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In this paper, we present a language pipeline for processing Bulgarian language data.
The pipeline consists of the following steps: tokenization, sentence splitting, part-of-
speech tagging, dependency parsing, named entity recognition, lemmatization, and word
sense disambiguation. The first two components are based on rules and lists of words
specific to the Bulgarian language, while the rest of the components use machine learning
algorithms trained on universal dependency data and pretrained word vectors. The
pipeline is implemented in the Python library spaCy (https://spacy.io/) and achieves
significant results on all the included subtasks. The pipeline is open source and is
available on Github (https://github.com/melaniab/spacy-pipeline-bg/) for use by
researchers and developers for a variety of natural language processing and text analysis
tasks.
Keywords: natural language processing, language pipeline, word sense disambiguation
CCS Concepts:
• Applied computing∼Document management and text processing∼Document capture∼
Document analysis

1. Introduction

A language pipeline consists of a sequence of steps targeted towards processing
and analyzing natural language data. A typical language pipeline might include
steps such as tokenization, part-of-speech tagging, parsing, and semantic analysis
among others. These steps are used as a preprocessing stage in many different tasks
and applications that involve analyzing human language.

Large number of language pipelines are built with the Python natural language
processing library spaCy, which offers easy and flexible way to create such systems.
A spaCy pipeline can combine predefined components, such as tokenizer and part
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of speech tagger, as well as custom developed components and other functions, de-
pending on the end goal of the system.

There are previous works for building a Bulgarian pipeline based on previous
versions of spaCy [18] or custom-built software [19]. However, since these works have
been published, new neural-based based algorithms for tasks such as lemmatization
have been put into practice, which improve the performance and also facilitate the
automatic evaluation.

Currently in spaCy v.3, there are trained pipelines for more than 20 languages,
including low-resource languages from the Balkans, such as Macedonian1, Greek [17],
and Romanian, but not Bulgarian. A language pipeline with good performance is
crucial both for conducting research in the field of word processing and other related
areas and for creating software applications for various purposes.

The goals of the current work are:

• to create an end-to-end, open-source pipeline for the Bulgarian language in
spaCy v.3;

• to improve available lists of tokenizer exceptions and stop words and regular
expressions for handling specific symbols and punctuation;

• to switch from rule-based to neural edit-tree lemmatization;

• to create custom modules for sentence splitting and for word sense disambigua-
tion.

2. Related work

Savkov et al. [19] are the first to present a linguistic processing pipeline for
Bulgarian including morphological analysis, lemmatization, and syntactic analysis
of Bulgarian texts. Lemmatization and word sense disambiguation are performed
by manually crafted rules, while part-of-speech tagging and morphological tagging
are performed by tools based on support vector machines (SVMs). Different parts
of the pipeline are developed as part of different systems, including the CLaRK
system [20], Gtagger [6], and MaltParser [14].

Later, Popov et al. [18], present a spaCy-based pipeline consisting of modules
for tokenization, lemmatization, POS tagging, dependency parsing, named entity
recognition and dependency parsing. The lemmatization is still done by applying
a set of rules over a large morphological dictionary, part of speech tagging, depen-
dency parsing and named entity recognition are done by spaCy’s built-in algorithms
and word sense disambiguation is performed using the EWISER system [3]. There
are some directions in which the pipeline can be improved. First, the pipeline is
implemented in an outdated version of spaCy, it is not publicly available, and there
is no discussion of the algorithms in use. Second, there is no information about the
use of pretrained word vectors. And finally, there are no quantitative evaluation

1https://blog.netcetera.com/macedonian-spacy-f3c85484777f
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results reported from the WSD system, and there is no analysis of the errors that
the system produces.

3. Training data

3.1. Universal dependencies

The data in the Bulgarian treebank [16] consists of a total number of 11138
sentences, of which 8907 are in the train set, 1115 are in the development set, and
1116 are in the test set. These sets are formed in the following way: each first
sentence is taken for the test set, each tenth one is taken for the development set,
and the rest of the sentences form the train set. The data is from three main
domains: 81% from Bulgarian newspapers, 16% from fiction texts, and 3% from
administrative documents.

The texts of the dataset are split into sentences, and every sentence is tokenized.
Then, every token is annotated with its lemma, part of speech tag, list of morpho-
logical features, head of the dependency, type of dependency relation, and other
additional characteristics. The data is publicly available2 in CoNNL-U format.3

3.2. BulNet

WordNet [11] is a lexical database organized on the basis of semantic features.
Its development began in 1978 [21] for the English language. Currently, there are
versions for over 200 languages. It is organized around the idea of synsets – cognitive
synonym sets representing sets of words of the same part of speech that can be used
interchangeably in a certain context. Each synset has its own short description, often
referred to in the literature as a gloss, as well as a list of short examples, illustrating
the exact use of the given meaning in a sentence. The Bulgarian version of WordNet
is called BulNet [9].

Current BulNet consists of 22092 nouns, 9043 verbs, 8969 adjectives, and 1692
adverbs, which makes it several times smaller in volume than the English version.

When synonymous sets are separated from each other by extremely small and
difficult-to-notice marks, the task becomes too complicated, even for humans. There
are situations where different annotators would choose different meanings and an
agreement of about 80% is achieved, which is perceived as target accuracy for a
word sense disambiguation system [3].

3.3. fastText vectors

The pretrained word vectors that we are using are fastText vectors [4] for the
Bulgarian language4. These vectors are of dimension 300 and are trained on Bulgar-

2https://github.com/UniversalDependencies/UD_Bulgarian-BTB
3https://universaldependencies.org/format.html
4https://fasttext.cc/docs/en/crawl-vectors.html
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ian Wikipedia. FastText vectors showed the best performance among other archi-
tectures for pretrained vectors that we experimented with. One of the main reasons
is that fastText works on a character level, generating n-grams of symbols on which
the algorithm is trained. This makes it very well suited for morphologically rich lan-
guages, such as the Bulgarian language, where a single word can have many forms,
not all of which are present in the training corpus. With the n-grams mechanism,
FastText is also able to manage successfully out-of-vocabulary cases, which occur
often when the training data is limited.

4. Pipeline implementation

In spaCy, there are two types of components - trainable and non-trainable.
Trainable components rely on training data and machine learning algorithms. Non-
trainable components rely on predefined sets of rules, by which they process the data.
In our pipeline, the rule-based components are the Tokenizer and the Sentencizer.
The remaining components rely on training data and machine learning modules. In
the following subsections, we will discuss in more detail the algorithms which each
one of the components is using. Figure 1 presents the sequence of the steps in the
pipeline.

Figure 1. Sequence of the steps of the developed Bulgarian language pipeline

4.1. Rule-based components

4.1.1. Tokenizer

The tokenization is the first step of the pipeline, as the following components
need input data in the form of a sequence of tokens. For the sake of modelling cor-
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rectly the Bulgarian language, we created our own custom tokenizer. The Bulgarian
tokenizer consists of:

• Lists of special cases, such as metrics, abbreviations, and titles,

• List of stop words,

• Regular expressions for handling tokens with special symbols, like hyphens,
apostrophes,

• Regular expressions for handling punctuation.

Tokenizer exceptions consist of the following types:

• Units of measure: can be with ( “см.”) or without dot (“см”),

• Abbreviations - some like “изд.” (from “издателство”, publishing house) can
be only in the middle of a sentence, whereas others like “др.” (from “други”,
others) can be both in the middle and in the end,

• Hyphenated abbreviations, like “г-жа” (Mrs.),

• Capitalized abbreviations, like “БДС” (from “Български държавен стан-
дарт”, Bulgarian State Standard).

4.1.2. Sentence splitter

Ideally, the dependency parser algorithm should be able to learn to split sen-
tences automatically. Unfortunately, as our training data is already split into sen-
tences, that was not possible, and a separate rule-based algorithm had to be devel-
oped.

The sentence splitter consists of rules for treating punctuation and a variety of
edge cases, connected to the uses of initials and abbreviations. Initials, such as “A.”,
are marked as invalid end of sentence.

This custom-built module takes as input the tokenized text. In order to split
the sentences correctly, the algorithm assumes that a token can be the beginning of
a sentence if:

• Starts with an uppercase letter, and

• The preceding token is not an invalid end, and

• The preceding token is end-of-sentence punctuation, or it’s not one of the
special cases, or is of the special cases, but is a possible end of the sentence.

In this manner, the Sentencizer is able to avoid splitting sentences where the
dot is used in abbreviations, such as:

Св. Николай Чудотворец е роден 15 март 270 г. в Патара, Ликия.
(St. Nicholas the Wonderworker was born on March 15, 270 in Patara, Lycia.)
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4.2. Built-in trainable components

4.2.1. POS-tagger and morphologizer

The part of speech tagger and morphologizer components are implemented by
the spaCy’s tagger model, which uses a linear layer with softmax activation to predict
tag scores for every token’s vector. The POS tagging module uses as features the
token vectors, as well as information from the morphologizer, which is a trainable
component that predicts morphological features and fine-grained POS tags following
the Universal Dependencies UPOS5 and FEATS6 annotation guidelines.

4.2.2. Dependency parser

A dependency parser (DEP) is a model which analyzes the grammatical struc-
ture of a sentence. The dependency parser marks the relationships between “head”
words and words that modify those heads. The spaCy parser uses a modification of
the non-monotonic arc-eager transition system [7], which jointly learns dependency
parsing and labelled dependency parsing. The algorithm uses a pseudo-projective
dependency transformation [13], which allows it to work with non-projective trees,
which may occur in languages with free word order, such as the Bulgarian language.
In our training data, 279 out of 8836 sentences (3%) have non-projective dependency
trees.

4.2.3. Lemmatizer

In the Bulgarian language, the lemma of a certain word cannot be determined
by applying a short list of rules. One approach to the problem is to use large
lists of words in all their possible forms and base form to determine the result
of lemmatization. A disadvantage of the approach is that when the desired word
does not appear in the list, there is no processing option. Then either the current
form of the input word should be returned or an empty character string should be
returned. If the dictionary of presented word forms is not comprehensive enough,
both approaches will result in token mishandling and, therefore, in low recall values
of the overall system.

To address this limitation, we apply a method proposed by Müller et al. [12],
according to which an “EditTreeLemmatizer” is built. The method is available for use
as a standalone component in the spaCy tool. In the Neural edit-tree lemmatization
algorithm, the lemmatization task is treated as a classification problem. The classes
represent all learned edit trees, and the Softmax function is used for computing the
probability distribution over all trees for a particular token. Then the algorithm
tries to apply the most probable tree and, if this is not possible, continues with
the next most probable tree. An edit tree consists of the following types of nodes:
inferior nodes, which split the string into a prefix, an infix, and a suffix, and leaf
nodes, which apply the learned transformation. An example edit tree is shown in
Figure 2.

5https://universaldependencies.org/u/pos/index.html
6https://universaldependencies.org/format.html#morphological-annotation
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Figure 2. Edit tree for the inflected form “най-добрият“ (the best) and its lemma “добър” (good)

4.3. Additional components

4.3.1. Word sense disambiguation

Word-sense disambiguation (WSD) is the task of determining the correct sense
of a word in a given context [8]. It can be a supervised, unsupervised, or hybrid
task. Supervised approaches utilize a corpus of sentences in which individual words
are manually labelled with senses from a lexical resource, such as WordNet.

In the current pipeline, word sense disambiguation is regarded as a supervised
machine-learning task. Bulgarian WordNet provides a valuable source of data, in-
cluding possible senses, hypernyms, and usage examples. For each potential sense,
a sample text is constructed by combining the glosses for the sense and its related
hypernyms. Subsequently, these texts are passed through spaCy as distinct docu-
ments. This process results in vectors of each token in the text. Next, the vectors
corresponding to each document are averaged, and each sentence is assigned a single
vector. The rationale behind this approach is that different sense descriptions will
have distinct vector representations, and by averaging them, the representation in
the latent space will contain sufficient information for disambiguation. The final
stage entails identifying the closest candidate to the target sentence in the latent
space, which is accomplished by employing cosine distance for measuring distance
and determining the closest candidate.

5. Experiments

5.1. Word embeddings

For the performance of the word sense disambiguation model, which uses infor-
mation from the preceding steps of the pipeline, we experimented with different pre-
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trained word embeddings architectures, such as BERT [5], RoBERTa [10], Flair [2]
and fastText [4]. Bulgarian BERT7 is trained on the Bulgarian version of Wikipedia
and the OSCAR 2019 corpus [15], composed of 1,268,114,977 words with a total size
of 14 GB, as well as with data from the online library Chitanka.info8. Bulgarian
RoBERTa9 is trained on the corpora Wikipedia, OSCAR 2019, and Newscrawl one
million sentences10.

An interesting observation is that for our task BERT and RoBERTa models
have similar performance. This is most likely due to the volume of data on which
the Bulgarian models were trained. For the original English models, BERT was
trained on 16 GB of data and RoBERTa – on 160 GB. Such volumes of data are not
available for the Bulgarian language, and accordingly the models have a comparable
performance.

In our experiments, the best results were obtained with the fastText vectors,
which we included in the final version of the system. A comparison of the results
can be found in Table 1.

Table 1. Performance comparison of different approaches
for solving the WSD task

Algorithm Accuracy
Cosine similarity with fastText 65.24
Cosine similarity with Flair 63.99
Cos similarity with RoBERTa 62.82
PageRank – undirected graph 58.76
PageRank – directed graph 61.33

5.2. Word sense disambiguation algorithms

For the word sense disambiguation task, we experimented with two main types
of algorithms – graph-based and similarity-based. One of the tested methods for re-
solving ambiguity involved using graph-based algorithms. This family of algorithms
extracts all possible senses for a given text and builds graph representation of the
text utilizing the available relations in WordNet or other similar knowledge bases.
Those approaches rely heavily on the PageRank algorithm, with different modifica-
tions tailored to suit the specific problem at hand. In essence, all approaches assign
weights to the nodes in the graph, which determine the most probable senses for
the target text. According to Agirre et al. [1], such methods need longer texts of no
less than 20 words to build a graph with weights that will ultimately converge to a
single probable sense.

A crucial factor influencing the system’s performance is the number of connec-
tions and senses available in the knowledge base. In the case of Bulgarian language
WordNet, the available connections are fewer and lack utility for graph construction,

7https://huggingface.co/rmihaylov/bert-base-bg
8https://chitanka.info/
9https://huggingface.co/iarfmoose/roberta-base-bulgarian

10https://wortschatz.uni-leipzig.de/
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since the sentence graphs may not be connected and can be composed of several
disjoint graphs. As for the similarity-based approaches, the number of relations
in WordNet is not significantly important because in those methods we rely heav-
ily on the semantic relationships that have been learned from unstructured texts
while training the word embeddings. Building word embeddings does not require
the meticulously crafted relations encapsulated in WordNet and the embeddings’
position in latent space can be used to calculate the similarity between words and
sentences. In our case, the cosine similarity was used to determine the distance be-
tween different sentences. In order to deal with different sentence lengths, an average
pooling was used that averages the weights of the words within the provided excerpt,
resulting in an effective assignment of a single word embedding for each sentence.

Our experiments indicated that vector-based approaches prove more effective
for the Bulgarian language. Table 1 summarizes the results of the different word
disambiguation techniques tested.

6. Results and evaluation

6.1. Automatic evaluation

We evaluate our pipeline, based on the following metrics: TOK – tokenization
accuracy, POS – part-of-speech accuracy, UAS – unlabeled attachment score for
dependency parsing, LAS – labelled attachment score, LEMMA – lemmatization
accuracy, WSD – word sense disambiguation accuracy, and SENT F – sentence
splitting F-score. The sentence splitting score, however, is biased, as the majority
of the test examples are already split into sentences.

Table 2 presents the results of the current pipeline, compared to the previously
reported results [18]. We observe that our pipeline archives better results on all the
included subtasks.

The previous works do not report automatic evaluation for the lemmatization
and word disambiguation task, and we could compare the obtained results. However,
manual error analysis, presented in the next section, shows that those two modules
also show good performance for the Bulgarian language.

Table 2. Comparison of the results on the BulTreeBank dataset
of the current pipeline and the previous implementation [18]

Metric Pipeline-2020 Pipeline-2023
TOK — 99.97
POS 94.49 98.12
LEMMA — 93.88
UAS 89.71 89.95
LAS 83.95 84.77
WSD — 65.24
SENT F — 94.65
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6.2. Error analysis

6.2.1. Lemmatization

A frequently occurring problem are the differences in the spelling of the base
forms of the words. In BulTree Bank, the data on which the lemmatizer was trained
differs from the way it is written in WordNet. Such examples are “запазя-(се)” –
“запазя” (to save oneself ), “смея се” – “смея” (to laugh) and others. During the
system workflow, the suffixes “-(се)” and “-се”, which are marking reflexive verbs,
are removed before the search is executed. Unfortunately, this does not help in cases
where the proposed base form is wrong. Such a case is “призовам-(се)” instead of
“призовавам” (to call out).

Alignment of the resources would lead to an improvement of the results and
an increase of the recall measure and, accordingly, of the F1 result of the overall
system. On the BulTree Bank validation set an accuracy of 0.9388 is reached for the
lemmatization task, which is quite a good result for a morphologically rich language
such as Bulgarian. Despite the high score on this set, discrepancies with WordNet
undoubtedly contribute to low recall values.

We examined closely the outputs of the edit tree lemmatization algorithm. We
were able to identify three main types of mistakes made by the algorithm:

1. Errors caused by the suffixes “-(сe)” and “-сe”.

2. Incorrect suggestion for a base form of an existing word, such as “булеварда”
instead of “булевард” and “пейзажа” instead of “пейзаж”.

3. Prediction non-existent words, such as “лип” instead of “липа”, and “щайг”
instead of “щайга”.

As we can see, most of the errors come from confusion between words in the
masculine gender, ending with the determination ending -a, and words in the femi-
nine gender, whose base form ends with a gender ending -a. It is possible that with
more training examples the algorithm for tree selection will be able to discern more
details and choose the appropriate tree more frequently. In its current version, the
model is trained on 8,907 sentences from the BulTree Bank, which is insufficient for
a morphologically rich language such as Bulgarian.

6.3. Word sense disambiguation

There are two main sources of errors of the word sense disambiguation module:

1. Synsets, which are presented in BulNet with multi-token expressions, such as
“черен чай” (black tea) and “маслодайни рози” (oil roses).

2. Overlapping senses – often there are cases where the meaning of a word in a
particular sentence can fall in more than one of the predefined senses, and the
predicted and original senses are different, while equally true. An example of
such a case is shown in Table 3.
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Table 3. Example of an error by the word sense disambiguation module for the meaning of
the word “пристъпвам” (to step), where the predicted and the original sense are very close

Example Expected sense Predicted sense
Пристъпих напред и вдигнах
ръка.
(I stepped forward and raised
my hand.)

btbwn-038000141-v
Движа се като правя стъпка
след стъпка в равномерен ри-
тъм.
(I move by taking step after
step in a steady rhythm.)

btbwn-038000146-v
Правя, направям една или
няколко стъпки, обикновено
в посоката, към която гле-
дам, към която съм обърнат.
(I take one or more steps, usu-
ally in the direction I’m looking
or, facing.)

7. Conclusion

We presented the implementation of an open-source pipeline for processing the
Bulgarian language, built on the natural language processing library spaCy, which
shows significant results on numerous tasks. We systemized the available lists of tok-
enizer exceptions and successfully created new custom modules for sentence splitting
and word sense disambiguation and a new neural-based module for lemmatization.
Finally, we released an open-source version of the pipeline.

The presented pipeline can be used in multiple ways, some of which include:
in sentiment analysis and hate speech detection tasks, by lemmatizing text and
searching in a list of predefined signaling words; in machine translation, to find
the right meaning of an ambiguous word and produce the right translation; in text
categorization tasks, by providing additional information about the text, such as
additional features of the words and sentences of its contents. These and any other
applications can be built by appending the pipeline with additional components
(such as one for text categorization) or integrating it with other systems.

7.1. Limitations

There are several ways in which the work on the pipeline can be improved.
First, the sentencizer can be further developed to process nested sentences,

typical for the press and literature. For this, additional linguistic knowledge will be
needed in order to model more complicated cases.

The lemmatization module can benefit from additional data processing, and also
from more data, as a significant number of edit trees modelling the lemmatisation
process of Bulgarian words can exist.

Currently, our method for word sense disambiguation is unable to process word
bigrams and trigrams. When the target phrase consists of more than one word,
the overall model fails because the search is only performed on a single token. To
improve the word sense disambiguation module performance, it is necessary to im-
plement a comprehensive system to deal with bigrams and trigrams. Their presence
in WordNet makes searching difficult in situations where there is no complete match
and searching by lemma form does not lead to successful detection. Additionally,
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further preprocessing is needed to solve the problem of the difference in the word
forms used in the two datasets – BulTreeBank and WordNet.

7.2. Ethics Statement

This work aims at an equal and fair distribution of language technologies for dif-
ferent populations, especially speakers of low-resource languages, such as Bulgarian.
The pipeline will be publicly available for use and modification.

We consider that there are no potential harms for different groups, if the de-
scribed tool is misused. On the contrary, such a technology can help in analyzing
and filtering propaganda, misinformation and hate speech in texts.
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