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We consider strong at-subsets of the Euclidean space Rn and estimate from below
the growth of the maximal cardinality of such subsets (our method essentially differs
from that of [6]). We then apply some properties of strong at-sets to the illumination

problem.
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1. INTRODUCTION AND RESULTS

Let X be a subset of of the n-dimensional Euclidean space Rn, where n ≥ 2.

We shall say that X is an at-set (in Rn) if any three-element subset of X forms
either an acute-angled triangle or a right-angled triangle.

We shall say that X is a strong at-set (in Rn) if any three-element subset of
X forms an acute-angled triangle.

It directly follows from the above definitions that each subset of an at-set
(respectively, of a strong at-set) is also an at-set (respectively, a strong at-set).

It is natural to envisage the question concerning the maximal value among the
cardinalities of at-subsets of Rn.

Denote by q(n) the maximum of the cardinalities of all at-sets in Rn. An-
swering two questions posed by P. Erdös and V. L. Klee, it was demonstrated in
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the paper by Danzer and Grünbaum [5] that the inequality q(n) ≤ 2n holds true.
Moreover, the equality card(X) = 2n for an at-set X ⊂ Rn is valid if and only if X
coincides with the set of all vertices of some right rectangular n-dimensional par-
allelepiped in Rn. Thus, one can directly see that q(n) has an exponential growth
with respect to n. For more details, see the above-mentioned paper [5] or [2] or
Chapter 15 of the remarkable book [1].

Denote by k(n) the maximum of the cardinalities of all strong at-sets in Rn.
It is easy to show that k(2) = 3 and it is also known that k(3) = 5. It immediately
follows from the result of Danzer and Grünbaum [5] that one of the upper bounds
for k(n) is 2n − 1, i.e., one has the trivial inequality

k(n) ≤ 2n − 1.

In the general case the precise value of k(n) is still unknown. However, it was proved
that k(n) also has an exponential growth with respect to n; in this connection, see
[6] or Chapter 15 of the same book [1].

It should be noticed that in [1] and [6] an exponential growth of k(n) is proved
with the aid of a probabilistic argument which seems to be somewhat artificial in
this case. Indeed, a deterministic proof of the same fact can be presented by using
another approach. We would like to give below a sketch of a different proof of the
same fact. The suggested proof is simple, purely combinatorial, and so does not
rely on any facts from probability theory.

In what follows, the symbol Vn will stand for the set of all vertices of the
unit cube Cn = [0, 1]n of the space Rn, so we have card(Vn) = 2n. First of all,
we are going to present a precise formula for the total number rn of right-angled
triangles whose vertices belong to Vn. Clearly, this number coincides with the total
number of all right-angled triangles whose vertices belong to the set of vertices of
any n-dimensional right rectangular parallelepiped P in Rn.

Let tn stand for the number of all right-angled triangles in Cn, the right angle
of which is a fixed vertex v from Vn and the other two vertices also belong to
Vn. Consider some facet Cn−1 of Cn incident to v. Obviously, we have tn−1 right
angles with the same vertex v, all of which lie in Cn−1. Further, each of the above-
mentioned angles is a projection of exactly two right angles which do not lie in
Cn−1. Besides, there are precisely 2

n−1 − 1 right angles, all of which have a fixed
common side, namely, the edge of Cn passing through v and orthogonal to Cn−1.

Thus, we come to the following recurrence formula:

tn = 3tn−1 + 2n−1 − 1.

This formula allows us to readily deduce (e.g., by induction) that

tn = (3n + 1)/2− 2n.

Therefore, ranging v over the whole of Vn, we finally get

rn = 2n((3n + 1)/2− 2n).
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As an immediate consequence of the above formula, we obtain that the total
number of all those acute-angled triangles whose vertices belong to Vn is equal to

2n!

3!(2n − 3)!
− rn =

2n!

3!(2n − 3)!
− 2n((3n + 1)/2− 2n).

Now, let us try to apply the formula for rn in evaluating from below the function
k(n) = k.

Let X1, X2, . . . , Xp be an injective enumeration of all (k + 1)-element subsets
of Vn, so

p =
2n!

(k + 1)!(2n − (k + 1))!
,

and let, for each natural index i ∈ [1, p], the symbol ai denote the number of the
right-angled triangles in Xi. Since no Xi is a strong at-set, we obviously may write

1 ≤ ai (1 ≤ i ≤ p).

At the same time, it is clear that

a1 + a2 + · · ·+ ap =
(2n − 3)!

(k − 2)!(2n − 3− (k − 2))!
· rn.

The above equality is easily deduced if we consider the set of all pairs (Z,Xi),
where Xi ranges over the family of all (k + 1)-element subsets of Vn and Z is a
three-element subset of Xi which forms a right-angled triangle. Calculating in two
possible ways the cardinality of the set of all these pairs, we come to the required
equality.

Now, since we have the trivial inequality

(2n − 3)!

(k − 2)!(2n − 3− (k − 2))!
≤

(2n)!

(k − 2)!(2n − (k − 2))!
,

we infer that

a1 + a2 + ...+ ap ≤
(2n)!

(k − 2)!(2n − (k − 2))!
· rn.

Consequently,

2n!

(k + 1)!(2n − (k + 1))!
≤

2n!

(k − 2)!(2n − (k − 2))!
· 2n((3n + 1)/2− 2n).

The last inequality directly implies

(2n − (k + 1))3 ≤ (k + 1)3 · 2n((3n + 1)/2− 2n)

or, equivalently,
2n

1 + (2n((3n + 1)/2− 2n))1/3
≤ k + 1.
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Further, taking into account the two trivial relations

1 + (2n((3n + 1)/2− 2n))1/3 ≤ 2 · (2n((3n + 1)/2− 2n))1/3,

(3n + 1)/2− 2n < 3n,

we can conclude that
1

2
· (

2

61/3
)n ≤ k + 1.

Since 2 > 61/3, we see that k+ 1 (and, consequently, k = k(n)) has an exponential
growth with respect to n.

Remark 1. The argument presented above and the argument given in [6] are
not effective in the sense that they do not allow one to indicate or geometrically
describe any strong at-subset X of Vn whose cardinality is of an exponential growth
with respect to n. In this connection, it would be interesting to have some concrete
examples of such subsets X of Vn and to give their geometric characterization.

Remark 2. The notions of at-sets and of strong at-sets can be introduced
for any Hilbert space H over the field R of all real numbers. In this more general
situation the question concerning maximal cardinality of such sets also makes sense
and deserves to be investigated. In particular, for an infinite-dimensional H the
question is interesting from the purely set-theoretical view-point.

Strong at-sets in Rn are also of interest in connection with the well-known
problem of illumination of the boundary of a compact convex body in Rn. There
is a rich literature devoted to this important problem of combinatorial geometry.
See, for example, [2], [3], and [4].

Actually, the famous hypothesis of Hadwiger says that the minimum number
of rays in Rn which suffice to illuminate the boundary of every compact convex
body in Rn is equal to 2n and, moreover, any n-dimensional parallelepiped P in
R
n needs at least 2n rays. Notice that the set of all singular boundary points of P

is infinite (moreover, it is of cardinality continuum).

In this context, we would like to recall the following old result of Hadwiger.

Theorem 1. If the boundary of a convex body T ⊂ Rn is smooth, then n+ 1
rays in Rn suffice to illuminate the boundary of T .

Actually, Theorem 1 states that if n + 1 rays l1, l2, . . . , ln, ln+1 are given in
R
n, which have common end-point 0 and do not lie in a closed half-space of Rn,

then l1, l2, . . . , ln, ln+1 are enough to illuminate the boundary of any convex smooth
body in Rn (the compactness of the body is not required here).

Recall also that Hadwiger’s above-mentioned result was strengthened by Boltyan-
skii (see, e.g., [2]). Namely, Boltyanskii established the following statement.

Theorem 2. If the boundary of a convex body T ⊂ Rn has at most n singular
points, then n+ 1 rays in Rn suffice to illuminate the boundary of T .
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Boltyanskii’s theorem does not admit further generalizations to the case where
the boundary of a compact convex body T ⊂ Rn may have more than n singular
points (see [4] and [7]). In addition to this, the n+1 rays of Theorem 2 substantially
depend on the convex body T .

It is natural to ask whether there is a compact convex body in Rn with a
finite number of singular boundary points, which needs a large number of rays
for illuminating its boundary (i.e., the number of illuminating rays must be of an
exponential growth with respect to the dimension n of Rn).

Let X be a strong at-subset of Rn with cardinality equal to k(n). Recall that
k(n) is of an exponential growth with respect to n. By starting with this X, one
can obtain the following statement.

Theorem 3. There exists a compact convex body B ⊂ Rn such that:

(1) X coincides with the set of all singular boundary points of B;

(2) at least k(n) rays are necessary to illuminate the boundary of B.

Let us present a sketch of the proof of Theorem 3.

Denote by M the convex hull of the set X. Clearly, M is an n-dimensional
convex polyhedron in Rn and the set of all vertices of M coincides with X. For
every point x ∈ X, denote by M(x) the polyhedral angle of M with vertex x, and
let C(x) be a convex cone with the same vertex x, such that M(x) ⊂ C(x). We
may assume that the conical hypersurface of C(x) is smooth (of course, except for
its vertex x). If each C(x) slightly differs from M(x), then the boundary of the
compact convex body

B′ = ∩{C(x) : x ∈ X}

has isolated singular points x, where x ∈ X, and continuum many other singular
points y, where y ∈ Y . We may suppose that the distance between the sets X
and Y is strictly positive. Now, all singular boundary points of B′ belonging to Y
can be deleted by using a standard trick, without touching the points of X. So,
proceeding in this way, we will be able to replace B′ by the compact convex body
B satisfying both conditions (1) and (2) of Theorem 3.
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