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By making use of the Cayley maps for the isomorphic Lie algebras su(2) and so(3) we

have found the vector parameter form of the well-known Wigner group homomorphism
W : SU(2) → SO(3,R) and its sections. Based on it and pulling back the group
multiplication in SO(3,R) through the Cayley map su(2) → SU(2) to the covering
space, we present the derivation of the explicit formulas for compound rotations. It is
shown that both sections are compatible with the group multiplications in SO(3,R) up
to a sign and this allows uniform operations with half-turns in the three-dimensional
space. The vector parametrization of SU(2) is compared with that of SO(3,R) generated

by the Gibbs vectors in order to discuss their advantages and disadvantages.
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1. INTRODUCTION

Parameterizations are used to describe Lie groups in an easier way. Let G be
a finite dimensional Lie group with Lie algebra g. A vector parametrization of G
is a map g → G, which is diffeomorphic onto its image. Before studying vector
parametrizations, let us compare them with the exponential map exp : g → G. It
is locally bijective and need not to be such globally. For example in the case of
G = GLn(C) and g = gl (n,C) for arbitrary integers k1, . . . , kn the diagonal matrix
diag(2πik1, . . . , 2πikn) is transformed into the unit matrix In. If G is connected
and compact as it is in cases under consideration the exponential map is surjective,
see [3]. Besides, the group multiplication µ : G ×G → G admits a local pull-back
on the Lie algebra level via the commutative diagram (see Fig. 1).
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g × g g
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exp exp

Figure 1: Local pullback of the multiplication law µ for the Lie group G in the
corresponding Lie algebra g .

This pull-back is given by the Baker–Campbell–Hausdorff formula in commu-
tator-free form

BCH(X,Y ) = X + Y +

∞∑

n=2

∑

|ω|=n

gωω , (1.1)

where the inner sum is over all the “words” ω = ω1 . . . ωn of length n in the alphabet
{X,Y }. Here, gω are the Goldberg’s rational coefficients [9, 15]. In general, it is
difficult to compute (1.1) and there is an ongoing research in this area (see [1, 4, 17]).
However, the first few terms of (1.1) in commutator form are given by the formula

BCH(X,Y ) =X + Y +
1

2
[X,Y ] +

1

12
([X, [Y,X]]− [Y, [X,Y ]])

(1.2)

− 1

24
[Y, [X, [X,Y ]]] + · · ·

The image of the parametrization need not be the whole group G. For SO(3,R),
the image of the Cayley map consists of all rotations with angles θ &= ±π, i.e., the
matrices R ∈ SO(3,R) with no eigenvalues of -1.
In Section 2 of the paper we derive a vector parametrization of SU(2) and make use
of it for expressing the composition law in this group. We show that the Cayley map
su(2) → SU(2) is bijective onto its image. Section 3 provides an explicit formula
for the double cover map SU(2) → SO(3,R) in terms of the vector parameters of
the source and the target manifold.

2. VECTOR PARAMETRIZATION OF SU(2) AND THE PULL-BACK OF
THE COMPOSITION LAW

2.1. THE CASE OF SO(3,R)

The Lie algebra so(3) consists of the real anti-symmetric 3× 3 matrices. The
Cayley map of so(3) → SO(3,R) gives the so called Gibbs vector parametrization
of SO(3,R). The matrices

J1 =




0 0 0
0 0 −1
0 1 0


 , J2 =




0 0 1
0 0 0

−1 0 0


 , J3 =




0 −1 0
1 0 0
0 0 0


 (2.1)
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form a basis of so(3) over the filed of the real numbers. For arbitrary i, j, k ∈
{1, 2, 3} let εijk = 1 if i, j, k is an even permutation of 1, 2, 3, εijk = −1 for an odd
permutation of 1, 2, 3 and εijk = 0 otherwise. The following relations hold:

[Ji, Jj ] = ǫijkJk, i, j, k ∈ {1, 2, 3}. (2.2)

Any C ∈ so(3) has a unique representation

c )→ C = c · J = c1J1 + c2J2 + c3J3 =




0 −c3 c2
c3 0 −c1

−c2 c1 0


 ,

where

c = (c1, c2, c3), c
2 := c21 + c

2
2 + c

2
3 = c.c = |c|2 = c2. (2.3)

Hereafter we shall use c and c to denote respectively the vector c and its norm c.
This convention applies to other vectors as well.

The Hamilton–Cayley theorem for C reads as C3 = −c2C. That is why the
exponential map exp : so(3)→ SO(3,R) is given explicitly by the formula

exp(C) = I+
sin c

c
C+

1− cos c

c2
C
2. (2.4)

In order to compare, let us recall that the Cayley map for so(3) associates with
c · J ∈ so(3) the matrix

R(c) = Cay
so(3)(c) = (I+ C)(I− C)−1 = (I− C)−1(I+ C). (2.5)

One checks immediately that

(I− C)−1 = I+
1

1 + c2
C+

1

1 + c2
C
2 (2.6)

and (2.5) can be expressed in the form

Cay
so(3)(c) = I+

2

1 + c2
C+

2

1 + c2
C
2 (2.7)

for all c ∈ R3. Is is well known that in SO(3,R), the half-turns are described by
symmetric rotation matrices. Note that Cay

so(3) is bijective onto its image (see
[14])

ℑCay
so(3) = {R ∈ SO(3,R) ; R &= R

t} = SO(3,R)\S(3,R) , (2.8)

where S(3,R) is the set of all symmetric 3×3 matrices with real entries. The image
R(c) of c by Cay

so(3) is

c→ R(c) =
2

1 + c2




1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c1c3 − c2 c2c3 + c1 1 + c23


− I. (2.9)
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The rotation R = R(n, θ) at angle θ about the axis n is represented by Gibbs
parameter c = tan θ

2 n, see [2]. In order to express the group law in SO(3,R) by the
means of the Cayley map let us denote by c̃ the vector parameter of the product
R(c̃ ) = R(a)R(c) of the elements of SO(3,R), corresponding to a, c ∈ R3. Then,
as pointed out in [7]

R(c̃ ) = R(a)R(c), c̃ = c̃ (a, c) = 〈a, c〉 = a+ c+ a× c

1− a.c
· (2.10)

In the case of so(3) it is shown in [6] that the Baker–Campbell–Hausdorff formula
takes the form

BCH(A,C) = BCH(a · J, c · J) = αA+ βC+ γ[A,C] , (2.11)

with

α =
sin−1(q)

q

m

θ
, β =

sin−1(q)

q

n

ψ
, γ =

sin−1(q)

q

p

θψ
,

where ψ = |a|, θ = |c|, ∠(a, c) = cos−1
(

a.c

|a||c|

)
and

m = sin (θ) cos2 (ψ/2)− sin (ψ) sin2 (θ/2) cos(∠(a, c)) ,

n = sin (ψ) cos2 (θ/2)− sin (θ) sin2 (ψ/2) cos(∠(a, c)) ,

p =
1

2
sin (θ) sin (ψ)− 2 sin2 (θ/2) sin2 (ψ/2) cos(∠(a, c)) ,

q =

√
m2 + n2 + 2mn cos(∠(a, c)) + p2 sin2(∠(a, c)) .

Note that equation (2.10) is much simpler and more convenient when compared
with (2.11). The vector parameter form of SO(3,R) matrices and the corresponding
composition law (2.10) are exploited in the decomposition method of the three
dimensional rotations about three almost arbitrary axes, see [2]. In this vector
parameter form of SO(3,R), the half-turns, i.e., rotations at angles θ = ±π, can
not be described. Henceforth we denote the matrix of the half-turn about the axis
n, i.e., R(n, π) , by O(n). The composition of the two rotations is not well defined
also when 1− a.c = 0, which is exactly the condition that the compound rotation
c̃ is a half-turn.

2.2. DESCRIPTION OF su(2)

A coordinate free description [11] of su(2) can be given. Let i be the imaginary
unit and σ1, σ2, σ3 be three elements which obey the rules

σ21 = σ
2
2 = σ

2
3 = 1

(2.12)
σ1σ2 = −σ2σ1 = iσ3, σ2σ3 = −σ3σ2 = iσ1, σ3σ1 = −σ1σ3 = iσ2.
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If we define the spin vector σ as

σ := (σ1, σ2, σ3) (2.13)

and n and m are arbitrary unit vectors in R3, then the following properties hold:

(n · σ)2 = 1, (m · σ)(n · σ) = m.n+ i(m× n) · σ ,
σ · (n · σ) = n+ in× σ, (n · σ) · σ = n− in× σ , (2.14)

(m · σ)σ(n · σ) = (m · σ)n+ (n · σ)m− i(m× n)− (m.n) · σ .

A concrete matrix realization of σ1, σ2, σ3 in (2.12) are the Pauli’s matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
· (2.15)

The matrices s1, s2 and s3 defined by

s1 = −
i

2
σ1, s2 = −

i

2
σ2, s3 = −

i

2
σ3 (2.16)

form a R−basis of su(2). Direct calculation shows that

[si, sj ] = ǫijksk, i, j, k ∈ {1, 2, 3}. (2.17)

Denoting s = (s1, s2, s3) we express the su(2) algebra in the following way:

su(2) =
{
c · s = c1s1 + c2s2 + c3s3 ; c = (c1, c2, c3) ∈ R3

}
. (2.18)

The corresponding matrix realization of c · s is



−i c3
2

−c2
2
− i

c1
2c2

2
− i

c1
2

i
c3
2


 . (2.19)

Obviously, the map

c1s1 + c2s2 + c3s3 −→ c1J1 + c2J2 + c3J3 (2.20)

is a linear isomorphism between su(2) and so(3).

2.3. CAYLEY MAP FROM su(2) TO SU(2)

Till the end of this section I will stand for the unit matrix with dimension
consistent with the context. Let

A = a1s1 + a2s2 + a3s3 = −
i

2
a · σ ∈ su(2) , (2.21)
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where

a = (a1, a2, a3), a2 = a21 + a22 + a23 = a.a = |a|2 = a2. (2.22)

Let us recall also that (see [8]) the exponential map for su(2) is globally defined
and surjective. It maps A ∈ su(2) to

exp(A) = cos (a/2)I− sin a/2

a/2
A. (2.23)

The Hamilton–Cayley theorem implies the identity A2 = −a2

4
I. The image of A

under the Cayley map is

U(a) = Cay
su(2)(A) = (I+A)(I−A)−1. (2.24)

In general, the Cayley map Cay
su(n) for the Lie algebra su(n) of skew-hermitian

matrices (A† = A
t
= −A) with trace zero takes values in U(n). Indeed, let us

take any A ∈ su(n) and its image Cay
su(n)(A) = U. Taking into account that

(U†)−1 = (U−1)†, we obtain

UU
† = (I+A)(I−A)−1((I+A)(I−A)−1)†

= (I+A)(I−A)−1((I−A)−1)†(I+A)†
(2.25)

= (I+A)(I−A)−1(I+A)−1(I−A)

= (I+A)(I−A)−1(I−A)(I+A)−1 = I.

Lemma 1. For each element A ∈ su(2) there holds

(I+A)(I−A) = (I−A)(I+A) = I−A
2 =
(
1 +

a2

4

)
I , (2.26)

i.e.,

(I−A)−1 =
(
1 +

a2

4

)−1
(I+A), (I+A)−1 =

(
1 +

a2

4

)−1
(I−A). (2.27)

Besides (2.27), from Lemma 1 we also infer

U(a) = (I+A)(I−A)−1 =
(
1 +

a2

4

)−1
(I+A)2

=
(
1 +

a2

4

)−1
(I+ 2A+A

2) =
(
1 +

a2

4

)−1(
I+ 2A− a2

4
I
)

(2.28)

=
(
1 +

a2

4

)−1((
1− a2

4

)
I− ia · σ

)
.
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The matrix form of U(a) is

U(a) =
1− a2

4

1 +
a2

4

I+
1

1 +
a2

4

(
−ia3 −a2 − ia1

a2 − ia1 ia3

)
. (2.29)

The matrix U(a) defined in (2.29) is unitary due to (2.25). Direct calculation shows
that

detU(a) = det

((
1 +

a2

4

)−1
(I+A)2

)
=
(
1 +

a2

4

)−2
(det (I+A))2 = 1 (2.30)

i.e., U(a) ∈ SU(2). Following Wigner [18] we can use the explicit homomorphism
map W : SU(2)→ SO(3,R) given by

(
α β

−β α

)
=

(
α1 + iα2 β1 + iβ2
−β1 + iβ2 α1 − iα2

)

(2.31)

W−→



α21 − α22 − β21 + β22 2(α1α2 + β1β2) 2(α2β2 − α1β1)
2(β1β2 − α1α2) α21 − α22 + β21 − β22 2(α2β1 + α1β2)
2(α1β1 + α2β2) 2(α2β1 − α1β2) α21 + α

2
2 − β21 − β22


 ·

The comparison of (2.29) and (2.31) yields

α = α1 + iα2 =
1− a2

4

1 +
a2

4

+ i
−a3

1 +
a2

4

, β = β1 + iβ2 =
−a2

1 +
a2

4

+ i
−a1

1 +
a2

4

· (2.32)

In the case of the SU(2) group manifold, which is diffeomorphic to the sphere
S3, there is a homotopy obstruction for the existence of a global diffeomorphism
R
3 ≃ su(2) → SU(2) ≃ S3, so that no vector parametrization su(2) → SU(2)

exists onto the entire group SU(2). Actually, the Cayley map provides a vector
parametrization

Cay
su(2): su(2)→ SU(2)\{−I} , (2.33)

whose inverse is

Cay−1
su(2)

(
α1 + iα2 β1 + iβ2
−β1 + iβ2 α1 − iα2

)
= − i

2
a · σ ,

(2.34)

a = (a1, a2, a3) = −
2

1 + α1
(β2, β1, α2).

By means of (2.31) and (2.32) one calculates straightforwardly that the image
RU(a) of U(a) under the Wigner map W is

8

(4+a2)
2




(4+a2)
2

4 −4a22−4a23 4a1a2−a3
(
4−a2
)

4a1a3+a2
(
4−a2
)

4a1a2+a3
(
4−a2
) (4+a2)

2

4 −4a21−4a23 4a2a3−a1
(
4−a2
)

4a1a3−a2
(
4−a2
)

4a2a3+a1
(
4−a2
) (4+a2)

2

4 −4a21−4a22


−I. (2.35)
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Let A = − i

2
a · σ, C = − i

2
c · σ ∈ su(2). The term of third degree in BCH(A,C)

(cf. (1.2)) is
1

2
[A,C] = − i

2
(a× c) · σ, and that one of degree four is

1

12
([A, [C,A]]− [C, [A,C]]) = − i

2
c̃ 4 · σ, c̃ 4 = (u4, v4, w4) , (2.36)

with

u4 =
1

12
(a1a2c1 + a1c1c2 + a2a3c3 + a3c2c3 − a21c2 − a23c2 − a2c

2
1 − a2c

2
3) ,

v4 =
1

12
(a1a2c2 + a1a3c3 + a2c1c2 + a3c1c3 − a22c1 − a23c1 − a1c

2
2 − a1c

2
3) , (2.37)

w4 =
1

12
(a1c1c3 + a1a3c1 + a2c2c3 + a2a3c2 − a21c3 − a22c3 − a3c

2
1 − a3c

2
2).

Note that the coefficients of the term of degree four are homogeneous polynomials
of a1, a2, a3, c1, c2, c3 of degree three. It is interesting to compare the composition
rule (2.10) of SO(3,R), expressed through the Gibbs vector parameter with the
following formula

A+ C+
1

2
[A,C] = − i

2

(
a+ c+

a× c

2

)
· σ. (2.38)

2.4. COMPOSITION LAW IN SU(2)

Proposition 1. Let U1(c),U2(a) ∈ SU(2) are the images of A1 = c · s and
A2 = a · s under the map (2.24) of the vectors a, c ∈ R3. Let

U3(〈a, c〉SU(2)) = U2(a).U1(c) (2.39)

denote the composition of U2(a) and U1(c) in SU(2). The corresponding vector-
parameter ã ∈ R3, for which Cay

su(2)(A3) = U3, A3 = ã · s is

ã =

(
1− c2

4

)
a+

(
1− a2

4

)
c+ 4

a

2
× c

2

1− 2
a

2
· c
2
+

a2

4

c2

4

· (2.40)

The vector ã equals to 0 if only if c = −a or c = 2 tan
θ

4
n and a = 2 tan

2π − θ
4

n,

where n ∈ R3,n2 = 1 and θ ∈ [0, 2π). In both cases, c = −a and c = 2 tan
θ

4
n ,

a = 2 tan
2π − θ

4
n , these vectors represent inverse rotations.
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Proof. From (2.28) we obtain that

U3 =
(
1 +

a2

4

)−1((
1− a2

4

)
I− ia · σ

)(
1 +

c2

4

)−1((
1− c2

4

)
I− ic · σ

)

(2.14)
=

(
1− a2

4

)(
1− c2

4

)
I−i
(
1− a2

4

)
c · σ−i

(
1− c2

4

)
a · σ−a.c I−i(a× c) · σ

(
1+

a2

4

)(
1+

c2

4

)

=

(
1− a2

4

)(
1− c2

4

)
− a.c

(
1 +

a2

4

)(
1 +

c2

4

) I− i

(
1− a2

4

)
c+
(
1− c2

4

)
a+ 4

a

2
× c

2
(
1 +

a2

4

)(
1 +

c2

4

) · σ.

(2.41)

The general formulas (2.29) and (2.41) will be compatible if we have simultaneously

1− ã 2

4

1 +
ã 2

4

=

(
1− a2

4

)(
1− c2

4

)
− a.c

(
1 +

a2

4

)(
1 +

c2

4

) ,

(2.42)

ã

1 +
ã 2

4

=

(
1− a2

4

)
c+
(
1− c2

4

)
a+ 4

a

2
× c

2
(
1 +

a2

4

)(
1 +

c2

4

) ·

From (2.42) we get

ã 2

4
=

a2

4
+

c2

4
+ 2

a

2
· c
2

1− 2
a

2
· c
2
+

a2

4

c2

4

, 1 +
ã 2

4
=

1 +
a2

4
+

c2

4
+

a2

4

c2

4

1− 2
a

2
· c
2
+

a2

4

c2

4

· (2.43)

Taking into account that

1 +
a2

4
+

c2

4
+

a2

4

c2

4
=
(
1 +

a2

4

)(
1 +

c2

4

)

and multiplying the numerator and denominator of the second fraction in (2.41)

by 1 − 2
a

2
· c
2
+

a2

4

c2

4
(when this expression is non-zero), we get the result in the

second case in (2.40), i.e., the composition law in vector-parameter form for SU(2).
To rigorously see when the composition is not well defined, we investigate the

case in which the denominator equals zero. According to the identity

1− 2
a

2
· c
2
+

a2

4

c2

4
=
(
1− a

2
· c
2

)2
+
(a
2
× c

2

)2
, (2.44)

the denominator of (2.40) vanishes if only if a = 2 tan
θ2
4
n, c = 2 tan

θ1
4
n and
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1 = tan
θ2
4
tan

θ1
4
. This implies cos

θ1 + θ2
4

= 0, θ1+θ2 = 2π and allows to express

c = 2 tan
θ

4
n, a = 2 tan

2π − θ
4

n. (2.45)

Substituting the results from (2.45) in (2.42) gives ã (a, c) = 0 , which corresponds
to the identity element I. If c ≡ −a , then ã = 0. �

In the particular case when one and the same rotation (a ≡ c) is applied twice
the resulting vector is

ã =
2
(
1− a2

4

)
a

(
1− a2

4

)2
=

4
a

2

1− a2

4

·

It is important to investigate when the composition ã is such that | ã | ≤ 4.
Using (2.43) we obtain

ã 2

4
=

a2

4
+

c2

4
+ 2

a

2
· c
2

1− 2
a

2
· c
2
+

a2

4

c2

4

≤ 1 (2.46)

and this is equivalent to the inequality

a.c ≤
(
1− a2

4

)(
1− c2

4

)
. (2.47)

Similar conditions for | ã | < 4, | ã | = 4 and | ã | > 4 cases follow immediately.

3. THE COVERING MAP SU(2)→ SO(3,R) AND ITS SECTIONS IN
VECTOR-PARAMETER FORM

Proposition 2. Let a be the vector-parameter of a generic SU(2) element
(i.e., it is not associated with some half-turn, a2 = 4). Then the Gibbs vector c,
which represents this rotation in SO(3,R), is given by

c(a) =
a

1− a2

4

· (3.1)

On the other hand, if c is the Gibbs vector, representing a rotation from SO(3,R),
then the preimages of this rotation in SU(2) correspond to the vector parameters

a+(c) =
2(
√
1 + c2 − 1)

c2
c, a−(c) = −

2(
√
1 + c2 + 1)

c2
c. (3.2)

Moreover, they are connected by the formulas

a+ = − 4

a2−
a−, a− = − 4

a2+
a+, a2−a

2
+ = 16. (3.3)
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Proof. We have to find a Gibbs parameter c such that

R(c) =
2

1 + c2




1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c1c3 − c2 c2c3 + c1 1 + c23


− I = RU(a) (3.4)

and where RU(a) is given by (2.35). Equating the corresponding matrix elements,

R(c)32 − R(c)23 = RU(a)32 − RU(a)23

R(c)13 − R(c)31 = RU(a)13 − RU(a)31
(3.5)

R(c)21 − R(c)12 = RU(a)21 − RU(a)12

trR(c) = trRU(a)

we end up with the following equalities

2

1 + c2
c1 =

8(4− a2)

(4 + a2)
2 a1 ,

2

1 + c2
c2 =

8(4− a2)

(4 + a2)
2 a2 ,

2

1 + c2
c3 =

8(4− a2)

(4 + a2)
2 a3 ,

2(3 + c2)

1 + c2
=

8(−8a2)
(4 + a2)

2 + 6.

(3.6)

From (3.6) we have

2

1 + c2
c =

8(4− a2)

(4 + a2)
2 a (3.7)

and separating 1 + c2 in (3.6) we obtain

2

1 + c2
= 2

(
4 + a2
)2 − 16a2

(
4 + a2
)2 = 2

(
4− a2
)2

(
4 + a2
)2 ·

Substituting this expression in (3.7), we obtain (3.1), which is the first statement
in the proposition. To invert (3.1), we firstly calculate c2 and get

c2 =
a2

(
1− a2

4

)2
·

If a2 &= 4 (i.e., a does not represent a half-turn), this equality is equivalent to the
following quadratic equation for a2:

(a2)2c2 − 8(2 + c2)a2 + 16c2 = 0. (3.8)

The solutions of (3.8) are

a2± =
4(2 + c2)∓ 8

√
1 + c2

c2
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and hence

a2±
4

=
2 + c2 ∓ 2

√
1 + c2

c2
= 1 +

2∓ 2
√
1 + c2

c2
, 1− a2±

4
= −2(1∓

√
1 + c2)

c2
· (3.9)

Substituting this result in (3.1) we obtain (3.2). It follows from (3.2) that

a+ =
2 (
√
1 + c2 − 1)

c2
c = −

√
1 + c2 − 1√
1 + c2 + 1

a−

(3.10)

= −2 + c2 − 2
√
1 + c2

c2
a− = −a2+

4
a− ,

therefore a− = − 4

a2+
a+. From a2− =

16

a4+
a2+, a

2
−a

2
+ = 16 we find a+ = − 4

a2−
a−,

which completes the proof of Proposition 2. �

The relations obtained above are depicted in Fig. 2. Notice that a± and c

actually act between the algebras and also that the Cayley map is not surjective
onto the given groups, see equations (2.8) and (2.33).

su(2)

SU(2)

so(3)

SO(3)

Cayley

(2.28)
Cayley

(2.5)

1 : 1, (2.20)

2 : 1

c = c(a), (3.1)

a
−

= a
−
(c), (3.2)

a+ = a+(c), (3.2)

Figure 2: Informal depiction of the relations between the Lie algebras su(2) and
so(3) and the Lie groups SU(2) and SO(3,R).

Viewing a+ and a− as functions of c (see Fig. 3) one concludes that

a+(c) ≤ 2 ≤ a−(c), lim
c→∞

a+(c) = lim
c→∞

a−(c) = 2. (3.11)
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5 10 15 20

1

2

3

4

a−

a+

a±

c

Figure 3: Graphs of a− and a+ as functions of c.

In order to obtain the SU(2) elements U±(c) corresponding to the SO(3,R)
rotation with vector-parameter c, we substitute a±(c) from (3.2) in U(a) from
(2.29) and get

U±(c) = ±
1√

1 + c
2

(
1− ic3 −c2 − ic1
c2 − ic1 1 + ic3

)
. (3.12)

Let c = tan
θ

2
n represent a SO(3,R) rotation at angle θ about the axis n. The

corresponding SU(2) vectors a+(c) and a−(c) are

a+(c) = 2 tan
θ

4
n, a−(c) = −2 tan

2π − θ
4

n. (3.13)

The matrix corresponding to a+ is the familiar axis-angle representation of rotations
in SU(2), i.e.,

U(a+) = U(n, θ) = cos
θ

2
I+ sin

θ

2

(
−in3 −n2 − in1
n2 − in1 in3

)
. (3.14)

In SU(2) the half-turns about the axis n are represented by the matrices

U(±n, π) = ±
(
−in3 −n2 − in1
n2 − in1 in3

)
. (3.15)

In the derived vector-parameter form the half-turns are represented by the vectors
±2n, which are well defined and are of length 2. This is an advantage, because
a half-turns O(n) in the Gibbs vector parameter form of SO(3,R) rotations are
represented by vectors with infinitely large norm and direction ±n. Such vectors
will be referred further on as “rays” and will be denoted by [n] (for more discussion,
see e.g. [2] and [12]). Let R = O(n) be a half-turn about the axis n, represented
by ±n in SU(2). Applying the limit a → 2 in (3.1), we can informally write
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lim
a→±2n

c(a) = [n]. Roughly speaking, the Gibbs parameter, associated with O(n) is

c = limθ→π tan
θ

2
n = [n]. Actually, we have

lim
θ→π

U±(tan
θ

2
n)

(3.12)
= ± lim

c
2→∞

1√
1 + c

2

(
1− ic3 −c2 − ic1
c2 − ic1 1 + ic3

)
(3.15)
= U(±n, π). (3.16)

We observe that if c = tan
θ

2
n represents an infinitesimal SO(3,R) rotation R(n, θ),

then as SU(2) element it is represented by two vectors, one with infinitesimal norm
a+ and the other one a− with infinite norm, i.e.,

lim
c→0

a2+(c) = 0, lim
c→0

a2−(c) =∞. (3.17)

When storing infinitesimal rotations in applications, loss of information may occur
because of the operations performed with very small numbers. Equation (3.17)
offers an alternative way (by usage of a−) for computer storage of infinitesimal
rotations. This is so because in many of the commercial software systems there are
packages for dealing with large numbers.

3.1. COMPATIBILITY OF THE COMPOSITION LAWS IN SU(2) AND SO(3,R)

Recall that a map ϕ : G1 → G2 of the groups G1, G2 is a group homomorphism
if it is compatible with the group operations in G1 and G2 by the rule ϕ(ab) =
ϕ(a)ϕ(b) for all a, b ∈ G1. For an arbitrary subset S1 ⊂ G1, which is not necessarily
a subgroup of G1, we say that a map ψ : S1 → G2 is compatible with the group
operations in G1 and G2 if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ S1.

Proposition 3. Let a and c are some non-zero Gibbs parameters of two

SO(3,R) rotations and such that a.c &= 1. Let

U1(c) =
1√

1 + c2

(
1− ic3 −c2 − ic1
c2 − ic1 1 + ic3

)
, U2(a) =

1√
1 + a2

(
1− ia3 −a2 − ia1
a2 − ia1 1 + ia3

)

be the respective images of a, c under the “+” sections of the maps (??) and (3.12).
Then the equality

U2(a)U1(c) = U(c̃ ) (3.18)

holds up to a sign, i.e., the “+” correspondences are compatible up to a sign with
the group operations in SO(3,R) and SU(2).

Proof. Let U3 = U2(a)U1(c). We will prove that

U3 =
±1√
1 + c̃ 2

(
1− ic̃ 3 −c̃ 2 − ic̃ 1
c̃ 2 − ic̃ 1 1 + ic̃ 3

)
. (3.19)
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Direct multiplication shows that

U3 =
1− a.c√

1 + a2
√
1 + c2

(
α β

−β α

)
, (3.20)

where

α = 1− i
a3 + c3 + a1c2 − a2c1

1− a.c
= 1− ic̃ 3

(3.21)

β = −a2 + c2 + a3c1 − a1c3
1− a.c

− i
a1 + c1 + a2c3 − a3c2

1− a.c
= −c̃ 2 − ic̃ 1.

For c̃ we have that

c̃ 2 =
a2 + c2 + (a× c)2 + 2a.c

(1− a.c)2
=

(1 + c2)(1 + a2)

(1− a.c)2
− 1. (3.22)

Thus

1√
1 + c̃ 2

=
|1− a.c|√

1 + a2
√
1 + c2

. (3.23)

Now from (3.19), (3.20) and (3.23) we get that U2(a)U1(c) = U(c̃ ) up to a sign.
The case a.c = 1 in Proposition 3, as well as the cases where half-turns are involved
in the composition will be treated elsewhere. �

Note that Proposition 3 holds also for the negative signs of the above sections.
If c1, c2 are represent two SO(3,R) rotations and the vectors a1,a2 are defined
by the section a+ in (3.2) then the SO(3,R) vector parameter corresponding to
〈a2,a1〉SU(2) is exactly 〈c2, c1〉SO(3,R), i.e., we have the commutative diagram below.
Therefore, the pull-back of the composition in SO(3,R) to the covering group SU(2)
allows to bypass the singularities in the vector-parameter description of the base
manifold.

(
c2, c1
)

(
a2(c2),a1(c1)

)

c3

a3(c2, c1)

〈c2, c1〉SO(3,R), (2.10)

〈a2(c2), a1(c1)〉SU(2), (2.40)

(3.2)±,± (3.1)

Figure 4: Composition of the three-dimensional rotations through
a pull-back to the covering group SU(2).
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4. CONCLUDING REMARKS

Despite of the attractive simplicity of the composition law for SO(3,R) rota-
tions, neither the half-turns nor the composition of rotations whose Gibbs vector-
parameters have a scalar product equal to one are directly manageable. The de-
rived vector-parametrization of SU(2) has the advantage to represent all rotations
including the half-turns. Table 1 presents the numbers of operations needed for the
composition of two rotations.

Table 1: The numbers of operations necessary to perform when composing two
rotations in various representations.

Representations Multiplications Additions
Memory needed
for the result

SO(3,R)
matrix 27 18 9

vector-parameter 12 12 3

SU(2)
matrix 16 16 4

vector-parameter 28 18 3
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