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The paper is concerned with some aspects of the theory of volumes in Euclidean space.

In this context, it is shown that there exists a solution of Cauchy’s functional equation,

which is absolutely nonmeasurable with respect to the class of all translation invariant

measures on the real line R, extending the Lebesgue measure on R.
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The concept of volume for sufficiently simple geometric figures is one of the
most important in classical geometry of Euclidean spaces. Discussions of this con-
cept occupy a substantial place in all standard university lecture courses in Eu-
clidean geometry. There are many text-books, manuals and monographs devoted
to the subject (see, for example, [2], [3], [5], [6], [7], [8], [10], [11], [12]).

The deep notion of volume type functionals is closely tied with several interest-
ing and important geometric topics, such as equidecomposability theory (including
well-known paradoxes about partitions of certain geometric bodies), dissections of
figures into finitely many other figures of a prescribed type, the behavior of the
volume function under Minkowskis sum of point sets, etc.

One of the principal problems which arises here is to extend the function of
elementary volume for simple geometric figures to a volume defined for a maxi-
mally large class of figures. This problem is successfully solved within framework
of modern theory of invariant measures and its solution heavily depends on purely
algebraic properties of a basic group of transformations of the Euclidean space.
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These aspects are partially touched upon in H. Hadwiger’s widely known mono-
graph [3] in which the role of nontrivial solutions of Cauchy’s functional equation is
shown and stressed. As was proved by Frechet, all of those solutions are nonmea-
surable in the Lebesgue sense. However, a much deeper result about such solutions
can be established (see Theorem 2 below).

The present paper is devoted to some aspects highlighting profound connections
between elementary theory of volume with general methods of the theory of additive
functions having bad descriptive properties.

Throughout this article, we use the following standard notation:

N is the set of all natural numbers;

Q is the set of all rational numbers;

R is the set of all real numbers;

Rn is the n-dimensional Euclidean space (n ≥ 1);

dom(µ) is the domain of a given measure µ on Rn.;

ran(f) is the range of a given function f ;

λn is the classical Lebesgue measure on R
n.

Let Dn be the group of all isometric transformations of R
n and let Sn be the

ring of sets generated by the collection of all coordinate parallelepipeds of Rn.

Let G be a subgroup of Dn. A functional Vn is called an elementary G-volume
on Rn if the following four conditions hold:

(1) Vn is non-negative:

(∀X)(X ∈ Sn ⇒ Vn(X) ≥ 0);

(2) Vn is additive:

(∀X)(∀Y )(X ∈ Sn ∧ Y ∈ Sn ∧X ∩ Y = ∅ ⇒ Vn(X ∪ Y ) = Vn(X) + Vn(Y ));

(3) Vn is G-invariant:

(∀g)(∀X)(g ∈ G ∧X ∈ Sn ⇒ Vn(g(X)) = Vn(X));

(4) Vn(△n) = 1, where △n = [0, 1]
n denotes the unit coordinate cube in Rn.

The above-mentioned conditions are usually treated as Axioms of Invariant
Finitely Additive Measure (see, for instance, [3], [5]).

If condition (2) is replaced by the countable additivity condition, then we
obtain the definition of a G-measure (cf. [8]).

It is well known that the classical Jordan measure on Rn is a natural example
of G-volume in Rn. Respectively, a certain extension of Jordan measure to a
sufficiently large class of subsets of Rn is the standard Lebesgue measure (see [3],
[4]). In some sense, the latter class of sets is maximal, because within the framework
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of constructive methods it is impossible to further enlarge this class. This result is
due to R. Solovay who was able to construct a model of set theory with a restricted
(countable) version of the Axiom of Choice, in which all subsets of the space Rn

turn out to be measurable in the Lebesgue sense (see [13]).

Notice that, by using the Zorn lemma, any Dn-volume on R
n (n ≥ 3) can

be extended to a maximal (by the inclusion relation) Dn-volume on R
n, but the

geometrical structure of the domain of such a maximal Dn-volume is not known
and this problem seems to be of some interest.

It is well known that if an additive function

f : R→ R

satisfied one of the following conditions, then there exists a real constant k such
that f(x) = k · x for all x ∈ R:

(a) f is continuous at a point of R;

(b) f is monotone on an interval of positive length;

(c) f is bounded from above (or below) on an interval of positive length;

(d) f is locally integrable in the Lebesgue sense;

(e) f is Lebesgue measurable;

(f) f is a Borel function;

(g) f has the Baire property.

It is clear that if a functional V1 satisfied the condition (1) (that is, Vn ≥ 0),
then

V1 = kx, (k ∈ R).

From the measure-theoretical point of view, there are many interesting and
important facts concerning G-volumes. The most famous among them is due to
Banach.

Theorem 1 (Banach). In the cases n = 1 and n = 2 there exists a non-

negative additive functional defined on the family of all bounded subsets of the Eu-

clidean space Rn, invariant under the group of all isometries of Rn and extending

the Lebesgue measure λn.

The proof of Theorem 1 can be found e.g. in [1], [8].

It directly follows from this theorem that if X and Y are two Lebesgue mea-
surable subsets of Rn (n = 1,2) such that λn(X) )= λn(Y ), then X and Y are not
finitely equidecomposable subsets of Rn.

Example 1. In the case n ≥ 3, we have no analogous result because of the
famous Banach-Tarski paradox. As a remark, notice that if n ≥ 3, then the group
Dn possesses paradoxical properties which are implied by the fact that this group
contains a free subgroup generated by two independent rotations. Actually, just
from the latter circumstance follows the Banach-Tarski paradox stating that any
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two bounded subsets of the Euclidean space Rn, n ≥ 3 with nonempty interiors are
equivalent by finite decompositions. Namely, if A and B are two bounded subsets
of Rn (n ≥ 3), both of which have a nonempty interior, then there are partitions
of A and B into a finite number of disjoint subsets

A = A1 ∪A2 ∪A3 ∪ · · · ∪Ak,

B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk,

such that for each i ∈ [1, k] the sets Ai and Bi are Dn-congruent.

The proof of this paradox is essentially based on the Hausdorff theorem (see
[1]) which states that if one removes a certain countable subset of the sphere S2 in
R3, then the remainder can be divided into three disjoint subsets A, B and C such
that A, B, C and B ∪ C are mutually congruent under the group of all rotations
of R3 about its origin. In particular, it follows from the above theorem that on S2

there is no finitely additive non-negative normalized functional defined on all of its
subsets such that the values of this functional on congruent sets are equal to each
other.

From the Hausdorff theorem also follows that on the Euclidean space Rn (n ≥
3) there exists no Dn-volume defined on the family of all subsets of R

n.

Example 2. There is also a somewhat paradoxical result in the case of the
plane R2. Namely, let G denote the group of all those affine transformations of R2

which preserve the area, i.e., g belongs to G if and only if |det(g)| = 1 (this group
is much wider than D2). According to the theorem of von Neumann, if A and B
are two bounded subsets of the plane R2, both of which have nonempty interiors,
then there are partitions of A and B into a finite number of disjoint subsets

A = A1 ∪A2 ∪A3 ∪ · · · ∪Ak,

B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk,

such that for each i ∈ [1, k] the sets Ai and Bi are G-congruent.

A detailed discussion of Example 2 see in [3].

Let us restrict our further considerations to the ring of all polyhedrons in the
space Rn (see, e. g., [3]).

Hilbert’s third problem is formulated as follows:

Given any two polyhedrons of equal volume, is it always possible to cut the first

into finitely many polyhedrons which can be reassembled to yield the second?

Two polyhedrons are equidecomposable if the first of them admits a cutting
into finitely many polyhedrons which can be reassembled to yield the second one.
Obviously, any two equidecomposable polyhedrons have the same volume. The
converse assertion is not true. For example, the unit cube in R3 and a regular
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tetrahedron of volume 1 are not equidecomposable, which gives a negative solution
of Hilbert’s third problem.

In connection with this problem, for every polyhedron P , Dehn introduced
some kinds of functionals, now widely known as the Dehn invariants, which are
defined as follows:

Df (P ) =
∑

l(e)f(α), (∗)

where l(e) is the length of an edge e of P , α is the value of the dihedral angle
of P between the two faces meeting at e, and f is an additive function such that
f(π) = 0.

In other words, a function f is any solution of the Cauchy functional equation

f(x+ y) = f(x) + f(y),

such that f(π) = 0.

Notice also that, the sum in (∗) is taken over all edges of the polyhedron P .

It is well known that any nonzero additive function f which participates in
Dehn invariants is nonmeasurable in the Lebesgue sense (see [3], [9]).

Let M be the class of all those measures on R which are translation invariant
and extend the Lebesgue measure λ1.

We shall say that a function f : R → R is absolutely nonmeasurable with
respect to M if, for every measure µ ∈M , this f is not µ-measurable.

Theorem 2. There exists an additive function f : R→ Q which is absolutely

nonmeasurable with respect to the class of all translation invariant measures on the

real line R, extending the Lebesgue measure λ1.

Proof. For establishing this fact, consider R as a vector space over the field Q.
Take an arbitrary element e ∈ Q\{0}. It is well known that, one-element set {e}
can be extended to a basis of R, that is there exists a Hamel basis {ei : i ∈ I} for
R, containing e. The latter means that {ei : i ∈ I} is a maximal (with respect to
inclusion) linearly independent (over Q) family of elements of R and e ∈ {ei : i ∈
I}. Now, find the index i0 ∈ I for which ei0 = e and consider the vector subspace
V of R generated by the family {ei : i ∈ I\{i0}}. It is obvious that V turns out to
be a vector space in R, complementary to the vector subspace Q. In other words,
we have the representation

R = V +Q, (V ∩Q = {0})

of the space R in the form of a direct sum of its two vector subspaces. In particular,
for each x ∈ R, the relation

card(V ∩ (x +Q)) = 1

is true, from which it follows that V is a certain Vitali subset of R (see, e. g., [1],
[5]).
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For any x ∈ R, we have the unique representation

x = v + q (v ∈ V, q ∈ Q).

Consider a function
f : R→ Q

defined by the formula:
f(x) = q (x ∈ R).

Obviously,
f(x+ y) = f(x) + f(y) (x ∈ R, y ∈ R).

We thus conclude that f turns out to be an additive functional on R and
ran(f) = Q. Also, a straightforward verification shows that f is not measurable
with respect to every translation invariant measure on the real line R, extending
the Lebesgue measure. This follows from the fact, that

f−1(0) = V

and V is nonmeasurable with respect to every translation invariant measure µ on
the real line R, extending the Lebesgue measure λ1. In other words, we always
have f−1 )∈ dom(µ) (compare with Theorem 1).

This finishes the proof of the Theorem 2. �

Example 3. There exist many nontrivial solutions of Cauchy functional equa-
tion which are not absolutely nonmeasurable with respect to the classM . Moreover,
most of solutions of Cauchy functional equation are not absolutely nonmeasurable
with respect to M .
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