to a more general situation.

Proposition 1. (i) If Q is a positive definite quadrature formula of order
r , r - odd, then its reflected quadrature formula Q̃ is negative definite of
order r and vice versa. Moreover,

cr(Q̃) = −cr(Q) . (1.7)

(ii) If Q is a nodes-symmetrical definite quadrature formula of order r , r - odd,
and f is an r− positive or r−negative function, then, with Q∗ standing for
either Q or Q̃ we have

∣∣R[Q∗; f ]
∣∣ ≤ B[Q; f ] :=

∣∣∣∣∣

⌊n

2
⌋∑

k=0

(
ak − an−k

)(
f(xn−k)− f(xk)

)
∣∣∣∣∣ . (1.8)

(iii) Under the same assumptions for Q and f as in (ii), for the remainder of
quadrature formula Q̂ = 1

2 (Q+ Q̃) we have

∣∣R[Q̂; f ]
∣∣ ≤ 1

2
B[Q; f ] . (1.9)

Proof. (i) Let f̃(x) = f(1−x) , then I[f ] = I[f̃ ] . If Q is a definite quadrature
formula of order r , r - odd, and f is an r−positive or r−negative function, then
Q̃[f ] = Q[f̃ ] and

R[Q̃; f ] = I[f ]− Q̃[f ] = I[f̃ ]−Q[f̃ ] = cr(Q)f̃ (r)(ξ) = −cr(Q)f (r)(1− ξ) ,

which shows that Q̃ is also definite of order r and cr(Q̃) = −cr(Q) .

Now we prove (ii) and (iii). If, e.g., Q is a nodes-symmetrical positive definite
quadrature formulae of order r and f is an r−positive function, then

Q[f ] ≤ I[f ] ≤ Q̃[f ] , (1.10)

and consequently

0 ≤ R[Q; f ] ≤ Q̃[f ]−Q[f ] =
n∑

k=0

ak
(
f(xn−k)− f(xk)

)
=

n∑

k=0

(
an−k − ak

)
f(xk)

=

⌊n

2
⌋∑

k=0

(
ak − an−k

)(
f(xn−k)− f(xk)

)
= B[Q; f ] .
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Inequality (1.9) is an obvious consequence of (1.10). The proof of the other cases
is completely analogous, and therefore is omitted. �

Proposition 1 implies, in particular, that definite quadrature formulae of odd
order are never symmetrical. The error estimate (1.8) is especially simple when Q
is of almost Chebyshev type, i.e. almost all weights of Q are equal to each other.
The definite quadrature formulae constructed in this paper enjoy this property.

Before formulating our main result, let us introduce some notation.

For n ∈ N and a function f defined on the interval [0, 1] , we set

xi,n =
i

n
, fi = f(xi,n) , i = 0 . . . , n .

Recall that the finite differences ∆kfi are defined recursively by

∆1fi = ∆fi := fi+1 − fi and ∆k+1fi = ∆
(
∆kfi

)
, k ≥ 1 .

Theorem 1. For every n ≥ 8 , quadrature formula

Qn[f ] =
n−1∑

k=0

Ak,n f(xk,n) , xk,n =
k

n
,

with coefficients Ak,n =
1

n
, 3 ≤ k ≤ n− 4, and

A0,n =
81 +

√
3

216n
, A1,n =

126−
√
3

108n
, A2,n =

207 +
√
3

216n
,

An−3,n =
297−

√
3

216n
, An−2,n =

√
3− 18

108n
, An−1,n =

495−
√
3

216n
,

is positive definite of order 3 with the error constant

c3(Qn) =

√
3

216n3
+

27−
√
3

72n4
. (1.11)

If f is a 3-positive or 3-negative function, then

∣∣R[Qn; f ]
∣∣ ≤ 1

216n

∣∣81
(
∆3fn−3 −∆3f0

)
+
√
3
(
∆2fn−2 +∆2fn−3 −∆2f0 −∆2f1

)∣∣ .

As an immediate consequence of Theorem 1 and Proposition 1 we have:

Corollary 1. The reflected to Qn quadrature formula Q̃n is negative definite
of order 3 with the error constant c3(Q̃n) = −c3(Qn).

If f is a 3-positive or 3-negative function and Q̂n =
1

2

(
Qn + Q̃n

)
, then

∣∣R[Q̃n; f ]
∣∣ ≤ 1

216n

∣∣81
(
∆3fn−3 −∆3f0

)
+
√
3
(
∆2fn−2 +∆2fn−3 −∆2f0 −∆2f1

)∣∣ ,

∣∣R[Q̂n; f ]
∣∣ ≤ 1

432n

∣∣81
(
∆3fn−3 −∆3f0

)
+
√
3
(
∆2fn−2 +∆2fn−3 −∆2f0 −∆2f1

)∣∣ .
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Let us point out that, while error estimates of the form

|R[Qn; f ]| ≤ c3(Qn)‖f ′′′‖C[0,1]

and alike require knowledge about the magnitude of integrand’s derivative, the
bounds in Theorem 1 and Corollary 1 in terms of finite differences involve only
eight values of the integrand and may serve as a simple criteria for the number of
nodes n needed to guarantee the evaluation of I[f ] with a prescribed tolerance. In
this respect, it is preferable to use quadrature formula Q̂n rather than the definite
quadrature formulae Qn and Q̃n .

The rest of the paper is organised as follows. Section 2 provides known
facts about the Peano kernel representation of linear functionals and the Euler-
MacLaurin expansion formula for the remainder of the trapezium quadrature for-
mula. In Sections 3 we present the proof of Theorem 1. In our construction of
quadrature formula (1.10) we perform some optimization, minimizing its error con-
stant and at the same time trying to preserve its almost Chebyshev structure.

2. PRELIMINARIES

By W r
1 =W r

1 [0, 1], r ∈ N, we denote the Sobolev class of functions

W r
1 [0, 1] := {f ∈ Cr−1[0, 1] : f (r−1) abs. continuous,

∫ 1

0

|f (r)(t)| dt <∞} .

In particular, W r
1 [0, 1] contains the class Cr[0, 1].

If L is a linear functional defined in W r
1 [0, 1] which vanishes on πr−1, then, by

a classical result of Peano [9], L admits the integral representation

L[f ] =
∫ 1

0

Kr(t)f
(r)(t) dt, Kr(t) = L

[ (· − t)r−1
+

(r − 1)!

]
, t ∈ [0, 1] ,

where
u+(t) = max{t, 0} , t ∈ R .

In the case when L is the remainder R[Q; ·] of a quadrature formula Q with
ADP (Q) ≥ r − 1, the function Kr(t) = Kr(Q; t) is referred to as the r-th Peano
kernel of Q. For Q as in (2.1), explicit representations for Kr(Q; t), t ∈ [0, 1], are

Kr(Q; t) =
(1− t)r
r!

− 1

(r − 1)!

n∑

i=0

ai(xi − t)r−1
+ , (2.1)

Kr(Q; t) = (−1)r
[ tr
r!
− 1

(r − 1)!

n∑

i=0

ai(t− xi)r−1
+

]
. (2.2)
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Since for f ∈ Cr[0, 1] we have

R[Q; f ] =

1∫

0

Kr(Q; t) f (r)(t) dt ,

it is clear that Q is a positive (negative) definite quadrature formula of order r
if and only if ADP (Q) = r − 1 and Kr(Q; t) ≥ 0 (resp. Kr(Q; t) ≤ 0 ) for all
t ∈ [0, 1].

Throughout this paper, {xk,n}nk=0 will stand for the nodes of the n-th com-
pound trapezium formula QTr

n+1 ,

xk,n =
k

n
, k = 0, . . . , n ,

so that

QTr
n+1[f ] =

1

2n

(
f(x0,n) + f(xn,n)

)
+

1

n

n−1∑

k=1

f(xk,n) . (2.3)

Our definite quadrature formulae are obtained by an appropriate modifica-
tion of QTr

n+1. The following lemma gives a particular case of the Euler-Maclaurin
formula, see, e.g., [2, Satz 98]:

Lemma 1. Assume that f ∈W 3
1 . Then

I[f ] = QTr
n+1[f ]−

1

12n2
[
f ′(1)− f ′(0)

]
− 1

n3

1∫

0

B̃3(nx)f
′′′(x) dx , (2.4)

where B̃3 is the 1-periodic extension of the third Bernoulli polynomial

B3(x) =
x3

6
− x2

4
+

x

12
.

Note that B̃3(x) = B3({x}), x ∈ R, where {x} stands for the fractional part
of x. In the sequel, we shall use the fact that

−
√
3

216
≤ B̃3(x) ≤

√
3

216
, x ∈ R . (2.5)

3. PROOF OF THE RESULTS.

We rewrite formula (2.4) in Lemma 1 in the following form:

I[f ] =QTr
n+1[f ]−

1

12n2

[
f ′(1)− f ′(0)

]
−

√
3

216n3

[
f ′′(1)− f ′′(0)

]

+
1

n3

1∫

0

(√3

216
− B̃3(nx)

)
f (3)(x) dx

=:Q̃[f ] +R[Q̃; f ] ,

(3.1)
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where

Q̃[f ] = QTr
n+1[f ] +

1

12n2
f ′(0) +

√
3

216n3
f ′′(0)− 1

12n2
f ′(1)−

√
3

216n3
f ′′(1) . (3.2)

By (3.1) and (2.5) it follows that Q̃ is a positive definite quadrature formula,
however, it is not of the desired form as it involves values of integrand’s derivatives.
That is why we approximate the derivatives values at the end-points appearing in
Q̃ by pairs of formulae for numerical differentiation involving values at the closest
nodes. The reason for not using single formulae for numerical differentiation is that
it is not a priory clear whether they will result in a positive definite quadrature
formula, so we need some flexibility to achieve definiteness.

Thus, f ′(0) is approximated as follows:

f ′(0) ≈ n

2

[
− 3f(x0,n) + 4f(x1,n) + f(x2,n) =: D1,1[f ] ,

f ′(0) ≈ n

2

[
− 5f(x1,n) + 8f(x2,n)− 3f(x3,n) =: D1,2[f ] ,

and for any α ∈ R we have

f ′(0) ≈ αD1,1[f ] + (1− α)D1,2[f ] =: Dα
1 [f ] ,

L1[f ] := f ′(0)−Dα
1 [f ] vanishes on π2 .

(3.3)

Likewise, f ′′(0) is approximated by

f ′′(0) ≈ n2
[
f(x0,n)− 2f(x1,n) + f(x2,n) =: D2,1[f ] ,

f ′′(0) ≈ n2
[
f(x1,n)− 2f(x2,n) + f(x3,n) =: D2,2[f ] ,

and for any β ∈ R

f ′′(0) ≈ βD2,1[f ] + (1− β)D2,2[f ] =: Dβ
2 [f ] ,

L2[f ] := f ′′(0)−Dβ
2 [f ] vanishes on π2 .

(3.4)

For the approximation of f ′(1) and f ′′(1) we use the above formulae for
numerical differentiation, applied to −f(1−x) and f(1−x), respectively. For the
first derivative this yields

f ′(1) ≈ n

2

[
3f(xn,n)− 4f(xn−1,n)− f(xn−2,n) =: D̃1,1[f ] ,

f ′(1) ≈ n

2

[
5f(xn−1,n)− 8f(xn−2,n) + 3f(xn−3,n) =: D̃1,2[f ] ,

and for any γ ∈ R we have

f ′(1) ≈ γD̃1,1[f ] + (1− γ)D1,2[f ] =: D̃γ
1 [f ] ,

L̃1[f ] := f ′(1)− D̃γ
1 [f ] vanishes on π2 .

(3.5)
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Similarly,

f ′′(1) ≈ n2
[
f(xn,n)− 2f(xn−1,n) + f(xn−2,n) =: D̃2,1[f ] ,

f ′′(1) ≈ n2
[
f(xn−1,n)− 2f(xn−2,n) + f(xn3,n) =: D̃2,2[f ] ,

and for any δ ∈ R

f ′′(1) ≈ δD̃2,1[f ] + (1− δ)D̃2,2[f ] =: D̃δ
2[f ] ,

L̃2[f ] := f ′′(1)− D̃δ
2[f ] vanishes on π2 .

(3.6)

The replacement of f ′(0) , f ′′(0) , f ′(1) and f ′′(1) in (3.2) by Dα
1 [f ] , D

β
2 [f ] ,

D̃γ
1 [f ] and D̃δ

2[f ] , respectively, yields a quadrature formula

Q[f ] =

n∑

k=0

Ak,nf
(k
n

)
, (3.7)

which, by construction, evaluates I[f ] to the exact value whenever f ∈ π2.
Assuming that n ≥ 8, we have Ak,n = 1/n for 4 ≤ k ≤ n − 4. Formally,

coefficients Ak,n, 0 ≤ k ≤ 3, depend on parameters α and β, while coefficients
Ak,n, n− 3 ≤ k ≤ n depend on parameters γ and δ . In fact, it is not difficult to
see that {Ak,n}30 depend on a single parameter, say θ , while {Ak,n}nn−3 depend
on another single parameter, say ̺ , where

θ := 27α−
√
3β , ̺ := 27γ +

√
3δ .

Specifically, we have

A0,n =
108− θ
216n

, A1,n =
171 +

√
3 + 3θ

216n
,

A2,n =
288− 2

√
3− 3θ

216n
, A3,n =

189 +
√
3 + θ

216n
,

An−3,n =
189−

√
3 + ̺

216n
, An−2,n =

288 + 2
√
3− 3̺

216n
,

An−1,n =
171−

√
3 + 3̺

216n
, An,n =

108− ̺
216n

,

Ak,n =
1

n
, 4 ≤ k ≤ n− 4.

Our next goal is to determine the values of parameters θ and ̺ which ensure
that quadrature formula (3.7) is positive definite of order 3. Not only want we (3.7)
to be positive definite, but also require θ and ̺ to be chosen in such a way that
its error constant, c3(Q) , is as small as possible. To this end, let us look closer at
the third Peano kernel of Q.
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From (3.2)–(3.6) we observe that

R[Q; f ] = R[Q̃; f ] +
1

12n2
L1[f ] +

√
3

216n3
L2[f ] +

1

12n2
L̃1[f ] +

√
3

216n3
L̃2[f ] ,

therefore

K3(Q; t) = K3(Q̃; t) +
1

12n2
K3(L1; t) +

√
3

216n3
K3(L2; t)

+
1

12n2
K3(L̃1; t) +

√
3

216n3
K3(L̃2; t) .

(3.8)

Based on the definition of Peano kernels, it is not difficult to see that K3(L1; ·)
and K3(L2; ·) vanish identically on the interval [x3,n, 1] whereas K3(L̃1; ·) and

K3(L̃2; ·) vanish identically on the interval [0, xn−3,n ] . Hence, in view of (3.1),

K3(Q; t) = K3(Q̃; t) = n−3
[√3

216
− B̃3(n t)

]
≥ 0 , t ∈ [x3,n, xn−3,n] , (3.9)

therefore we have to verify condition K3(Q; t) ≥ 0 only on the intervals [0, x3,n]
and [xn−3,n, 1]. Assuming that this condition is satisfied, for the error constant of
Q we have

c3(Q) =

x3,n∫

0

K3(Q; t) dt+

1∫

xn−3,n

K3(Q; t) dt+

√
3(n− 6)

216n4
, (3.10)

where the last summand comes from the integral of K3(Q; ·) over the interval
[x3,n, xn−3,n] , and we have used that B̃3 has mean value zero on the period.

We aim to minimize c3(Q) , i.e., to minimize the integrals in (3.10) with respect
to parameters θ and ̺ , respectively, subject to the requirement K3(Q; t) ≥ 0 on
the intervals [0, x3,n] and [xn−3,n, 1] .

3.1. POSITIVITY OF K3(Q; t) ON [0, x3,n]

We make use of formula (2.2) for Peano kernels, with r = 3, and after the
change of variable t = u

n arrive at the following representation of K3(Q; t) for
t ∈ [0, x3,n]:

K3(Q; t) = − 1

6n3

[
u3− 108−θ

72
u2− 171+

√
3+3θ

72
(u−1)2+−

288−2
√
3−3θ

72
(u−2)2+

]

=: − 1

6n3
ϕ(θ;u) = − 1

6n3
ϕ(u) , u ∈ [0, 3] .

Thus, we have the equivalence

K3(Q; t) ≥ 0, t ∈ [0, x3,n] ⇔ ϕ(u) ≤ 0, u ∈ [0, 3]. (3.11)
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Before verifying what values of θ ensure condition ϕ(u) ≤ 0,u ∈ [0, 3], we
evaluate the first integral in (3.10):

x3,n∫

0

K3(Q; t) dt = − 1

6n4

3∫

0

ϕ(u) du =
33 +

√
3− θ

216n4
. (3.12)

To minimize the latter integral and thereby, in view of (3.10), c3(Q), we have to
find the largest value of θ ensuring that ϕ(u) ≤ 0, u ∈ [0, 3].

Case 1: u ∈ [0, 1]. In this case

ϕ(u) =
u2

72
(72u− 108 + θ),

and condition ϕ(u) ≤ 0, u ∈ [0, 1] is equivalent to θ ≤ 36.

Case 2: u ∈ [1, 2]. We set v = u − 1, v ∈ [0, 1], and using Wolfram’s Mathe-
matica, find

ϕ(u) = u3 − 108− θ
72

u2 − 171 +
√
3 + 3θ

72
(u− 1)2

= v3 − 63 +
√
3

72
v2 − 1

2
+

θ

36

(
− v2 + v − 1

2

)
=: ϕ1(v) .

Since −v2 + v − 1/2 < 0 for all v ∈ [0, 1] , it follows that ϕ(u) < 0 for every
u ∈ [1, 2] provided θ is big enough; in addition, if the latter condition holds for
some θ0, it will hold also for all θ > θ0. The largest value of θ such that ϕ1(v) ≤ 0
for all v ∈ [0, 1] should be such that ϕ1 has a double zero in (0, 1), i.e. θ is a zero
of D(ϕ1), the discriminant of ϕ1. Using Wolfram’s Mathematica, we find D(ϕ1),
which is a quintic polynomial of θ with four distinct real zeros: θ1 = −57.5774,
θ2 = 28.0556, θ3 = 30.7503 and θ4 = 92.4621. Only for θ = θ2 the polynomial
ϕ1 has a double zero in (0, 1). Therefore, in this case we have the restriction
θ ≤ θ2 = 28.0556.

Case 3: u ∈ [2, 3]. We set v = u− 2, v ∈ [0, 1], and find with Mathematica

ϕ(u) = u3 − 108− θ
72

u2 − 171 +
√
3 + 3θ

72
(u− 1)2 − 288− 2

√
3− 3θ

72
(u− 2)2

=
1

72

[
72v3 − (135−

√
3) v2 + (90− 2

√
3) v − 27−

√
3 + θ(v − 1)2

]

=: ϕ2(v) = ϕ2(θ; v) .

Since ϕ2(1) = −
√
3/36 < 0, it is clear that ϕ2(v) < 0 for all v ∈ [0, 1]

provided θ is small enough; moreover, if the above condition on ϕ2 is satisfied for
some θ0, then it is satisfied for all θ < θ0. The critical value θ∗ should be such
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that ϕ2 has a double zero in (0, 1), i.e., θ∗ is a zero of D(ϕ2) , the discriminant
of ϕ2. With the help of Mathematica, we find

D(ϕ2)

8
=
√
3 θ3 + (171 + 243

√
3)θ2 + (27702 + 8352

√
3)θ − 802134− 386370

√
3 .

By Descartes’ rule of signs, the latter polynomial has a unique positive root θ∗ . In
fact, using again Mathematica, we find that θ∗ = 27−

√
3 = 25.2679 . . . and

D(ϕ2) = 8(θ − θ∗)
[√

3θ2 + 6(28 + 45
√
3)θ + 6(5238 + 2579

√
3)
]
.

Thus, the optimal value of θ in Case 3 is θ = θ∗ = 27 −
√
3 . Just for one more

check, we verify that

ϕ2(θ
∗; v) = v3− 3

2
v2+

1

2
v−

√
3

36
=

(
v− 3 + 2

√
3

6

)(
v− 3−

√
3

6

)2

≤ 0, v ∈ [0, 1].

Summarizing the three cases considered above, we see that the optimal value
of θ ensuring that ϕ(θ;u) ≤ 0 for all u ∈ [0, 3] is θ = θ∗ = 27−

√
3 . We have

ϕ(θ∗;u) = u3 − 81 +
√
3

72
u2 − 126−

√
3

36
(u− 1)2+ −

207 +
√
3

72
(u− 2)2+ .

The graph of −ϕ(θ∗;u) is depicted in Figure 1.

0.5 1.0 1.5 2.0 2.5 3.0

u

0.05

0.10

0.15

0.20

-Φ HuL

Figure. 1. The graph of −ϕ(θ∗;u) , 0 ≤ u ≤ 3 .

In view of (3.11), θ = θ∗ ensures that K3(Q; t) ≥ 0 for all t ∈ [0, x3,n] .

With the optimal value θ = θ∗ , the coefficients {Ak,n}30 of quadrature formula
(3.7) are given by

A0,n =
81 +

√
3

216n
, A1,n =

126−
√
3

108n
, A2,n =

207 +
√
3

216n
, A3,n =

1

n
,
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i.e., {Ak,n}30 coincide with the coefficients of quadrature formula Qn in Theorem 1.
Moreover, (3.12) with θ = θ∗ yields

x3,n∫

0

K3(Q; t) dt =
3 +

√
3

108n4
. (3.13)

3.2. POSITIVITY OF K3(Q; t) ON [xn−3,n, 1]

We apply (2.1) with r = 3 and Q being quadrature formula (3.7) to obtain:

K3(Q; t) =
(1− t)3

6
− 1

2

n∑

k=0

Ak,n(xk,n − t)2+

=
(1− t)3

6
− 1

2

n∑

k=0

Ak,n(1− t− xn−k,n)
2
+

x=1−t
=

x3

6
− 1

2

n∑

k=0

An−k,n(x− xk,n)2+ := K̃3(Q;x) .

Hence,

∫ 1

xn−3,n

K3(Q; t) dt =

∫ x3,n

0

K̃3(Q;x) dx
x=u/n
=

1

n4

∫ 3

0

ψ(̺;u) du ,

with ψ(u) = ψ(̺;u) given by

ψ(u) = u3 − 108− ̺
72

u2 − 171−
√
3 + 3̺

72
(u− 1)2+ −

288 + 2
√
3− 3̺

72
(u− 2)2+ .

Now we have the equivalence

K3(Q; t) ≥ 0, t ∈ [xn−3,n, 1] ⇔ ψ(̺;u) ≥ 0, u ∈ [0, 3] .

By a straightforward calculation we obtain

∫ 1

xn−3,n

K3(Q; t) dt =
̺+

√
3− 33

216n4
, (3.14)

therefore, to minimize the error constant c3(Q) , we need to find the smallest ̺
such that ψ(̺;u) ≥ 0 for all u ∈ [0, 3] . A necessary condition for the latter
requirement to hold is ̺ ≥ 108, since

ψ(̺;u) = u2
(
u+

̺− 108

72

)
, u ∈ [0, 1] .
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Figure. 2. The graph of ψ(̺∗;u) , 0 ≤ u ≤ 3 .

It turns out that the choice ̺ = ̺∗ = 108 is optimal, as it guarantees the non-
negativity of ψ on the interval [0, 3], see the graph of ψ(̺∗; ·) in Figure 2.

With ̺ = ̺∗, coefficients {Ak,n}nk=n−3 of quadrature formula (3.7) are given
by

An−3,n =
297−

√
3

216n
, An−2,n =

√
3− 18

108n
, An−1,n =

495−
√
3

216n
, An,n = 0 .

Let us summarize: with the optimal values (θ , ̺) = (θ∗ , ̺∗) = (27−
√
3, 108)

the nodes of quadrature formula (3.7) are given in Table 1:

Table 1. The coefficients of quadrature formula (3.7).

A0,n A1,n A2,n Ak,n, 3 ≤ k ≤ n− 1

81+
√

3

216n

126−
√
3

108n
207+

√
3

216n
1
n

An−3,n An−2,n An−1,n An,n

297−
√
3

216n

√
3−18
108n

495−
√
3

216n 0

It is clear now that (3.7) is the positive definite quadrature formula Qn in
Theorem 1.

From (3.14) with ̺ = ̺∗ we find

∫ 1

xn−3,n

K3(Q; t) dt =
75 +

√
3

216n4
. (3.15)
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Now (3.10), (3.13) and (3.15) yields

c3(Qn) =
3 +

√
3

108n4
+

75 +
√
3

216n4
+

√
3(n− 6)

216n4
=

√
3

216n3
+

27−
√
3

72n4
,

which proves (1.10).

To prove the last claim of Theorem 1, we apply Proposition 1(ii) with Q = Qn .
Since Ak,n = 1/n for 3 ≤ k ≤ n− 4 , we have, with fi = f(xi,n) ,

∣∣R[Qn; f ]
∣∣ ≤ B[Qn; f ] =

∣∣∣
3∑

k=0

(
Ak,n −An−k,n

)(
fn−k − fk

)∣∣∣ . (3.16)

On using

A0,n −An,n = 81+
√
3

216n , A1,n −An−1,n = − 243+
√
3

216n ,

A2,n −An−2,n = 243−
√
3

216n , A3,n −An−3,n = − 81−
√
3

216n

and the explicit form of finite differences,

∆mfi =

m∑

k=0

(−1)m−k

(
m

k

)
fi+k ,

we obtain from (3.16), after rearrangement,

B[Qn; f ] =
1

216n

∣∣81
(
∆3fn−3 −∆3f0

)
+
√
3
(
∆2fn−2 +∆2fn−3 −∆2f0 −∆2f1

)∣∣ .

The proof of Theorem 1 is complete. �

Proof of Corollary 1. Since Q̃n[f ] = Qn[f̃ ] and f̃i = fn−i , 0 ≤ i ≤ n ,
we deduce from (3.16) that B[Q̃n; f ] = B[Qn; f ] , which proves the first claim of
Corollary 1. The second claim follows from Proposition 1(iii). �
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