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We consider the equation [pc1] + [pc2] + [pc3] = N , where N is a sufficiently large integer,

and [t] denotes the integer part of t. We prove that if 1 < c < 17
16

, then it has a solution
in prime numbers p1, p2, p3 such that each of the numbers p1 + 2, p2 + 2, p3 + 2 has

at most
[

95
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prime factors, counted with their multiplicities.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

In 1937 I. M. Vinogradov [16] proved that for every sufficiently large odd integer
N the equation

p1 + p2 + p3 = N (1.1)

has a solution in prime numbers p1, p2, p3.

Analogous problem was considered in 1952 by Piatetski-Shapiro [9]. If H(c)
denotes the least integer s such that the diophantine inequality

|pc1 + · · ·+ pcs −N | < ε,

has a solution in primes p1, . . . , ps, where c > 1 is not an integer, ε > 0 is small,
and N is large real number, then Piatetski-Shapiro proved that

lim sup
c→∞

H(c)

c log c
≤ 4.
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He also proved that if 1 < c < 3/2, then H(c) ≤ 5. In 1992, Tolev [14] established
that if 1 < c < 15

14 , then the diophantine inequality

|pc1 + pc2 + pc3 −N | < N−κ

has a solution in prime numbers p1, p2, p3 for certain κ = κ(c) > 0. Several
improvements were made and the strongest of them is due to Baker andWeingartner
[1], who improved Tolev’s result with 1 < c < 10

9 .

In 1995, M. B. Laporta and D. I. Tolev [7] considered the equation

[pc1] + [pc2] + [pc3] = N, (1.2)

where c ∈ R, c > 1, N ∈ N and [t] denotes the integer part of t. They showed that
if 1 < c < 17

16 and N is a sufficiently large integer, then the equation (1.2) has a
solution in prime numbers p1, p2, p3.

For any natural number r, let Pr denote the set of r-almost primes, i.e. the
set of natural numbers having at most r prime factors counted with multiplicities.
There are many papers devoted to the study of problems involving primes and
almost primes. For example, in 1973 J. R. Chen [4] established that there exist
infinitely many primes p such that p + 2 ∈ P2. In 2000 Tolev [12] proved that for
every sufficiently large integer N ≡ 3 (mod 6) the equation (1.1) has a solution
in prime numbers p1, p2, p3 such that p1 + 2 ∈ P2, p2 + 2 ∈ P5, p3 + 2 ∈ P7.
Thereafter this result was improved by Matomäki and Shao [8], who showed that
for every sufficiently large integer N ≡ 3 (mod 6) the equation (1.1) has a solution
in prime numbers p1, p2, p3 such that p1 + 2, p2 + 2, p3 + 2 ∈ P2.

Recently Tolev [15] established that if N is sufficiently large, E > 0 is an
arbitrarily large constant and 1 < c < 15

14 , then the inequality

|pc1 + pc2 + pc3 −N | < (logN)−E

has a solution in prime numbers p1, p2, p3, such that each of the numbers p1 + 2,

p2+2, p3+2 has at most
[

369
180−168c

]

prime factors, counted with their multiplicities.

In this paper, we prove the following

Theorem 1.1. Suppose that 1 < c < 17
16 . Then for every sufficiently large N

the equation (1.2) has a solution in prime numbers p1, p2, p3, such that each of the

numbers p1 + 2, p2 + 2, p3 + 2 has at most
[

95
17−16c

]

prime factors, counted with

their multiplicities.

We note that the integer
[

95
17−16c

]

is equal to 95 if c is close to 1 and it is large

if c is close to 17
16 .

To prove Theorem 1.1 we combine ideas developed by Laporta and Tolev [7] and
Tolev [15]. First we apply a version of the vector sieve and then the circle method.
In section 4 we find an asymptotic formula for the integrals Γ′1 and Γ

′
4 (defined by
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(3.11) and (3.14) respectively). In section 5 we estimate Γ′′1 and Γ′′4 (defined by
(3.12) and (3.15) respectively) and we then complete the proof of Theorem 1.1.

2. NOTATION AND SOME LEMMAS

We use the following notations: with {t} = t− [t] we denote the fractional part
of t. With ||t|| we denote the distance from t to the nearest integer. As usual with
µ(n), ϕ(n) and Λ(n) we denote respectively, Möbius’ function, Euler’s function and
von Mangoldt’s function. Also e(t) = e2πit.

We use Vinogradov’s notation A≪ B, which is equivalent to A = O(B). If we
have simultaneously A≪ B and B ≪ A, then we shall write A ≍ B.

We reserve p, p1, p2, p3 for prime numbers. By ǫ we denote an arbitrarily small
positive number, which is not necessarily the same in the different formulae.

With N, Z and R we will denote respectively the set of natural numbers, the
set of integer numbers and the set of real numbers.

Now we quote some lemmas, which shall be used later.

Lemma 2.1. Suppose that D ∈ R, D > 4. There exist arithmetical functions
λ±(d) (Rosser’s functions of level D) with the following properties:

1. For any positive integer d we have

|λ±(d)| ≤ 1, λ±(d) = 0 if d > D or µ(d) = 0.

2. If n ∈ N, then
∑

d|n

λ−(d) ≤
∑

d|n

µ(d) ≤
∑

d|n

λ+(d).

3. If z ∈ R is such that z2 ≤ D ≤ z3 and if

P (z) =
∏

2<p<z

p, B =
∏

2<p<z

(

1−
1

p− 1

)

,

N± =
∑

d|P (z)

λ±(d)

ϕ(d)
, s0 =

logD

log z
,

(2.1)

then we have

B ≤ N+ ≤ B
(

F (s0) +O
(

(logD)−
1

3

))

, (2.2)

B ≥ N− ≥ B
(

f(s0) +O
(

(logD)−
1

3

))

, (2.3)

where F (s) and f(s) satisfy

f(s) = 2eγs−1 log(s− 1), F (s) = 2eγs−1 for 2 ≤ s ≤ 3. (2.4)

Here γ is Euler’s constant.
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Proof. See Greaves [5, Chapter 4, Theorem 3]. �

Lemma 2.2. Suppose that Λi,Λ
±
i are real numbers satisfying Λi = 0 or 1,

Λ−i ≤ Λi ≤ Λ+
i , i = 1, 2, 3. Then

Λ1Λ2Λ3 ≥ Λ−1 Λ
+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3 . (2.5)

Proof. The proof is similar to the proof of Lemma 13 in [2]. �

Lemma 2.3. Suppose that x, y ∈ R and M ∈ N, M ≥ 3. Then

e(−x{y}) =
∑

|m|≤M

cme(my) +O

(

min

(

1,
1

M ||y||

))

,

where

cm =
1− e(−x)

2πi(x+m)
. (2.6)

Proof. Proof can be find in Buriev [3, Lemma 12]. �

Lemma 2.4. Consider the integral

I =

b
∫

a

e(f(x))dx,

where f(x) is real function with continuous second derivative and monotonous first
derivative. If |f ′(x)| ≥ h > 0 for all x ∈ [a, b], then I ≪ h−1.

Proof. See [10, Lemma 4.3]. �

3. BEGINNING OF THE PROOF

Let η, δ, ξ and µ be positive real numbers depending on c. We shall specify
them later. Now we only assume that they satisfy the conditions

ξ + 3δ <
12

25
, 2 <

δ

η
< 3, µ < 1. (3.1)

We denote
X = N

1

c , z = Xη, D = Xδ, ∆ = Xξ−c (3.2)

and
P (z) =

∏

2<p<z

p. (3.3)
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Consider the sum

Γ =
∑

µX<p1,p2,p3≤X

[pc
1
]+[pc

2
]+[pc

3
]=N

(pi+2,P (z))=1, i=1,2,3

(log p1)(log p2)(log p3). (3.4)

If we prove the inequality
Γ > 0, (3.5)

then equation (1.2) would have a solution in primes p1, p2, p3 satisfying conditions
in the sum Γ. Suppose that pi + 2 has l prime factors, counted with multiplicities.
From (3.2), (3.3) and (pi + 2, P (z)) = 1 we have

X + 2 ≥ pi + 2 ≥ zl = Xηl

and then l ≤ 1
η
. This means that pi + 2 has at most [η−1] prime factors counted

with multiplicities. Therefore, to prove Theorem 1.1 we have to establish (3.5) for
an appropriate choice of η.

For i = 1, 2, 3 we define

Λi =
∑

d|(pi+2,P (z))

µ(d) =

{

1 if (pi + 2, P (z)) = 1,

0 otherwise.
(3.6)

Then we find that

Γ =
∑

µX<p1,p2,p3≤X
[pc

1
]+[pc

2
]+[pc

3
]=N

Λ1Λ2Λ3(log p1)(log p2)(log p3).

We can write Γ as

Γ =
∑

µX<p1,p2,p3≤X

Λ1Λ2Λ3(log p1)(log p2)(log p3)

1

2
∫

− 1

2

e(α([pc1] + [pc2] + [pc3]−N))dα.

Suppose that λ±(d) are the Rosser functions of level D. Let also denote

Λ±i =
∑

d|(pi+2,P (z))

λ±(d), i = 1, 2, 3. (3.7)

Then from Lemma 2.1, (3.6) and (3.7) we find that

Λ−i ≤ Λi ≤ Λ+
i .

We use Lemma 2.2 and find that

Γ ≥ Γ1 + Γ2 + Γ3 − 2Γ4,
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where Γ1, . . . ,Γ4 are the contributions coming from the consecutive terms of the
right-hand side of (2.5). We have Γ1 = Γ2 = Γ3 and

Γ1 =
∑

µX<p1,p2,p3≤X

Λ−1 Λ
+
2 Λ

+
3 (log p1)(log p2)(log p3)

1

2
∫

− 1

2

e(α([pc1]+[p
c
2]+[p

c
3]−N))dα,

Γ4 =
∑

µX<p1,p2,p3≤X

Λ+
1 Λ

+
2 Λ

+
3 (log p1)(log p2)(log p3)

1

2
∫

− 1

2

e(α([pc1]+[p
c
2]+[p

c
3]−N))dα.

Hence, we get
Γ ≥ 3Γ1 − 2Γ4. (3.8)

Let us first consider Γ1. We have

Γ1 =

1

2
∫

− 1

2

e(−Nα)L−(α)L+(α)2dα, (3.9)

where
L±(α) =

∑

µX<p≤X

(log p)e(α[pc])
∑

d|(p+2,P (z))

λ±(d).

Changing the order of summation we get

L±(α) =
∑

d|P (z)

λ±(d)
∑

µX<p≤X
p+2≡0( mod d)

(log p)e(α[pc]).

We divide the integral from (3.9) into two parts:

Γ1 = Γ′1 + Γ′′1 , (3.10)

where

Γ′1 =

∫

|α|<∆

e(−Nα)L−(α)L+(α)2dα, (3.11)

Γ′′1 =

∫

∆<|α|< 1

2

e(−Nα)L−(α)L+(α)2dα, (3.12)

with ∆ defined by (3.2).

Similarly, for Γ4 we have
Γ4 = Γ′4 + Γ′′4 , (3.13)
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where

Γ′4 =

∫

|α|<∆

e(−Nα)L+(α)3dα, (3.14)

Γ′′4 =

∫

∆<|α|< 1

2

e(−Nα)L+(α)3dα, (3.15)

and ∆ is defined by (3.2).

4. THE INTEGRALS Γ′1 AND Γ′4

We shall find an asymptotic formula for the integrals Γ′1 and Γ′4 defined by
(3.11) and (3.14), respectively. The arithmetic structure of the Rosser weights
λ±(d) is not important here, so we consider a sum of the form

L(α) =
∑

d≤D

λ(d)
∑

µX<p≤X
p+2≡0( mod d)

(log p)e(α[pc]), (4.1)

where λ(d) are real numbers satisfying

|λ(d)| ≤ 1, λ(d) = 0 if 2|d or µ(d) = 0. (4.2)

It is easy to see that

L(α) =
∑

d≤D

λ(d)
∑

µX<p≤X
p+2≡0( mod d)

(log p)e(αpc +O(|α|))

=
∑

d≤D

λ(d)
∑

µX<p≤X
p+2≡0( mod d)

(log p)e(αpc)(1 +O(|α|))

= L(α) +O(∆X(logX)), (4.3)

where
L(α) =

∑

d≤D

λ(d)
∑

µX<p≤X
p+2≡0( mod d)

(log p)e(αpc).

For L(α) we use the asymptotic formula from Lemma 10 in [15]. From (3.1)
and (3.2) we see that, when |α| < ∆, then for every constant A > 0, we have

L(α) =
∑

d≤D

λ(d)

ϕ(d)
I(α) +O(X(logX)−A), (4.4)
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where

I(α) =

X
∫

µX

e(αtc)dt. (4.5)

Hence from (3.2), (4.3) and (4.4) we see that

L(α) =
∑

d≤D

λ(d)

ϕ(d)
I(α) +O(X(logX)−A). (4.6)

From (2.1) and (4.6) we find

L±(α) = N±I(α) +O(X(logX)−A), for |α| < ∆. (4.7)

Let
M± = N±I(α). (4.8)

It is easy to see that
N± ≪ logX. (4.9)

We use (4.7), (4.8) and the identity

L−(L+)2 = (L−−M−)(L+)2+(L+−M+)M−L++(L+−M+)M+M−+M−(M+)2

to find that

|L−(L+)2 −M−(M+)2| ≪ X(logX)−A
(

|L+|2 + |M−|2 + |M+|2
)

. (4.10)

Let

B =

∫

|α|<∆

e(−Nα)M−(α)(M+(α))2dα. (4.11)

From (3.11), (4.9) – (4.11) we have

Γ′1 −B ≪ X(logX)2−A







∫

|α|<∆

|L+(α)|2dα+

∫

|α|<∆

|I(α)|2dα






.

We need the next lemma, which is an analog of Lemma 11 in [15].

Lemma 4.5. If ∆ ≤ X1−c, then for the sum L(α) defined by (4.1) and for
the integral I(α) defined by (4.5) we have

∫

|α|<∆

|L(α)|2dα≪ X2−c(logX)6,

∫

|α|<∆

|I(α)|2dα≪ X2−c(logX)6,

∫

|α|<1

|L(α)|2dα≪ X(logX)5.
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Proof. The proof is similar to the proof of Lemma 11 in [15]. �

Hence
Γ′1 −B ≪ X3−c(logX)8−A. (4.12)

Consider now the integral

B1 =

∞
∫

−∞

e(−Nα)I(α)3dα. (4.13)

Using the method in Lemma 5.6.1 in [11] we find

B1 ≫ X3−c. (4.14)

For I(α) we apply Lemma 2.4 and see that I(α) ≪ |α|−1X1−c. Then from
(3.2), (4.8), (4.11) and (4.13) we find

|N−(N+)2B1 −B| ≪ (logX)3
∫

|α|>∆

|I(α)|3dα≪ (log x)3X3−c−2ξ. (4.15)

If A = 12, then using (4.12) and (4.15) we find

Γ′1 = N
−(N+)2B1 +O(X3−c(logX)−4). (4.16)

We proceed with Γ′4 in the same way and prove that

Γ′4 = (N+)3B1 +O(X3−c(logX)−4). (4.17)

5. ESTIMATION OF INTEGRALS Γ′′1 AND Γ′′4 AND COMPLETION OF THE
PROOF

In this section we consider the integrals Γ′′1 and Γ
′′
4 defined by (3.12) and (3.15)

respectively. We shall show that Γ′′1 and Γ
′′
4 are small enough. Now we assume that

ξ =
16c− 5

32
, δ =

17− 16c

32
. (5.1)

It is obvious that for Γ′′1 defined by (3.12) we have

Γ′′1 ≪ max
∆≤|α|≤ 1

2

|L−(α)|

1
∫

0

|L+(α)|2dα.

We use Lemma 4.5 and find that

Γ′′1 ≪ X(logX)5 max
∆≤|α|≤ 1

2

|L−(α)|. (5.2)
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From (4.1) we see that

L(α) = L1(α) +O
(

X
1

2
+ε

)

, (5.3)

where
L1(α) =

∑

d≤D

λ(d)
∑

µX<n≤X
n+2≡0( mod d)

Λ(n)e(α[nc]).

Let M = Xκ for some κ, which will be specified later. Now for L1(α) we apply
Lemma 2.3 with parameters x = α, y = nc and M (note that [t] = t − {t}). We
obtain

L1(α) =
∑

|m|≤M

cm
∑

d≤D

λ(d)
∑

µX<n≤X
n+2≡0( mod d)

Λ(n)e((α+m)nc)

+O



Xε
∑

µX<n≤X

min

(

1,
1

M ||nc||

)



 .

(5.4)

We need the following

Lemma 5.6. Suppose that D, ∆ are defined by (3.2) and ξ, δ are specified by
(5.1). Suppose also that λ(d) satisfy (4.2) and cm are defined by (2.6). Then

max
∆≤α≤M+1

∣

∣

∣

∣

∣

∣

∣

∣

∑

|m|≤M

cm

∑

d≤D

λ(d)
∑

µX<n≤X
n+2≡0( mod d)

Λ(n)e(αnc)

∣

∣

∣

∣

∣

∣

∣

∣

≪ x
ε
(

X
1

3
+ c

2DM
1

2 +X
1− c

2∆−
1

2 +X
3

4
+ c

6D
2

3M
1

6 +X
5

6 +X
1− c

6D
1

3∆−
1

6 +X
1− c

4∆−
1

4

)

.

Proof. See Lemma 15 in [15]. �

We also need the following result.

Lemma 5.7. One has

∑

µX<n≤X

min

(

1,
1

M ||nc||

)

≪ Xε
(

XM−1 +M
1

2X
c
2

)

. (5.5)

Proof. From [13, Lemma 5.2.3] we know that the Fourier series

min

(

1,
1

M ||nc||

)

=
∑

k∈N

bM (k)e(knc), (5.6)

has Fourier coefficients satisfying

|bM (k)| ≤

{

4 logM
M

if k ∈ Z,
M
k2 if k ∈ Z, k 6= 0.

(5.7)
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From (5.6) we get

∑

µX<n≤X

min

(

1,
1

M ||nc||

)

=
∑

µX<n≤X

∑

k∈N

bM (k)e(knc). (5.8)

Changing the order of summation in last formula we obtain

∑

µX<n≤X

min

(

1,
1

M ||nc||

)

=
∑

k∈N

bM (k)H(k),

where
H(k) =

∑

µX<n≤X

e(knc).

Now using (5.7) and (5.8) and the identity |H(k)| = |H(−k)| we find

∑

µX<n≤X

min

(

1,
1

M ||nc||

)

≪
X logM

M
+
logM

M

∑

1≤k≤M

|H(k)|+M
∑

k>M

|H(k)|

k2
. (5.9)

If θ(x) = kxc, then θ′′(x) = c(c− 1)kxc−2 ≍ kXc−2 uniformly for x ∈ [µX,X].
Hence, we can apply Van der Corput’s theorem (see [6, Chapt. 1, Theorem 5] to
obtain

H(k)≪ k
1

2X
c
2 + k−

1

2X1− c
2 . (5.10)

Hence from (5.9) and (5.10) we prove (5.5). �

When combining Lemma 5.6, Lemma 5.7 and (5.3) – (5.4) we find that

max
∆≤α≤M+1

|L(α)| ≪ xε
(

X
1

3
+ c

2DM
1

2 +X1− c
2∆−

1

2 +X
3

4
+ c

6D
2

3M
1

6+

+X
5

6 +X1− c
6D

1

3∆−
1

6 +X1− c
4∆−

1

4 +XM−1
)

.

Then from last formula, (3.2) and (5.2) we find

Γ′′1 ≪ xε
(

X
4

3
+ c

2
+δ+κ

2 +X
7

4
+ c

6
+ 2δ

3
+κ

6 +X
11

6 +X2+ δ
3
− ξ

6 +X2−κ
)

. (5.11)

If we choose κ = 8c−5
56 , then from (5.1) and (5.11) we conclude that if 1 < c < 17

16

then
Γ′′1 ≪ X3−c−ε.

From (3.8), (3.10), (3.13) and (4.14) – (4.17) we conclude that

Γ ≥ |3N− − 2N+|(N+)3B1 +O(X3−c(log x)−4). (5.12)

Now we shall find a lower bound for the difference 3N− − 2N+. It is easy to see
that

B ≍ (logX)−1. (5.13)
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From (2.2) and (2.3) we see that

3N− − 2N+ ≥ B(3f(s0)− F (s0)) +O
(

logX)−
4

3

)

,

where s0 is defined by (2.1) and F (s) and f(s) are defined by (2.4). If we choose
s0 = 2.95, then from (2.1), (3.2) and (5.1) we find

η =
δ

2.95
=
17− 16c

94.4

and also from (2.4) we find 3f(s0)− F (s0) > 0.

Now from (2.2), (4.14), (5.12) and (5.13) we obtain

Γ≫ X3−c(logX)−3.

Therefore Γ > 0 and this proves Theorem 1.1. �
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