TONUIIHHUK HA CO®PUNCKNUA YHUBEPCUTET ,CB. KJIMMEHT OXPUICKU*

PAKYJITET 110 MATEMATHUKA 1 UHOOPMATHUEKA
Kaura 1 — Maremaruka
Tom 84, 1990

ANNUAIRE DE L'UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 84, 1990

HORN CLAUSE PROGRAMS ON ABSTRACT STRUCTURES
WITH PARAMETERS”

EXTENDED ABSTRACT

IVAN N. SOSKOV .

Hean H. Cocxos. TTPOTPAMMBI C XOPHOBBIMU KJTAY3AMUW HA ABCTPAKT-
HBIE CTPYKTYPHI C TIAPAMETPAMU

B cTaThe BBOAMTCA NOHATHE aBCTPAKTHHIX CTPYKTYP C napamerpamu. [lapamerpammn
ABNAIOTCA NOAMEOXKECTBa 06/aCTM onNpese/ieHMA CTPYKTYP, KOTOPHIE TPAKTYIOTCH KaK ef-
$PEeKTHBHO HyMepyeMHE, & He KaK NOAYBRIUMCIUMBIE MHOXecTBa. C NOMOMBIO ®THX CTPYK-
TYp OnpelefeTcs CEMaHTHKA NporpamMm ¢ XopHOBHIMM Kiay3aMM. TakuMm o6pa3zoM nony-
YaeMbil S3LIK NPOrPAMMKDOBAHMA HOKA3BIBACTCH, HUTO 3aMKHYT OTHOCHTENLHO DeKypCHM
M MMEET MAKCHMANLHEYIO BHPA3UTENAbHYIO CUNY N0 OTHOWMEHMUIO KO BCEM A3BIKAM NpOrpam-
MupoBaHMi, o6NANAICIHMMH HEKOTOPHIMH TEOPETHKO-MOAEIEERIMM YCIIOBUAMM.

Ivan N. Soskov. HORN CLAUSE PROGRAMS ON ABSTRACT STRUCTURES WITH PARA-
METERS

In the paper abstract structures with parameters are introduced. The parameters are sub-
sets of the domain of a structure which are treated as effectively enumerable rather than semi-
computable sets. Semantics of Horn clause programs on such structures is defined. The obtained
this way programming language is shown to be closed under recursion and possessing maximal
expgissxve power with respect to all progranumng languages satisfying cetrain model—theoretxc
conditions. ’

0. INTRODUCTION

In this paper we present a generalized version of the declarative semantics of
the Horn clause programs and use it to study the more complicated Horn clause

N * Research partially supported by the Ministry of Science and Higher Education, contract
o 933.

23

programs with parameters. \

The usual minimal model semantics of van Emden and Kowalski [1] is not ap-
propriate to study the respective notion of Horn clause computability. To compare
Horn clause programs with other commonly studied programming languages (class-
es of program schemes) we need a concept of Horn clause computability, that applies
‘to any first order structure. In [2] and [3] two concepts of Horn clause computability
on first order structures have been defined, which seem to be equivalent. The first
one is based on the usual declarative semantics, while the second is a generalization
of the usual procedural semantics. In both approaches the underlined functions and
predicates of a first order structure are considered as built-in functions and predi-
cates, and the objects computable by means of Horn clause programs are subsets of
the domain of the structure. In both papers the obtained concepts of Horn clause
computability have been compared with some other concepts of computability and
are proved to be stronger or at least equal to them.

. Furthermore, it is shown in [4] that each programming language, satisfying
certain natural conditions, is uniformly translatable into the language of the Horn
clause programs. | ,

One may suppose that having semantics of the Horn clause programs on arbi-
trary first order structures, we automatically obtain the semantics of Horn clause
programs with parameters (Horn clause modules) on such structures. Indeed, it
seems promising when given a structure 2 and a subset A of the domain of %, to
define the semantics of a Horn clause program P using A as a parameter, to be
equal to the semantics of P on the extended structure (A, A), where A is a new
built one in predicate. Unfortunately, this approach is not satisfactory because the
obtained notion of computability is not transitive, unless the equality relation is
among the underlined predicates of 2. Namely, one can construct a structure 2
and a Horn clause program P, such that if A denotes the set computable by means
of P on U, then the Horn clause computable sets on (A, A) do not coincide with
the Horn clause computable sets on . :

To explain this, let us recall that there exist two kinds of effectively computable
sets — the semi-computable sets and the effectively enumerable ones. Intuitively,
a set W is semi-computable if there exists a computational process, which stops
and gives a positive answer iff its argument belongs to W. This is the way in which
we treat the built in predicates. A set W is effectively enumerable if there exists
a computational process, which generates the elements of W in the course of the
computation. A typical example of this kind of sets are the sets computable by
means of Horn clause programs.

In the classical case of computability on the natural numbers both classes of
sets coincide with the recursively enumerable sets. In general, the semi-computable
sets are a proper subclass of the effectively enumerable ones. In fact the effectively
enumerable sets on a structure 2. coincide with the semi-computable on U sets if
and only if the equality relation is semi-computable.

So, we obtain that the discussed above approach to the semantics of the Horn
clause programs with parameters is reasonable only for structures, on which the

54

effectively enumerable sets coincide with the semi-computable ones, 1. e. for struc-
tures on which the equality is semi-computable.

Among all attempts to obtain semantics of Horn clause programs with para-
meters the most satisfactory one belongs to Fitting [5]. His approach is a particular
case of the one described above, applied to the structure A = (N; Gs), where N
is the set of all natural numbers and Gs is the graph of the successor function. In
this case the equality relation is semi-computable, because for any natural z and
y, ¢ = y iff there exists a z, such that (z,2) € G5 and (y, z) € Gs.

To obtain an appropriate semantics of the Horn clause programs with para-
meters on arbitrary first order structures, we introduce here first order structures
with parameters, where the parameters are subsets of the domain of the structure,
which are treated as effectively enumerable sets rather than semi-computable ones.
After that we define semantics of the Horn clause programs on such structures.
The obtained in this way programming language has some nice properties. First of
all, it has a greater expressive power compared to all programming languages, sat-
isfying certain natural conditions. This fact allows us to establish that it is closed
with respect to least fixed points and that the respective notion of computability
is transitive.

1. HORN CLAUSE PROGRAMS ON ABSTRACT STRUCTURES

Let £=(c1,...,¢r, f1,-.-s fa, 11, ..., Ti) be afixed first order language, where
ci,...,c, are constant symbols, fi, ..., f, are functional symbols and 7,...,Tp —
predicate symbols. Let us suppose that each f; is a;-ary and each Tj is bj-ary. Here
each of r, n, k may be equal to 0.

A first order structure of the language £ is a r4n+k+1-tuple A = (4,p1,...,pr,
0,...,0,,%,.. E;c), where A — the domain of 20 — is an arbitrary non-empty
set of objects, pi,...,p, are elements of A, each 6; is an a;-ary function on A4 and
each L; is a subset of A%,

In what follows we shall consider only structures of the language £ with de-
numerable (finite or countable) domains. Given a structure 2, we shall denote the
domain of ¥ by |¥|.

We assume that the reader is familiar with the basic syntactic notions as terms,
atomic formulae (atoms), etc. As nsual, ground terms and ground atoms are called
respectively terms and atoms without variables.

A Horn clause program is an ordered pair (P, H), where H — the goal re-
lation — is a predicate symbol, not belonging to {T1,...,Tk}, and P is a finite
conjunction Fi& ...&F; of universal closures of Horn clauses, i. e. each F} is in the
formVX; .. VX, (Iv-Il, vV...v~ll,,), where m 2 Q0 and all I1, Iy, ..., II,, are
atoms with variables among X3, ..., X,.

The constants, the functional and the predicate symbols, -which occur in P,
~constitute the first order language Lp of P. We shall_always assume that Lp is
consistent with £, i. e. if £p and £ have common symbols, then these symbols are
of the same arity and play the same role in both languages..

59

To define the semantics of a Horn clause program (P, H) on the structure

= (A,p1,..,pr01,...,00, 21, ..., 5¢), we need a first order theory 9(), known
as the diagram of 2. By means of 6(?1) we describe the underlined functions and
predicates of 2.

A new formal constant k; is introduced for each element s of A. The constants
ks, s € A, are called names for the elements of A. Let K = {k, : s € A}. We shall
assume that none of the elements of A occurs in P. Let Lg be the extension of £
with the constants of K.

Now define the diagram 8(2) of 2, based on K, to be the set of all ground
atoms of Lx which are true on 2.

Let Tk denote the set of all ground terms of the language Lx. If 7 € TK, then
by ryq we shall denote the value of r on .

Let H be a-ary. Define the subset W of A® by the equivalence

(51, 5a) EW = 3. I (T €Tk & .. & eTkbkri=sk ...
Lr§=s kO U (PYFH(,...,79).

Here the sign ”F” means derivability in the sense of the first order predicate calculus.

Since no one of the elements of K occurs in P, the set W does not depend on
the choicq of K.

Define the semantics P({P, H),) of (P, H) on 2 to be equal to W.

Notice that if we know the diagram (), then we have an eflective way to
generate all elements of W. So we see that W is effectively enumerable on 2. On
the other hand, since the equality is not assumed to be computable on 2, we can

‘not decide effectively whether an a-tuple (sq,...,s,) belongs to W.

Now we shall show that our semantics agrees with the minimal model semantics
of van Emden and Kowalski. _ A

Let P be a finite conjunction of universal closures of Horn clauses. Let Lp =
(er,.--ser, f1y---y fu, Hy, ..., H). Let Ap be the Herbrand universe of Lp and let
Mp be the least Herbrand model of P. In other words, Mp is the set of all ground
atoms Il of the language Lp, such that P+ II. ’ |

Consider the first order structure Ap = (Ap,c1,...,¢r,01,...,¢n) of the lan-
guage (¢1,...,¢, fi,..., fn), where each g; is an a;-ary function on Ap defined by
@i (T, Ta;) = fi{m1,. ., 7a,)-

Proposition 1. Let 1 £ j £ k. Then

(7'1,...,7'55) & 'p((P, Hj), Q(p) <= Hj (?’1,‘...,7'5)-) € Mp.

2. HORN CLAUSE COMPUTABILITY

In this section we shall examine Hotn clause computability from the viewpoint
of a general theory of computability on abstract structures.

Let A be a class of denumerable abstract structures. We want to treat A as
an abstract data type and, hence, we have to suppose some additional properties

56

of A. The obvious requirement is that A should be closed under isomorphisms. S-
ince isomorphisms preserve the equality, we shall suppose something more. Namely,
we shall suppose that A is closed under strong homomorphisms. Strong homo-
morphisms are isomorphisms, which need not to be injective. More precisely, if
A = (A, P13 Pr, 91,.,.,(9“, 21,...,215)* and B = (B, iy qry Pis-..yPn;y

o1,...,0%) are structures, then the surjective mapping z of A onto B is a strong
homomorphism from 2 to B if the following conditions hold:

() C sp)=a isl

(ii) x(0: (51,...,84,)) =i (%(s1),...,%(54,))

forall sq, ..., se; of A, i=1,...,m;

(1ii) (51,-..,8,) EX; < (x(s1),...,%(ss,)) € 0

forall sy, ..., 8, 0f A, j=1,..., k.

The class A is closed under strong homomorphisms if whenever B belongs to
A, 2 is a structure and there exists a strong homomorphism from A to B, then
Ae A :

Each closed under strong homomorphisms class of denumerable structures will
be called for short abstract data type (ADT).

There are many natural examples of ADT. Consider, for example, the class of
all structures or the class of all denumerable models of T', where T is a first order
theory of the language £ without equality. |

Let us fix an ADT A. A programming language on A is an ordered triple

= (D, p,S), where D is a denumerable set of objects — the syntactic descriptions
of the programs of L, p — the arity function — is a mapping of D into N\ {0} and
S — the semantics of the programs in L — is a mapping of D x A, such that if
d € D and U € A, then S(d, %) is equal to the object computable by means of the
program d on the structure . This object is typically a partial fumtmn or a set.
Here we shall suppose that S(d, %) is a subset of |21[/(4). .

There are at least two natural conditions which should satisfy each program-
‘ming language L on A. First of all it should be in some sense effective.

The programming language L = (D, p, S} is said to be effective on A if for each
.d € D, the semantics of d is uniformly eflective on all structures B of A, such that
|Bl = N. In other words, L is effective iff for each d of D, there exists an enumeration
operator I such that whenever BeAand B=(N,q1,..,¢r, 01,--,Pn, 01, ..., Ok),
then ~ . '

(31,...,89(3)) €S(d,A) < (S},...,Sp(d)) € I‘(gol,...,gan,al,...,ak).

For the definition of the enumeration operators the reader may consuit [6].

The second condition is related to the implementation independence property
of the language L. Let 2 and *B be elements of A and suppose that x is a strong
homomorphism from 2 to B. Let d € D and let Wy = S(d,) and Wy = S(d, B).
Suppose for simplicity that p(d) = 1. Now the implementation independence prop-
erty of L can be described by either of the following two conditions:

37

(1) Forallse ||, s€ Wy <= x(s) € W,
(2) Wg = {x(s):s€ Wy}

Clearly, (2) follows from (1). On the other hand, since » need not be injective,
we can not argue that (1) follows from (2).

The condition (1) is appropriate if the sets Wy and W are supposed to be
semi-computable. If they are effectively enumerable then we may expect oniy the
weaker condition (2)

- The programming language L is e-invariant on A if whenever d € D, and B
are elements of A andx is a strong homomorphism from 2 to ‘B, then

- 8(d,B) = {(x(s1),- -, % (sp0))) * (81, 50a) € S(d, A}

Let LP = (MC,po,P), where HC consists of all Horn clause programs,
po((P, H)) is equal to the arity of H and P is the semantics of the Horn clause
programs defined in the previous section.

Proposition 2. The programming language LP 1s effective and e-invariant
on each ADT. :

The following theorem proved in [4] describes the main property of the Horn
clause computability.

Let A be an ADT and let L; = (D4, p1,81) and Ly = (D, p2,S») be program-
ming languages on A. Then L; is translatable into La on A (cf. [7]), in symbols
Ly £ 4Lo, iff for each dy € D there exists a dy € D, such that pi(di) = pa(da),.
and for all A € A4, §;(d;,) = S3(ds, U). \

Theorem 1. Let A be an absiract data -type. Let L be an effective and e-
invariant programming language on A. Then L £ 4LP.

This result should be compared with the generalized Church thesis, formulated
in [3].

Other results, concerning- universal programmmg languages satlsfymg certain
natural model-theoretic conditions, can be found in [8] and [4].

3. ABSTRACT STRUCTURES WITH PARAMETERS

In this main section of the paper we shall mtroduce the a,bstract structures with
parameters and define semantics of the Horn clause programs on such structures.

Let Si, ..., Si, ... be a sequence of new distinct predicate symbols intended
to denote parameters. For the sake of simplicity we shall consider here only unary
parameters. So we shall suppose that S;, ..., S;, ... are unary. However, all

definitions and results can be easily generalized for parameters of arbitrary finite
arity.

An abstract structure with parameters is an ordered tuple A* = (Ay,..., A1),
[> 0, where U is a structure of the language £ and A;, ..., A; are subsets of |2|.

For every structure with parameters 2" let (") be the number of the para-
meters of A*. Two abstract structures 2* and B* are of the same similarity type
if (%*) = v(*B*). |

If °A* = (A, A4, ..., A;) is a structure with parameters and W is a subset of
|2}, then by (A", W) we shall denote the structure (%, Ay,..., A, W).

58

The parameters and the underlined predicates play different roles in the defi-
nition of the strong homomorphisms between structures with parameters.

Let A* = (%, Ay,..., A1) and B* = (B, By,..., B;) be two structures with
parameters of the same similarity type. The surjective mapping » of |%| onto |‘B] is
called strong homomorphism from U™ to B” iff x is a strong homomorphism from
AtoBandfori=1,...,1, By ={x(s):s € A;}.

We generalize the notion of ADT, defining an abstract data type to be a closed
under strong homomorphisms class of denumerable structures with parameters of
the same similarity type.

Further on the notions of effectiveness and e-invariance of a programming lan-
guage on an ADT are generalized in an obvious way.

From now on we shall consider only Horn clause programs (P, H), such that
H¢{T,....,Te,51,...,5,...} and if for some [the symbol S; occurs in P, then
it 1s used as an unary predicate.

Now we shall define the semantics of a Horn clause program (P, H) on a struc-
ture with parameters %A* = (%, A1, ..., Ai) in a way providing that the respective
programming language is effective and e-invariant on each ADT.

For each element s of || we introduce I+ 1 distinct names k2, kL, ..., k!, Let
Ko={k :sel|d]},..., Ko ={kl : s€|%}andlet K = KqUK; U...UK,.
We shall suppose that the sets of names are chosen so that no one of the elements
of K occurs in P. Let Lk be the extension of £ with the constants of K and let
Tk be the set of all ground terms of Lx. Let 6(%) be the set of all ground atoms
of Lk which are true on 2.

Fori, 1 £i £ 1, let 8(A;) = {Si(k) : k € K; and k is the name of an element
of A,‘ } .

Let 9 (UA) = 8(AYVO(A;) U ... UI(A).

Notice that in the definition of § (") the underlined predicates and the pa-
rameters are not treated in an equal manner. For example, suppose that the un-
derlined function &; applied to some s gives {. Suppose that t € £; and t € A,
where ¥; is an underlined predicate and A,, is a parameter. Then both T; (k7*)
and Tj (fi (k7*)) are elements of 8 (A*). On the other hand, Sy, (kf*) € 8 (") but
- Sm (fi (KT*)) does not belong to 3 (A*). The picture changes if the equality relation
is among the underlined predicates. In such a case f; (k) = k* € 8(A") and
hence, 9 (A") F-Sp (fi (7).

Suppose that the predicate symbol H is a-ary. Now the semantics
P ((P,H), A") of (P,H) on A" is the subset W of |A|* defined by the equiva-
lence:

(51,...,8a) €W ﬁﬂ‘rl..ir“('rl eTx & ... &TGETK&T&:S1&. .
&T§=sa&3(ﬁ(*)U{P}}'H(’rl,...,'r“)).

It follows immediately from the definition that for structures % without para-
~ meters P((P, H), %) = P*((P, H), %). |

Let LPP be the programming language {(HC, p;, P*), where HC is the set of
all Horn clause programs and pg is defined as in the previous section.

59

Proposition 3. The programming language LP P is effective and e-invariant
on each ADT.
The following theorem generalizes Theorem 1 and and shows that our definition
is in some sense the best possible one.
- Theorem 2. Let A be an ADT and Iet L be an effective and e-invariant
programming language on A. Then L £ ALPP.
The proof of'this theorem is long and technical and is omitted here. ‘
As a first application of Theorem 2, we shall show that the respective Horn
clause computability is transitive.
Let [2 0 and let A be the class of all structures with parameters 2* such that
v(A*) = 1. Clearly A is an ADT.
Let {Po, Ho)} be a Horn clause program, where the predicate symbol Hy is
unary. For each UA* € A, set Wy = P* ((Po, Ho), A*).
" Theorem 3. For each Hora clause program (P, H) there exisis a Horn clause
program {Q, R) such that for all A* € A, ‘

P ((P, H), (A*,Wa)) = P* ((Q, R),).

Proof. Consider the programming language L = (HC, p,,.S) on A, where for
(P,HY€ HC and A* € A, S((P, H), A*) =P* ((P, H), (A", Wq)).

Now we shall show that L is effective and e-invariant on A. The effectiveness
of L follows from the effectiveness of LPP and from the well known fact that the
enumeration operators are closed under composition.

Let (P, H) be a Horn clause program and %* and B" be elements of A. Suppose
that x is a strong homomorphism from 2* to B*. From the e-invariance of LPP
follows that »(Wy) = Wg. Hence xis a strong homomorphlsm from (A%, Wy) to
(B*, Ws) . From here, using once more the e-invariance of LPP, we obtain that

(P" ((P, H), (A", Wx))) = P ((P, H), (B", Ws))
and, hence, that - o
x(S((P,H), ")) = S((P, H), B).

Now applying Theorem 2, we obtain that L £ 4LPP. m
The last theorem shows that we can eliminate the computable by means of
Horn clause programs parameters in a uniform way.

4. HORN CLAUSE OPERATORS

 Letl 2 0 and let A be the class of all structures with parameters 2A* such that
v(UY) = 1.

Let A" € A and let (P, H) be a Horn clause program, where H is unary. Define
the mapping 'p i of the subsets of |A*| into the subsets of |A*| by the equality
Cpu(W) = P* ((P,H), (4", W)). It follows easily from the definition of P* that

the operator I'p g is compact, i. e.

s € FP,H(W) e BD(D CW&D is finite & s € FP,}}'(D)) .

60

From here, applying the Knaster-Tarski theorem, we obtain that T' p,H has a least
o0

fixed point Wy and Wo = U I‘f;,’H(Qﬁ). We denote this least fixed point by
k=0

pWP ((P, H), (A*,W)).

Now we shall show that the least fixed point of each Horn clause operator is
computable by means of Horn clause programs. In fact we have something more:

Theorem 4 (First Recursion Theorem for Horn clause operators). For each
Horn clause program (P, H) there ezists a Horn clause program (P*,H*) such that

for all A* € A,
uW. P ((P,H), (U, W))=P* ({P*,H"), U*).

Proof. Let L be the programming language (D, p, S) on A, where D consists
of all Horn clause programs (P, H) such that H is unary, p(d) = 1 for d € D and
S({P,H), A") = yW.P" ((P,H), (A", W)). To prove the theorem it is sufficient to
show that L < 4LPP.

We shall prove that L is effective and e-invariant on .A. Indeed, the effectxve-
ness of I follows from the uniform version of the First Recursion Theorem for the
enumeration operators.

To prove the e-invariance of L, suppose that (P, H) € D, let A" and B* be
elements of A and let » be a strong homomorphism from %* to B*. Let us define
the sequences W and Wg of sets in the following way:

Wg = W% =@,

Wt = P* (P, H), (%, W) and W3t = P* (P, H), (8", W3)).

Now using the e-invariance of LP P, we obtain by induction on n that x (Wg3) =

g n=0,1,... Hence :

x(BW.P* ((P, H), (A", W))) = pW.P" ((P, H), (B",W)).

By this the e-invariance of L is proved. From here, by Theorem 2, it follows
L £ ALPP. m

REFERENCES

1. Van Emden, M. H, R, A. Kowalski. The semantics of the predicate logic as a
programming language. — J. ACM, 23(4), 1976, 733-742.
2. Soskov, I. N. On the computational power of the logic programs. In: Heyting’88: Mathe-
matical Logic {ed. P. P. Petkov). Plenum Press, New York and London, 1989, 117-137.
3. Tucker, J. V., J. I. Zucker. Horn programs and semicomputable relations on ab-
stract structures. — Proceedings of the 16th International Colloquium on Automata,
Languages and Programming, July 1989, Stresa. Springer Lecture Notes in Computer
Science, Berlin, 1989.
4. Soskov, I. N. Maximal concepts of computability and maximal programmmg languages
(submitted).
. Fitting, M. Enumeration operators and modular logic programmmg — J. Logic Program- ,
ming, 4, 1987, 11-21.
6. Rogers, H., Jr. Theory of recursive functions and effective computability. McGraw-Hill
Book Company, 1967.

o

61

7. Paterson, M., C. Hewitt. Comparative Schematology. MIT' Al Lab Memo No 201,
Nov., 1970.

8 Trakhtenbrot, B. A. Recursive program schemes and computable functjonals. In:
MFCS'76 (ed. A. Mazurkiewicz). — Lect. Notes in Comp. Sci., 45, Springer-Verlag,
1978, 137-151.

Recetved 4.04.1991

62

