
ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 108

ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI”

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 108

INVESTIGATION OF ALGORITHMS FOR PREVENTION
OF CONGESTION IN COMPUTER NETWORKS AT LEVEL

OF TCP PROTOCOL USING MININET NETWORK EMULATOR

PLAMEN D. ROZINOV and STEFAN S. DIMITROV

This article examines the performance and values of network parameters when applying
different algorithms to control network congestion. The Mininet network emulator is
used, which creates software-defined networks that give us the opportunity to conduct
various experiments with the network and manipulate its parameters. The conclusion is
made for the best algorithm to prevent network congestion. An estimate of the relative
value of the error was made, which shows that in Mininet deviations in the values can
be observed with a larger number of hosts in the network.
Keywords: software-defined networks, network congestion prevention algorithms, Mini-
net network emulator
CCS Concepts:
• Networks∼Network performance evaluation∼Network performance analysis;
• Networks∼Network performance evaluation∼Network measurement;
• Networks∼Network performance evaluation∼Network experimentation;
• Networks∼Network performance evaluation∼Network simulations

1. Research

1.1. Introduction

This article examines the performance and values of network parameters when
applying different algorithms to control network congestion. The Mininet network
emulator was used, which creates software-defined networks that give us the op-
portunity to conduct various experiments with the network and to manipulate its
parameters [16].

The network congestion prevention algorithms used in the TCP protocol are
used by many Internet-based applications. Their main purpose is to prevent more

DOI: 10.60063/GSU.FMI.108.77-95 77



78 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .

data from being sent than the network can transmit. This prevents network conges-
tion. Algorithms react differently to network load, but what they have in common
is that they all have the principle of preventing network congestion [28].

The most commonly used algorithms to prevent network congestion are BBR
(Bottleneck Bandwidth and Round-Trip Propagation Time), BIC (Binary Increase
Congestion Control), CUBIC - successor to the BIC algorithm, DCTCP (TCP Con-
gestion Control for Data Centers), HighSpeed TCP, HTCP (Hamilton TCP), Hybla,
Illinois, LP (TCP Low Priority), Reno, Scalable, Vegas, Veno – Combination of Reno
and Vegas, Westood, Yeah (Yet Another High-speed TCP) [2–6, 9, 11, 12, 15, 17–24,
28].

The study takes into account the values of network parameters influencing the
behavior of the TCP protocol such as sent data over time, Initcwnd (Initial Conges-
tion Window), Cwnd (Congestion Window), MSS (Maximum Segment Size), MTU
(Maximum Transmission Unit), repeated Retransmits, RTT (Round-Trip Time),
Jitter – big difference in delay (Delay Variance), RTT Variance – RTT variability in
time, Throughput – time interval bandwidth [1, 7, 8, 10,13,14,20,25,27].

1.2. Realization

1.2.1. Creating a network

A software-defined network topology with minimum parameters is created –
two hosts, one switch and one controller using the sudo mn command.

1.2.2. Setting bandwidth

In order to recreate the operation of Ethernet cable category 6a, which is widely
used in practice, network bandwidth is limited by Linux Traffic Control. A maximum
value of 10 Gbit/s is set for both hosts and the switch with the command:

sudo tc qdisc add dev h1-eth0 root handle 1:
tbf rate 10gbit burst 5000000 limit 15000000

1.2.3. Checking algorithm for network overload control

In order to check the currently set algorithm for controlling network congestion,
we need to use the sysctl net.ipv4.tcp_congestion_control command.

1.2.4. Setting an algorithm

The command helps us to set an algorithm for controlling congestion in the
network

sysctl -w net.ipv4.tcp_congestion_control=congestion_control_algorithm

1.2.5. Network performance and network parameters

To measure network performance and measure the values of individual network
parameters, we use the network tool iperf3. In the experiments, host h2 acts as a
server and host h1 as a client. Hosts and the switch are set to the same network



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 79

congestion control algorithm. With the command: iperf3 -s the host h2 is started
in the role of server and with the command: iperf3 -c 10.0.0.2 a client of host
h1 is started to iperf3 server – host h2.

1.2.6. Preparation of results

From each measurement with iperf3 a json file is created with the command:

iperf3 -c 10.0.0.2 -J> congestion_control_algorithm.json

Then, with the help of the plot_iperf.sh script and the

plot_iperf.sh congestion_algorithm.json

command, graphs of the individual network parameters are prepared, and for each
network parameter there is a separate graph with a separate file in PDF format.

2. Results

2.1. Sent data over time



80 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 81

2.2. Congestion window size (CWND)



82 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 83

2.3. Maximum transmission unit (MTU)

The MTU has a fixed value of 1500 bytes and no change in values, regardless
of the applied network congestion control algorithm.

2.4. Retransmits

Retransmissions do not occur on the network, regardless of the network con-
gestion control algorithm.

2.5. Round-trip time (RTT)



84 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 85

2.6. Round-trip time variance (RTT Variance)



86 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 87

2.7. Throughput



88 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 89

2.8. Summarized results

Summarized results are shown in Table 1 and Diagrams 1–5.

3. Conclusions

3.1. Congestion windows size

The highest number of packets that can be transmitted for 1 MSS was reported
at Highspeed, followed by LP and Illinois. They are followed by Veno, Yeah and
Westood. The number of packages is the smallest in HTCP, and in Vegas they are
a little more, but without much difference. The algorithms BIC, Cubic, DCTCP,
Hybla, Reno, Scalable generate a relatively small number of packages.



90 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .

Table 1. Summarized results

CWND MTU RTT RTT VAR THROUGPUT
[number of [bytes] [ms] [ms] [megabits
packets] per second]

BBR 552.62 1500 82.7 75.6 1150.45
BIC 2311.71 1500 1285.8 770.4 1181.17
CUBIC 1276.47 1500 391.9 156.1 918.96
DCTCP 1174.55 1500 1016.5 168.5 1174.55
HIGHSPEED 23415.46 1500 1202.2 608 1130.42
HTCP 296.95 1500 218.4 293.5 835.85
HYBLA 3268.89 1500 695.3 246.3 1048.23
ILLINOIS 18433.01 1500 701 267.3 1038.58
LP 20780.21 1500 916.3 572.9 1134.15
RENO 835.53 1500 99.6 77.3 835.53
SCALABLE 866.65 1500 378.9 427.8 866.65
VEGAS 306.85 1500 132.4 137.2 801.95
VENO 12083.16 1500 765.45 48.5 765.45
WESTOOD 6876.59 1500 752.17 339.5 752.17
YEAH 7906.02 1500 228.5 275.5 820.89

Diagram 1. Measured values of Cwnd [number of packets]



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 91

Diagram 2. Measured values of MTU [bytes]

Diagram 3. Measured values of RTT [milliseconds]



92 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .

Diagram 4. Measured values of RTT Variance [milliseconds]

Diagram 5. Measured values of throughput [megabits per second]



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 93

3.2. Maximum transmission unit

The MTU value is fixed at 1500 bytes and does not change during the mea-
surement period, regardless of the algorithm used.

3.3. RTT and RTT variance

The highest value is for RTT and RTT Variance using the BIC algorithm,
followed by Highspeed, DCTCP and LP. The Hybla, Illinois, Veno, and Westood
algorithms generate similar RTT values. The lowest value is on BBR, followed by
Reno and Vegas. Yeah and HTCP have similar values, as do Cubic and Scalable.

3.4. Throughput

The best throughput values were achieved with the BIC algorithm, followed
by DCTCP and BBR. In fourth and fifth place respectively are LP and Highspeed,
with the difference between them is minimal. Then there are Hybla and Illinois. The
lowest values were measured in Westood, followed by Veno. Cubic achieves about
920 Mbps of bandwidth. Vegas, Yeah, Reno, HTCP and Scalable report bandwidth
in the 800–870 Mbps range.

3.5. Summary

The algorithms that managed to provide the highest values of network band-
width are BIC, DCTCP, BBR, LP and Highspeed. Unfortunately, BIC, DCTCP,
LP, and Highspeed are among the algorithms that generate the highest values of
Round Trip Time and Round Trip Time Variance. Only BBR is an exception, as
it achieves the lowest values for Round Trip Time and is in second place for the
lowest values for Round Trip Time Variance. This is because BBR purposefully
reduces the size of congestion window size, which reduces the likelihood of network
congestion. In addition, unlike other algorithms that recognize when a network is
congested according to the number of lost packets and low bandwidth values, ie.
when congestion is already a fact, BBR is a model-based algorithm and manages to
“predict” congestion as it builds its own network model based on bandwidth values
and Round-Trip-Time at which the network performs best. BBR is supported on
Linux. It is used by default on Google and Youtube as a replacement for Cubic, as
Cubic has a longer latency, lower download speeds and data upload. This is due to
the fact that Cubic’s congestion window size values are independent of Round-Trip-
Time. As a result of the present study, BBR is the algorithm that performs best
among the most commonly used algorithms to prevent network congestion.

3.6. Possible deviations when using Mininet

Studies have shown that in Mininet, deviations in RTT values can be observed
in five, six or seven hosts. This means that the average RTT values extend over
a wide range of values and Mininet cannot obtain accurate and consistent results.
Therefore, the current study has fewer hosts to avoid this type of deviation. It is also



94 Rozinov & Dimitrov / Investigation of algorithms for prevention of congestion . . .

not desirable for the number of hosts to be too large, as packet loss may occur due
to failed processor cycles performing network emulation. Because the emulator must
run all OpenFlow switches, hosts, and network programs in real time, CPU usage
increases significantly as the number of switches on the network increases. This
inevitably increases the latency of network packets and a large number of packets
remain waiting in the buffer memory, from where they are sent to the recipient. But
if the buffer memory is full, the “release” of packets from it begins. To calculate the
relative value of the error, we need to divide the number of failed attempts by the
total number of attempts made. This attempt failed, in which we have at least 20%
of unsuccessfully sent pings [26].

References

[1] T. Amsterdam, Understanding congestion control, 2021. Extracted on 25.11.2021 from
https://granulate.io/understanding-congestion-control/.

[2] A. Baiocchi, A. Castellani and F. Vacirca, YeAH-TCP: Yet Another Highspeed TCP,
INFOCOM Department, University of Roma “Sapienza”, 2008.

[3] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert and G. Judd, Data Center
TCP (DCTCP): TCP congestion control for data centers, IETF, RFC 8257, 2017,
https://www.rfc-editor.org/rfc/rfc8257.

[4] C. Cainin and R. Firrincieli, TCP Hybla: a TCP enhancement for heterogeneous net-
works, Int. J. Satell. Commun. Network 22 (2004) 547–566, https://doi.org/10.1002/
sat.799.

[5] CUBIC TCP, Wikipedia, the free encyclopedia, 2016. Extracted on 22.11.2021 from
https://en.wikipedia.org/wiki/CUBIC_TCP.

[6] P. Dordal, TCP Reno and congestion management, An introduction to computer net-
works, 2020, https://intronetworks.cs.luc.edu/current/html/reno.html.

[7] F5 Clouddocs, TCP::rttvar, 2019. Extracted on 30.11.2021 from
https://clouddocs.f5.com/api/irules/TCP__rttvar.html.

[8] Fastly: Quic.rtt.variance, 2011. Extracted on 26.11.2021 from
https://developer.fastly.com/reference/vcl/variables/client-connection/
quic-rtt-variance/.

[9] C.-P. Fu and S. C. Liew, TCP Veno: TCP enhancement for transmission over wireless
access networks, IEEE Journal on Selected Areas in Communication 21(2) (2003)
216–228.

[10] D. Genkov, Basics of computer networks, Technical University of Gabrovo, 2014.
[11] H-TCP, Wikipedia, the free encyclopedia, 2016. Extracted on 24.11.2021 from https:

//en.wikipedia.org/wiki/H-TCP.
[12] S. Ha, I. Rhee and L. Xu, CUBIC: A new TCP-friendly high-speed TCP vari-

ant, 2008, 11 pp, https://www.cs.princeton.edu/courses/archive/fall16/cos561/
papers/Cubic08.pdf.

[13] IR Media, Network jitter – common causes and best solutions, 2021. Extracted on
28.11.2021 from https://www.ir.com/guides/what-is-network-jitter.

[14] V. Jacobson, The congestion control algorithm in TCP, SIGCOMM’88 118(4) (1988).
[15] W. E. Knightly, A. Kuzmanovic and Y. Chen, TCP low priority. Extracted on

25.11.2021 from https://users.cs.northwestern.edu/~akuzma/rice/TCP-LP/.
[16] B. Lantz, N. Handigol, B. Heller and V. Jeyakumar, Introduction to Mininet,

2021. Extracted on 22.11.2021 from https://github.com/mininet/mininet/wiki/
Introduction-to-Mininet.



Ann. Sofia Univ., Fac. Math. and Inf., 108, 2021, 77–95 95

[17] S. Liu, T. Başar and R. Srikant, TCP-Illinois: A loss and delay-based congestion
control algorithm for high-speed networks, ACM DL Digital Library, Association for
Computing Machinery, 2006.

[18] D. Mehta, TCP-LP: fair and friendly congestion control approach, IOSR-JCE
AETM’16 Special Issue, 2016, 56–61, https://www.researchgate.net/publication/
321385338_TCP-LP_Fair_and_Friendly_Congestion_Control_Approach.

[19] K. L. Mills, J. J. Filliben, D. Y. Cho, E. Schwartz and D. Genin, Modeling congestion
control algorithms, Study of proposed internet congestion control mechanisms, Special
publication 500-282, National Institute of Standards and Technology, 2010, 137–181.

[20] Network Tools and Protocols (NTP) Lab Series, University of South Carolina, 2019.
[21] TCP congestion control, Wikipedia, the free encyclopedia, 2021. Extracted on

22.11.2021 from https://en.wikipedia.org/wiki/TCP_congestion_control.
[22] TCP-Illinois, Wikipedia, the free encyclopedia. Extracted on 24.11.2021 from

https://en.wikipedia.org/wiki/TCP-Illinois.
[23] M. Tekala and R. Szabó, Throughput analysis of scalable TCP congestion control,

Periodica Polytechnica, Electrical Engineering 51(1–2) (2007) 57–64.
[24] S. Trivedi, S. Jaiswal and R. Kumar, Comparative performance evaluation of TCP

Hybla and TCP Cubic for satellite communication under low error conditions, in: Proc.
4th IEEE Int. Conf. on Internet Multimedia Systems Architecture and Application
(IMSAA-2010), 2010.

[25] Throughput. Wikipedia, the free encyclopedia. Extracted on 26.11.2021 from
https://en.wikipedia.org/wiki/Throughput.

[26] S.-Y. Wang, Comparison of SDN OpenFlow network simulator and emulators: EstiNet
vs. Mininet, in: 2014 IEEE Symposium on Computers and Communications (ISCC),
Funchal, Portugal, 2014, 1–6, https://doi.org/10.1109/ISCC.2014.6912609.

[27] What is throughput in networking? Bandwidth explained, 2019. Extracted on
26.11.2021 from https://www.dnsstuff.com/network-throughput-bandwidth.

[28] Yet another high speed TCP validation, using DCE (Direct-Code-Execution). Ex-
tracted on 23.11.2021 from https://github.com/Tejas111/YeAH-TCP.

Received on April 5, 2022
Accepted on November 9, 2022

Plamen Dimitrov Rozinov and Stefan Stanchev Dimitrov

Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5 James Bourchier Blvd.
1164 Sofia
BULGARIA

E-mails: plamendro@gmail.com
stefansd@fmi.uni-sofia.bg




