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SURJECTIVE CHARACTERIZATIONS OF METRIZABLE
LC-SPACES

VESKO VALOV

Becxo Buwacse. CIOPEKTUBHBIE XAPAKTEPUCTUKU METPU3YEMBIX LC®-
NPOCTPAHCTB

B paboTe moxazmpaeTca craenyloijan Teopema (Teopema 1. 1):

Metpusyemoe npoctpanctso Y asaserca LC™ (coorsercTBeRHO LOC®&C™) Torna u
TOJIBKO TOCAS8, KOLAA JUIA KaXOOro MapaKOMHAKTHOrO p-mpocTpaHcTBa X M KawJOro €ro
3AMKHYTOrO JIOK&NLHO-KOHEUHOMEDHO BJIOXKEHHOTO oAMHOXKecTBa A, nio6oe HenpephIBHOE
orobpakenme f: A — Y mMeeT HenpepMBHOE NPOAOIKEHUE HA OKPECTHOCTh MHOMECTBA A
{cooTreTcTBenHO Ha X).

TIpu noMomum 1ol TeopeMe Nony4YaeTCs NONOKMUTETbHEINA OTBET ClIEAYIONIEro Bonpoca
A. Unurormaze: Bepro nu uro merpusyemule LC™&C-npocTpaCTBa XapaKTePU3YIOTCH
KaK HenpepHIBHHE 06pa3nl abCONMIOTHHX PeTPaKTOB NPM MHAYKTMBHO OO-MATKMX 0TOGpa-
wenuax?

Vesko Valov. SURJECTIVE CHARACTERIZATIONS OF METRIZABLE LC*°-SPACES

In this note the following theorem is proved (theorem 1. 1):

A metrizable space Y is LC® (resp. LC®&C®) if and only if for any paracompact p-space
X and any closed locally finite—dimensionally embedded subset 4 of X, any map f:4 — Y can
be continuously extended to a neighborhood of A in X (resp. to X).

Using this theorem we give a positive answer of the following question of A. Chigogidze: Is it
true that a metrizable space ¥ is LO®&C if and only if Y is an image of an absolute extensor
for metrizable spaces under a oo-soft map? '

INTRODUCTION

In this note we prove the following theorem:
Theorem 1.1. A metrizable space Y is LC® (resp. LC®&C™) if and only
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if Jor any paracompact p-space X, any closed locally finite-dimensionally embedded
subset A of X, any map f: A —Y can be continuously extended 1o a neighborhood
of A in X (resp. to X).

Let us note that all maps are assumed to be continuous and all spaces—normal.
A space Y is LC™ (resp. LC®&C™®) if Y is LC™ (resp. LC"&C") for every
natural n. A subset H of a space X is said to be locally finite-dimensionally
embedded in X [6] if every point # € X has a neighborhood O(z) in X such that
rdx(H N O(z)) < oo, where

rdx(H NO(z)) = sup{dim(P) : P is closed in X and P C H N O(z)}.

The first motivation for the above result was the obvious parallelism between
the following theorems:

Theorem 2. ([2]) A metrizable space Y is LC™ (resp. LC"&C™) if and only if
for any metrizable space X and any closed subspace A of X with diim(X—A) < n+1,
any map f: A —Y can be continuously extended to a neighborhood of A in X (resp.
to the whole of X). '

Theorem 3. ({1]) A metrizable space Y is LC™ (resp. LC"&C™) if and only
if for every metrizable space X and any closed subspace A of X with dim(A) £ n,
any map f: A —'Y can be continuously extended to a neighborhood of A in X (resp.
to the whole of X).

In the class of compact metrizable spaces the above theorem was proved by
Dranishnikov [3].

The second motivation was the following result:

. Theorem 4. ([7]) A metrizable space Y is LC™ (resp. LC®&C™) if and
only if for every paracompact p-space X and any closed subset A of X, having a
neighborhood U in X such that U — A is locally finite-dimensionally embedded in
U, any map f:A —'Y can be continuously extended to a neighborhood of A in X
(resp. to the whole of X).

. As a consequence of Theorem 1.1 we get surjective characterizations of metriz-
able LO*&(C*®-spaces. It is proved in [1] that the metrizable space X is LC"&C™
(resp. LC™) if and only if X is an inductively n-soft image of an AE (resp. of an
ANE). In this connection A. Chigogidze asked whether a similar characterization
is true for metrizable LC* & -spaces. The following theorem is a positive answer
of this question.

Theorem 2.1. For a metrizable space X the following conditions are equiva-
lent:

(i) X is LC®&C™ (resp, LC™);

(i) X is an inductively co-soft image of an AE (resp. AN E);

(i) X is an oo-invertible image of an AE (resp. ANE).

By AE (resp. AN E) we denote the class of metrizable spaces which are absolute
(resp. absolute neighborhood) extensors for metrizable spaces. Let fiX—>Yhbea
map between metrizable spaces and n > 0. Then:

f is n-soft [10] if for any at most n-dimensional paracompact space Z, any
closed subspace A of Z and any two maps g: Z — Y, h: A — X with f.h = g|4,
there exists a map k: Z — X such that f.k = g and k|A = h;
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f is inductively oo-soft if it is inductively n-soft for every natural n,
i. e. for every n there is a closed subspace A(n) of X such that the restriction
flA(n): A(n) = Y is n-soft;

f is n-invertible [4] if for any at most n-dimensional metrizable space Z and
any map g: Z — Y there exists a map h: Z — X such that g = f. h;

f is co-invertible if it is n-invertible for every natural n.

Obviously, any n-soft map is n-invertible, n € N. So, every inductively oo-soft
map is oco-invertible.

1. PROOF OF THEOREM 1.1

Let Y be a metrizable LO®&C®-space. Suppose X is a paracompact p-space,
A is a closed locally finite—dimensionally embedded subset of X and f is a map
from A into Y. For every z € X take an open neighborhood O(z) of z in X such
that rdx(O(z) N A) < oo and consider the open cover @ = {O(z) : ¢ € X} of
X. Let v be an open locally finite closure-refinement of a. Then for every U € v
we have dim{cix(U) N A) < oo. Put y(k) = {U € v : dim(cix(U) N A) £ k} and
F(k) = U{clx(U) : U € y(k)},k = 1,2,... Obviously {F(k) : k € N} is an
increasing sequence of closed subsets of X and X = U{F(k): k € N}. Since for
every k the family v(k) is locally finite, dim(A(k)) £ k, where A(k) = F(k) N A.
By the well-known factorization theorem of Pasynkov [8] there are a metrizable
space Z, closed subsets Z(k) of Z, k € N, and maps g:A — Z, h:Z — Y, such
that h.g = f, g(A(k)) C Z(k) and dim(Z(k)) £ k for every k € N. Without a loss
of generality we can suppose that Z(k) is contained in Z(k + 1) for each k.

Now for every k € N we construct inductively an AE-space P(k) containing
Z(k) as a closed subset and maps g(k): F(k) — P(k), h(k): P(k) — Y such that
the following conditions are fulfilled:

(1) P(k)U Z(k + 1) is a closed subspace of P(k+ 1);

(2) P(1) is attached to Z in the points of Z(1) and P(k + 1) is attached to
Z U P(k) in the points of P(k)U Z(k + 1);

(3) 9()A(K) = glA(E) and g(k + 1)|F (k) = g(k);

(4) h(k)|Z(k) = h|Z(k) and h(k + 1)|P(k) = h(k);

(5) dim(P(k)) € k+1.

Suppose we have already constructed P(k), g(k) and h(k) for every k £ n.
Consider the union P(n)U Z{n + 1). Obviously, it is metrizable and dim(P(n}U
Z(n+ 1)) £ n+ 1. By a result of Kodama [5] there is an AE-space P(n + 1)
with dim(P(n + 1)) € n + 2 containing P(n) U Z(n + 1) as a closed subset. We
can assume that P(n + 1) is attached to the space Z U P(n) in the points of
P(n)U Z(n + 1). The space P(n + 1), being an absolute extensor for metrizable
spaces, is an absolute extensor for paracompact p-spaces [6]. Consequently, there is
amap g(n+1) from F(n+1) to P(n+1) such that g(n+1)|A(n+1) = g|A(n+1) and
g(n + 1)|F(n) = g(n). Let h*(n): P(n)U Z(n+ 1) — Y be defined by h*(n)(z) =
h(n)(z) if z € P(n), and h*(n)(z) = h(z) if z € Z(n +1). It follows from (1) — (4)
that h*(n) is well defined and continuous. Now, by Theorem 2 and Y € LC*&(C™,
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there is a continuous extension A(n + 1): P(n+1) — Y of h*(n). The verification
of the conditions (1) — (5) is left to the reader. "

Let f(k) = h(k).g(k) for every k € N. It follows from our construction that
f(k): F(k) — Y is a continuous map, f(k)|A(k) = flA(k) and f(k+1)|F(k) = f(k).
Therefore, we can define a map f: X — Y by f(z) = f(k)(z) provided z € F(k).
Obviously, f is an extension of f. It remains only to prove the continuity of f.
This can be done by the following arguments: For every U € 7 its closure clx (U) is
contained in some F(k). So, we have that f|U is continuous for each U/ € 4. Thus,
f is continuous.

Suppose now Y is LC™, X is a paracompact p-space, A is a closed locally
finite-dimensionally embedded subset of X and f is a map from A into Y. Then the
cone con(Y) of Y is a metrizable LC®&C™-space. Next, by standard arguments
(using the previous case), we can get an extension f:U — Y of f, where U is a

neighborhood of A in X.
The sufficiency in Theorem 1.1 follows from Theorem 2 and the obvious fact

that every subset of a finite dimensional space X is locally finite-dimensionally

embedded in X.
Remark 1.2. If in Theorem 1.1 Y is completely metrizable then X can be

suppposed to be collectionwise normal. In this case the space Z (see the proof of
Theorem 1.1) can be assumed to be complete. Then, by a result of Tsuda [11], the
spaces P(k) can be chosen to be also comlete. Finally, the existence of the maps
g(k), k € N, follows from the fact that every complete AE is an absolute extensor
for collectionwise normal spaces [9].

2. PROOF OF THEOREM 2.1

We shall prove only the global variant. The local one follows from the same
arguments.

(f) — (3%). Let 7 be the weight of Y. Then for every n € N there exist
an n-dimensional metrizable space A(n,7) of weight  and an n-soft map f(n)
from A(n,7) onto Y [1, Corollary 2.3]. Consider the discrete sum A of the
spaces A(n,7), n € N, and the map f:A — Y, defined by f(z) = f(n)(z)
if z € A(n,7). Embed A into an AE-space X as a closed subset. Since A is
locally finite~dimensionally embedded in X, by Theorem 1.1 there is an extension
f:X =Y of f. Clearly, f is inductively oco-soft.

(¢¢) — (444). This implication is trivial, because any inductively co-soft map is
oo-invertible.

(i) — (i). Let X be an AE-space and f be an oco-invertible map from X
onto Y. Suppose B is an n-dimensional closed subset of a metrizable space Z and
9:B — Y is a map, where n € N. Since f is n-invertible, there exists a map
h: B — X such that f.h = g. Take any extension k: Z — X of h (the existence of k
follows from X € AE). Then the map f.k is an extension of g. Hence, by Theorem
3,Y 1s LC™&C™. Thus, we prove that Y € LC®&C°.

Let us consider the proof of Theorem 1.1, implication (i) — (ii). IfY is a
complete metrizable space of weight 7, then by [1, Corollary 2.3] the spaces A(n, 1)
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are also complete. Consequently, A can be embedded as a closed subset in the
Hilbert space la(7). So, we can suppose that X is the space la(r). Thus, the
following theorem is true.

Theorem 2.2. Let Y be a completely metrizable space of weight 7 2 w. Then

the following conditions are equivalent:

fd

Lol S

8.

9.

(i) X is LC®&C™ (resp. LC*); .
(ii) X is an inductively co-soft image of Iz(T) (resp. of an open subspace

of ba(r));

(iii) X is an co-invertible image of lo(T) (resp. of an open subset of lr(7)).

REFERENCES

.Chigogidze, A., Valov,V. Universal maps and surjective cha.ractérizations of completely

metrizable LC™-spaces. — Proc. Amer. Math. Soc., 109(4), 1990, 1125-1133.

Dugundji, J. Absolute neighborhood retracts and local connectness in arbitrary metric
space. — Comp. Math., 13, 1958, 229-246.

Dranishnikov, A. Absolute extensors in dimension n and n-soft maps increasing dimen-
sion. — Uspekhi Mat. Nauk, 39, 1984, 55-95 (in Russian).

Hoffman, B. A surjective characterization of Dugundji spaces. — Proc. Amer. Math. Soc.,
76, 1979, 151-156.

Kodama, Y. On embeddings of spaces into ANR and shape. — J. Math. Soc. Japan, 27,
1975, 533-544.

. Lisica, J. Extension of continuous mappings and a factorization theorem. — Sibirski Mat.
Z., 14, 1973, 128-139 (in Russian).
L.isica,J. On spaces connected and locally connected in all dimensions. — Fund. Math., 80,

1973, 35-45 (in Russian).

Pasinkov, B. Factorization of mappings onto metric spaces. — Dokl. Acad. Nauk USSR,
182(2), 1968, 268271 (in Russian).

Przymusinski, T. Collectionwise normality and absolute retracts. — Fund. Math., 98,
1978, 61-73.

10. Shche pin, E. Functors and uncountable powers of compacta. — Uspekhi Mat. Nauk, 386,

1981, 3-62 (in Russian).

11. Tsuda, K. A note on closed embeddings of finite dimensional metric spaces. — Bull. Polish

Acad. Sci. Math., 33, 1985, 541546,

Recesved 11.05.19392

47



