ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика Том 85, 1991

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques Tome 85, 1991

SURJECTIVE CHARACTERIZATIONS OF METRIZABLE LC^{∞} -SPACES

VESKO VALOV

 B_{ecko} B_{blade} . СЮРЕКТИВНЫЕ ХАРАКТЕРИСТИКИ МЕТРИЗУЕМЫХ LC^{∞} ПРОСТРАНСТВ

В работе доказывается следующая теорема (теорема 1. 1):

Метризуемое пространство Y является LC^{∞} (соответственно $LC^{\infty}\&C^{\infty}$) тогда и только тогда, когда для каждого паракомпактного p-пространства X и каждого его замкнутого локально-конечномерно вложенного подмножества A, любое непрерывное отображение $f:A \to Y$ имеет непрерывное продолжение на окрестность множества A (соответственно на X).

При помощи этой теореме получается положительный ответ следующего вопроса А. Чигогидзе: Верно ли что метризуемые $LC^{\infty}\&C^{\infty}$ -пространства характеризуются как непрерывные образы абсолютных ретрактов при индуктивно ∞ -мягких отображениях?

Vesko Valov. SURJECTIVE CHARACTERIZATIONS OF METRIZABLE LC∞-SPACES

In this note the following theorem is proved (theorem 1. 1):

A metrizable space Y is LC^{∞} (resp. $LC^{\infty}\&\hat{C}^{\infty}$) if and only if for any paracompact p-space X and any closed locally finite-dimensionally embedded subset A of X, any map $f:A\to Y$ can be continuously extended to a neighborhood of A in X (resp. to X).

Using this theorem we give a positive answer of the following question of A. Chigogidze: Is it true that a metrizable space Y is $LC^{\infty}\&C^{\infty}$ if and only if Y is an image of an absolute extensor for metrizable spaces under a ∞ -soft map?

INTRODUCTION

In this note we prove the following theorem:

Theorem 1.1. A metrizable space Y is LC^{∞} (resp. $LC^{\infty}\&C^{\infty}$) if and only

if for any paracompact p-space X, any closed locally finite-dimensionally embedded subset A of X, any map $f: A \to Y$ can be continuously extended to a neighborhood of A in X (resp. to X).

Let us note that all maps are assumed to be continuous and all spaces—normal. A space Y is LC^{∞} (resp. $LC^{\infty}\&C^{\infty}$) if Y is LC^n (resp. $LC^n\&C^n$) for every natural n. A subset H of a space X is said to be locally finite-dimensionally embedded in X [6] if every point $x \in X$ has a neighborhood O(x) in X such that $rd_X(H \cap O(x)) < \infty$, where

 $rd_X(H \cap O(x)) = \sup \{\dim(P) : P \text{ is closed in } X \text{ and } P \subset H \cap O(x)\}.$

The first motivation for the above result was the obvious parallelism between the following theorems:

Theorem 2. ([2]) A metrizable space Y is LC^n (resp. $LC^n\&C^n$) if and only if for any metrizable space X and any closed subspace A of X with $\dim(X-A) \leq n+1$, any map $f: A \to Y$ can be continuously extended to a neighborhood of A in X (resp. to the whole of X).

Theorem 3. ([1]) A metrizable space Y is LC^n (resp. $LC^n\&C^n$) if and only if for every metrizable space X and any closed subspace A of X with $\dim(A) \leq n$, any map $f: A \to Y$ can be continuously extended to a neighborhood of A in X (resp. to the whole of X).

In the class of compact metrizable spaces the above theorem was proved by Dranishnikov [3].

The second motivation was the following result:

Theorem 4. ([7]) A metrizable space Y is LC^{∞} (resp. $LC^{\infty}\&C^{\infty}$) if and only if for every paracompact p-space X and any closed subset A of X, having a neighborhood U in X such that U-A is locally finite-dimensionally embedded in U, any map $f: A \to Y$ can be continuously extended to a neighborhood of A in X (resp. to the whole of X).

As a consequence of Theorem 1.1 we get surjective characterizations of metrizable $LC^{\infty}\&C^{\infty}$ -spaces. It is proved in [1] that the metrizable space X is $LC^{n}\&C^{n}$ (resp. LC^{n}) if and only if X is an inductively n soft image of an AE (resp. of an ANE). In this connection A. Chigogidze asked whether a similar characterization is true for metrizable $LC^{\infty}\&C^{\infty}$ -spaces. The following theorem is a positive answer of this question.

Theorem 2.1. For a metrizable space X the following conditions are equivalent:

- (i) $X \text{ is } LC^{\infty} \& C^{\infty} \text{ (resp. } LC^{\infty});$
- (ii) X is an inductively ∞ -soft image of an AE (resp. ANE);
- (iii) X is an ∞ -invertible image of an AE (resp. ANE).

By AE (resp. ANE) we denote the class of metrizable spaces which are absolute (resp. absolute neighborhood) extensors for metrizable spaces. Let $f: X \to Y$ be a map between metrizable spaces and $n \ge 0$. Then:

f is n-soft [10] if for any at most n-dimensional paracompact space Z, any closed subspace A of Z and any two maps $g: Z \to Y$, $h: A \to X$ with f.h = g|A, there exists a map $k: Z \to X$ such that f.k = g and k|A = h;

f is inductively ∞ -soft if it is inductively n-soft for every natural n, i. e. for every n there is a closed subspace A(n) of X such that the restriction $f|A(n):A(n)\to Y$ is n-soft;

f is n-invertible [4] if for any at most n-dimensional metrizable space Z and any map $g: Z \to Y$ there exists a map $h: Z \to X$ such that g = f. h;

f is ∞ -invertible if it is n-invertible for every natural n.

Obviously, any n-soft map is n-invertible, $n \in N$. So, every inductively ∞ -soft map is ∞ -invertible.

1. PROOF OF THEOREM 1.1

Let Y be a metrizable $LC^{\infty}\&C^{\infty}$ -space. Suppose X is a paracompact p-space, A is a closed locally finite-dimensionally embedded subset of X and f is a map from A into Y. For every $x \in X$ take an open neighborhood O(x) of x in X such that $rd_X(O(x) \cap A) < \infty$ and consider the open cover $\alpha = \{O(x) : x \in X\}$ of X. Let γ be an open locally finite closure-refinement of α . Then for every $U \in \gamma$ we have $\dim(cl_X(U) \cap A) < \infty$. Put $\gamma(k) = \{U \in \gamma : \dim(cl_X(U) \cap A) \le k\}$ and $F(k) = \bigcup \{cl_X(U) : U \in \gamma(k)\}, k = 1, 2, \ldots$ Obviously $\{F(k) : k \in N\}$ is an increasing sequence of closed subsets of X and $X = \bigcup \{F(k) : k \in N\}$. Since for every k the family $\gamma(k)$ is locally finite, $\dim(A(k)) \le k$, where $A(k) = F(k) \cap A$. By the well-known factorization theorem of Pasynkov [8] there are a metrizable space Z, closed subsets Z(k) of Z, $k \in N$, and maps $g: A \to Z$, $h: Z \to Y$, such that h.g = f, $g(A(k)) \subset Z(k)$ and $\dim(Z(k)) \le k$ for every $k \in N$. Without a loss of generality we can suppose that Z(k) is contained in Z(k+1) for each k.

Now for every $k \in N$ we construct inductively an AE-space P(k) containing Z(k) as a closed subset and maps $g(k): F(k) \to P(k)$, $h(k): P(k) \to Y$ such that the following conditions are fulfilled:

- (1) $P(k) \cup Z(k+1)$ is a closed subspace of P(k+1);
- (2) P(1) is attached to Z in the points of Z(1) and P(k+1) is attached to $Z \cup P(k)$ in the points of $P(k) \cup Z(k+1)$;
 - (3) g(k)|A(k) = g|A(k) and g(k+1)|F(k) = g(k);
 - (4) h(k)|Z(k) = h|Z(k) and h(k+1)|P(k) = h(k);
 - (5) $\dim(P(k)) \le k+1.$

there is a continuous extension h(n+1): $P(n+1) \to Y$ of $h^*(n)$. The verification of the conditions (1) — (5) is left to the reader.

Let f(k) = h(k).g(k) for every $k \in N$. It follows from our construction that $f(k): F(k) \to Y$ is a continuous map, f(k)|A(k) = f|A(k) and f(k+1)|F(k) = f(k). Therefore, we can define a map $\overline{f}: X \to Y$ by $\overline{f}(x) = f(k)(x)$ provided $x \in F(k)$. Obviously, \overline{f} is an extension of f. It remains only to prove the continuity of \overline{f} . This can be done by the following arguments: For every $U \in \gamma$ its closure $cl_X(U)$ is contained in some F(k). So, we have that $\overline{f}|U$ is continuous for each $U \in \gamma$. Thus, \overline{f} is continuous.

Suppose now Y is LC^{∞} , X is a paracompact p-space, A is a closed locally finite-dimensionally embedded subset of X and f is a map from A into Y. Then the cone con(Y) of Y is a metrizable $LC^{\infty}\&C^{\infty}$ -space. Next, by standard arguments (using the previous case), we can get an extension $\overline{f}: U \to Y$ of f, where U is a neighborhood of A in X.

The sufficiency in Theorem 1.1 follows from Theorem 2 and the obvious fact that every subset of a finite dimensional space X is locally finite-dimensionally embedded in X.

Remark 1.2. If in Theorem 1.1 Y is completely metrizable then X can be supposed to be collectionwise normal. In this case the space Z (see the proof of Theorem 1.1) can be assumed to be complete. Then, by a result of Tsuda [11], the spaces P(k) can be chosen to be also comlete. Finally, the existence of the maps g(k), $k \in N$, follows from the fact that every complete AE is an absolute extensor for collectionwise normal spaces [9].

2. PROOF OF THEOREM 2.1

We shall prove only the global variant. The local one follows from the same arguments.

- (i) o (ii). Let τ be the weight of Y. Then for every $n \in N$ there exist an n-dimensional metrizable space $A(n,\tau)$ of weight τ and an n-soft map f(n) from $A(n,\tau)$ onto Y [1, Corollary 2.3]. Consider the discrete sum A of the spaces $A(n,\tau)$, $n \in N$, and the map $f:A \to Y$, defined by f(x) = f(n)(x) if $x \in A(n,\tau)$. Embed A into an AE-space X as a closed subset. Since A is locally finite-dimensionally embedded in X, by Theorem 1.1 there is an extension $\overline{f}: X \to Y$ of f. Clearly, \overline{f} is inductively ∞ -soft.
- $(ii) \rightarrow (iii)$. This implication is trivial, because any inductively ∞ -soft map is ∞ -invertible.
- (iii) \to (i). Let X be an AE-space and f be an ∞ -invertible map from X onto Y. Suppose B is an n-dimensional closed subset of a metrizable space Z and $g: B \to Y$ is a map, where $n \in N$. Since f is n-invertible, there exists a map $h: B \to X$ such that f.h = g. Take any extension $k: Z \to X$ of h (the existence of k follows from $X \in AE$). Then the map f.k is an extension of g. Hence, by Theorem 3, Y is $LC^n\&C^n$. Thus, we prove that $Y \in LC^\infty\&C^\infty$.

Let us consider the proof of Theorem 1.1, implication $(i) \rightarrow (ii)$. If Y is a complete metrizable space of weight τ , then by [1, Corollary 2.3] the spaces $A(n, \tau)$

are also complete. Consequently, A can be embedded as a closed subset in the Hilbert space $l_2(\tau)$. So, we can suppose that X is the space $l_2(\tau)$. Thus, the following theorem is true.

Theorem 2.2. Let Y be a completely metrizable space of weight $\tau \geq \omega$. Then the following conditions are equivalent:

- (i) $X \text{ is } LC^{\infty} \& C^{\infty} \text{ (resp. } LC^{\infty});$
- (ii) X is an inductively ∞ -soft image of $l_2(\tau)$ (resp. of an open subspace of $l_2(\tau)$);
- (iii) X is an ∞ -invertible image of $l_2(\tau)$ (resp. of an open subset of $l_2(\tau)$).

REFERENCES

- Chigogidze, A., Valov, V. Universal maps and surjective characterizations of completely metrizable LCⁿ-spaces. Proc. Amer. Math. Soc., 109(4), 1990, 1125-1133.
- 2. Dugundji, J. Absolute neighborhood retracts and local connectness in arbitrary metric space. Comp. Math., 13, 1958, 229-246.
- 3. Dranishnikov, A. Absolute extensors in dimension n and n-soft maps increasing dimension. Uspekhi Mat. Nauk, 39, 1984, 55-95 (in Russian).
- 4. Hoffman, B. A surjective characterization of Dugundji spaces. Proc. Amer. Math. Soc., 76, 1979, 151-156.
- 5. Kodama, Y. On embeddings of spaces into ANR and shape. J. Math. Soc. Japan, 27, 1975, 533-544.
- 6. Lisica, J. Extension of continuous mappings and a factorization theorem. Sibirski Mat. Z., 14, 1973, 128-139 (in Russian).
- 7. Lisica, J. On spaces connected and locally connected in all dimensions. Fund. Math., 80, 1973, 35-45 (in Russian).
- 8. Pasinkov, B. Factorization of mappings onto metric spaces. Dokl. Acad. Nauk USSR, 182(2), 1968, 268-271 (in Russian).
- 9. Przymusinski, T. Collectionwise normality and absolute retracts. Fund. Math., 98, 1978, 61-73.
- 10. Shchepin, E. Functors and uncountable powers of compacta. Uspekhi Mat. Nauk, 36, 1981, 3-62 (in Russian).
- 11. T s u d a, K. A note on closed embeddings of finite dimensional metric spaces. Bull. Polish Acad. Sci. Math., 33, 1985, 541-546.

Received 11.05.1992