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We prove that the local theory of conformally flat Riemannian manifolds, which can
be locally isometrically embedded as hypersurfaces in Euclidean or Minkowski space, is
equivalent to the local theory of Riemannian manifolds of quasi-constant sectional cur-
vatures (QC-manifolds). Riemannian QC-manifolds are divided into two basic classes:

with positive or negative horizontal sectional curvatures. We prove that the Rieman-
nian QC-manifolds with positive horizontal sectional curvatures are locally equivalent
to canal hypersurfaces in Euclidean space, while the Riemannian QC-manifolds with
negative horizontal sectional curvatures are locally equivalent to canal space-like hy-
persurfaces in Minkowski space. These results give a local geometric classification of

conformally flat hypersurfaces in Euclidean space and conformally flat space-like hy-
persurfaces in Minkowski space.
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1. INTRODUCTION

Conformally flat n-dimensional Riemannian manifolds appear as hypersurfaces
in two standard models of flat spaces: Euclidean or Minkowski space. Historically,
there were many attempts to describe conformally flat hypersurfaces, especially
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in Euclidean space. Essential steps in this direction were made by Cartan [3],
Schouten [18]. Kulkarni in [15] reached to a partial description of conformally flat
hypersurfaces in Euclideasn space dividing them into: hypersurfaces of constant
curvature; hypersurfaces of revolution; tubes. Yano and Chen proved in [4] that
canal hypersurfaces in Euclidean space, i.e. envelopes of one-parameter families of
hyperspheres, are special conformally flat hypersurfaces. Compact conformally flat
hypersurfaces in Euclidean space were studied in [15] and [6].

In this paper we study the close relation between the local theory of Rie-
mannian manifolds of quasi-constant sectional curvatures and the local theory of
conformally flat Riemannian hypersurfaces in the Euclidean space R

n+1 or in the
Minkowski space R

n+1
1 . We give a local classification of Riemannian manifolds of

quasi-constant sectional curvatures proving that they can locally be embedded as
canal hypersurfaces in R

n+1 or R
n+1
1 . Thus we obtain a geometric description of

conformally flat hypersurfaces in Euclidean space and conformally flat space-like
hypersurfaces in Minkowski space.

Riemannian QC-manifolds are Riemannian manifolds (M, g, ξ) endowed with
a unit vector field ξ besides the metric g, satisfying the curvature condition: the
sectional curvatures at any point of the manifold only depend on the point and the
angle between the section and the vector ξ at that point. All tangent sections at a
given point, which are perpendicular to the vector ξ at that point, have one and the
same sectional curvature. We call these sectional curvatures horizontal sectional
curvatures.

Everywhere in this paper we consider the case dimM = n ≥ 4.

The structural group of Riemannian manifolds (M, g, ξ) is O(n − 1) × 1 and
two Riemannian manifolds (M, g, ξ) and (M ′, g′, ξ′) are equivalent if there exists
a diffeomorphism f : M → M ′ preserving both structures: the metric g and the
vector field ξ. We call such a diffeomorphism a ξ-isometry.

In [11] we proved the following statements:

Any canal hypersurface M in the Euclidean space R
n+1 is a Riemannian QC-

manifold with positive horizontal sectional curvatures.

Any Riemannian QC-manifold with positive horizontal sectional curvatures is
locally ξ-isometric to a canal hypersurface in the Euclidean space R

n+1.

The first problem we treat here is to give a local classification of Riemannian
QC-manifolds with negative horizontal sectional curvatures.

In Section 3 we introduce canal space-like hypersurfaces in the Minkowski space
R
n+1
1 and divide them into three types. In Subsections 3.1 - 3.3 we study these

three types of canal space-like hypersurfaces and show that:

Any canal space-like hypersurface in the Minkowski space R
n+1
1 is a Rieman-

nian QC-manifold with negative horizontal sectional curvatures.

The basic results are proved in Section 4. The local classification of Rie-
mannian QC-manifolds with negative horizontal sectional curvatures is given by
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Theorem 4.1:

Any Riemannian QC-manifold with negative horizontal sectional curvatures is
locally ξ-isometric to a canal space-like hypersurface in the Minkowski space R

n+1
1 .

The second problem we deal with is to obtain a geometric description of con-
formally flat hypersurfaces in Euclidean space and conformally flat space-like hy-
persurfaces in Minkowski space. Using results of Cartan and Schouten, we are able
to bring the second fundamental form of the hypersurface into consideration. This
allows us to give a local geometric classification of conformally flat Riemannian
hypersurfaces in Euclidean or Minkowski space:

Any conformally flat hypersurface in Euclidean space, which is free of umbilical
points, locally is a part of a canal hypersurface.

Any conformally flat space-like hypersurface in Minkowski space, which is free
of umbilical points, locally is a part of a canal space-like hypersurface.

The picture of the local isometric embeddings of a conformally flat Riemannian
manifold into Euclidean or Minkowski space can be described briefly as follows.

Let (M, g) be a conformally flat Riemannian manifold, free of points in which all
sectional curvatures are constant. The manifold (M, g) can be locally isometrically
embedded into R

n+1 (Rn+11 ) if and only if its Ricci operator has two different from
zero eigenvalues at every point: one of them of multiplicity n − 1 and the other
of multiplicity 1. The latter eigenvalue generates a unit vector field ξ, such that
(M, g, ξ) is a Riemannian QC-manifold with positive (negative) horizontal sectional
curvatures. Any two isometrical realizations of (M, g) are locally congruent.

Generalizing, we obtain that a conformally flat Riemannian manifold is locally
isometric to a hypersurface into R

n+1 (Rn+11 ) if and only if its Ricci operator at any
point has a root of multiplicity at least n−1. This fact gives an approach to further
investigations of conformally flat Riemannian manifolds studying the spectrum of
their Ricci operator.

It is interesting to mention Riemannian subprojective manifolds forming a sub-
class of Riemannian QC-manifolds characterized by the condition: the structural
vector field ξ is geodesic. If (M, g, ξ) is a Riemannian subprojective manifold with
scalar curvature τ (dτ $= 0), then the structural vector field ξ is collinear with grad τ .
Any Riemannian subprojective manifold is locally isometric (up to a motion) to a
rotational hypersurface in Euclidean space or in Minkowski space.

2. PRELIMINARIES

Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian manifold with metric g and
a unit vec-tor field ξ. The structural group of these manifolds is O(n − 1) × 1.
TpM and XM will stand for the tangent space to M at a point p and the algebra
of smooth vector fields on M , respectively. The 1-form corresponding to the unit
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vector ξ is denoted by η, i.e. η(X) = g(ξ,X), X ∈ XM . The distribution of the
1-form η is denoted by ∆, i.e.

∆(p) = {X ∈ TpM : η(X) = 0}.

The orthogonal projection of a vector field X ∈ XM onto the distribution ∆
is denoted by the corresponding small letter x, i.e.

X = x+ η(X) ξ. (2.1)

Any section E in TpM determines an angle ∠(E, ξ). Then the notion analogous
to the notion of a Riemannian manifold of constant sectional curvatures is described
as follows [11].

Definition 2.1. A Riemannian manifold (M, g, ξ) (dimM ≥ 3) is said to be of
quasi-constant sectional curvatures (a Riemannian QC-manifold) if for an arbitrary
2-plane E in TpM, p ∈ M , with ∠(E, ξ) = ϕ, the sectional curvature of E only
depends on the point p and the angle ϕ.

Let ∇ be the Levi-Civita connection of the metric g and R be its Riemannian
curvature tensor. The structure (g, ξ) generates the following tensors π and Φ:

π(X,Y, Z, U) = g(Y, Z)g(X,U)− g(X,Z)g(Y, U),

Φ(X,Y, Z, U) = g(Y, Z)η(X)η(U)− g(X,Z)η(Y )η(U)

+ g(X,U)η(Y )η(Z)− g(Y, U)η(X)η(Z); X,Y, Z, U ∈ XM.

These tensors have the symmetries of the curvature tensor R and are invariant
under the action of the structural group of the manifold.

Riemannian manifolds of quasi-constant sectional curvatures are characterized
by the following statement [11]:

Proposition 2.2. A Riemannian manifold (M, g, ξ) is of quasi-constant sec-
tional curvatures if and only if its curvature tensor has the form

R = a π + bΦ, (2.2)

where a and b are some functions on M .

Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian manifold of quasi-constant
sectional curvatures. This means that the curvature tensor R of g has the form
(2.2). If b $= 0 everywhere, then the manifold (M, g, ξ) has the properties [11]:

• The distribution of the function a is the structural distribution ∆:

da = ξ(a) η. (2.3)
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• The distribution ∆ is involutive, i.e.

dη(x, y) = 0, x, y ∈ ∆. (2.4)

• If θ is the 1-form defined by θ(X) = dη(ξ,X), X ∈ XM , then dη = θ∧ η and

θ(x) = dη(ξ, x) =
1

b
db(x), x ∈ ∆. (2.5)

• The integral submanifolds of the distribution ∆ are totally umbilical in M ,
i.e.

∇xξ = k x, k =
ξ(a)

2b
, x ∈ ∆. (2.6)

• The distribution of the function k is the structural distribution ∆:

dk = ξ(k) η. (2.7)

Let Sp be the maximal integral submanifold of the distribution ∆, containing
a given point p ∈ M , and K be the curvature tensor of the Riemannian manifold
(Sp, g). Then we have:

(i) All sections tangent to Sp have one and the same sectional curvature a(p)
with respect to the tensor R. We say that the function a(p) is the horizontal
sectional curvature of the manifold.

(ii) All sections tangent to Sp have one and the same sectional curvatures
a(p) + k2(p) with respect to the tensor K.

Proposition 2.2 implies the following statement.

Proposition 2.3. A Riemannian QC-manifold (M, g, ξ), free of points in
which the sectional curvatures are constant, i.e. b $= 0, is characterized by the
following two conditions:

- (M, g) is conformally flat;

- the Ricci operator ρ of (M, g) at any point has two non-zero roots, namely:

(n− 1)a+ b, of multiplicity n− 1, which generates the distribution ∆:

ρ(x) = [(n− 1)a+ b]x, x ∈ ∆;

(n− 1)(a+ b), of multiplicity 1, which generates the structural vector field ξ:

ρ(ξ) = (n− 1)(a+ b) ξ.

Proposition 2.3 implies that the notion of a QC-manifold is a notion in Rie-
mannian geometry. The next statement is an immediate consequence from this
proposition.
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Theorem 2.4. Let (M, g, ξ) and (M̄, ḡ, ξ̄) be two QC-manifolds free of points
in which the sectional curvatures are constant. If ϕ : M → M̄ is an isometry,
then it is a ξ-isometry, i.e. ϕ∗ξ = ξ̄.

The above mentioned geometric functions a and a + k2 on (M, g, ξ) generate
four basic classes of Riemannian manifolds of quasi-constant sectional curvatures
characterized by the conditions:

1) a > 0;

2) a < 0, a+ k2 > 0;

3) a+ k2 < 0;

4) a+ k2 = 0.

The class of Riemannian QC-manifolds contains the remarkable subclass of
Riemannian subprojective manifolds. V. Kagan [12, 13] called an n-dimensional
space An with symmetric linear connection ∇ a subprojective space if there ex-
ists locally a coordinate system with respect to which every geodesic of ∇ can be
represented by n − 2 linear equations and another equation, that need not be lin-
ear (see also [19]). P. Rachevsky [17] proved necessary and sufficient conditions
characterizing Riemannian subprojective spaces. T. Adati [1] studied Riemannian
subprojective manifolds concerning concircular and torse-forming vector fields.

As Riemannian QC-manifolds (M, g, ξ) the Riemannian subprojective mani-
folds are characterized by any of the following additional properties [11]:

i) db = ξ(b) η;

ii) the vector field ξ is geodesic (on M);

iii) the 1-form η is closed.

Let τ be the scalar curvature of a Riemannian subprojective manifold. If
dτ $= 0, then the structural distribution ∆ is the distribution of the 1-form dτ and
the vector field grad τ is an eigenvector of the Ricci operator at every point.

3. CANAL SPACE-LIKE HYPERSURFACES IN MINKOWSKI SPACE

A hypersurface M (dimM = n) in the Minkowski space R
n+1
1 is said to be

space-like (or Riemannian) if the induced metric on M is positive definite. The
normal vector field to a space-like hypersurface M in the Minkowski space R

n+1
1 is

necessarily time-like.

In this section we study the envelope of a one-parameter family of space-like
hyperspheres {Sn(s)}, s ∈ J ⊂ R in R

n+1
1 , given as follows

Sn(s) : (Z − z(s))2 = −R2(s), R(s) > 0,
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where z = z(s) is the center and R(s) is the radius of the corresponding hypersphere
Sn(s).

Let the cross-section of a space-like hypersphere Sn with a hyperplane in the
Minkowski space R

n+1
1 be an (n− 1)-dimensional surface. We have:

1) The cross-section of a space-like hypersphere Sn with a space-like hyper-
plane Rn is a Euclidean hypersphere Sn−1 in R

n, and Sn−1 is of positive
constant sectional curvatures.

2) The cross-section of a space-like hypersphere Sn with a time-like hyper-
plane Rn1 is a hyperbolic hypersphere Hn−1 in R

n
1 , and H

n−1 is of negative
constant sectional curvatures.

3) The cross-section of a space-like hypersphere Sn with a light-like hyper-
plane Rn0 is a parabolic hypersphere Pn−1 in R

n
0 , and Pn−1 is of zero

sectional curvatures.

We shall describe in more details the cross-section Pn−1 of a space-like hy-
persphere Sn(z,R) with a light-like hyperplane R

n
0 . It is clear that R

n
0 can not

pass through the center z of Sn. The pair (Rn0 , g) is an n-dimensional affine space
with metric g, whose rank equals n − 1. This means that R

n
0 contains a light-

like direction U , determined by a given light-like vector t. The light-like direction
U can also be considered as a point at infinity in the infinite hyperplane of Rn0 .
Any hyperplane En−1 of R

n
0 , which does not contain U , is a Euclidean hyper-

plane, i.e. it can be endowed with a basis e1, . . . , en−1, satisfying the property
g(ei, ej) = δij , i, j = 1, . . . , n− 1, δij being the Kronecker’s deltas.

Let En−1 be a Euclidean hyperplane in R
n
0 with a fixed point T ∈ En−1

and an orthonormal basis e1, . . . , en−1. Adding the light-like vector t, we obtain
a coordinate system T, e1, . . . , en−1, t in R

n
0 . If Z(z1, . . . , zn−1; zn) is the position

vector of any point Z in R
n
0 , then we consider the quadrics Pn−1(q) in R

n
0 , given

by the equation

Pn−1(q) : z21 + · · ·+ z2n−1 − 2q zn = 0, q = const > 0.

The one-parameter family of quadrics Pn−1(q) is characterized by the proper-
ties:

(i) Pn−1(q) is a quadric, which is tangent to the infinite hyperplane of Rn0 at
U and to the hyperplane En−1 at T ;

(ii) The cross-section of Pn−1(q) with any Euclidean hyperplane zn = const>0
(parallel to En−1) is a Euclidean hypersphere in this hyperplane.

We call these quadrics parabolic hyperspheres of the light-like hyperplane (Rn0 , g).

The parabolic hyperspheres have the following remarkable property:
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Proposition 3.1. Any parabolic hypersphere in a light-like hyperplane R
n
0 is

a flat (n− 1)-dimensional Riemannian manifold.

Proof: Since the only tangent hyperplane to the parabolic hypersphere Pn−1(q),
which contains U , is the infinite hyperplane of Rn0 , then (Pn−1(q), g) is an (n− 1)-
dimensional Riemannian manifold.

We consider the projection

π : Pn−1(q) → En−1

of the parabolic hypersphere onto the Euclidean hyperplane En−1, parallel to the
direction U . It is an easy verification that the projection π is an isometry between
the Riemannian manifolds (Pn−1(q), g) and (En−1, g), excluding the common point
T . This implies the assertion. �

Next, we call the (n−1)-dimensional cross-sections of a space-like hypersphere
with a hyperplane spheres of codimension two and use the common denotation
Sn−1.

Let M = {Sn−1(s)}, s ∈ J ⊂ R be a space-like hypersurface in R
n+1
1 , which is

a one-parameter family of spheres Sn−1(s) of codimension two. Any sphere Sn−1(s)
is said to be a spherical generator of M .

At first canal surfaces in R
3 have been introduced and studied in the classical

works of Enneper [7, 8, 9, 10]. We use the following definition:

Definition 3.2. A space-like hypersurface M = {Sn−1(s)}, s ∈ J ⊂ R in
R
n+1
1 is said to be a canal space-like hypersurface if the normals to M at the points

of any fixed spherical generator pass through a fixed point.

Let now Z = Z(s;u1, u2, . . . , un−1), s ∈ J, (u1, u2, . . . , un−1) ∈ D be the
position vector field of a canal space-like hypersurface M . The partial derivatives
of Z are denoted as follows: Zs = ∂Z

∂s
, Zi = ∂Z

∂ui ; i = 1, . . . , n − 1, and similar
denotations are used for other vector functions.

Denoting by z(s), s ∈ J the common point of the normals toM at the points of
any spherical generator Sn−1(s), we consider the space-like hypersphere Sn(s) with
center z(s) containing Sn−1(s). If R(s) is the radius of Sn(s), then the position
vector Z of M satisfies the equality

(Z − z(s))2 = −R2(s), R(s) > 0, s ∈ J ⊂ R. (3.1)

Differentiating (3.1) with respect to the parameter s, we get

(Z − z(s))Zs − (Z − z(s))z′(s) = −R(s)R′(s). (3.2)

Under the condition that the normal toM at any point of a fixed generator Sn−1(s)
is collinear with Z − z(s), the equalities (3.1) and (3.2) are equivalent to

(Z − z(s))2 = −R2(s),

(Z − z(s))z′(s) = R(s)R′(s).
(3.3)

116 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 109–132.



A space-like hypersurface M in R
n+1
1 is said to be the envelope of a one-

parameter family of space-like hyperspheres {Sn(z(s), R(s))}, s ∈ J if the position
vector Z(s;u1, . . . , un−1) of M satisfies the equations (3.3).

Let M be a space-like hypersurface, which is the envelope of a one-parameter
family of space-like hyperspheres {Sn(z(s), R(s))}, s ∈ J . It follows from (3.3) that
M is a one parameter family of spheres Sn−1(s), s ∈ J . Differentiating the first
equality of (3.3), we have

(Z − z)Zs = 0, (Z − z)Zi = 0, i = 1, . . . , n− 1,

which shows that the time-like vector field Z − z at the points of any generator
Sn−1(s) of M is normal to both: the hypersurface M and the hypersphere Sn(s).

Hence, as in the classical case [7, 8, 9, 10, 20], we have

Lemma 3.3. A space-like hypersurface M in R
n+1
1 is canal if and only if it is

the envelope of a one-parameter family of space-like hyperspheres.

Let M be a space-like canal hypersurface, given by (3.3). We denote the
tangent vector to the curve of centers z(s) as usual by t(s) = z′(s). The unit
normal vector field N to M is collinear with Z − z and we always choose

N = −Z − z

R
. (3.4)

In view of (3.3), the vector field N has the properties:

N2 = −1, Nt = −R′.

Differentiating (3.4), we have

Ni = −
1

R
Zi, i = 1, . . . , n− 1,

Zs +RNs = t−R′N.

(3.5)

The second equality in (3.5) means that the vector field t−R′N is tangent to
M . Since the normals toM at the points of a spherical generator cannot be parallel
to the vector t, then the vector field t − R′N is space-like and (t − R′ N)2 > 0.
Furthermore, the second equality in (3.3) implies that t Zi = 0, i = 1, ..., n−1, and
therefore t−R′N is perpendicular to all Zi.

We introduce the unit tangent vector field ξ as follows:

ξ :=
1

√

(t−R′ N)2
(t−R′ N). (3.6)

Then the distribution ∆ := {x ∈ TpM : x ⊥ξ} is exactly ∆ = span{Z1, . . . , Zn−1}.
For the purposes of our investigations we need to introduce three types of canal

space-like hypersurfaces.
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Definition 3.4. A canal space-like hypersurface M in R
n+1
1 , given by (3.3), is

said to be a canal space-like hypersurface of elliptic, hyperbolic or parabolic type if
the curve z = z(s), s ∈ J of the centers of the hyperspheres is time-like, space-like
or light-like, respectively.

Rotational space-like hypersurfaces are introduced in a natural way:

Definition 3.5. A canal space-like hypersurface M in R
n+1
1 , given by (3.3),

is said to be a rotational space-like hypersurface if the curve z = z(s), s ∈ J of the
centers of the hyperspheres lies on a straight line.

Any of the three types of canal space-like hypersurfaces generates the corre-
sponding subclass of rotational space-like hypersurfaces.

3.1. CANAL SPACE-LIKE HYPERSURFACES OF ELLIPTIC TYPE IN MINKOWSKI

SPACE

Let M be a canal space-like hypersurface in R
n+1
1 of elliptic type, given by

(3.3). The curve of centers z = z(s), s ∈ J , parameterized by its natural parameter,
satisfies the condition z′2 = t2 = −1.

Since (t−R′ N)2 = R′2 − 1 > 0, then the function R(s) in the case of a canal
space-like hypersurface of elliptic type satisfies the inequalities

R2(s) > 0, R′2(s)− 1 > 0; s ∈ J.

Next we find the second fundamental form of M .

Let ∇′ be the standard flat Levi-Civita connection in R
n+1

1
and h be the second

fundamental tensor of M . The Levi-Civita connection of the induced metric on the
hypersurface M is denoted by ∇. Taking into account (3.5) and (3.6), we get

∇′

Zi
N = Ni = −

1

R
Zi, ∇′

Zi
ξ = ξi = −

R′

√
R′2 − 1

Ni =
R′

R
√
R′2 − 1

Zi.

These equalities can be written as follows:

∇′

xN = − 1

R
x, ∇′

xξ = ∇xξ =
R′

R
√
R′2 − 1

x = k x, x ∈ ∆,

and the function k is

k =
R′

R
√
R′2 − 1

. (3.1.1)

Hence, the shape operator A of M satisfies

Ax =
1

R
x, x ∈ ∆. (3.1.2)

118 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 109–132.



Since g(N,N) = −1, then

h(x, y) = −g(Ax, y) = − 1

R
g(x, y), x, y ∈ ∆. (3.1.3)

The equality (3.1.2) means that the tangent space ∆ is invariant with respect
to the shape operator A. This implies that the vector field ξ is also an eigenvector
field of A, i.e.

Aξ = ν ξ. (3.1.4)

Assuming the standard summation convention, we can put

ξ = φiZi + φZs, φ $= 0 (3.1.5)

for some functions φ1, . . . , φn−1; φ on M . Since ξ is perpendicular to all Zi, we
have

ξZs =
1

φ
. (3.1.6)

Taking into account (3.1.5), we compute

∇′

ξN = φiNi + φNs = −
1

R
φiZi + φNs. (3.1.7)

On the other hand, because of (3.5) and (3.6), we have

Zs +RNs =
√

R′2 − 1 ξ. (3.1.8)

In view of (3.1.5) and (3.1.8) equality (3.1.7) implies that

∇′

ξN = − 1

R
(1− φ

√

R′2 − 1)ξ = −ν ξ

and

ν − 1

R
= −

√
R′2 − 1

R
φ . (3.1.9)

Using (3.1.2), (3.1.3) and (3.1.4), we obtain the shape operator of M :

AX =
1

R
X +

(

ν − 1

R

)

η(X) ξ, X ∈ XM.

The last equality and (3.1.9) imply that the second fundamental tensor of M
has the form

h(X,Y ) = − 1

R
g(X,Y ) + φ

√
R′2 − 1

R
η(X)η(Y ), X, Y ∈ XM. (3.1.10)

Further we replace (3.1.10) into the Gauss equation for the hypersurface M ,
and taking into account (3.1.6), we obtain the curvature tensor R of a canal space-
like hypersurface M of elliptic type:

R = − 1

R2
π +

√
R′2 − 1

R2(ξZs)
Φ = aπ + bΦ. (3.1.11)
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Now (3.1.11) and (3.1.1) imply that

a = − 1

R2
< 0, a+ k2 =

1

R2(R′2 − 1)
> 0.

Thus we obtained the following

Proposition 3.6. Any canal space-like hypersurface of elliptic type in R
n+1
1 is

a Riemannian manifold of quasi-constant sectional curvatures with functions a < 0
and a+ k2 > 0.

Next we prove that the rotational space-like hypersurfaces of elliptic type are
Riemannian subprojective manifolds satisfying the conditions in Proposition 3.6.

Using (3.1.8), we have

ξZs +R (ξNs) =
√

R′2 − 1.

In order to compute the function ξNs, we use the equality ξNs + ξsN = 0.
Differentiating (3.6) by s, we find

ξsN =
t′N +R′′

√
R′2 − 1

.

Therefore

ξZs =
RR′′ +R′2 − 1 +R(t′N)√

R′2 − 1

and

b =
R′2 − 1

R2{RR′′ +R′2 − 1 +R(t′N)} .

According to Proposition 3.6, the hypersurface M is a Riemannian QC-manifold.
Any Riemannian QC-manifold is subprojective if and only if the functions a and b
generate one and the same distribution. Therefore, M is subprojective if and only
if the function b does not depend on the parameters ui; i = 1, . . . , n− 1, i.e. t′ = 0.
Since t′ = 0 characterizes a straight line c, we obtain the following statement.

Proposition 3.7. A canal space-like hypersurface M of elliptic type in R
n+1
1

is a Riemannian subprojective manifold if and only if M is a rotational space-like
hypersurface of elliptic type.

Combining with Proposition 3.6, we have

Proposition 3.8. Any rotational space-like hypersurface of elliptic type in
R
n+1
1 is a subprojective Riemannian manifold with functions a < 0 and a+ k2 > 0.

The curvature tensor of a rotational space-like hypersurface of elliptic type has
the form

R = − 1

R2
π +

R′2 − 1

R2(RR′′ +R′2 − 1)
Φ.
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3.2. CANAL SPACE-LIKE HYPERSURFACES OF HYPERBOLIC TYPE IN MINKOWSKI

SPACE

Let M be a canal space-like hypersurface of hyperbolic type, given by (3.3).
The curve of centers z = z(s), s ∈ J , parameterized by its natural parameter,
satisfies the condition z′2 = t2 = 1.

In the case considered, the inequality (t − R′ N)2 = R′2 + 1 > 0 is always
satisfied. Hence, R(s) satisfies the only condition R(s) > 0.

We compute

∇′

xN = − 1

R
x, ∇′

xξ = ∇xξ =
R′

R
√
R′2 + 1

x = k x, x ∈ ∆,

where the function k(s) is

k =
R′

R
√
R′2 + 1

. (3.2.1)

Therefore,

Ax =
1

R
x, x ∈ ∆ (3.2.2)

and the vector field ξ is an eigenvector for A:

Aξ = ν ξ, (3.2.3)

Putting ξ = φiZi + φZs, we compute

∇′

ξN = − 1

R
φiZi + φNs,

and taking into account that

Zs +RNs =
√

R′2 + 1 ξ,

we find

∇′

ξN = − 1

R
(1− φ

√

R′2 + 1)ξ = −ν ξ,

and

ν =
1

R
(1− φ

√

R′2 + 1).

Using (3.2.2) and (3.2.3), we obtain the second fundamental form h of the
hypersurface M :

h = − 1

R
g + φ

√
R′2 + 1

R
η ⊗ η.

Applying the Gauss equation and the equality φ (ξZs) = 1, we calculate the
curvature tensor of the hypersurface M .

R = − 1

R2
π +

√
R′2 + 1

R2 (ξZs)
Φ = aπ + bΦ.
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Therefore, a = −1/R2. In view of (3.2.1), we find

a+ k2 =
−1

R2(R′2 + 1)
< 0.

Thus we obtained the following statement.

Proposition 3.9. Any canal space-like hypersurface of hyperbolic type in R
n+1
1

is a Riemannian manifold of quasi-constant sectional curvatures with function
a+ k2 < 0.

Next we prove that the rotational space-like hypersurfaces of hyperbolic type
are Riemannian subprojective manifolds satisfying the condition in Proposition 3.9.

Differentiating (3.6) with respect to s, we compute

ξsN =
t′N +R′′

√
R′2 + 1

. (3.2.4)

Using the equality ξsN + ξNs = 0, (3.2.4) and (3.5), we find

ξZs =
RR′′ +R′2 + 1 +R (t′N)√

R′2 + 1

and

b =
R′2 + 1

R2{RR′′ +R′2 + 1 +R (t′N)} .

Applying similar arguments as in Subsection 3.1, we conclude that M is sub-
projective if and only if t′ = 0, which characterizes a straight line c.

Thus we obtained the following statement.

Proposition 3.10. A canal space-like hypersurface M of hyperbolic type in
R
n+1
1 is a Riemannian subprojective manifold if and only if M is a rotational space-

like hypersurface of hyperbolic type.

Combining with Proposition 3.9, we have

Proposition 3.11. Any rotational space-like hypersurface of hyperbolic type
in R

n+1
1 is a subprojective Riemannian manifold with function a+ k2 < 0.

The curvature tensor of a rotational space-like hypersurface of hyperbolic type
has the form

R = − 1

R2
π +

R′2 + 1

R2(RR′′ +R′2 + 1)
Φ.
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3.3. CANAL SPACE-LIKE HYPERSURFACES OF PARABOLIC TYPE IN MINKOWSKI

SPACE

LetM be a canal space-like hypersurface of parabolic type, given by (3.3). The
curve of centers z = z(s), s ∈ J , satisfies the condition z′2 = t2 = 0.

In this case (t−R′ N)2 = R′2 > 0 and the function R(s) satisfies the conditions
R(s) > 0 and R′(s) $= 0.

Next we find the second fundamental form of M .

We compute

∇′

xN = − 1

R
x, ∇′

xξ = ∇xξ =
1

R
x = kx, x ∈ ∆

and find

Ax =
1

R
x, x ∈ ∆, (3.3.1)

k =
1

R
(3.3.2)

and
Aξ = ν ξ. (3.3.3)

Further we again put
ξ = φiZi + φZs

and compute

∇′

ξN = φiNi + φNs = −
1

R
φiZi + φNs, i = 1, 2, . . . , n− 1. (3.3.4)

Using the equality
Zs = R′ ξ −RNs,

we obtain from (3.3.4) that

∇′

ξN = − 1

R
(1− φR′)ξ = −ν ξ,

and

ν =
1

R
(1− φR′). (3.3.5)

Now equalities (3.3.1), (3.3.3) and (3.3.5) imply that

h = − 1

R
g + φ

R′

R
η ⊗ η.

Finally, replacing h into the Gauss equation and using the equality φ (ξZs) = 1,
we find the curvature tensor of the hypersurface M in the form

R = − 1

R2
π +

R′

R2 (ξZs)
Φ = aπ + bΦ,
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which shows that M is a Riemannian QC-manifold with function a = −1/R2. In
view of (3.3.2) we find

a+ k2 = 0.

Thus we obtained the following statement.

Proposition 3.12. Any canal space-like hypersurface of parabolic type in
R
n+1
1 is a Riemannian manifold of quasi-constant sectional curvatures with function

a+ k2 = 0.

Next we prove that the rotational space-like hypersurfaces of parabolic type are
Riemannian subprojective manifolds satisfying the condition in Proposition 3.12.

Differentiating (3.6) with respect to s, we get

ξsN =
t′N +R′′

R′
. (3.3.6)

Using the equality ξsN + ξNs = 0, (3.3.6) and (3.5), we find

ξZs =
RR′′ +R′2 +R′ (t′N)

R′

and

b =
R′2

R2{RR′′ +R′2 +R′ (t′N)} .

Applying similar arguments as in Subsection 3.1, we conclude that M is sub-
projective if and only if t′ = 0, which characterizes a straight line c.

Thus we obtained the following statement.

Proposition 3.13. A canal space-like hypersurface M of parabolic type in
R
n+1
1 is a Riemannian subprojective manifold if and only if M is a rotational space-

like hypersurface of parabolic type.

Combining with Proposition 3.12, we have

Proposition 3.14. Any rotational space-like hypersurface of parabolic type in
R
n+1
1 is a subprojective Riemannian manifold with function a+ k2 = 0.

The curvature tensor of a rotational space-like hypersurface of parabolic type
has the form

R = − 1

R2
π +

R′2

R2(RR′′ +R′2)
Φ.
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4. A LOCAL CLASSIFICATION OF RIEMANNIAN QC-MANIFOLDS

Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian QC-manifold. Then the
Riemannian curvature tensor R of M has the form

R = aπ + bΦ. (4.1)

We consider manifolds free of points in which the tensor R is of constant
sectional curvatures, i.e. b $= 0 in all points of M .

We note that the condition a = 0 implies that b = 0.

In [11] we proved that a Riemannian QC-manifold with positive horizontal
sectional curvatures, i.e. a > 0, can be locally embedded as a canal hypersurface
in Euclidean space R

n+1.

In this section we study Riemannian QC-manifolds with negative horizontal
sectional curvatures, i.e. a < 0.

The basic step in our classification of Riemannian QC-manifolds is the following
theorem.

Theorem 4.1. Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian QC-manifold
with curvature tensor (4.1) satisfying the conditions:

b $= 0, a < 0.

Then the manifold is locally ξ-isometric to a canal space-like hypersurface in R
n+1
1 .

Moreover, the manifold is locally ξ-isometric to a canal space-like hypersurface
of elliptic, hyperbolic or parabolic type, according to

a+ k2 > 0, a+ k2 < 0 or a+ k2 = 0,

respectively.

Proof. Under the conditions of the theorem the curvature tensor of the manifold
M has the form (4.1) and all equalities (2.3) - (2.7) are valid. We put

α =
√
−a, β = − b√

−a

and consider the symmetric tensor

h =
√
−a g − b√

−a η ⊗ η = α g + β η ⊗ η (4.2)

on M .

An immediate verification shows that the curvature tensor R of the manifold
(M, g, ξ) has the following construction

R(X,Y, Z, U) = −{h(Y, Z)h(X,U)− h(X,Z)h(Y, U)}, (4.3)
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i.e.
R = −(α2 π + αβ Φ), a = −α2, b = −αβ.

We shall show that the tensor h satisfies the Codazzi equation

(∇′

Xh)(Y, Z)− (∇′

Y h)(X,Z) = 0, X, Y ∈ XM. (4.4)

Taking into account (4.2), we calculate

(∇′

Xh)(Y, Z)− (∇′

Y h)(X,Z) = dα(X) g(Y, Z)− dα(Y ) g(X,Z)

+ (dβ(X) η(Y )− dβ(Y ) η(X)) η(Z)

+β dη(X,Y ) η(Z)

+β (η(Y )(∇′

Xη)(Z)− η(X)(∇′

Y η)(Z)).

(4.5)

We prove that the right hand side of (4.5) is identically zero. Since any tangent
vector is decomposable as in (2.1), we divide the proof into four steps. Taking into
account that a = −α2, b = −αβ, we apply equalities (2.3) - (2.7) and obtain
consequently:

1) If X = x, Y = y, Z = z, then the right hand side of (4.5) reduces to

dα(x) g(y, z)− dα(y) g(x, z),

which is zero because of (2.3).

2) If X = x, Y = y, Z = ξ, then the right hand side of (4.5) reduces to

β dη(x, y),

which is zero in view of (2.4).

3) If X = x, Y = ξ, Z = ξ, then the right hand side of (4.5) reduces to

dβ(x) + β dη(x, ξ),

which is zero as a consequence of (2.5).

4) If X = ξ, Y = y, Z = z, then the right hand side of (4.5) reduces to

ξ(α) g(y, z)− β(∇′

yη)(z),

which is zero because of (2.6).

Combining the above cases 1) - 4), we conclude that the right hand side of (4.5)
is equal to zero for all X,Y, Z ∈ XM , i.e. the tensor h satisfies (4.4) identically.

Now we can apply the fundamental embedding theorem for hypersurfaces in
R
n+1
1 and obtain that the Riemannian QC-manifold (M, g, ξ) can be locally em-

bedded as a hypersurface in the Minkowski space R
n+1
1 .
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If N is the unit normal vector field to a hypersurface with second fundamental
form h, then the curvature tensor R of this hypersurface satisfies the identity

R(X,Y, Z, U) = g(N,N) {h(Y, Z)h(X,U)− h(X,Z)h(Y, U)}.

Comparing with (4.3) we obtain that the Riemannian QC-manifold (M, g, ξ) is
embedded locally as a space-like hypersurface in R

n+1
1 . Further, we denote this

hypersurface again with (M, g, ξ).

Now (M, g, ξ) is a space-like hypersurface in R
n+1
1 , whose second fundamental

form h satisfies (4.2).

Next we prove that M is locally a part of a space-like canal hypersurface in
R
n+1
1 .

Let Z be the position vector field of M and p be a fixed point in M . Denote
by Sp the maximal integral submanifold of the distribution ∆ containing p. Using
the property dα = ξ(α) η, we get α = const on Sp. Then the equality

∇′

xN = −αx

implies that the vector function Z − (1/α)N is constant at the points of Sp. We
set

z = Z − 1

α
N,

and conclude that Sp lies on the time-like hypersphere Sn with center z and radius
R = (1/α), and both hypersurfaces, M and Sn, have the same normals at the
points of Sp.

Since the distribution ∆ determines a one-parameter family of submanifolds
Qn−1(s), s ∈ J in a neighborhood U of p, then U is a part of the envelope of this
family.

Finally we apply Propositions 3.6, 3.9, 3.12 and obtain the second part of the
theorem. �

Applying Theorem 4.1, we obtain immediately

Theorem 4.2. Let (M, g, ξ) (dimM = n ≥ 4) be a subprojective Riemannian
manifold with curvature tensor (4.1) satisfying the conditions:

b $= 0, a < 0.

Then the manifold is locally ξ-isometric to a rotational space-like hypersurface in
R
n+1
1 .

Moreover, the manifold is locally ξ-isometric to a rotational space-like hyper-
surface of elliptic, hyperbolic or parabolic type, according to

a+ k2 > 0, a+ k2 < 0 or a+ k2 = 0,

respectively.
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5. CONFORMALLY FLAT RIEMANNIAN HYPERSURFACES IN
EUCLIDEAN OR MINKOWSKI SPACE

5.1. CONFORMALLY FLAT HYPERSURFACES IN EUCLIDEAN SPACE

A hypersurface M in Euclidean space is said to be quasi-umbilical [5] if its
second fundamental form h satisfies the equality

h = α g + β η ⊗ η (5.1)

for some functions α $= 0, β $= 0, and a unit 1-form η on M . The close relation
between conformally flat hypersurfaces in Euclidean space from one hand side,
and quasi-umbilical hypersurfaces in R

n+1 from another hand side, is the following
statement [3, 18] (see also [16]):

Lemma 5.1. (Cartan - Schouten) Let M be a conformally flat hypersurface
in R

n+1. Then the shape operator of M at any point has a root of multiplicity at
least n− 1.

As a result of Lemma 5.1 we have

Lemma 5.2. Any conformally flat hypersurface M in Euclidean space, which
is free of umbilical points, is quasi-umbilical.

Proof. Let A be the shape operator of the hypersurface M . Since M is free
of umbilical points, then according to Lemma 5.1 the operator A has at any point
two different eigenvalues α and α+ β of multiplicity n− 1 and 1, respectively. Let
ξ be the unit eigenvector field, corresponding to the function α + β. Denoting by
η the 1-form, corresponding to ξ with respect to the metric g, we obtain (5.1). �

Equality (5.1) implies that the curvature tensor R of M has the form

R = α2 π + αβ Φ ; α2 > 0, αβ $= 0,

i.e. (M, g, ξ) is a Riemannian QC-manifold with positive horizontal sectional cur-
vatures.

Applying Proposition 3 [11], we obtain:

Theorem 5.3. Any conformally flat hypersurface M in R
n+1, which is free

of umbilical points, locally lies on a canal hypersurface.

If (M, g) is a conformally flat hypersurface in R
n+1, then the manifold (M, g)

admits a unit vector field ξ, such that (M, g, ξ) is a Riemannian QC-manifold with
positive horizontal sectional curvatures a > 0. Any two locally isometric confor-
mally flat hypersurfaces are locally ξ-isometric, i.e. rigid. Taking into account
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Theorem 2.4, we obtain that any isometric embedding of a conformally flat Rie-
mannian manifold into R

n+1 is locally determined up to a motion. We also recall
the results of R. Beez [2] and W. Killing [14]:

A hypersurface in the Euclidean space is rigid if at least three principal cur-
vatures are different from zero at each point of it, i.e. the hypersurface has type-
number ≥ 3 at each point.

Thus, we obtained that

The local theory of conformally flat Riemannian manifolds, isometrically em-
bedded as hypersurfaces in Euclidean space, is equivalent to the local theory of Rie-
mannian QC-manifolds with positive horizontal sectional curvatures.

Taking into account the local classification of hypersurfaces in Euclidean space
of constant sectional curvature and Theorem 5.3, we obtain a local geometric clas-
sification of conformally flat hypersurfaces in R

n+1:

Theorem 5.4. Any conformally flat hypersurface M in R
n+1 is locally a part

of one of the following hypersurfaces:

(i) hyperplane (α = β = 0);

(ii) hypersphere (α $= 0, β = 0);

(iii) developable hypersurface (α = 0, β $= 0);

(iv) canal hypersurface (α $= 0, β $= 0).

5.2. CONFORMALLY FLAT SPACE-LIKE HYPERSURFACES IN MINKOWSKI SPACE

Let M be a space-like hypersurface in Minkowski space with second funda-
mental form h. Similarly to the Euclidean case, we call the hypersurface M quasi-
umbilical if

h = α g + β η ⊗ η (5.2)

for some functions α $= 0, β $= 0, and a unit 1-form η on M .

The proof of Lemma 5.1 is also valid without any essential changes for confor-
mally flat hypersurfaces in Minkowski space.

Lemma 5.5. Let M be a conformally flat space-like hypersurface in R
n+1
1 .

Then the shape operator of M at any point has a root of multiplicity at least n− 1.

Analogously to Subsection 5.1., Lemma 5.5 implies the following statement.

Lemma 5.6. Any conformally flat space-like hypersurface M in Minkowski
space, which is free of umbilical points, locally is quasi-umbilical.

Equality (5.2) implies that the curvature tensor R of M has the form

R = −α2 π − αβ Φ ; α2 > 0, αβ $= 0,
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i.e. (M, g, ξ) is a Riemannian QC-manifold with negative horizontal sectional cur-
vatures.

Applying Theorem 4.1, we obtain:

Theorem 5.7. Any conformally flat space-like hypersurface M in Minkowski
space, which is free of umbilical points, locally is a part of a canal space-like hyper-
surface.

If (M, g) is a conformally flat space-like hypersurface in R
n+1
1 , then the man-

ifold (M, g) admits a unit vector field ξ, such that (M, g, ξ) is a Riemannian QC-
manifold with negative horizontal sectional curvatures a < 0. Any two locally iso-
metric conformally flat space-like hypersurfaces are locally ξ-isometric, i.e. rigid.
All isometric realizations of a conformally flat Riemannian manifold into R

n+1
1 are

locally congruent.

Thus we have:

The local theory of conformally flat Riemannian manifolds, isometrically im-
mersed as space-like hypersurfaces in Minkowski space, is equivalent to the local
theory of Riemannian QC-manifolds with negative horizontal sectional curvatures.

Taking into account the local classification of space-like hypersurfaces of con-
stant sectional curvatures in Minkowski space, and Theorem 5.7, we obtain the
following geometric classification of conformally flat space-like hypersurfaces in
Minkowski space:

Theorem 5.8. Any conformally flat space-like hypersurface M in Minkowski
space is locally a part of one of the following hypersurfaces:

(i) a space-like hyperplane (α = β = 0);

(ii) a space-like hypersphere (α $= 0, β = 0);

(iii) a space-like developable hypersurface (α = 0, β $= 0);

(iv) a space-like canal hypersurface (α $= 0, β $= 0).
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