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1. INTRODUCTION

Consider the geometry Σ = PG(r, q), r ≥ 2. Denote by P be the set of points
and byH the set of hyperplanes of Σ. Every mapping K : P → N0 from the pointset
of the geometry to the non-negative integers is called a multiset in Σ. This mapping
is extended additively to every subset Q of P by K(Q) =

∑
P∈QK(P ). The integer

n := K(P) is called the cardinality of K. For every set of points Q ⊂ P we define
its characteristic (multi)set χQ by

χQ(P ) =

{
1 if P ∈ Q,
0 otherwise.
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Multisets can be viewed as arcs or as blocking sets. A multiset K in Σ is
called an (n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) = n, (2) K(H) ≤ w
for every hyperplane H, and (3) there exists a hyperplane H0 with K(H0) = w.
Similarly, a multiset K in PG(r, q) is called an (n,w)-blocking set with respect to
the hyperplanes (or (n,w)-minihyper) if (1) K(P) = n, (2) K(H) ≥ w for every
hyperplane H, and (3) there exists a hyperplane H0 with K(H0) = w.

An (n,w)-arc K in Σ is called t-extendable, if there exists an (n+ t, w)-arc K′

in Σ with K′(P ) ≥ K(P ) for every point P ∈ P. An arc is called simply extendable
if it is 1-extendable. Similarly, an (n,w)-blocking set K in Σ is called t-reducible, if
there exists an (n − t, w)-blocking set K′ in Σ with K′(P ) ≤ K(P ) for every point
P ∈ P. A blocking set is called irreducible if it is not reducible.

Given a multiset K in Σ, we denote by ai the number of hyperplanes H with
K(H) = i. The sequence (ai)i≥0 is called the spectrum of K. An (n,w)-arc K with
spectrum (ai) is said to be divisible with divisor ∆ > 1 if ai = 0 for all i #≡ n
(mod ∆). Given an integer t with 1 ≤ t ≤ q − 1, we call the (n,w)-arc K with
w ≡ n + t (mod q) t-quasidivisible with divisor ∆ > 1 (or t-quasidivisible modulo
∆) if ai = 0 for all i #≡ n, n+ 1, . . . , n+ t (mod ∆).

Let t be a fixed non-negative integer. An arc K in Σ is called a (t mod q)-arc
if

(1) for every point P ∈ P, K(P ) ≤ t;

(2) for every subspace S of dimension at least 1, K(S) ≡ t (mod q).

These arcs arise naturally as certain duals of t-quasidivisible arcs. Let K be a
t-quasidivisible (n,w)-arc with divisor q in Σ, t < q. Denote by K̃ the arc

K̃ :

{
H → {0, 1, . . . , t}

H → K̃(H) ≡ n+ t−K(H) (mod q)
, (1.1)

where H is the set of all hyperplanes in Σ. This means that hyperplanes of mul-
tiplicity congruent to n + a (mod q) become (t − a)-points in the dual geometry.
In particular, maximal hyperplanes are 0-points with respect to K̃. Then K̃ is a
(t mod q)-arc [7,8]. In the general case the cardinality of K̃ cannot be obtained
from the parameters of K. Extendability properties of K can be derived from the
structure of K̃. In particular, K is extendable if it contains a hyperplane in its sup-
port. For a more detailed introduction to arcs and blocking sets and their relation
to linear codes, we refer to[5,8].

The aim of this paper is to present various constructions and structure results
for (t mod q)-arcs. Section 2 contains general constructions for (t mod q)-arcs.
The most important is the so-called lifting construction, which is partly due to the
fact that in dimension higher than 3 the only known (t mod q)-arcs are sums of
lifted arcs. In section 3, we prove that every (2 mod q)-arc is lifted. This result
implies Maruta’s extendability result for linear codes with weights −2,−1, 0 mod q
for q odd. In section 4, we characterize the (3 mod 5)-arcs of small cardinality and
prove that every (3 mod 5)-arc in PG(3, 5) of size not exceeding 153 is lifted. In
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section 4, we apply the results from section 3 to rule out the existence of (104, 22)-
arcs in PG(3, 5), or equivalently, of [104, 4, 82]5-codes.

2. GENERAL CONSTRUCTIONS

In this section, we describe several constructions for (t mod q)-arcs. We start
with a straightforward observation.

Theorem 1. Let F1 (resp. F2) be a (t1 mod q)-arc (resp. (t2 mod q)-arc)
in PG(r, q). If t = t1 + t2 < q, then F1 +F2 is a (t mod q) arc. In particular, the
sum of t (not necessarily different) hyperplanes is a (t mod q)-arc.

The next construction is less obvious.

Theorem 2. Let F0 be a (t mod q)-arc in a hyperplane H ∼= PG(r− 1, q) of
Σ = PG(r, q). For a fixed point P ∈ Σ \H, define an arc F in Σ as follows:

– F(P ) = t;

– for each point Q #= P : F(Q) = F0(R) where R = 〈P,Q〉 ∩H.

Then the arc F is a (t mod q)-arc in PG(r, q) of size q|F0|+ t.

Proof. As already noted it is enough to prove that the multiplicity of every
line is t modulo q. This is obvious for the lines through the point P . Now consider
a line L in Σ which is not incident with P . Let π be the plane defined by P and L:
π = 〈L,P 〉. Set L′ = π∩H. Obviously, L contains points of the same multiplicities
as L′. The multiplicity of L′ is F(L′) = F0(L) ≡ t (mod q) which proves the result.
The construction is illustrated in the picture below. �

P F(P ) = t

R

QF(Q) = F0(R)

H ∼= PG(r − 1, q)

F0
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We call the (t mod q)-arcs obtained by Theorem 2 lifted arcs and the point P
– lifting point. We can have a more general notion of lifted arcs replacing the point
P by a subspace U . Let F0 be a (t mod q)-arc in the subspace V of Σ = PG(r, q)
and let U be a subspace with dimU + dimV = r − 1, U ∩ V = ∅. The arc F in Σ
defined by

– F(P ) = t for every point P ∈ U ;

– for each point Q #= P : F(Q) = F0(R) where R = 〈U,Q〉 ∩ V

is called an arc lifted from the subspace U . Obviously F is also a (t mod q)-arc.
Let us note that if an arc is lifted from a subspace then it can be considered as
lifted from any point of that subspace. We have also a partial converse of this
observation.

Lemma 1. Let the arc F be lifted from the points P and Q, P #= Q. Then F
is also lifted from the line PQ. In particular, the lifting points of a (t mod q)-arc
F form a subspace S and F is lifted from any point of S.

Proof. All points on the line PQ are t-points. Let R be an arbitrary point in
Σ. Then all points on PR (resp. QR) different from P (resp. Q) have the same
multiplicity, a say. Then all points in the plane 〈P,Q,R〉 outside PQ have also
multiplicity a, which proves the lemma. �

The sum of t hyperplanes can be viewed as the sum of lifted arcs. Remarkably,
we do not know an example of a (t mod q)-arc in PG(r, q), with r ≥ 3, that is not
the sum of lifted arcs. It turns out that if in the geometry PG(r, q) there exist only
lifted (t mod q)-arcs then every (t mod q)-arc in PG(r′, q), r′ ≥ r, is also lifted.

Theorem 3. Let K be a (t mod q)-arc in PG(r, q) such that the restriction
K|H to every hyperplane H of PG(r, q) is also lifted. Then K is a lifted arc.

Proof. Consider a (t mod q)-arc K in PG(r, q). Let S be an arbitrary subspace
of PG(r, q) of codimension 2. Denote by Hi, i = 0, . . . , q, the hyperplanes through
S. The arcs K|Hi

are all lifted (t mod q)-arcs. Let us denote by Pi, i = 0, . . . , q,
the corresponding lifting points.

Assume that for some indices, i and j say, Pi ∈ S and Pj ∈ Hj \ S. Clearly,
the line PiPj consists entirely of t-points. Let L be an arbitrary line in Hj incident
with Pj and set L ∩ S = Qj . All points on the line PjQj , different from Pj have
the same multiplicity a, where 0 ≤ a ≤ t. Thus all points in the plane 〈Pi, Pj , Qj〉
outside PiPj are a points. Now it is clear that K|Hj

can be viewed as lifted from
the line PiPj and hence from any point of PiPj .

Assume that Pi ∈ Hi \ S for all i = 0, . . . , q. If the points P0, . . . , Pq are
collinear then K is lifted from the line 〈Pi | i = 0, . . . , q〉.

Now assume that the points Pi are not collinear. Then there exists a hyperplane
H in PG(r, q) that does not contain any of the points Pi. Set T = H ∩ S. If we
denote Gi = H ∩Hi then all the arcs K|Gi

are projectively equivalent to KS .

Let us first assume that the lifting point Q of K|H is contained in Gi \ T . Set
Qi = S ∩ QPi. Obviously, PiQi is a line of t-points. Consider an arbitrary line L
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in Hi through Pi. If the points on L different from Pi are a-points then all points
on the line through Q and L ∩ Gi different from Q are also a-points. Hence all
points in the plane 〈L,Qi〉 outside PiQi are a-points and K|Hi

is lifted from PiQi.
Therefore it can be viewed as lifted from any point on PiQi, in particular Qi.

We have proved so far that without loss of generality we can assume that all
points Pi are contained in S.

Consider the subspace T of S generated by the points Pi, T = 〈Pi | i =
0, . . . , q}. All points in T are of maximal multiplicity. Let Q ∈ S \ T be a point
of multiplicity a. All points from 〈T,Q〉 \ T also have multiplicity a. Hence the
restriction K|S is lifted from the subspace T . Since S was fixed arbitrarily, the
restriction of K to any subspace of codimension 2 is a lifted arc.

We repeat this argument for the subspaces of smaller dimension. For subspaces
of dimension 2 this means that all planes contain a line of t-points with all the
remaining points of multiplicity a. It is easily checked that in such case we have
a hyperplane of t-points and all the remaining points outside this hyperplane are
a-points. But such an arc is obviously a lifted arc. �

In the plane case, non-trivial (t mod q)-arcs can be constructed as σ-duals of
certain blocking sets. Let K be a multiset in Σ. Consider a function σ such that
σ(K(H)) is a non-negative integer for all hyperplanes H. The multiset

K̃σ :

{
H → N0

H .→ σ(K(H))
(2.1)

in the dual space Σ̃ is called the σ-dual of K. If σ is a linear function, the parameters
of K̃σ, as well as its spectrum, are easily computed from the parameters and the
spectrum of K (cf. [1,10]).

Theorem 4. [7,8] Let F be a (t mod q)-arc in PG(2, q) of size mq+ t. Then
the arc Fσ with σ(x) = (x − t)/q is a ((m − t)q + m,m − t)-blocking set in the
dual plane. Moreover the multiplicities of the lines with respect to this blocking set
belong to {m− t,m− t+ 1, . . . ,m}.

3. (2 mod Q)-ARCS

Let us start by noting that an (1 mod q) arc is projective and hence either a
hyperplane or the complete space [3,4]. For t = 2 and odd q ≥ 5, the (t mod q)-arcs
were characterized by Maruta [13]. These are the following:

(I) a lifted arc from a 2-line; such an arc has 2q + 2 points and there exist two
possibilities

(I-1) a double line, or

(I-2) a sum of two different lines;

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5–22. 9



(II) a lifted arc from a (q + 2)-line; such a line has i double points, q − 2i + 2
single points and i − 1 0-points, where i = 1, . . . , q+1

2
; we say that such an

arc is of type (II-i) if it is lifted from a line with i double points;

(III) a lifted arc from a (2q+2)-line, i.e. the sum of two copies of the same plane;

(IV) an exceptional (2 mod q)-arc for q odd; it consists of the points of an oval,
a fixed tangent to this oval, and two copies of each internal point of the oval.

Now we are going to prove that in higher dimensions every (2 mod q)-arc is a
lifted arc. Consider a projection ϕ from a 2-point P onto some plane not incident
with that point. Let L be a line incident with P . We have the following possibilities
for the image of L:

type of L multiplicity of L type of ϕ(L)
(2, 0, . . . , 0) 2 ω
(2, 1, . . . , 1) q + 2 α
(2, 2, . . . , 2) 2q + 2 β
(2, 2, . . . , 2︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
q−2i

, 0, . . . , 0︸ ︷︷ ︸
i

) q + 2 γi

Note that in type γi we have i = 1, . . . , q−1

2
. Now the images of the plane (2

mod q)-arcs under ϕ are the following:

Type the image of the plane arc Remark
(I-1) (β, 0, . . . , 0)
(I-2) (α, α, 0, . . . , 0)
(II-i) (β, . . . , β︸ ︷︷ ︸

i

, α, . . . , α︸ ︷︷ ︸
q−2i+1

, 0, . . . , 0︸ ︷︷ ︸
i−1

) projection from the exceptional 2-point

(β, γi, γi, . . . , γi) projection from all other 2-points

i = 1, . . . , q−1

2

(III) (β, β, . . . , β)
(IV) (α, γ q−1

2

, . . . , γ q−1

2

) from the 2-point on the oval

(γ q−1

2

, . . . , γ q−1

2︸ ︷︷ ︸
q+3

2

, γ q−3

2

, . . . , γ q−3

2︸ ︷︷ ︸
q−1

2

) from an internal point to the oval

Assume a (2 mod q)-arc K in PG(3, q), q odd, is given and consider a projec-
tion from a 2-point P . The table above implies that

(i) no line in the projection plane is incident with points of type ω and points
of type γi;

(ii) if on a line in the projection plane there exist points of type γi and points
of type γj , i #= j, then i = q−3

2
, j = q−1

2
.

Let us first assume that there exists a plane π such that K|π is the exceptional
arc (IV). Denote by ϕ a projection from the 2-point on the oval. Then the image
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of the plane π is of type (α, γ q−1

2

, . . . , γ q−1

2

). Denote by L the line of type α and

fix a 1-point Q on this line. Assume there is a point of type β in the projection
plane. Then the projection plane contains a line of type (β, α, . . . , α) and all the
remaining lines through the type β point are of type (β, γ q−1

2

, . . . , γ q−1

2

). Hence the

lines in the projection plane through a point of type α are of the following types:

• (α, α, . . . , α, β) – there is one such line;

• (α, γ q−2

2

, . . . , γ q−2

2

, γ q−2

2

) – there are q such lines.

Denote the points on the 2(q+1)-line (the preimage of the point of type β) by
P0, P1, . . . , Pq. Assume that there is a point of type Pi such that all planes through
QPi (different from π0) are not of type (IV). Then K is obviously lifted. If for all
Pi there is a plane through QPi such that the restriction of K to this plane is of
type (IV) then projecting from each Pi we must get the same types of the lines
in the projection plane (described above). Therefore no three of the q2 1-points
contained in the ovals, are collinear. Hence we can construct a q2 + 2-cap taking
these q2 1-points and P0, P1, say. This is a contradiction since the maximal size of
a cap in PG(3, q) is q2 + 1.

We have proved that if there is a point of type β in the projection plane, then
K is lifted. But there always must be a point of type β since the types γ q−1

2

and ω

are not compatible. Thus we have proved that if there exists a plane π such that
K|π is of type (IV) then K is a lifted arc.

Now assume that there is no plane such that K|π is of type (IV). Now the
restriction of K to any plane is a lifted arc and by Theorem 3 K is again lifted. We
have proved the following lemma.

Lemma 2. LetK be a (2 mod q)-arc inPG(3, q), q odd. ThenK is a lifted arc.

Now we proceed by induction on the dimension. Again by Theorem 3, we get
that every (2 mod q)-arc in a geometry of dimension at least 3 is lifted.

Theorem 5. Let K be a (2 mod q)-arc in PG(r, q), q odd, r ≥ 3. Then K is a
lifted arc. In particular, every (2 mod q)-arc in PG(r, q), r ≥ 2, has a hyperplane
in its support.

Remark. Theorem 5 provides alternative proof of Maruta’s theorem on the
extendability of codes with weights −2,−1, 0 (mod q) [13]. The existence of such
a code is equivalent to that of an arc K which is 2-quasidivisible modulo q. It was
pointed out in [7,8] that for every t-quasidivisible arc K in Σ it is possible to define
uniquely a (t mod q)- arc K̃ in the dual geometry. If K̃ contains a hyperplane in
its support then K is extendable. This is the fact established in Theorem 5.

4. (3 mod Q)-ARCS

For values of t larger than 2 complete classification seems out of reach. How-
ever, it is still possible to obtain partial results on the structure of such arcs. In
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this section we classify some small (3 mod 5)-arcs in PG(2, 5). Due to Theorem 4,
the classification of such arcs is equivalent to the classification of certain blocking
sets with an additional restriction on the line multiplicities.

Arcs of cardinality 18. These arcs are (18, 3)-blocking sets and hence the sum
of three not necessarily different lines [9,11]. It is an easy check that there exist
four (3 mod 5)-arcs of cardinality 18. They are given in the pictures below.

Arcs of cardinality 23. These arcs correspond to (9, 1)-blocking sets with lines
of multiplicity 1, 2, 3, 4. Hence blocking sets containing a full line do not give (3
mod 5)-arcs. Thus the only possibility is the projective triangle. Dualizing we get a
(3 mod 5)-arc in which the 2-points form a complete quadrangle, the intersections
of the diagonals are 3-points and the intersections of the diagonals with the sides
of the quadrangle are 1-points. This arc is presented in the picture below. The
doubly circled points are 3-points; the big black points are 2-points and the small
gray points are 1-points.
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Arcs of cardinality 28. These arcs are obtained from (15,2)-blocking sets with
lines of multiplicity 2, 3, 4, or 5. If such a blocking set does not have multiple
points it is obtained as the complement of a (16,4)-arc. Such an arc should not
have external lines since the maximal multiplicity of a line with respect to the
blocking set is 5. The classification of the (16,4)-arcs is well-known. There exists
exactly one such arc without external lines obtained by deleting the common points
of six lines in general position from the plane. Now we are going to prove that a
(15,2)-blocking set having points of multiplicity greater than 1 always has a line of
multiplicity 6 and hence does not give a (3 mod 5)-arc.

Let us note that such a blocking set cannot have a point of multiplicity 3. In
this case the remaining 12 points would form a (12,2)-blocking set which is the sum
of two lines and therefore has a line of multiplicity greater than 6.

Denote by Λi, i = 0, 1, 2, the number of i-points of a (15, 2)-blocking set.
Clearly Λ2 ≤ 6 since the colinearity of three 2-points implies the existence of a
6-line. In the case of Λ2 = 4, 5, 6, it is easily checked that the remaining 1-points
cannot block twice each of the external lines. The remaining possibilities 1 ≤ Λ2 ≤ 3
are ruled out using additional arguments.

Thus the only (3 mod 5)-arc of cardinality 28 has six 3-points forming an oval
and ten 1-points that are the internal points to this oval.

Arcs of cardinality 33. If F is such an arc then Fσ is a (21, 3)-blocking set
with line multiplicities 3, 4, 5, 6. Again such a blocking set cannot have points of
multiplicity 3 or larger since this would impose lines of multiplicity larger than 6
in F .
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Denote by Λi the number of points of multiplicity i. Since there cannot be
five collinear 0-points we have Λ0 ≤ 16 and therefore Λ2 ≤ 6. We are going to
rule out the case Λ2 = 6. Assume there exist three collinear 2-points. There exist
two lines containing three 2-points. They must necessarily meet in a 2-point. Now
since a 0-point on a 6-line is incident with 3-lines only, a simple counting gives
that the sixth point of multiplicity 2 is incident with three 2-lines. Counting the
multiplicities through the exceptional 2-point, we get 21 ≥ 3 · 3 + 3 · 6− 5 · 2 = 17.
Hence the 2-points form an oval. Now the ten external lines to the oval have to
be blocked at least three times each by the 1-points. Since each 1-point blocks at
most three external lines we need at least 3 ·10/3 such points, a contradiction since
Λ1 = 9.

The cases 3 ≤ Λ2 ≤ 5 are ruled out in a similar fashion.

For Λ2 = 0, 1, 2 constructions are possible. In such case, Fσ is one of the following:

(1) the complements of the seven non-isomorphic (10, 3)-arcs; Λ2 = 0;

(2) the complement of the (11, 3)-arc with four external lines and a double
point – a point not on an external line, Λ2 = 1;

(3) one double point which forms an oval with five of the 0-points; the tangent
in the 2-point is a 3-line, Λ2 = 1;

(4) PG(2, 5) minus a triangle with vertices of multiplicity 2, 2, 1; Λ2 = 2.

(2) The first (3 mod 5)-arc of cardinality 33 with one 13-line

(3) the second (3 mod 5)-arc of cardinality 33 with one 13-line
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(4) (33, {3, 8, 13})-arc with two 13-lines

Arcs of cardinality 38. The (3 mod 5)-arcs of cardinality 38 can be derived
from the (27,4)-blocking sets with line multiplicities 4, 5, 6, 7 in PG(2, 5). Such a
blocking set does not have 3-points. Otherwise, removing a 3-point would give a
(24, 4)-blocking set which is a sum of line. This forces a line of multiplicity greater
than 7. If there exist three collinear 2-points then Λ2 = 3 and the corresponding
line is a 7-line.

There exist a lot of such blocking sets and, consequently, (3 mod 5)-arcs of
cardinality 38. In all cases, such arcs have a 13-line with a 0-point or an 8-line of
type (2, 2, 2, 2, 0, 0), (2, 2, 2, 1, 1, 0) or (3, 3, 2, 0, 0, 0).

For instance, in the case of Λ2 = 0 the blocking set consists of all points in
the plane minus four points in general position. The corresponding (3 mod 5)-
arc has a line of type (2, 2, 2, 1, 1, 0). In the case Λ2 = 6 the 2-points form an
oval. Th external points to this oval have to be blocked at least four times by
the fifteen 1-points. An easy counting gives that we should take necessarily the
ten internal points plus five external points. But now the six tangents cannot be
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blocked twice by six points not on the oval. The remaining cases are treated using
similar arguments.

Now we can prove our main result for this section. The following observation
turns out to be very useful. Let F be a (3 mod 5)-arc in PG(3, 5) and consider a
projection ϕ from a 0-point P onto some plane π not incident with P . Set

G =
1

5
(Fϕ − 3). (4.1)

Now lines through P of multiplicity 3+5i, i = 0, 1, 2, become i-points. The following
lemma restricts the possible structure of G.

Lemma 3. Let XY and XZ be 2-lines in π with respect to G and let there
exist an 1-point U #= X,Y, Z which is incident with a 2-line. Then U does not lie
on a tangent of G.

Proof. Let t be the tangent through U and let t ∩ XY = V , t ∩ XZ = W .
Obviously V #= X,Y , W #= X,Z. Since U, V,W are on 2-lines that are the image of
28-planes, they are the image of 2-lines without 2-points. Then the preimage of t
is a 23-plane with at most three 2-points, a contradiction since a 23-plane contains
four 2-points. �

Theorem 6. Every (3 mod 5)-arc F in PG(3, 5) with |F| ≤ 158 is a lifted
arc. In particular, |F| = 93, 118, or 143.

Proof. Assume there exists a 13-line L with 0-point. By the classification of the
plane (3 mod 5)-arcs we have that all planes through such a line have multiplicity
at least 33. If there exists a 33-plane, π say, through L then it must be of type (2),
(3), or (4). In the first two cases π is incident with an 8-line of type (3,3,2,0,0,0),
while in the third case it is incident with a line of type (2,2,2,2,0,0). Planes of
multiplicity less than 33 do not contain such lines. Hence |F| ≥ 8+ 6 · 25 = 158. If
all planes through L are of cardinality ≥ 38, then again |F| ≥ 13 + 6 · 25 = 163, a
contradiction.

If |F| = 158 then there exists a 33-plane of the type (2), (3), or (4). Assume
there exists a 33-plane of type (2). It contains a line of type (2,2,2,1,1,0). Consider
a projection from the 0-point on this line. The induced arc has thirteen 8-points
and eighteen 3-points. We cannot have a line incident with one, two or six 8-points.
Now by an easy counting we get that there are no lines with four or five 8-points,
a contradiction since the number of 8-points is 13 and the largest (n, 3)-arc has 11
points.

The case of planes with 33 points of type (3) and (4) are ruled out in a similar
way. Thus 0-points are incident with 3- or 8-lines only.

Further, a line containing a 0-point has multiplicity at most 48. It is easily
checked that 48-planes are impossible. In such a plane each 8-line is incident with
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exactly two 0-points and the 0-points must form an oval. But an oval in PG(2, 5)
has 6 points while a 48-plane has seven 0-points.

The restriction of F to a 43-plane in which every line through a 0-point is
necessarily lifted from an 8-line. The planes through a line of type (3,1,1,1,1,1) in
a 43-plane are either lifted 43-planes or 18-planes that are again lifted. Hence in
such case F is necessarily a lifted arc of size 118 or 143 since the 3-point on the
line of type (3,1,1,1,1,1) is the lifting point of the 43- as well as of the 18-planes.

Finally, the fact that 38-planes have either a 13-line with a 0-point or an 8-
line of type (2, 2, 2, 2, 0, 0), (2, 2, 2, 1, 1, 0) or (3, 3, 2, 0, 0, 0) implies that such planes
are impossible if |F| ≤ 158. Thus we can assume with no loss of generality that
every plane incident with a 0-point has multiplicity 18, 23, 28, or 33. Moreover, a
33-plane should necessarily be of type (1).

Now consider the arc G defined in (4.1). Since it does not have 4-lines |G| ≤ 11
and F ≤ 148. These cases are ruled out easily by Lemma 3. �

5. AN EXAMPLE FROM CODING THEORY

One of the forms of the main problem of coding theory is to determine the
minimal length of an [n, k, d]q-code for fixed q, k and d [10]. For codes over F5 of
dimension 4 there exist four values of d for which n5(4, d) is not decided [12]. The
results from the previous section enable us to solve one of the four open cases. We
can rule out the existence of codes with parameters [104, 4, 82]5 which implies that
n5(4, 82) = 105.

The approach to this problem is geometric. The existence of a [104, 4, 82]5-code
is equivalent to the existence of a (104, 22)-arc in PG(3, 5) (cf. [2,6,10]). Such a
hypothetical arc will turn out to be non-extendable.

Assume that K is a (104, 22)-arc in PG(3, 5). Let us denote by δi, i = 0, 1, 2,
the maximal multiplicity of an i-dimensional subspace in PG(3, 5). In the following
lemma, we summarize the straightforward properties of (104, 22)-arcs.

Lemma 4. Let K be a (104, 22)-arc with spectrum (ai). Then

(a) δ0 = 1, δ1 = 5, δ2 = 22;

(b) The maximal multiplicity of a line in an m-plane is ⌊(6 +m)/5⌋;

(c) There do not exist planes with 2, 3, 7, 8, 12, 13, 17, 18 points.

(d) a0 = 0.

(e) a1 = 0.

(f) a4 = a5 = 0
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(g) The spectrum of K satisfies the following identity

20∑

i=0

(
22− i

2

)
ai = 468. (5.1)

By Lemma 4, a (104, 22)-arc K is 3-quasidivisible. Moreover, 0-points with
respect to the dual arc K̃ must come necessarily from maximal planes. This forces
certain restrictions on the structure of K̃ described in the lemma below.

Lemma 5. Let K be a (104, 22)-arc in PG(3, 5). Then there exists no plane
P̃ in the dual space such that K̃|P̃ is 3χ

L̃
for some line L̃ in the dual space.

Proof. Let X be a point in PG(3, 5). Summing up the multiplicities of all
planes through X, we have:

∑

H:H∋X

K(H) = 6|K|+ 25K(X).

On the other hand, a point H̃ in the dual space with K̃(H̃) = 0 comes necessarily
from a maximal plane. For the points on the line L with K̃(L̃) = 18 we have

∑

P̃ :P̃∈L̃

K(P̃ ) = |K|+ 5K(L).

This implies that

6|K|+ 25K(X) = 25 · 22 + |K|+ 5K(L),

which gives
649 ≥ 6|K|+K(X) = 654 + 5K(L),

a contradiction. �

Lemma 6. Let K be a (104, 22)-arc in PG(3, 5). Then |K̃| ≥ 163.

Proof. This follows by Lemma 5, Theorem 6 and the fact that a (104, 22)-arc
is not extendable. �

We can use Lemma 6 together with the necessary condition (5.1) to restrict
further the possible multiplicities of planes. Our key observation is that if a 5-tuple
of planes through a a line L in H0 gives a high contribution to the left-hand side
of (5.1) then K̃(L̃) is small.

Lemma 7. Let K be a (104, 22)-arc in PG(3, 5). Then a6 = 0.
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Proof. Let H0 be a 6-plane. Then K|H0
is a (6, 2)-arc and has spectrum

a2 = 15, a1 = 6, a0 = 10. Consider an arbitrary line L in H0. By Theorem 4, if L
is a 2-line with respect to K, then it is a 3-line with respect to K̃; similarly, if L is
a 1-line it is a 3-line with respect to K̃ (since 22-planes do not have 1-lines) and,
finally, if it is a 0-line with respect to K, it is a 3-, 8- or 13-line with respect to K̃.

In the case of K(L) = 0 and K̃(L̃) = 3 the maximal contribution of the planes
through L is 66 obtained for

(K(H0), . . . ,K(H5)) = (6, 22, 22, 22, 22, 10);

if K̃(L̃) = 8 the maximal contribution of the planes through L is 31 obtained for

(K(H0), . . . ,K(H5)) = (6, 22, 22, 21, 19, 14);

and if K̃(L̃) = 13 the maximal contribution of the planes through L is 13 obtained
for

(K(H0), . . . ,K(H5)) = (6, 22, 19, 19, 19, 19).

Let us denote by x the number of 0-lines L of H0 with K̃(H0) = 3 and by y the
number of such lines with K̃(H0) = 8. Counting the contribution of the different
planes through the lines of L we get

(
16

2

)
+ 15 · 1 + 6 · 3 + 66x+ 31y + 13(10− x− y) ≥ 468,

whence 53x+ 18y ≥ 185. On the other hand, we have

|K̃| = 121 · 2 + 2x+ 7y + 12(10− x− y) = 163− 5x− 10y.

Since K is not extendable we have |K̃| ≥ 163, and hence x+2y ≤ 0, i.e. x = y = 0,
a contradiction to 53x+ 18y ≥ 185. �

Lemma 8. Let K be a (104, 22)-arc in PG(3, 5). Then a9 = a10 = a11 = 0.

Proof. We use the classification of the (9,3), (10,3)- and (11,3)-arcs made in
[5]. We will demonstrate only the non-existence of 9-planes of type C4 (we use the
notation from [5]). The non-existence of 9-planes of the other three types, as well
as the non-existence of 10- and 11-planes, is done analogously.

Let H0 be a 9-plane and let K|H0
be a (9, 3)-arc of type C4. For a arbitrarily

fixed line L in H0 we denote by H1, . . . , H5 the other 5 planes through L. We have
the following possibilities:

K(L) K̃(L̃) ηi (K(H0), . . . ,K(H5))
3 3 0 (22,22,22,22,22,9)
2 8 4 (22,22,22,2,19,9)
1 8 15 (21,21,21,21,16,9)
1 13 7 (21,21,20,19,19,9)
0 8 79 (22,22,22,19,10,9)
0 13 34 (22,21,19,19,14,9)
0 18 15 (19,19,19,19,19,9)
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Counting the contribution of the planes through the different lines in H0 to
the left-hand side of (5.1), we get

(
12

3

)
+ 7 · 0 + 15 · 4 + 15x+ 7 · (3− x) + 79u+ 34v + 15(6− u− v) ≥ 468,

whence 8x+ 64u+ 19v ≥ 219.

On the other hand, computing the cardinality of K̃ and taking into account
that K̃(H̃) = 3, we get

3 + 7 · 0 + 15 · 5 + 5x+ 10(3− x) + 5u+ 10v + 15(6− u− v) ≥ 163,

whence x+ 2u+ v ≤ 7. Now we have the chain of inequalities

224 ≥ 32x+ 64u+ 32v ≥ 8x+ 64u+ 19v ≥ 219.

This implies that x = v = 0, which in turn gives 224 ≥ 64u ≥ 219, a contradiction
since u is an integer. �

Now using once more the same idea we can prove the nonexistence of (104, 22)-
arcs.

Theorem 7. There is no (104, 22)-arc in PG(3, 5).

Proof. We apply the above technique to the three non-isomorphic (22, 5)-arcs.
Their spectra are given below.

Type a0 a1 a2 a3 a4 a5
D1 1 0 1 0 15 14
D2 1 0 0 3 12 15
D3 0 0 3 4 6 18

Let H0 be a fixed 22-plane. For a line L in H0 we have the following possibili-
ties:

K(L) K̃(L̃) ηi (K(H0), . . . ,K(H5))
5 3 3 (22,22,22,22,22,19)
4 3 28 (22,22,22,22,22,14)
4 8 7 (22,22,22,22,22,14)
3 3 36 (22,22,22,22,16,15)
3 8 32 (22,22,22,20,19,14)
3 13 13 (22,20,20,19,19,19)
2 3 45 (22,22,22,16,16,16)
2 8 57 (22,22,22,20,14,14)
2 13 37 (22,21,19,19,19,14)
0 8 86 (22,22,16,16,14,14)
0 13 87 (22,21,19,14,14,14)
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(D1) Denote by x the number of lines L in H0 of multiplicity 4 for which
K̃(L̃) = 3. Counting the contribution of the planes through the different lines in
H0 to the left-hand side of (5.1), we get

14 · 3 + 28x+ 7(15− x) + 1 · 57 + 1 · 87 ≥ 468,

whence 21x ≥ 177, i.e. x ≥ 9. On the other hand,

|K̃| ≤ 14 · 3 + x · 3 + (15− x) · 8 + 13 = 13,

whence |K̃| ≤ 188− 5x. This implies 188− 5x ≥ 163, i.e. x ≤ 5, a contradiction.

(D2) Denote by x the number of 4-lines L with K̃(L̃) = 3; by u – the number
of 3-lines L with K̃(L̃) = 3, and by v – the number of 3-lines L with K̃(L̃) = 8.
Again counting the contribution to the left-hand side of (5.1), we have

15 · 3 + x · 28 + (12− x) · 7 + u · 36 + v · 32 + (3− u− v)12 + 1 · 87 ≥ 468,

whence 21x+ 24u+ 20v ≥ 216. On the other hand,

|K̃| = 15 · 3 + 3x+ 8(12− x) + 3u+ 8v + (3− u− v) · 13 + 13 ≥ 163,

x+ 2u+ v ≤ 6. Now we get

126 ≥ 21x+ 42u+ 21v ≥ 21x+ 24u+ 20v ≥ 216,

a contradiction.

(D3) Let x, u and v be as above. Denote also by s the number of 2-lines L
with K̃(L̃) = 3, and by t – the number of 2-lines L with K̃(L̃) = 8. Once again:

18 ·3+x28+(6−x) ·7+u36+v32+(4−u−v)12+s ·45+ t ·57+(3−s− t)37 ≥ 468,

whence 21x+ 24u+ 20v + 8s+ 20t ≥ 213. On the other hand

|K̃| = 18 ·3+3x+8(6−x)+3u+8v+13(4−u− v)+3s+8t+(13(3− s− t) ≥ 163,

hence x+ 2u+ v + 2s+ t ≤ 4. This implies

84 ≥ 21x+ 42u+ 21v + 42s+ 21t ≥ 21x+ 24u+ 21v + 42s+ 21t ≥ 213,

a contradiction. �

Corollary 1. There exists no [104, 4, 82]5-code and, consequently, n5(4, 82) =
105.
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