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1. INTRODUCTION

The differential geometry of the manifolds equipped with an almost contact
structure is well studied (see, e.g. [3]). The almost contact manifolds with B-
metric are introduced and classified in [6]. These manifolds are the odd-dimensional
counterpart of the almost complex manifolds with Norden metric [5, 7].

An object of special interest is the case of the lowest dimension of the considered
manifolds. We investigate the almost contact B-metric manifolds in dimension
three and get explicit results. Some curvature identities of the three-dimensional
manifolds of this type are studied in [11, 12].
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Almost contact manifolds with B-metric can be constructed on Lie algebras.
It is known that all three-dimensional real Lie algebras are classified in [1, 2].
The main goal of this paper is to find a relation between the classes in the Bianchi
classification and the classification of almost contact B-metric manifolds given in [6].
Moreover, the present work gives some geometrical characteristics of the considered
manifolds in certain special classes.

The paper is organized as follows. In Section 2 we recall some preliminary
facts about the almost contact B-metric manifolds. In Section 3 we equip each
Bianchi-type Lie algebra with an almost contact B-metric structure. In Section 4
we give the relation between the Bianchi classification and the classification given
in [6]. Section 5 is devoted to the curvature properties of some of the considered
manifolds.

2. PRELIMINARIES

Let (M,ϕ, ξ, η, g) be an almost contact manifold with B-metric or an almost
contact B-metric manifold, where M is a (2n + 1)-dimensional differentiable ma-
nifold, (ϕ, ξ, η) is an almost contact structure consisting of an endomorphism ϕ of
the tangent bundle, a Reeb vector field ξ and its dual contact 1-form η. Moreover,
M is equipped with a pseudo-Riemannian metric g, called a B-metric, such that
the following algebraic relations are satisfied [6]:

ϕξ = 0, ϕ2 = −Id + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,
g(ϕx, ϕy) = −g(x, y) + η(x)η(y),

where Id is the identity. In the latter equalities and further, x, y, z, w will stand
for arbitrary elements of the algebra of the smooth vector fields on M or vectors
in the tangent space TpM of M at an arbitrary point p in M .

The associated B-metric g̃ of g is determined by g̃(x, y) = g(x, ϕy) + η(x)η(y).
The manifold (M,ϕ, ξ, η, g̃) is also an almost contact B-metric manifold. The sig-
nature of both metrics g and g̃ is necessarily (n+1, n). We denote the Levi-Civita
connection of g and g̃ by ∇ and ∇̃, respectively.

A classification of almost contact B-metric manifolds, consisting of eleven basic
classes F1, F2, . . . , F11, is given in [6]. This classification is made with respect to
the tensor F of type (0,3) defined by

F (x, y, z) = g
(
(∇xϕ) y, z

)
(2.1)

and having the following properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

The special class determined by the condition F (x, y, z)=0 is denoted by F0.
This class is the intersection of all the basic classes. Hence F0 is the class of almost
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contact B-metric manifolds with∇-parallel structures, i.e. ∇ϕ = ∇ξ = ∇η = ∇g =
∇g̃ = 0. Therefore F0 is the class of the cosymplectic manifolds with B-metric.

According to [10], the square norm of ∇ϕ is defined by:

‖∇ϕ‖2 = gijgksg
(
(∇eiϕ) ek,

(
∇ejϕ

)
es
)
. (2.2)

It is clear that ‖∇ϕ‖2 = 0 is valid if (M,ϕ, ξ, η, g) is a cosymplectic manifold with
B-metric, but the inverse implication is not always true. An almost contact B-
metric manifold having a zero square norm of ∇ϕ is called an isotropic-cosymplectic
B-metric manifold.

If {ei; ξ} (i = 1, 2, . . . , 2n) is a basis of TpM and
(
gij

)
is the inverse matrix of

(gij), then the 1-forms θ, θ∗, ω, called Lee forms, are associated with F and defined
by:

θ(z) = gijF (ei, ej , z), θ
∗(z) = gijF (ei, ϕej , z), ω(z) = F (ξ, ξ, z).

Let now consider the case of the lowest dimension of the almost contact B-
metric manifold M , i.e. dimM = 3.

We introduce an almost contact structure (ϕ, ξ, η) on M defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0, ξ = e3,
η(e1) = η(e2) = 0, η(e3) = 1

(2.3)

and a B-metric g such that

g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1, g(ei, ej) = 0, i (= j ∈ {1, 2, 3}. (2.4)

Let us denote the components Fijk = F (ei, ej , ek) of F with respect to a ϕ-basis
{e1, e2, e3} of TpM .

According to [8], the components of the Lee forms are

θ1 = F111 − F221, θ2 = F112 − F211, θ3 = F113 − F223,
θ∗1 = F112 + F211, θ∗2 = F111 + F221, θ∗3 = F123 + F213,
ω1 = F331, ω2 = F332, ω3 = 0.

Then, if Fs (s = 1, 2, . . . , 11) are the components of F in the corresponding
basic classes Fs and x = xiei, y = y

jej , z = z
kek for arbitrary vectors in TpM , we

have [8]:

F1(x, y, z) =
(
x1θ1 − x2θ2

) (
y1z1 + y2z2

)
,

θ1 = F111 = F122, θ2 = −F211 = −F222;
F2(x, y, z) = F3(x, y, z) = 0;

F4(x, y, z) =
1

2
θ3

{
x1

(
y3z1 + y1z3

)
− x2

(
y3z2 + y2z3

)}
,

1

2
θ3 = F131 = F113 = −F232 = −F223;

(2.5)

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 133–144. 135



F5(x, y, z) =
1

2
θ∗3

{
x1

(
y3z2 + y2z3

)
+ x2

(
y3z1 + y1z3

)}
,

1

2
θ∗3 = F132 = F123 = F231 = F213;

F6(x, y, z) = F7(x, y, z) = 0;

F8(x, y, z) = λ
{
x1

(
y3z1 + y1z3

)
+ x2

(
y3z2 + y2z3

)}
,

λ = F131 = F113 = F232 = F223;

F9(x, y, z) = µ
{
x1

(
y3z2 + y2z3

)
− x2

(
y3z1 + y1z3

)}
,

µ = F132 = F123 = −F231 = −F213;
F10(x, y, z) = νx

3
(
y1z1 + y2z2

)
, ν = F311 = F322;

F11(x, y, z) = x
3
{(
y1z3 + y3z1

)
ω1 +

(
y2z3 + y3z2

)
ω2

}
,

ω1 = F313 = F331, ω2 = F323 = F332.

(2.6)

Obviously, the class of three-dimensional almost contact B-metric manifolds is

F1 ⊕F4 ⊕F5 ⊕F8 ⊕F9 ⊕F10 ⊕F11.

Let R = [∇,∇]−∇[ , ] be the curvature (1,3)-tensor of ∇. The corresponding
curvature (0, 4)-tensor is denoted by the same letter: R(x, y, z, w) = g(R(x, y)z, w).
The following properties are valid:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),
R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

It is known from [11] that every 3-dimensional cosymplectic B-metric manifold
is flat, i.e. R = 0.

The Ricci tensor ρ and the scalar curvature τ for R as well as their associated
quantities are defined respectively by

ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej),
ρ∗(y, z) = gijR(ei, y, z, ϕej), τ∗ = gijρ∗(ei, ej),

where {e1, e2, . . . , e2n+1} is an arbitrary basis of TpM .

Let α be a non-degenerate 2-plane (section) in TpM . It is known that the spe-
cial 2-planes with respect to (ϕ, ξ, η, g) are: a totally real section if α is orthogonal
to its ϕ-image ϕα, a ϕ-holomorphic section if α coincides with ϕα and a ξ-section
if ξ lies on α.

The sectional curvature k(α; p)(R) of α with an arbitrary basis {x, y} at p is

k(α; p)(R) =
R(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2 .

According to [9], a manifold M whose Ricci tensor satisfies

ρ = λg + µg̃ + νη ⊗ η
is said to be an η-complex-Einstein manifold.
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3. EQUIPPING OF EACH BIANCHI-TYPE LIE ALGEBRA WITH ALMOST
CONTACT B-METRIC STRUCTURE

It is known that L. Bianchi has categorized all three-dimensional real (and
complex) Lie algebras. He proved that every three-dimensional Lie algebra is iso-
morphic to one, and only one, Lie algebra of his list (cf. [1, 2]). These isomorphism
classes form the so-called Bianchi classification and are noted by Bia(I), Bia(II),
Bia(IV), Bia(V), Bia(VIh) (h ≤ 0), Bia(VIIh) (h ≥ 0), Bia(VIII) and Bia(IX).
The class Bia(III) coincides with Bia(VI−1). The following theorem introduces the
Bianchi classification.

Theorem A. ([1, 2]) Let l be a real three-dimensional Lie algebra. Then l

is isomorphic to exactly one of the following Lie algebras (R3, [·, ·]), where the Lie
bracket is given on the canonical basis {e1, e2, e3} as follows:

Bia(I) : [e1, e2] = o, [e2, e3] = o, [e3, e1] = o;
Bia(II) : [e1, e2] = o, [e2, e3] = e1, [e3, e1] = o;
Bia(IV) : [e1, e2] = o, [e2, e3] = e1 − e2, [e3, e1] = e1;
Bia(V) : [e1, e2] = o, [e2, e3] = e2, [e3, e1] = e1;
Bia(VIh) (h ≤ 0) : [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 − e2;
Bia(VIIh) (h ≥ 0) : [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 + e2;
Bia(VIII) : [e1, e2] = −e3, [e2, e3] = e1, [e3, e1] = e2;
Bia(IX) : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Here, o is the zero vector in l.

The geometrization conjecture, associated with W. Thurston, states that ev-
ery closed manifold of dimension three could be decomposed in a canonical way
into pieces, connected to one of the eight types of Thurston’s geometric structures
([13]): Euclidean geometry E3, Spherical geometry S3, Hyperbolic geometry H3,
the geometry of S2 × R, the geometry of H2 × R, the geometry of the universal
cover S̃L(2,R) of the special linear group SL(2,R), the Nil geometry, the Solv
geometry.

Seven of the eight Thurston geometries can be associated to a class of the
Bianchi classification as it is shown in the following table. The Thurston geometry
on S2 × R has no such a realization (see, e.g., [4]).

TABLE 1. Relations between the Bianchi types and the Thurston geometries

Bia(I) E3

Bia(II) Nil

Bia(III) H2 × R

Bia(IV)
Bia(V) H3

Bia(VI0) Solv

Bia(VIh<0)
Bia(VII0) E3

Bia(VIIh>0)

Bia(VIII) S̃L(2,R)
Bia(IX) S3
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Let us consider each Lie algebra from the Bianchi classification, equipped with
an almost contact structure (ϕ, ξ, η) and a B-metric g as in (2.3) and (2.4).

The presence of the structure (ϕ, ξ, η, g) gives us a reason to consider the
relation between the Bianchi types and the classification of almost contact B-metric
manifolds in [6].

We obtain immediately the following

Proposition 3.1. Some Bianchi types can be equipped with a structure (ϕ, ξ, η,
g) in several ways. In the cases Bia(I) and Bia(IX) there is only one variant. In
the remaining cases, there are three possible subtypes of each type, obtained from
each other by a cyclic change of the basic vectors e1, e2 and e3. All subtypes are
given in Table 2:

TABLE 2. Equipping of the Bianchi types Lie algebras with a (ϕ, ξ, η, g) structure

Bia(I)
(1) [e1, e2] = o, [e2, e3] = o, [e3, e1] = o

Bia(II)
(1) [e1, e2] = o, [e2, e3] = e1, [e3, e1] = o

(2) [e1, e2] = o, [e2, e3] = o, [e3, e1] = e2
(3) [e1, e2] = e3, [e2, e3] = o, [e3, e1] = o

Bia(III) ≡ Bia(VI
−1)

(1) [e1, e2] = o, [e2, e3] = e1 + e2, [e3, e1] = −e1 − e2
(2) [e1, e2] = −e2 − e3, [e2, e3] = o, [e3, e1] = e2 + e3
(3) [e1, e2] = e1 + e3, [e2, e3] = −e1 − e3, [e3, e1] = o

Bia(IV)
(1) [e1, e2] = o, [e2, e3] = e1 − e2, [e3, e1] = e1
(2) [e1, e2] = e2, [e2, e3] = o, [e3, e1] = e2 − e3
(3) [e1, e2] = −e1 + e3, [e2, e3] = e3, [e3, e1] = o

Bia(V)
(1) [e1, e2] = o, [e2, e3] = e2, [e3, e1] = e1
(2) [e1, e2] = e2, [e2, e3] = o, [e3, e1] = e3
(3) [e1, e2] = e1, [e2, e3] = e3, [e3, e1] = o

Bia(VIh), h ≤ 0
(1) [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 − e2
(2) [e1, e2] = he2 − e3, [e2, e3] = o, [e3, e1] = e2 − he3
(3) [e1, e2] = −he1 + e3, [e2, e3] = −e1 + he3, [e3, e1] = o

Bia(VIIh), h ≥ 0
(1) [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 + e2
(2) [e1, e2] = he2 + e3, [e2, e3] = o, [e3, e1] = e2 − he3
(3) [e1, e2] = −he1 + e3, [e2, e3] = e1 + he3, [e3, e1] = o

Bia(VIII)
(1) [e1, e2] = −e3, [e2, e3] = e1, [e3, e1] = e2
(2) [e1, e2] = e3, [e2, e3] = −e1, [e3, e1] = e2
(3) [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = −e2
Bia(IX)
(1) [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2
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4. ALMOST CONTACT B-METRIC MANIFOLDS OF EACH BIANCHI TYPE

Let us consider the Lie group L corresponding to the given Lie algebra l. Each
definition of a Lie algebra for the different subtypes in Proposition 3.1 generates a
corresponding almost contact B-metric manifold denoted by (L,ϕ, ξ, η, g). In this
section we characterize the obtained manifolds with respect to the classification in
[6].

Using (2.5)–(2.6), we obtain the corresponding components of F in each sub-
types (1), (2), (3) in Proposition 3.1 and determine the corresponding class of
almost contact B-metric manifolds. The results are given in the following

Theorem 4.1. The manifold (L,ϕ, ξ, η, g), determined by each type of Lie
algebra given in Proposition 3.1, belongs to a class from the classification in [6] as
given in Table 3:

TABLE 3. Relations between the Bianchi types and the classes in [6]

Bia(I)
(1) F0

Bia(II)
(1) F4 ⊕F10
(2) F4 ⊕F10
(3) F8 ⊕F10

Bia(III)
(1) F5 ⊕F10
(2) F1 ⊕F4 ⊕F8 ⊕F11
(3) F1 ⊕F4 ⊕F8 ⊕F10 ⊕F11

Bia(IV)
(1) F4 ⊕F5 ⊕F10
(2) F1 ⊕F4 ⊕F10 ⊕F11
(3) F1 ⊕F8 ⊕F10 ⊕F11

Bia(V)
(1) F9
(2) F1 ⊕F11
(3) F1 ⊕F11

Bia(VI0)
(1) F10
(2) F4 ⊕F8
(3) F4 ⊕F8 ⊕F10

Bia(VIh), h < 0
(1) F5 ⊕F10
(2) F1 ⊕F4 ⊕F8 ⊕F11
(3) F1 ⊕F4 ⊕F8 ⊕F10 ⊕F11

Bia(VII0)
(1) F4
(2) F4 ⊕F8 ⊕F10
(3) F4 ⊕F8

Bia(VIIh), h > 0
(1) F4 ⊕F5
(2) F1 ⊕F4 ⊕F8 ⊕F10 ⊕F11
(3) F1 ⊕F4 ⊕F8 ⊕F11

Bia(VIII)
(1) F4 ⊕F8 ⊕F10
(2) F8 ⊕F10
(3) F8 ⊕F10

Bia(IX)
(1) F4 ⊕F8 ⊕F10

Proof. We give our arguments for the case of Bia(II), the other cases are proven
in a similar way.

Using Theorem A, Eq. (2.4) and the Koszul equality

2g (∇eiej , ek) = g ([ei, ej ], ek) + g ([ek, ei], ej) + g ([ek, ej ], ei) ,

we obtain the components of the Levi-Civita connection ∇ of g. Then, by them,
(2.1) and (2.3), we get the following non-zero components Fijk and θk for the
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different subtypes:

(1) F113 = F131 = −F223 = −F232 = − 1
2 , F311 = F322 = −1, θ3 = −1;

(2) F113 = F131 = −F223 = −F232 = − 1
2 , F311 = F322 = 1, θ3 = −1;

(3) F113 = F131 = F223 = F232 = 1
2 , F311 = F322 = 1.

Bearing in mind (2.5)–(2.6), we conclude that the corresponding classes of each
subtype of Bia(II) are as follows:

(1) (L,ϕ, ξ, η, g) ∈ F4 ⊕F10;
(2) (L,ϕ, ξ, η, g) ∈ F4 ⊕F10;
(3) (L,ϕ, ξ, η, g) ∈ F8 ⊕F10.

�

5. CURVATURE PROPERTIES OF THE CONSIDERED MANIFOLDS IN
SOME BIANCHI CLASSES

Now we focuss our considerations on the Bianchi classes depending on a real
parameter h. They are Bia(VIh) and Bia(VIIh). Actually, these two classes are
families of manifolds whose properties are functions of h. The classes regarding F
corresponding to Bia(VIh), h < 0 and Bia(VIIh), h > 0, according to Theorem 4.1,
can not be restricted for special values of h.

In this section our interest is in the curvature properties of these manifolds in
terms of h.

In view of Proposition 3.1, it is reasonable to investigate all three subtypes of
the Bianchi classes Bia(VIh), h ≤ 0 and Bia(VIIh), h ≥ 0.

5.1. Bia(VIh), h ≤ 0.

Let us consider subtype (1) of this Bianchi class as given in Proposition 3.1:

[e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 − e2.

We calculate the non-zero components of ∇ for Bia(VIh):

∇e1e1 = he3, ∇e1e3 = −he1, ∇e2e2 = −he3,
∇e2e3 = −he2, ∇e3e1 = −e2, ∇e3e2 = −e1. (5.1)

Using (2.2), (2.3), (2.4) and (5.1), we obtain for the square norm of ∇ϕ

‖∇ϕ‖2 = 4(2− h2). (5.2)

Further, we calculate the basic components Rijkl = R(ei, ej , ek, el) of the cur-
vature tensor R, ρjk = ρ(ej , ek) of the Ricci tensor ρ, ρ∗jk = ρ∗(ej , ek) of the
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associated Ricci tensor ρ∗, the values of the scalar curvatures τ and τ∗ and of the
sectional curvatures kij = k(ei, ej). They are as follows:

R1212 = −R1313 = R2323 = −h2;
ρ11 = −ρ22 = ρ33 = −2h2, ρ∗12 = ρ∗21 = −h2;

τ = −6h2, τ∗ = 0;
k12 = k13 = k23 = −h2.

(5.3)

Using (5.3) we obtain the following

Proposition 5.1. In the case Bia(VIh), subtype (1), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is flat if and only if h = 0;

2). (L,ϕ, ξ, η, g) is an isotropic-cosymplectic B-metric manifold if and only if
h = −

√
2;

3). The scalar curvature and the sectional curvatures are constant and non-
positive;

4). (L,ϕ, ξ, η, g) is ∗-scalar flat, i.e. τ∗ = 0;

5). (L,ϕ, ξ, η, g) is an Einstein manifold.

In the same fashion we obtain the analogues of (5.2) and (5.3) and derive the
corresponding propositions in the remaining cases. For subtype (2) we have:

‖∇ϕ‖2 = 2(1− 5h2);
R1212 = −R1313 = R2323 = −h2;

ρ11 = −ρ22 = ρ33 = −2h2, ρ∗12 = ρ∗21 = −h2;
τ = −6h2, τ∗ = 0;
k12 = k13 = k23 = −h2,

whence we deduce the following

Proposition 5.2. In the case Bia(VIh), subtype (2), all the statements from

Proposition 5.1 hold true, with h = −
√
2 replaced by h = −

√
5
5 in statement 2).

In the case of subtype (3) we obtain:

‖∇ϕ‖2 = 10(h2 + 1);
R1212 = R2323 = h2 + 1, R1313 = 1− h2, R1223 = 2h;
ρ11 = ρ33 = 2h2, ρ13 = ρ31 = −2h, ρ22 = −2(h2 + 1);

ρ∗12 = ρ∗21 = h2 + 1, ρ∗23 = ρ∗32 = −2h;
τ = 2(3h2 + 1), τ∗ = 0;

k12 = k23 = h2 + 1, k13 = h2 − 1.

The latter equalities imply
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Proposition 5.3. In the case Bia(VIh), subtype (3), the following statements
are valid:

1). The square norm of ∇ϕ and the scalar curvature are positive;

2). (L,ϕ, ξ, η, g) is ∗-scalar flat;

3). The sectional curvatures of the ϕ-holomorphic sections are constant and
positive.

5.2. Bia(VIIh), h ≥ 0.

Here we focus on the three subtypes of Bia(VIIh). Firstly, let us consider the
subtype (1). As in the previous subsection, we find:

‖∇ϕ‖2 = 4(1− h2);
R1212 = −(h2 + 1), R1313 = −R2323 = h2 − 1, R1323 = −2h;
ρ11 = −ρ22 = −2h2, ρ12 = ρ21 = 2h, ρ33 = 2(1− h2);

ρ∗12 = ρ∗21 = −(h2 + 1), ρ∗33 = 4h;
τ = 2(1− 3h2), τ∗ = 4h;

k12 = −(h2 + 1), k13 = k23 = 1− h2.

Applying these results we obtain

Proposition 5.4. In the case Bia(VIIh), subtype (1), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is an isotropic-cosymplectic B-metric manifold if and only if
h = 1;

2). (L,ϕ, ξ, η, g) is scalar flat if and only if h =
√
3
3 ;

3). (L,ϕ, ξ, η, g) is ∗-scalar flat if and only if h = 0;

4). The sectional curvatures of the ϕ-holomorphic sections are constant and
negative;

5). The sectional curvatures of the ξ-sections are constant;

6). (L,ϕ, ξ, η, g) is an η-complex-Einstein manifold.

Analogously, we get the corresponding results for subtype (2):

‖∇ϕ‖2 = −10(h2 − 1);
R1212 = −R1313 = −(h2 − 1), R2323 = −(h2 + 1), R1213 = 2h;
ρ11 = −2(h2 − 1), ρ22 = −ρ33 = 2h2, ρ23 = ρ32 = −2h;

ρ∗12 = ρ∗21 = −(h2 − 1), ρ∗13 = ρ∗31 = 2h;
τ = −2(3h2 − 1), τ∗ = 0;

k12 = k13 = −(h2 − 1), k23 = −(h2 + 1).

The latter equalities imply the following
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Proposition 5.5. In the case Bia(VIIh), subtype (2), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is an isotropic-cosymplectic B-metric manifold if and only if
h = 1;

2). (L,ϕ, ξ, η, g) is scalar flat if and only if h =
√
3
3 ;

3). (L,ϕ, ξ, η, g) is ∗-scalar flat;

4). (L,ϕ, ξ, η, g) is horizontal flat, i.e. R|H = 0 for H = ker(η), if and only
if h = 1;

5). ρ∗ and g̃ are proportional on H as ρ∗|H = (h2 − 1)g̃|H ;

6). (L,ϕ, ξ, η, g) is horizontal ∗-Ricci flat, i.e. ρ∗|H = 0, if and only if h = 1.

Finally, for the case of the subtype (3) we have:

‖∇ϕ‖2 = 2(5h2 + 1);
R1212 = −R1313 = R2323 = h2;
ρ11 = −ρ22 = ρ33 = 2h2;

ρ∗12 = ρ∗21 = h2;
τ = 6h2, τ∗ = 0;
k12 = k13 = k23 = h2,

whence we deduce our last proposition:

Proposition 5.6. In the case Bia(VIIh), subtype (3), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is flat if and only if h = 0;

2). The square norm of ∇ϕ is positive;

3). (L,ϕ, ξ, η, g) is ∗-scalar flat;

4). The scalar curvature and the sectional curvatures are constant and non-
negative;

5). (L,ϕ, ξ, η, g) is an Einstein manifold.
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