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JI:oB.Mfu.na Huxorose. VHTEPTIONANMUA HEKOTOPHIX CBONCTB ONIEPATOPOB,
IEACTBYIOIINX B CEMEICTBAX BAHAXOBBIX [TPOCTPAHCTB

Hycte T — onepaTtop, medicreyromuii us cemelicrea Ay 8 cemelictso B, obnapaio-
oMl HeKOTOPOM M3 CBOMCTB: KOMINAKTHOCTh, HOJIOKHUTENIbHAA MEPA HEKOMIAKTHOCTH UM
NMUMMHUTHOCTh, KaK oneparop AelicTeyiomuik us A; 8 B; mna t us mexoroporo 0 IMHOXKECTBA
noAoKUTeNbHOA MepR. B cnyuae, xoraa onHo U3 cemelicTB NOCTOAHHO, MPEACTABJICHH He-
KOTOpPHIE pe3ynbTaThl o nobedenuu T Kak onepatopa uz A B B, rae A u B — unrepfionaun-
OHHBIE NPOCTPAHCTBA, HOoCTpoentuie no A; u B;. [lokasano kax nem'ropue reoMeTpUUECKHE
CBOMCTBaA HaclenyIOTCA MHTEPNONALMOHHBLIM npoc'rpa,ac*mom

Lyudmila Nikolova. INTERPOLATION OF SOME PROPERTIES OF OPERATORS ACTING
IN FAMILIES OF BANACH SPACES ‘

Let T be an operator acting from family A; into family B;, possessing some properties like
.compactness, positive measure of noncompactness or being limited when it acts from A; into B;
“for t from some positive measure subset. In the case when one of the families is constant some

results are presented about the behaviour of T like an operator acting from A into B, where A
and B are interpolation spaces constructed for the families A; and B;. It is shown how some
geometric properties are inherited by the interpolation spaces.

The theory of interpolation spaces usualy deals with a couple of Banach spaces
and a space is constructed, which has appropriate interpolation properties. Some
problems that appear in analysis show that it is interesting to consider the case
when more than two spaces are given. Though some additional difficulties occur,
most of the results of the “classical” interpolation theory have been carried out
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for the case of n-tuples by different authors (G. Sparr, A. Yoshikava, A. Favini,
D. L. Fernandez, F. Cobos, J. Peetre and L. Nikolova) or even, more generaly, for
the case of infinite family A;, ¢ € T of Banach spaces all of them being continuously
embedded in a containing space — that is, on the one hand, the St. Louis group:
R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, G. Weiss and, on the other hand,
S. G. Krein and L. Nikolova. A work by M. Cwikel and S. Jansson has appeared, in
which a general construction is given that enables to develop in particular the real

“method of Sparr and the complex method of Favini-Lions to the case of infinite
families of spaces (cf. [1]). ‘Let us describe briefly the situation in [1], namely the
family considered there.

After [1] the “inequality” E' £ F between two Panach spaces E and F means
that ECF (namely, that E is algebraically embedded in F and {jzl» £ ||2||g,
r € E). We consider a family {A;,t € I'} of Banach spaces and inquire the
existence of a Banach space U, such that A, £ U forallt € T', (T',Y, Z) being an
arbitrary measure space, where Z is a probability measure (corresponding to the
harmonic measure on I' at # in the case when I' = {z : |z] = 1}, |6] < 1.) Such a
family is called bounded family on T'. In {1] the spaces Lp(A, Z), Up(A, Z) and

~ Am(A, Z) are defined, where for M one of the following interpolation methods is
used: FL — the complex method of Favini-Lions [?}; St.L. — the complex method
of St. Louis group [3]; J,p and K,p — the real method introduced by Sparr [4].

In the following we use the notation )  A; = ) A; instead of sup A; from [1] and
‘ tel tel

“ AA:r = A A: instead of inf A;.
el tel

Let h(t) be a Z-measurable bounded function. Let after [5] K(h(t),a, A,)
denotes the generalized K-functional, namely

K(h(t),d, A;) = ':):inf > At)llag |l a,,

, Definition. We say that a Banach Spacé E belongs to the class K(A, Z) iff
ECY" A, and for any Z-measurable function h(t), bounded from above and below -
by positive constants, the inequality

1) K(h{),0,A) € Cexp ( / logh(t)dZ(t)) llallz
r

holds. ,
Theorem 1. A Banach space E belongs to the class K(A, Z) iff ECZ A and
for an arbitrary Banach space B and an arbitrary linear operator S : Y A; — B,
for which
|Sallz < M(t)|lalla, (a€ A)

with M(t) bounded by two positive constants and measurable with respect to dZ(t),
the following inequality

(2) 15/Elle—5 s Cexp / log M(t) dZ(t))

r



holds.

Proof. LetS:} Ay — Band|Sallp £ M(t)||alla, for a € A;. We consider
the inequality (1) with h(t) = M(t). It is clear that in the definition of K-functional
there are only countable many summands a; ;» different from zero. Let a € E, for
given € > 0 we can find aj € A;; such that y_a; = a and

S htllaslla,, s (1+e)K(h(t),a, Ar).
Let us estimate ‘ é

Salls = IS aj)lle < 2 M(2;)lajlla,,

< (L+)K(M(t),a,4) $ (1+6)C exp ( / xqgms)dzm) lallz-
/ |

As € is arbitrary small, the inequality (2) holds.

Let now prove the opposite assertion. As m £ h(t) £ M then for every t € T
we have the embedding h(t)A;CmU and the space B = Z h(t)A: can be defined.
On the other hand, >_ A; C B (as Jja||p £ M“a”}:z&e) Let us consider the can-

nonical embeddmg of the space ) A; into the space B and estimate

”“ﬁzh(z)a alln(to)a
S - - _,_____,_,___i, << su —----——Q-—-—t—a- = h t .
1511 o—B asé‘ilzo Ha”f‘-fo . ae‘fgn HQUAm ()

Now we cai use the inequality (2) with M (f) = h(t). For a € E we get

—
—

K(h(t),a, A1) = |Sallp < Cexp ( [ log h(t)cmt)) lalle-
J

The theorem is proved.

Having in mind that Ly (B,Z) = AM(B Z) = Um(B,Z) = B in the case
B, = B, we get from [1}, Theorem 2.2.1, the following fact:

Theorem([ D). Let A;, t€T, bea boundedfamzly of Banach spaces (At <U)
Let S be a bounded linear operalor from U into B whose restriction to A; 15 a map
into B with ||S)|4,—p £ M(t) for allt € T. Suppose that M(t) is bounded and
Z-measurable on T. Then S maps Lym(A,2), AM(A, Z) and Upg(A, Z) into B and

ISIl £ exp ( ] log M({) dzu))
r
(cf. [1). |

Let now E is one of the spaces LM(A Z) and Up(A, Z). We have EC Y A,
and from the above theorem it follows that the inequality (2) with C' = 1 holds.
This means that when U = }_ A,, the interpolation spaces Lys(A, Z) and Ups(A4, Z)
belong to the class K (A, Z). (A(A, Z) in general is not complete.)

Definition. The generalized J-functional is defined by

J(h(t),a, A¢) = sup h(t)||a||la, for a € AA,.
tel



We say that a Banach space F belongs to the class J (A, Zj iff AA,CF and

llallr £ Cexp ( / log h=(t) dZ(t)) J(h(t),a, A)
r
for all a € AA;, Z-measurable and bounded by two positive constants.
It is possible to prove a theorem which characterizes the class J (A,Z) and
generalizes Theorem 2 from {5]. Here we need only the following V
Proposition. Let AB;CF. From the conditions that S is a linear operator
from an arbitrary Banach space A into By with |[Sal|s, £ M(t)|lalla, M(2) being

a bounded by positive constants' Z-measurable function, the inequalily

i!Si‘lA;p < Cexp ( / log M(t) dZ(t))
Fal

holds. Then F € J(B, Z).
Proof. Let S be the identity operator in A = A h({)B;. Let us estimate
1Sll4=B,,- We have | ,

sup llall,, lallz,, _ 1
aca llallans, = aea llall, h(to) — h(to)’

1 . e .
where —— is a bounded by two positive constants Z-measurable function. Then

"D

lallr < ISalle < Cexp ( Jrogntet dza)) ol
: r

= Cexp (/ logh™1(t) dZ(t)) J(h(t),a,B:).
- r .

It follows from this proposition and Theorem 2.2.1 from [1], used for a constant
family A; = A, that Ly (B, Z) and Up(B, Z) belong to the class J(B, Z).

Definition. Let A be a_Banach space. A subset E of A is called limited (or
more precisly, limited in A) if ) ' V

. lim sup |zi(z)| =0
lim sup |23(2)

for every weak *-null sequence z, in A*, the dual space to A (cf. [6]).

Definition [6]. A bounded linear operator T : A — B is called limited if T
maps U4 (the unit ball of A, and thus every bounded subset of A) to a limited
subset of B. | '

We shall use here the following abreviations: E,' Ay = Y Arand A A =
i€y

té A;. The notation T € L(A;, B;) means that T : Y A, — Y B; and
¥ ;

sup UT/Af“At-‘*Bt < 0.
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Theorem 2. Let A;, t € I, be a bounded family of Banach spaces, B — an
arbitrary Banach space and let the Banach space A belongs to the class K(A,Z).
Let 4 be a subset of ' with positive Z-measure. Suppose that T € L(A:, B) and
T ts a limited operator from E’r A; tnto B Then T ts a limiled operator as an

operator, acling from A into B. .
Proof. Let M(t) be a bounded by positive constants Z-measurable function
such that M(t) 2 ||T/Ad|la,~B. Let M(t) 2 m and an arbitrary € > 0 is given.

We define a function
M(t) tey
h t — 3 .
©={ Mioye, 1€\
Let 2 € U4. According to the definition of generalized K- functlonal there exists a
representation z = Zx;’, Ty € At , such that :

> b))l xt,llm < 2K(h(t), =, Ar).
©1;€r

H‘a,ving in mind that A € K(A, Z), we get that

S itz lla, s 2Cexp | [ logh(t)dz(t)
J o8

t;el

Let y;, be a weak *-null sequence in B*, then there exists a constant C; > 0
such that sup ||y}||g+ £ Ci. We are going to show that T(Ua) is a limited set in
B. We have to estimate V

lim sup |yi(y
ndwaT(Ua)i n ()]

g lim sup |y, Tz::cf + lim sup |y, Z Tz,

11— OO0 erA t"Ef}r n— 00 erA ] t}er‘\v

Let 2° = 3 =z, 2% € 3 Ay, and its norm there could be estimated:
;€7 tey

.
1y a, € 3 lonsllag € — 3 Atz lla,

€Y t;€ey : t; €9

< %Cexp /log h(t)dZ(t) } = K.
r )
The image of the ball UZ A;(K ) (of radius K) is a limited set in B and hence

tey

lim sup |yp | T Zz‘i < €.
n—&OOxGUA tj-e'y



On the other hand,

lim sup
bt R de o] -"'EUA

€ lm sup Z |9‘n (Txt.:)l

yﬂ ( Z th_])
;€T\

n—oo EU"‘[,EI"\'T
I
< D Jmsup |yi (T2)| 5 Cie 3 [Tllay,~5lizs,lla, -
ey t;er\y
Mt
scie o Ty, < cie 3 ngy iz lla,
13;€T\y t,€r

< 01€2K(h(£),z,.fl;)§ Cieexp (/]og,h(t) dZ(t)) .
| r

Let us estimate / log h{t)dZ(t):

flogh(t)dZ(t) /IogM(é dZ(t)+/logM(t)dZ(t)— / loge dZ(t)

T\ . T\
lagsup M(t)/dZ(t) logs/dZ(t)
I\~
= logsup M(t) — (1 — pz(7v))loge, where uz(y) = /dZ(t).
el ‘

¥
Hence ‘

0168‘3(}) (/Iogh(t) dZ(t}) - CZES#Z(T)-I = CQEI‘Z(’T)'

Since ¢ is arbitrary small we obtain lim sup l¥5(¥)| = 0 and hence TU, is a

limited set in B. _
Definition. Let A be a complex Banach space and let E be a bounded subset
of A. The measure of noncompactness of £, ¥ A(FE) is defined by

W4(E) = inf{e > 0: F can be covered by finitely many sets of diameter £}
Let & 2 0, then a map T € L(A, B) is called a K-set contraction ifl
Vp(T(E)) < kVa(E)
for all bounded scts E and
B(T}=min{k: T is a K —set contraction}

1s called the measure of non'compactness of T.
The following assertion is a generalization of Theorem 1 from [7].



Theorem 3. 1) Let A;, t € T, be a bounded family of Banach spaces, B —an
arbilrary Banach space and the Banach space A belongs to the class K(A,Z). Let

n . PR
¥i be Z-measurable subsets of I' such that | v; = . Suppose that T € L(B, A,).
' i=1
Then
" —pz(r) rz (i)
B(Ta—8) < C ] luz(r)I~*= {5 (TZ?_A;-*B)] ’
i=1 *

where pz(%) = f dZ(t). |
% ,

2} Let A¢, t € T, be a bounded family of Banach spaces, B — an arbitrary

Banach space and the Banach space A belongs to the class J(A,Z). Let T €

L(B,A;). Then
B(ng‘a) Y Cﬁ [,3 (TB"An A‘)}#z(’n} ‘

Proo f Denote K; = 8 (TZ A, B) and let h(f) be a step function admit-

ting values m; = k;/puz(y;) on v, 2 — a bounded subset of A and ¢ — an a.tbxtrary
positive number. Since A € K(4, Z), there exists a representation ¢ = } a¢;,’

t;€r
aij € Ay, such that
Y At llasllay, S (1+)K(h(t), 0, A)
t;el
S (1 +¢e)Cexp (/ log (1) dZ(t)) lHalla = Mllalja,
r , .
where '
n
M=(1 +8)0Hmf2{1‘).
=1 :
Denote by §); the set of all elements a; of the form a; = ay;, Gr; € Ag;.
. tye7
Obviously Qi C )~ Ai. Let us note that
Ye(T()) £ l""I’E,.At(Q‘};
From the inequality
. 1
"“c'NZw 4= .,;Eﬁ,j llasllae, S “:'t; h(t;)aella,, < ;"n:M l{alla
1€ I&h «

we get that

¥~ 0 () S TwAQ).

™y

*



Thep

Ygp(T(Q)) = j — ;
B(T(%2)) = ;kzmi‘rA(Q):gpz‘(.ﬁ)M:M

= (1+9C]] ( o )#M).

i=1 f-‘Z(‘}’g)

Since ¢ 1s arbitrary, the proof is over. : ‘
2) Let now Q be a bounded subset of B. We use the abreviations ki =
ﬁ(TB-—»A,,',At), é§ = ¥p(R). Thus we have the inequalities YA, a, S kid. Let

Ui, ..., Ui be sets with'diamA,ﬁ,AtU; £ kib such that T(Q) = O Uj and let
: . j=1.

%,k,.:.‘m = Ujl N Uk2 N...NUY runs the set of all possible intersections of the sets
mentioned above. ‘

Then T(2) C A A; C A because sup ||Tz[{a, £ Su? 1Ts-a.llzllB < 0o. For
tel te

all a,a’ € A the condition A € J(4, Z) gives the inequality

la—a'lla £ Cexp ( logh™"(t) dza)) T(h(t),a ~ o', Ay,

where h(t) is the step function admitting values M; = |la — o’ }]2:_ 4, on the sets ¥

correspondingly. Hence

Mla=alla 5 [ lla— oI35 sup {M(Olla ~ olla) < €T lls = 1200
t=1

t=1

and the diameter of the set W; i, . in the norm of A does not exceed

1 n .
CT] (diamWj k.. m)*20 < € T](kss)*=0r).
i=1 i=1

Therefore |
| Tp(T(Q)) £ C T+ wa(0)

- iz=1
and the theorem is proved. '
Since B(T) = 0 iff T is a compact operator, Theorem 3 is a generalization of
Theorem 1 from [8]. Namely, we get the following
~ Corollary. 1) Let Ay, t € T, be a bounded family of Banach spaces, B — an
~arbitrary Banach space and let the Banach space A belongs to the class K(A, Z).
Let y be a subset of T with a positive Z-measure. Suppose that T € L(A;, B) end T
is a compact operator from ) A¢ into B. Then T : A — B is a compact operator.
: Y ~ '

2) Let A¢, t € T be a bounded family of Banach spaces, B — an arbilrary
Banach space and the Banach space A belongs to the class J(A,Z). Let T €
L(B, A;). Suppose that T : B — A, A; is a compact operator. Then T : B — A is
a compact operator.
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Here we shall note that in [8], Theorem 1 (in its first part), the require-
ment concerning ||T/A:||a,—p is weaker than sup||T/A:]la,—~B < oo, namely it
tel

is enough to suppose that there exists a Z-measureable function M(t), satisfying
M(T) 2 ||T/A¢)|a,—~B, and log M (t) is Z-integrable. We need the boundedness of
|IT/A¢l|a,—~B in the first part of Theorem 3 to be sure that T is a bounded oper-
ator from 3 Arinto B (i = 1,...,7n). Let us note that in the definition of the

class Ky4(A;) from [8] (analogous to our class K(A, Z)) the function M(t) (corre-

sponding to our function h(t)) is not necessarily bounded, but log M(¢) € L; and

this explains the diference between the conditions in the corollary and Theorem 1

from [8]. In the second part of Theorem 3 (of the corollary, correspondingly) the

requirement T € L(B, A;) can be replaced by T € L(B, A A:). Indeed, it follows

by the uniformly boundedness principle that sulg IT||B=4, < o0 (Fi(z) = ||Tz| 4,
te

is a family of semiadditive continuous functionals, uniformly bounded on ¢ € T:.
Fi(z) £ ||T)|B=a 4.llz]lB)- It is sufficient even to require that T' € L(B, A;) for
. t € T and that the image of T(B) is a subset of the space A A;.

Our next purpose is to generalize some facts concerning Hyp-spaces (0 £ 8 £ 1),
known for couples of Banach spaces to the case of infinite families of Banach spaces.
When we speak about families, ¢ will denote a point of D = {z : |z| < 1}, v —

a subinterval of I = [0, 27) with 0 < pug(y) < 1, where }13(’)’) = %/P(G,t)dt,

P(8,t) being Poisson kernel.

Definition [9]. Let 060 < 1,1 p < o0o. An operator T between the
Banach spaces A and B is called (p, 6)- absolutely continuous iff there exists an
absolutely p-summing operator from A into a suitable Banach spaces C such that
the inequality ||Tz|| £ ||Sz)|?||z]|'~¢ holds for all z € A.

In other words, the class of all (p, §)-absolutely continuous operators coincides
with “interpolation procedure ideal” (H,,)g, where I, is the class of all absolutely -

p-summing operators ([9]). Let us remember that 7' € II 7 iff there exists a Banach
space C and an absolutely summing operator S such that iTz|] £ N (a)[ES&:i!-i—el[a:[f

for any z € A and any € > 0, where N : Rt — R*. The operators from Hl
called absolutely continuous.

Let (cf. [9]) H: be the class of all Banach spaces A for which any bounded
linear operator, acting from [l into A, is absolutely continuous operator. When
0 < 6 < 1 suppose Hy be the class of all Banach spaces A for which any bounded
linear operator, acting from [; into A, belongs to the class (II2), (of (2, 6)-absolutely
continuous operators). Indeed (II3), can be replaced by any class {Il,),, 1 £ p £ 2.

Before formulating the next results we have to give the definition of St. Louis
interpolation spaces. Instead of writing A(y), v € T, T being the boundary of D
as it is in [3}, we write A, t € I. A

Definition. Let A;, t € I be a family of Banach spaces over the complex ﬁeld
We say (cf. [3]) that A;, t € I, is an interpolation famlly if:

1) There exists a Banach space U such that A; is continuously embedded
in U; ‘

11



2) For every a € NA;, [la“ A, ls a measurable function;

3) Let § = {b € NAy, / log* llala, P(6, ) dt < oo} B is called log-intersec-

tion space for A, tel, and there exists a measurable function k(t), satisfying
/ log* k(t)P(8,t)dt < oo,

such that for each b € B: |lbllu £ k(t)|]b])4,-
Let A¢, t € I be an interpolation family and G be the set of all functions of the
L ‘ .

type Zg[)j(z)b,-, where b; € B and 9;(2) belong§ to the positive Nevalinna class
- j=1 .
Nit (D) (let us remember that f € N*(D) means that

2x 2%
lim j log* | f(re")] dt = ] log* |f(¢")] dt)
0 0

such that esssupl{g(e’)|la, < oo. Let F be the completion of G in the norm
tey |

llg]lco = esssup ||g(e**)}] .
. 11357

For |8] < 1 in [3] a space A[f] is defined which has interpolation properties,
namely the space A[f] is defined like the quotient space of F = F(A;, I) modulo
- the subspaces of functions in F vanishing at § and

llallage; = mf{|| 7(")llg, f(0) = a}.
Now we need a construction connected with a concrete family A¢, t € I, where
Ay = Hy for ¢ € v, H; being Hilbert space, namely we want to construct L? 3(Hy).

Let Gt denotes the set of functions of the form z(t) = Zh;(t)ag, n € N (hi(t)
- =1
— measura.ble functions on t € v, a; € B! — the log-mtersectlon of thé family H;,

t € 7), such that ess sup Nz(®)|l, < 0o. Let z(t), y(t) € G, y(t) = Zi (t)b;. As
i=1
a;, b; belong to each Ht, the scalar product (a;, b;)n, is defined. Since

(a,8)a, = 5 [lle + blffy, — illia + bilZ, + G — 1) (alf,, +lIbliE)]
it follows that (a;,b;)n, is a measurable function on ¢t € 7. The same is true

for zh;(t)lg (t)(ai, b;)m, and hence (z(t),y(t))u, is a measurable function. For
)

z,y € G! we can define (z,y) = /(:z:(l&),g,;(t)),g{t dt. It is easy to see that this

12



is a scalar product and (z,z) = 0 iff Ux(t)ﬂgi‘z 0,1.e.ont € v . As usual

| 1/2
llzll = (=, z) (/ =3, dt) . Let us denote by LZ(H;) the completion of

G! in this norm. It is clear that if z,y € L2(H,), then there exist two sequences
{zn} and {yn} of elements of G such that (z,y) = lim (z,,y) and hence L2(H;)
13~ OQ

is a Hilbert space. If f € F, then z(t) = f(e'), t € v, can be considered as an
element of L2(H;). (If A, = H; on v.)

Theorem 4. Let A; be an interpolation family of Banach spaces such that
Ay = H; on v, Hy being Hilbert spaces. Then the interpolation space A[f] belongs to

the class Hy_ ,,(q)-
Proof. Let zi,...,z, be elements of the unit ball Uy of the space A[f],

¢ — an arbitrary positive number. We can find functions fi, f2,..., fn € F such
that : : :
ills = esssup fe(e)lla, < 1+e, fo(6) = 2.

n

Let &, € U{(n). Then the function g(z) = > & fi(z) is from F again and
_ k=1

llglls < 1+e.

Now we are going to use the-nequality (2.4a) from [3], namely

(Ol agsy £ exp(%(- / In 11;}(8“)“,4,P(8, t) dt) ,

In this way we obtain
1 ,, it ‘
lo(@)lai < C(e)exp (5; [ wlstea P, dt) V,
4

where

C(e) =exp | In(1+ 6)51; / P(@,t)dt | = (1+¢)l—#0),
Ny
For estimating
1 ity P(6,8)
57 [ mllee)lln, 2 dt o)
Y
we use Jensen’s inequality for “exp” and we get

o7 [ loteln Po, 0

- o (7)

1) &ezillag < Cle) eR
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To estimate the latest integral (let us call it I) we use Hélder’s inequality with

=l 1
p=p =35, namely

| 1/2 1/2
IZ (217'_'/‘5’(9 t)dt) (:2—1;/ (”g(eit)nﬂ,\/f’(ﬁ,t))z dt)

Y Y

w—

( T\
| | 1 Efk(e")&c\/ P(6,t)| -
= ‘V pe(7)(1+ 5)\/ }‘O(T) e (1 +€)m dt |

\ ¥ e
> Gue

k=1

= ne(r)(1+¢)

_ LE/PED
where ¥ (t) = 2m(1 + E)m

n
P!
k=1

Using Theorem 7.1 from [9] we get that A[f] € H;_ ,‘,(,,) The thebrem is proved.

3

L2(Hy)

belongs to U L2 (Hy)- Thus we have obtained that

ue(7)

Z Ek Y

k=1

< (1+¢)
Al6]

L3(Hy)

Let G2 be the set of functions of the form z(t) = Z hi(t)a; (hi(t) — measur-
=}
able functlons ont € v, a; € f* — the log-intersection of A4, t € 7), such that
esssup ||z()]]4, < 0o. We denote by LE(A;) (1 £ p < o) the completion of G? in
tey . :

: . 1/p
the norm ( / o dt) .

.
‘ Proposition. Let A;, t € I, be an interpolation family of Banach spaces,
O<a<l, |0 <1, 7vC1IwithO< pp(y) < 1. If L2(A:) € Hy, then Alf] €

H1+aue(7) —pa(7)-

Proof. In the same way as it is done in Theorem 4, we fix ¢ > 0, take
£1,22,...,%n € Alf] and construct yi(t) with ||ye(t)llzz(a,) £ 1, satisfying the
inequality '

He (7)

SClY Gwe
k=1

’ZEW&:
k=1

Ale] Li(Ay)
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As L2(A,) € H,, after Theorem 7.1 from [9] we can find 21, 22,..., 2, € Ui, such

that
n 1=
< Cy Z‘Ekzk ,
Li(Ae) k=1 i,
1. €.
n n (1_Q)P‘8(7)
Y Gz < Ca D bz
k=1 Al#] k=1 Iz

Using again Theorem 7.1 from [9] we find that the space A[f] belongs to Hg, where
B=1-(1—a)u(y) =1— pe(7) + ape(y). The proposition is proved.

Let us note that it is possible to prove the proposition with the requirement
L2(A{) € Ha, 1 £ p < oo instead of L2(A;) € Hy. More precisely, for proving the
inequality -
ke ()

n n
> Gk s CID Gw
k=1 k=1

we use Holder’s inequality with power p, 1 < p < o0, and the inequalities

1-16 . 14 0]
< P(O,t) € ——
1+|6'l 0,8) <

| 1-1o
and finally -

Af6] LE(A:)

\ /p
lo@)lat < C(e.0) | 5= [ llate)IE, P2 ds) .
‘ Y

Let note also that in the same way as it is done in the above proposition,
we could prove that if L 21,](At) € Hy (or L[o ax](At) € Ha, 1 £ p < 00), then
A[f) € H,. , |

Let after [9] note that belonging to the class H, is a super property, every

2
1+« or -«
then H,-space can not contain I(")” uniformly. As a corollary from Theorem 4 we
get that if 8] < 1,y C I, 0< ;13(7) < 1, Ay, t € I — an interpolation family,

A; = H; on v ,H, being Hilbert spaces, then A[f] does not contain I( ™) uniformly
2 .

or
2—-po(7)  pe(v) |

Let remember that for 0 < ¢ £ 2 an (1,¢)-tree in a Banach space A consists
of 2 points z1, z2 with ||z; — z2]| 2 €. An (n,¢)-tree, n 2 2, consists of 2" points

ri,%a,...,%on € A, such that:
a) l|xai-1 —zail] 2 €, i=1,2,...,

H,-space is a superreflexive space, moreover, if 1 < p< < p < oo,

when1l £ p< < p £ oo.

n-1,
2"

: ., 1 : \ ‘
b) the mid-points 5(;1:2,-_1 —z9), 1=1,2,...,2""! form an (n — 1,¢€)-tree.
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For a given Banach space A the following characteristic b4(¢) is defined like
ba(e) = sup{n € N|3(n,e)-tree in Upa}. Let d;j(z;) = {inf{]| 2_&zilla, & =1}
be the distance between the origin and the “absolutely convex sphere” of {z;,..

. :en} As it is done in [9], we get some quantitative estimates for b4p(c) and

d2¥)(z;), namely
‘ 2

baps)(€) £ Ceﬂﬁ‘e("), 0<e<?2,
_pe(v)

dA€zy=Cn 2 |, VneN,

“when the family A; has the properties required in Theorem 4.
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