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1. INTRODUCTION

We study quadrature formulae of the type

Q[f ] =

n∑

i=1

ai f(xi), 0 ≤ x1 < x2 < · · · < xn ≤ 1 , (1.1)

that serve as an estimate for the definite integral

I[f ] :=

1∫

0

f(x) dx. (1.2)

Throughout this paper πk will stand for the set of algebraic polynomials of degree
not exceeding k.
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The classical approach for construction of quadrature formulae is based on the
concept of algebraic degree of precision. The quadrature formula (1.1) is said to
have algebraic degree of precision m (in short, ADP (Q) = m), if its remainder

R[Q; f ] := I[f ]−Q[f ]

vanishes whenever f ∈ πm, and R[Q; f ] $= 0 when f is a polynomial of degree m+1.

The ADP-concept is justified by the Weierstrass theorem about the density of
algebraic polynomials in spaces of continuous functions on compacts. The pursuit
of quadrature formulae (1.1) with the highest possible ADP leads to the well-
known quadrature formulae of Gauss, Radau and Lobatto. The latter are uniquely
determined by having ADP equal to 2n− 1, 2n− 2 and 2n− 3, respectively, where,
in addition, the Radau quadrature formula has one fixed node being an end-point
of the integration interval, and the Lobatto quadrature formula has two fixed nodes
at the ends of the integration interval.

An alternative concept for evaluation of the quality of quadrature formulae
emerged in the forties of the 20-th century, namely, the concept of optimality in
a given class of functions. Its founders are A. Kolmogorov, A. N. Sard and S. M.
Nikolskii. Let us briefly describe the setting of optimal quadrature formulae in a
given class of functions.

Let X be a normed linear space of functions defined in [0, 1], with a norm ‖ · ‖ .
For a quadrature formula Q of the form (1.1), we denote by E(Q,X) the largest
possible error of Q for functions from the unit ball of X, i.e.

E(Q,X) := sup
‖f‖X≤1

|R[Q; f ]|.

We look for the best possible choice of the coefficients {ai}ni=1 and the nodes {xi}ni=1
of Q, and set

En(X) := inf
Q
E(Q,X).

If the infimum is attained for a quadrature formula Qopt of the form (1.1), then
Qopt is said to be an optimal quadrature formula of the type (1.1) in the space X.
Of particular interest is the case when X is some of the Sobolev classes of functions
W̃ r
p and W r

p , defined by

W̃ r
p := {f ∈ Cr−1[0, 1], f − 1–periodic , f (r−1) abs. cont. , ‖f‖p <∞},

W r
p := {f ∈ Cr−1[0, 1], f (r−1) abs. cont. , ‖f‖p <∞},

where

‖f‖p :=
(∫ 1

0

|f(t)|pdt
)1/p

, if 1 ≤ p <∞, and ‖f‖∞ = sup
t∈(0,1)

vrai |f(t)|.

In the periodic Sobolev classes W̃ r
p there is an universal optimal quadrature for-

mula (i.e. optimal for all r ∈ N and p ≥ 1) of the form (1.1), namely, the n-point
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rectangles quadrature formula and its translates. This is a result due to Zhensyk-
baev [14], special cases have been obtained earlier by Motornii [10], and Ligun [9].
The existence and uniqueness of optimal quadrature formulae in the non-periodic
Sobolev spaces W r

p is equivalent to the existence and uniqueness of specific monos-
plines of degree r with a minimal Lq-deviation from zero, (1/p + 1/q = 1). This
was proved by Zhensykbaev [15], and Bojanov extended Zhensykbaev’s result to
more general classes of quadrature formulae involving derivatives of the integrand.
Obviously, En(W̃ r

p ) ≤ En(W r
p ), and it is known that (see Brass [6]) for 1 < p ≤ ∞,

lim
n→∞

En(W̃ r
p )

En(W r
p )

= 1.

A drawback of the optimality concept is that, in general, the explicit form of
the optimal quadrature formulae is unknown, a fact that vitiates their importance
from practical point of view. In particular, except for some special cases of r = 1
and r = 2, the optimal quadrature formulae in the non-periodic Sobolev spaces W r

p

are unknown.

The way out of this situation is to step back from the requirement for opti-
mality, and to look for quadrature formulae which are nearly optimal. A sequence
{Qn} of quadrature formulae is said to be asymptotically optimal in the function
class X, if

lim
n→∞

E(Qn, X)

En(X)
= 1

(here, Qn is supposed to be a quadrature formula with n nodes).

It has been shown in [8] that the Gauss-type quadrature formulae associated
with the spaces of spline functions with equidistant knots are asymptotically opti-
mal in the non-periodic Sobolev classes W r

p . The existence and uniqueness of such
Gauss-type quadrature formulae is equivalent to the fundamental theorem of alge-
bra for monosplines satisfying zero boundary conditions, which was proved in [7].
This fact was a motivation for investigation of such quadratures. Algorithms for
the construction along with sharp error estimates of the Gauss-type quadrature for-
mulae associated with spaces of linear and parabolic spline functions were proposed
in [11] and [13] (see also [12] for the case of cubic splines with double equidistant
knots). Recently, an algorithm for the construction of Gaussian quadrature formu-
lae associated with spaces of cubic splines with equidistant knots was proposed in
[1].

It should be noted that the complexity of the algorithms for the construction
of Gauss-type quadrature formulae associated with spaces of spline functions with
equidistant knots increases with increasing of the degree (that is, of parameter r in
W r
p ). For r ≥ 3 such quadratures are constructed only numerically. This requires

high accuracy computations, especially when the number of the nodes is large. An
additional difficulty causes the fact that the mutual location of the spline knots
and the quadratures nodes is unknown.
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In [2] we proposed an alternative approach for generation of sequences of
asymptotically optimal quadrature formulae. There we constructed sequences of
asymptotically optimal quadrature formulae in the Sobolev classes W 4

p , for p = 2
and p = ∞. Our approach makes use of Euler–MacLaurin–type summation for-
mulae, in which the derivatives are replaced by suitable formulae for numerical
differentiation. An advantage of our quadrature formulae, besides their asymptot-
ical optimality, is the explicit form of their weights and nodes. In fact, most of the
nodes of our quadrature formulae are either those of the compound trapezium or
of the compound midpoint quadratures, to which we add a few more nodes.

Here we continue our study on this subject. The paper is organized as fol-
lows. In Section 2 we provide some well-known facts, including the Peano kernel
representation of linear functionals, the Bernoulli polynomials, monosplines and
numbers, the Euler–MacLaurin–type expansion formulae, and the error representa-
tion of the compound trapezium and midpoint quadrature formulae in the periodic
Sobolev classes W̃ r

p . In Section 3 we construct some sequences of asymptotically
optimal quadrature formulae in the non-periodic Sobolev classes W 3

1 , 1 ≤ p ≤ ∞,
and evaluate their sharp error constants in the cases p = 1, 2, ∞. In Section 4
we construct two sequences of asymptotically optimal quadrature formulae in the
Sobolev classes W 4

1 . Section 5 contains some concluding remarks.

2. PRELIMINARIES

2.1. SPLINE FUNCTIONS AND PEANO KERNELS OF LINEAR FUNCTIONALS

A spline function of degree r − 1 (r ∈ N) with knots x1 < x2 < · · · < xn is a
function s(t) satisfying the requirements

1) s(t)|t∈(xi,xi+1) ∈ πr−1, i = 0, . . . , n,

2) s(t) ∈ C(R) ,

where x0 := −∞ and xn+1 := ∞. The set Sr−1(x1, . . . , xn) of spline functions of
degree r − 1 with knots x1 < x2 < · · · < xn is a linear space of dimension n + r,
and a basis of Sr−1(x1, . . . , xn) is given by the functions

{1, t, . . . , tr−1, (t− x1)r−1+ , . . . , (t− xn)r−1+ },

where u+(t) is defined by

u+(t) = max{t, 0} , t ∈ R .

If L is a linear functional defined on C[0, 1] which vanishes on πs, then by a
classical result of Peano, for r ∈ N, 1 ≤ r ≤ s + 1 and f ∈ W r

1 , L admits the
integral representation

L[f ] =
∫ 1

0

Kr(t)f
(r)(t) dt, where Kr(t) = L

[ (· − t)r−1+

(r − 1)!

]
, t ∈ [0, 1] .
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In the case when L is the remainder R[Q; ·] of a quadrature formulaQ with algebraic
degree of precision s, the function Kr(t) = Kr(Q; t) is referred to as the r-th Peano
kernel of Q. For Q as in (1.1), explicit representations for Kr(Q; t), t ∈ [0, 1], are

Kr(Q; t) =
(1− t)r
r!

− 1

(r − 1)!

n∑

i=1

ai(xi − t)r−1+ , (2.1)

Kr(Q; t) = (−1)r
[ tr
r!
− 1

(r − 1)!

n∑

i=1

ai(t− xi)r−1+

]
. (2.2)

If the integrand f belongs to the Sobolev class W r
p , (1 ≤ p ≤ ∞), then from

R[Q; f ] =

∫ 1

0

Kr(Q; t)f
(r)(t) dt

and from Hölder’s inequality one obtains the sharp error estimate

|R[Q; f ]| ≤ cr,p(Q)‖f (r)‖p, where cr,p(Q) = ‖Kr(Q; ·)‖q, p−1 + q−1 = 1. (2.3)

In other words, we have E(Q,W r
p ) = cr,p(Q). Throughout, cr,p(Q) will be referred

to as the error constant of Q in the Sobolev class W r
p .

Kr(Q; t) is also called a monospline of degree r with knots {xi : xi ∈ (0, 1)}.
From Kr(Q;x) = R[Q; (· − x)r−1+ /(r − 1)!] we deduce that Kr(Q;x) = 0 for some
x ∈ (0, 1) if and only if Q evaluates to the exact value the integral of the spline
function f(t) = (t−x)r−1+ . Thus, in order that a quadrature formula Q has maximal

spline degree of precision, i.e., Q is exact for a space of spline functions of degree
r−1 with a maximal dimension, it is necessary and sufficient that the corresponding
monospline Kr(Q; ·) has maximal number of zeros in (0, 1). Quadrature formulae
of the form (1.1) with maximal spline degree of precision are called, analogously
to the classical algebraic case, as Gauss, Radau, and Lobatto quadrature formulae,
associated with the corresponding spaces of spline functions. Similarly to the clas-
sical Gauss–type quadrature formulae, all the nodes of the Gauss-type quadratures
associated with spaces of spline functions lie in the integration interval, and all
their weights are positive [7, Theorem 7.1].

2.2. BERNOULLI POLYNOMIALS AND MONOSPLINES. EULER–MACLAURIN TYPE

SUMMATION FORMULAE

Recall that the Bernoulli polynomials Bν are defined recursively by

B0(x) = 1, B′
ν(x) = Bν−1(x), and

∫ 1

0

Bν(t) dt = 0, ν ∈ N .

In particular, B1(x) = x−
1

2
, B2(x) =

x2

2
− x

2
+

1

12
, B3(x) =

x3

6
− x

2

4
+
x

12
,

B4(x) =
x2(1− x)2

24
− 1

720
.
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The Bernoulli numbers Bν are defined by Bν =
Bν(0)

ν!
.

The notation B̃ν(x) stands for the 1-periodic extension of the Bernoulli poly-
nomial Bν(x) on R. The functions B̃ν(x), ν = 0, 1, . . . , are called Bernoulli monos-
plines.

Throughout this paper, n ∈ N will be fixed, and {xk,n}nk=0 and {yℓ,n}nℓ=1 are
given by

xk,n =
k

n
, k = 0, . . . , n; yℓ,n =

2ℓ− 1

2n
, ℓ = 1, . . . , n . (2.4)

The points {xk,n}nk=0 and {yℓ,n}nℓ=1 are the nodes of the n-th compound trapezium
and midpoint quadrature formulae QTrn+1 and QMi

n , given by

QTrn+1[f ] =
1

2n

(
f(x0,n) + f(xn,n)

)
+

1

n

n−1∑

k=1

f(xk,n) , (2.5)

QMi
n [f ] =

1

n

n−1∑

k=1

f(yk,n) . (2.6)

Our asymptotically optimal quadrature formulae are obtained as appropriate mod-
ifications of QTrn+1 and QMi

n .

The following summation formulae of Euler–MacLaurin type (adopted for the
interval [0, 1]) are well-known, see, e.g., [6, Satz 98, 99]:

Lemma 1. Assume that f ∈W s
1 . Then

1∫

0

f(x) dx =QTrn+1[f ]−
[ s
2
]∑

ν=1

B2ν
(2ν)!

f (2ν−1)(1)− f (2ν−1)(0)
n2ν

+
(−1)s
ns

1∫

0

B̃s(nx)f
(s)(x) dx

(2.7)

and

1∫

0

f(x) dx =QMi
n [f ] +

[ s
2
]∑

ν=1

(
1− 21−2ν

) B2ν
(2ν)!

f (2ν−1)(1)− f (2ν−1)(0)
n2ν

+
(−1)s
ns

1∫

0

B̃s

(
nx− 1

2

)
f (s)(x) dx .

(2.8)

Here, [t] denotes the integer part of t.
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2.3. THE SHARP ERROR BOUNDS OF QTrn+1 AND QMi
n IN W̃ r

p

As was already mentioned, the midpoint quadrature formulae {QMi
n }∞n=1 and

their translates are the unique optimal quadrature formulae in the periodic Sobolev
classes W̃ r

p . The trapezium quadrature formulae {QTrn+1}∞n=1 also can be considered
as translates of {QMi

n }∞n=1, as the values of the integrand at the endpoints are

equal. For f ∈ W̃ s
p , 1 ≤ p ≤ ∞, the sums in the right-hand sides of (2.7) and (2.8)

disappear, due to the periodicity of the integrand. Hence we obtain

R[QTrn+1; f ] =
(−1)s
ns

1∫

0

[
B̃s(nx)− d

]
f (s)(x) dx (2.9)

and

R[QMi
n ; f ] =

(−1)s
ns

1∫

0

[
B̃s

(
nx− 1

2

)
− d
]
f (s)(x) dx , (2.10)

where d is an arbitrary constant. Applying Hölder’s inequality to (2.9) and (2.10),
and taking into account that QTrn+1 and QMi

n are optimal quadrature formulae in

W̃ s
p , we obtain

|R[QTrn+1; f [| ≤ En(W̃ s
p ) ‖f (s)‖p , |R[QMi

n ; f [| ≤ En(W̃ s
p ) ‖f (s)‖p ,

where

En(W̃ s
p ) =

1

ns
inf
d
‖Bs − d‖q =: ‖Bs − ds,p‖q ,

1

p
+

1

q
= 1 . (2.11)

Some known values of the constant ds,p are (see, e.g., [14])

ds,p = 0 for odd s ∈ N and 1 ≤ p ≤ ∞, (2.12)

ds,p =





2−sBs(0) for even s ∈ N and p = 1,

0 for all s ∈ N and p = 2,

Bs
(
1
4

)
for even s ∈ N and p =∞ .

(2.13)

We shall need constants En(W̃ s
p ) for s = 3, 4 and p = 1, 2 and ∞. In the case

s = 3, these constants are

En(W̃ 3
∞) =

1

n3
‖B3‖1 =

1

192n3
, (2.14)

En(W̃ 3
2 ) =

1

n3
‖B3‖2 =

1

12
√
210n3

, (2.15)

En(W̃ 3
1 ) =

1

n3
‖B3‖∞ =

1

72
√
3n3

. (2.16)
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In the case s = 4, the corresponding constants are

En(W̃ 4
∞) =

1

n4
‖B4(·)−B4(1/4)‖1 =

5

6144n4
, (2.17)

En(W̃ 4
2 ) =

1

n4
‖B4‖2 =

1

240
√
21n4

, (2.18)

En(W̃ 4
1 ) =

1

n4
‖B4(·)− 2−4B4(0)‖∞ =

1

768n4
. (2.19)

3. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE IN W 3
p

Let us start with a brief outline of our method for the construction of asymp-
totically optimal quadrature formulae in the Sobolev classes W 3

p .

The Euler–MacLaurin summation formulae in Lemma 1 in the case s = 3
reduce to

1∫

0

f(x) dx =QTrn+1[f ]−
1

12n2
[
f ′(1)− f ′(0)

]
+

1

n3

1∫

0

B̃3(nx) f
(3)(x) dx (3.1)

and

1∫

0

f(x) dx =QMi
n [f ] +

1

24n2
[
f ′(1)− f ′(0)

]
+

1

n3

1∫

0

B̃3

(
nx− 1

2

)
f (3)(x) dx . (3.2)

The derivatives f ′(0) and f ′(1) appearing in the right-hand side of (3.1) and
(3.2) will be replaced by suitable formulae for numerical differentiation. For the
sake of brevity, we give the following definition.

Definition 1. Given 0 ≤ t1 < t2 < t3 < 1, we denote by D1(t1, t2, t3)[f ]
the interpolatory formula for numerical differentiation with nodes {ti}3i=1, which
approximates f ′(0), i.e.

D1[f ] = D1(t1, t2, t3)[f ] =

3∑

i=1

ci f(ti) ≈ f ′(0) .

We shall use formulae for numerical differentiation with t3 = O(n−1). For
instance, such a formula is

D1(x0,n, y1,n, x2,n)[f ] =
n

6

[
− 15f(x0,n) + 16f(y1,n)− f(x2,n)

]
.

152 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 145–169.



For the sake of simplicity, f ′(1) is approximated by a numerical differentiation
formula, obtained from D1(t1, t2, t3)[f ] by a reflection, i.e.,

f ′(1) ≈ D̃1[f ] := D1(t1, t2, t3)[g] , g(t) = −f(1− t) .

The linear functionals L[f ] := f ′(0)−D1[f ] and L̃[f ] := f ′(1) − D̃1[f ] vanish
on π2, and by Peano’s theorem, for f ∈W 3

1 they are representable in the form

L[f ] =

1∫

0

K3(L; t)f
′′′(t) dt , L̃[f ] =

1∫

0

K3(L̃; t)f
′′′(t) dt

with K3(L; t) = L
[
(· − t)2+/2

]
and K3(L̃; t) = L̃

[
(· − t)2+/2

]
. This representation

also implies

K3(L; t) ≡ 0 for t ∈ (t3, 1] ,

K3(L̃; t) ≡ 0 for t ∈ [0, 1− t3) .

Replacement in (3.1) of f ′(0) and f ′(1) byD1[f ] and D̃1[f ], respectively, results
in a new quadrature formula Q,

Q[f ] = QTrn+1[f ] +
1

12n2

3∑

i=1

ci
[
f(ti) + f(1− ti)

]
(3.3)

with at most n+7 nodes (including {xk,n}nk=0), and a Peano kernel K3(Q; t) given
by

K3(Q; t) =
1

n3
B̃3(n t) +

1

12n2
[
K3(L; t)−K3(L̃; t)

]
, t ∈ [0, 1] .

Analogously, replacement in (3.1) of f ′(0) and f ′(1) by D1[f ] and D̃1[f ], re-
spectively, yields a quadrature formula Q,

Q[f ] = QMi
n [f ]− 1

24n2

3∑

i=1

ci
[
f(ti) + f(1− ti)

]
(3.4)

with at most n+ 6 nodes (including {yℓ,n}nℓ=1), and a Peano kernel K3(Q; t) given
by

K3(Q; t) =
1

n3
B̃3

(
nx− 1

2

)
− 1

24n2
[
K3(L; t)−K3(L̃; t)

]
, t ∈ [0, 1] .

An important observation for quadrature formulae (3.3) and (3.4) is that their
third Peano kernels coincide in the interval t ∈ (t3, 1 − t3) with n−3B̃3(n t) and
n−3B̃3(n t−1/2), respectively. That is to say, except for some small neighborhoods
of the endpoints, their third Peano kernels coincide with the third Peano kernels
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is an odd function with respect to t = 1/2. We proceed with evaluating the error
constant c3,p(Qn+1), p =∞ and p = 2. By symmetry, we have

c3,∞(Qn+1) = ‖K3(Qn+1; ·)‖1 = 2

x2,n∫

0

|K3(Qn+1; t)| dt+
xn−2,n∫

x2,n

|K3(Qn+1; t)| dt .

For t ∈ (x2,n, xn−2,n) we have K3(Qn+1; t) = n
−3B̃3(n t), therefore for the second

summand we have

xn−2,n∫

x2,n

|K3(Qn+1; t)| dt =
1

n3

n−2

n∫

2
n

|B̃3(n t)| dt =
n− 4

n3
‖B3‖1 =

n− 4

192n4
.

Before evaluating the first summand, we show thatK3(Qn+1; t) > 0 for t ∈ (0, x2,n).
Performing a change of the variable t = u/n, u ∈ (0, 2), we obtain, for t ∈ (0, x2,n),

K3(Qn+1; t) = −
t3

6
+

3

16n
t2 +

7

12n
(t− x1,n)2+ =

1

n3

[
− u

3

6
+

3u2

16
+

7(u− 1)2+
12

]
.

The term in the brackets is positive for u ∈ (0, 2) . Indeed, if 0 < u ≤ 1, then

−u
3

6
+

3u2

16
+

7(u− 1)2+
12

=
3u2

16

(
1− 8u

9

)
> 0 ,

while, if 1 < u < 2, then

−u
3

6
+

3u2

16
+

7(u− 1)2+
12

= −u
3

6
+

37u2

48
− 7u

6
+

7

12
= (2− u)

(u2
6
− 7u

16
+

7

24

)
> 0 .

Therefore,

2

x2,n∫

0

|K3(Qn+1; t)| dt = 2

2
n∫

0

[
− t

3

6
+

3

16n
t2 +

7

12n

(
t− 1

n

)2
+

]
dt

=
2

n4

2∫

0

[
− u

3

6
+

3u2

16
+

7(u− 1)2+
12

]
du =

1

18n4
.

Hence,

c3,∞(Qn+1) =
n− 4

192n4
+

1

18n4
=

1

192n3

(
1 +

20

3n

)
.

In a similar manner we evaluate the error constant c3,2(Qn+1). We have

[c3,2(Qn+1)]
2 =

1∫

0

[K3(Qn+1; t]
2 dt = 2

x2,n∫

0

[K3(Qn+1; t)]
2 dt+

xn−2,n∫

x2,n

[K3(Qn+1; t)]
2 dt .
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The second summand is

xn−2,n∫

x2,n

[K3(Qn+1; t)]
2 dt =

1

n6

n−2

n∫

2
n

[B̃3(n t)]
2 dt =

n− 4

n7
‖B3‖22 ,

and for the first one after some algebra we find

2

x2,n∫

0

[K3(Qn+1; t)]
2 dt =

2

n7

2∫

0

[
− u

3

6
+

3u2

16
+

7(u− 1)2+
12

]2
du

=
2

n7

( 1∫

0

[
− u

3

6
+

3u2

16

]2
du+

2∫

1

[
− u

3

6
+

3u2

16
+

7(u− 1)2

12

]2
du

)

=
13

10080n7
=

39

n7
‖B3‖22 .

After summing the two expressions and taking square root we obtain

c3,2(Qn+1) =
1

n3
‖B3‖2
(
1 +

35

n

)1/2
=

1

12
√
210n3

(
1 +

35

n

)1/2
.

Comparison of the error constants c3,∞(Qn+1) and c3,2(Qn+1) of quadrature
formula (3.6) with the best possible constant (2.14) and (2.15) in the corresponding
1-periodic Sobolev classes shows the asymptotical optimality of {Qn+1}∞n=6 in the
Sobolev classesW 3

∞ andW 3
2 . Certainly, this sequence is not asymptotically optimal

in W 3
1 , as is seen also on Figure 1. In fact, ‖K3(Qn+1; ·)‖∞ is attained at the point

t∗n = 3
4n , and

c3,1(Qn+1) = K3(Qn+1; t
∗
n) =

9

256n3
=

81
√
3

32
En(W̃ 3

1 ) ≈ 4.384 En(W̃ 3
1 ) ,

i.e., the error constant is more than four times greater than the best possible. We
shall however construct sequences of quadrature formulae, which are asymptotically
optimal in W 3

1 , too, see quadrature formulae (3.9) and (3.13) below.

The next quadrature formulae are obtained in the same way as quadrature
formula (3.6), and the evaluation of their coefficient and error constants follows the
same lines as above. That is why we only give the results.

2. A quadrature formula generated by D1(x0,n, y1,n, x1,n)[f ].

Here, D1(x0,n, y1,n, x1,n)[f ] = n
(
− 3f(x0,n) + 4f(y1,n) − f(x1,n)

)
, and the

resulting quadrature formula (3.3) involves n+ 3 nodes,

Qn+3[f ] =

n+3∑

k=1

Ak,n+3 f(τk,n+3) . (3.8)

156 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 145–169.



Table 1. The coefficients, nodes and error constants of quadrature formula (3.8).

A1,n+3, An+3,n+3 A2,n+3, An+2,n+3 A3,n+3, An+1,n+3 Ak,n+3, 4 ≤ k ≤ n

1

4n

1

3n

11

12n

1

n

τ1,n+3 τ2,n+3 τk,n+3, 3 ≤ k ≤ n+ 1 τn+2,n+3 τn+3,n+3
x0,n y1,n xk−2,n yn,n xn,n

c3,∞(Qn+3) c3,2(Qn+3)

1

192n3

(
1 +

2

3n

) 1

12
√
210n3

(
1 +

7

4n

)1/2

The coefficients, nodes and error constants of this quadrature formula are given in
Table 1.

3. A quadrature formula generated by D1(x0,n, x1,3n, x2,3n)[f ]. Here,
D1(x0,n, x1,3n, x2,3n)[f ] =

3n
2

(
− 3f(x0,n) + 4f(x1,3n)− f(x2,3n)

)
, and by (3.3) we

obtain the (n+ 5)-point quadrature formula

Qn+5[f ] =
n+5∑

k=1

Ak,n+5f(τk,n+5) (3.9)

with coefficients, nodes and error constants given in Table 2.

Table 2. The coefficients, nodes and error constants of quadrature formula (3.9).

A1,n+5, An+5,n+5 A2,n+5, An+4,n+5 A3,n+5 , An+3,n+5 Ak,n+5, 5 ≤ k ≤ n+ 1

1

8n

1

2n
− 1

8n

1

n

τ1,n+5 τ2,n+5 τ3,n+5 τk,n+5, 4≤k≤n+2 τn+3,n+5 τn+4,n+5 τn+5,n+5
x0,n x1,3n x2,3n xk−3,n x3n−2,3n x3n−1,3n xn,n
c3,∞(Qn+5) c3,2(Qn+5) c3,1(Qn+5)

1

192n3

(
1− 22

27n

) 1

12
√
210n3

(
1 +

8

81n

)1/2 1

72
√
3n3

Here we would like to point out that, unlike the situation with quadrature
formulae (3.6) and (3.8), here the third Peano kernel of quadrature formula (3.9)
attains its C[0, 1]-norm away from the boundary intervals affected by the numerical
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Table 3. The coefficients and error constants of quadrature formula (3.10).

A1,n, An,n A2,n, An−1,n A3,n, An−2,n Ak,n, 3 ≤ k ≤ n− 3

13

12n

7

8n

25

24n

1

n

c3,∞(Qn) c3,2(Qn)

1

192n3

(
1 +

10.83836617

n

) 1

12
√
210n3

(
1 +

475

4n

)1/2

2. A quadrature formula generated by D1(x0,n, y1,n, x1,n)[f ].

We already applied this formula for numerical differentiation in the preceding
section, this time we get through (3.4) an (n+ 4)-point quadrature formula

Qn+4[f ] =
n+4∑

k=1

Ak,n+4 f(τk,n+1) (3.11)

with coefficients, nodes and error constants given in Table 4.

Table 4. The coefficients, nodes and error constants of quadrature formula (3.11).

A1,n+4, An+4,n+4 A2,n+4, An+3,n+4 A3,n+4, An+2,n+4 Ak,n+4, 4 ≤k≤n+ 1

1

8n

5

6n

1

24n

1

n

τ1,n+4 τ2,n+4 τ3,n+4 τk,n+4, 4≤k≤n+1 τn+2,n+4 τn+3,n+4 τn+3,n+4
x0,n y1,n x1,n yk−2,n xn−1,n yn−1,n xn,n

c3,∞(Qn+4) c3,2(Qn+4)

1

192n3

(
1− 175

384n

) 1

12
√
210n3

(
1 +

25

16n

)1/2

3. A quadrature formula generated by D1(x0,n, y1,n, y2,n)[f ].

In this case, D1(x0,n, y1,n, y2,n)[f ] =
n
3

(
− 8f(x0,n) + 9f(y1,n)− f(y2,n)

)
, and

by (3.4) we obtain an (n+ 2)-point quadrature formula

Qn+2[f ] =

n+2∑

k=1

Ak,n+2 f(τk,n+2) (3.12)

with coefficients, nodes and error constants given in Table 5.
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Table 5. The coefficients, nodes and error constants of quadrature formula (3.12).

A1,n+2, An+2,n+2 A2,n+2, An+1,n+2 A3,n+2, An,n+2 Ak,n+2, 4 ≤k≤n−1

1

9n

7

8n

73

72n

1

n

τ1,n+2 τk,n+2, 2≤k≤n+1 τn+2,n+2
x0,n yk−1,n xn,n

c3,∞(Qn+2) c3,2(Qn+2)

1

192n3

(
1− 0.06659022

n

) 1

12
√
210n3

(
1 +

19

4n

)1/2

4. A quadrature formula generated by D1(x0,n, x1,6n, x1,3n)[f ].

We showed that (3.10), (3.11) and (3.12) generate sequences of asymptotically
optimal quadrature formulae in the Sobolev classes W 3

∞ and W 3
2 , however, the

asymptotical optimality does not hold in W 3
1 . With D1(x0,n, x1,6n, x1,3n)[f ] we

obtain through (3.4) an (n+ 6)-point quadrature formula

Qn+6[f ] =
n+6∑

k=1

Ak,n+6 f(τk,n+6) , (3.13)

which generates a sequence of asymptotically optimal quadrature formulae in all
Sobolev classes W 3

p , 1 ≤ p ≤ ∞. The coefficients, nodes and error constants of
(3.13) are given in Table 6.

Table 6. The coefficients, nodes and error constants of quadrature formula (3.13).

A1,n+6, An+6,n+6 A2,n+6, An+5,n+6 A3,n+6 , An+4,n+6 Ak,n+6, 4 ≤ k ≤ n+ 3

3

8n
− 1

2n

1

8n

1

n

τ1,n+6 τ2,n+6 τ3,n+6 τk,n+6, 4≤k≤n+3 τn+4,n+6 τn+5,n+6 τn+6,n+6
x0,n x1,6n x1,3n yk−3,n x3n−2,3n x6n−1,6n xn,n

c3,∞(Qn+6) c3,2(Qn+6) c3,1(Qn+6)

1

192n3

(
1− 4

27n

) 1

12
√
210n3

(
1 +

841

1296n

)1/2 1

72
√
3n3
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3.3. COMPARISON OF THE ERROR CONSTANTS

It is clear that quadrature formulae obtained in Sections 3.1 and 3.2 are of
nearly the same quality as being asymptotically optimal in the Sobolev classes
W 3
p , 1 < p ≤ ∞. Nevertheless, it makes sense to compare their error constants

in W 3
∞ and in W 3

2 under the assumption that they involve the same number of

nodes n, n ≥ 7. Interestingly, we have a clear winner in both W 3
∞ and W 3

2 , namely,
quadrature formula (3.12). The ranking of quadrature formulae (3.6), (3.8), (3.9),
(3.10), (3.11), (3.12) and (3.13) according to the magnitude of their error constants
c3,∞(Qn) and c3,2(Qn) is given in Table 7 (the smaller error constant, the higher
ranking).

Table 7. The ranking of quadrature formulae according to their error constants.

quadrature formula (3.6) (3.8) (3.9) (3.10) (3.11) (3.12) (3.13)

position according to
the size of c3,∞(Qn)

2 3 6 4 5 1 7

position according to
the size of c3,2(Qn)

6 2 4 7 3 1 5

The ranking is made assuming that n is big enough, e.g., n ≥ 59. For small n,
some small changes occur: in the ranking with respect to c3,∞(Qn), (3.10) overtakes
(3.8) (if n ≤ 58) and even (3.6) (if 7 ≤ n ≤ 30) whilst in the ranking with respect
to c3,2(Qn), (3.6) overtakes (3.13) if 7 ≤ n ≤ 9.

4. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE IN W 4
1

In [2] the idea described in the beginning of the preceding section was exploited
for the construction of asymptotically optimal quadrature formulae in the Sobolev
classes W 4

∞ and W 4
2 . To this, we add here two sequences of quadrature formulae,

which are asymptotically optimal in the Sobolev class W 4
1 .

The difference with the Sobolev classes W 3
p is that, in the cases of W 4

p there is

a shift d4,p (depending on p) of the 1-periodic Bernoulli monospline B̃4 so that the
shifted Bernoulli monospline has minimal Lq-deviation from zero (1/p+ 1/q = 1),
see (2.13). In particular,

d4,1 =
1

16
B4(0) , (4.1)

and

inf
d
‖B4 − d‖∞ = ‖B4 − 2−4B4(0)‖∞ =

1

768
. (4.2)
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The Euler-MacLauren formulae (2.7) and (2.8) in the case s = 4 reduce to

1∫

0

f(x) dx =QTrn+1[f ]−
1

12n2
[
f ′(1)− f ′(0)

]
+

1

720n4
[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫

0

B̃4(nx) f
(4)(x) dx ,

1∫

0

f(x) dx =QMi
n [f ] +

1

24n2
[
f ′(1)− f ′(0)

]
− 7

5760n4
[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫

0

B̃4
(
nx− 1/2

)
f (4)(x) dx ,

and we rewrite these formulae in the form

1∫

0

f(x) dx =QTrn+1[f ]−
1

12n2
[
f ′(1)− f ′(0)

]
+

1

768n4
[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫

0

[
B̃4(nx)− 2−4B4(0)

]
f (4)(x) dx ,

(4.3)

1∫

0

f(x) dx =QMi
n [f ] +

1

24n2
[
f ′(1)− f ′(0)

]
− 1

768n4
[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫

0

[
B̃4
(
nx− 1/2

)
− 2−4B4(0)

]
f (4)(x) dx .

(4.4)

Definition 2. Given 0 ≤ t1 < t2 < t3 < t4 < 1, we denote by D1(t1, t2, t3)[f ]
and D3(t1, t2, t3)[f ] the interpolatory formulae for numerical differentiation with
nodes {ti}4i=1, which approximate f ′(0) and f ′′′(0), respectively, i.e.

D1[f ] := D1(t1, t2, t3, t4)[f ] =

4∑

i=1

ci,1 f(ti) ≈ f ′(0) ,

D3[f ] := D3(t1, t2, t3, t4)[f ] =

4∑

i=1

ci,3 f(ti) ≈ f ′′′(0) .

We approximate derivatives f ′(0) and f ′′′(0) appearing in (4.3)–(4.4) by D1[f ]
and D3[f ], respectively. The derivatives f ′(1) and f ′′′(1) are approximated by
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the formulae for numerical differentiation D̃1[f ] and D̃3[f ], respectively, which are
obtained from D1[f ] and D3[f ] by a reflection, i.e.,

D̃1[f ] = D1[g], D̃3[f ] = D3[g], g(x) := −f(1− x) .

We observe that linear functionals L1[f ] := f ′(0) − D1[f ], L3[f ] := f ′′′(0) −
D3[f ], L̃1[f ] := f

′(0)− D̃1[f ] and L̃3[f ] := f ′′′(0)− D̃3[f ] vanish on π3, therefore,
by Peano’s theorem, for f ∈W 4

1 they possess integral representations of the form

L[f ] =

1∫

0

K4(L;x)f
(4)(x) dx, with K4(L; t) = L

[
(· − t)3+/3!

]
.

Replacement of derivatives in (4.3) by the formulae for numerical differentiation
yields a new quadrature formula Q,

1∫

0

f(x) dx = Q[f ] +

1∫

0

K4(Q;x)f
(4)(x) dx ,

where

Q[f ] = QTrn+1[f ] +
1

12n2

4∑

i=1

ci,1
[
f(ti) + f(1− ti)

]

− 1

768n4

4∑

i=1

ci,3
[
f(ti) +f(1− ti)

]
,

(4.5)

and

K4(Q;x) =
1

n4
[
B̃4(nx)− 2−4B4(0)

]
+

1

12n2
[
K4(L1;x)−K4(L̃1;x)

]

− 1

768n4
[
K4(L3;x)−K4(L̃3;x)

]
.

(4.6)

Analogously, replacement of derivatives in (4.4) by the formulae for numerical
differentiation yields a new quadrature formula Q,

Q[f ] = QMi
n [f ]− 1

24n2

4∑

i=1

ci,1
[
f(ti) + f(1− ti)

]

+
1

768n4

4∑

i=1

ci,3
[
f(ti) +f(1− ti)

]
,

(4.7)

and

K4(Q;x) =
1

n4
[
B̃4(nx−1/2)− 2−4B4(0)

]
− 1

24n2
[
K4(L1;x)−K4(L̃1;x)

]

+
1

768n4
[
K4(L3;x)−K4(L̃3;x)

]
.

(4.8)
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Here, as in the preceding section, it is assumed that t4 = O(n−1), and as a
result, for x ∈ [t4, 1− t4] the fourth Peano kernels of quadrature formulae (4.5) and
(4.7) coincide with n−4

[
B̃4(nx)− 2−4B4(0)

]
and n−4

[
B̃4(nx− 1/2)− 2−4B4(0)

]
,

respectively. Hence, for Q being either (4.5) or (4.7) we have

‖K4(Q; ·)‖C[t4,1−t4] =
1

n4
‖B4 − 2−4B4(0)‖∞ =

1

768n4
. (4.9)

Both (4.5) and (4.7) are symmetric quadrature formulae with at most n+9 nodes.
In view of (2.19), (4.9) and the obvious inequality

En(W 4
1 ) ≥ En(W̃ 4

1 ) =
1

768n4
,

a sufficient condition for either of (4.5) and (4.7) to generate a sequence of asymp-
totically optimal quadrature formulae in W 4

1 is

‖K4(Q; ·)‖C[0,t4] ≤
1

768n4
. (4.10)

Indeed, in such a case (4.10) and (4.9) imply

c4,1(Q) = ‖K4(Q; ·)‖C[0,1] =
1

768n4

and since Q has at most n+ 9 nodes, then for Qn, the n-point quadrature formula
of the same kind, with n > 9, we have

c4,1(Qn) ≤
1

768 (n− 9)4
.

Consequently,

1 ≤ lim
n→∞

c4,1(Qn)

En(W 4
1 )
≤ lim

n→∞

1
768 (n−9)4

En(W̃ 4
1 )

= lim
n→∞

1
768 (n−9)4

1
768n4

= 1 ,

whence the asymptotical optimality holds.

4.1. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON QTrn+1

We make use of the following formulae for numerical differentiation:

D1(x0,n, x1,3n, x2,3n, x1,n)[f ] =
n

2

[
−11f(x0,n)+18f(x1,3n)−9f(x2,3n)+2f(x1,n)

]

D3(x0,n, x1,3n, x2,3n, x1,n)[f ] = 27n3
[
−f(x0,n)+3f(x1,3n)−3f(x2,3n)+f(x1,n)

]
.

The resulting quadrature formula (4.5) involves n+ 5 nodes,

Qn+5 =

n+5∑

k=1

Ak,n+5 f(τk,n+5) . (4.11)
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we have

‖K4(Qn+5; ·)‖C[0,x1,n] = |K4(Qn+5;x1,n)| =
1

n4
∣∣B̃4(nx1,n)− 2−4B4(0)

∣∣

=
1− 2−4

n4
∣∣B4(0)
∣∣ = 1

768n4
.

Thus, condition (4.10) is verified, and the asymptotical optimality in W 4
1 of the

sequence of quadrature formulae {Qn+5} given by (4.11) is proved.

4.2. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON QMi
n

Here we apply formulae for numerical differentiation with nodes x0,n, y1,3n,
x1,3n and y1,n, namely

D1(x0,n, y1,3n, x1,3n, 11,n)[f ] = n
[
−11f(x0,n)+18f(y1,3n)−9f(x1,3n)+2f(y1,n)

]

D3(x0,n, y1,3n, x1,3n, y1,n)[f ] = 216n3
[
−f(x0,n)+3f(y1,3n)−3f(x1,3n)+f(y1,n)

]
.

By (4.7) we obtain a quadrature formula with n+ 6 nodes,

Qn+6 =
n+6∑

k=1

Ak,n+6 f(τk,n+6) . (4.12)

The weights and the nodes of Qn+6 are given in Table 9.

Table 9. The weights and the nodes of quadrature formula (4.12).

A1,n+6, An+6,n+6 A2,n+6, An+5,n+6 A3,n+6, An+4,n+5 A4,n+6, An+3,n+6 Ak,n+6, 5≤k≤n+2

17

96n

3

32n
− 15

32n

115

96n

1

n

τ1,n+6 τ2,n+6 τ3,n+6 τk,n+6, 4≤k≤n+3 τn+4,n+6 τn+5,n+6 τn+6,n+6
x0,n y1,3n x1,3n yk−3,n x3n−1,3n y3n,3n xn,n

We proceed with showing that the sequence of quadrature formulae {Qn+6}n∈N
defined in (4.12) is asymptotically optimal in W 4

1 . To this end, we need to show
that the fourth Peano kernel of Q = Qn+6 satisfies condition (3.10), with [0, t4]
replaced by [0, y1,n]. We have

K4(Qn+6;x) =
x4

24
− 1

6

[ 17
96n

x3+
3

32n

(
x− 1

6n

)3
+
− 15

32n

(
x− 1

3n

)3
+

]
, x ∈ [0, y1,n],

or, after change of the variable, x = u/n with u ∈ [0, 1/2],

K4(Qn+6;x) =
1

24n4

[
u4 − 17

24
u3 − 3

8
(u− 1/6)3+ +

15

8
(u− 1/3)3+

]
=:

1

24n4
h(u).
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formulae can be generated as well by making use of different formulae for numerical
differentiation for approximation of the derivatives at the end points of integration
interval.

The same approach can be applied for the construction of sequences of asymp-
totically optimal quadrature formulae in the Sobolev classes W 4

p , r > 4, though the
calculation of their sharp error constants cr,p, even for p = 1, 2,∞, becomes rather
elaborate.
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