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1. INTRODUCTION

A major focus of research in Computability theory involves definability issues
in degree structures. Considering a degree structure, natural questions arise about
the definability of classes of degrees determined by the structure’s jump operation.
The same questions can be transferred to its local substructures as well. As an
interesting special case one can ask for which natural numbers n the jump classes
Hn and Ln, consisting of the highn and the lown degrees respectively, are first
order definable in a degree structure.

As it has been shown by Shore and Slaman in [9], the Turing jump is first order
definable in the structure of the Turing degrees, DT , so for all natural numbers n
the classes Hn and Ln are first order definable in DT . For the local substructure
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GT consisting of all Turing degrees less than or equal to the first jump of the least
element in DT , and for the substructure R consisting of all computably enumerable
Turing degrees, Nies, Shore and Slaman [7] showed that for each natural number n
the jump classes Hn and Ln+1 are first order definable. The question whether the
class L1 is first order definable is still open.

In the case of the structure of the enumeration degrees, De, Kalimullin [5]
proved that the enumeration jump is first order definable, so all of the classes Hn

and Ln are first order definable as well. In the local structure Ge consisting of all
enumeration degrees below the first jump of the least element in De, we know by
a recent result of Ganchev and M. Soskova [4] that the class L1 is definable. The
problems concerning the definability of H1 and of the classes of the highn and lown
degrees for n ≥ 2 still resist all attempts to be solved.

Further one can consider the questions about the first order definability of the
jump classes H =

⋃
Hn of the degrees which are highn for some n < ω, L =

⋃
Ln

of the degrees which are lown for some n < ω and of the class of the intermediate
degrees I. It is known that the classes H,L and I are definable in DT . This follows
from the fact that each relation on DT is definable in DT if and only if it is invariant
under the automorphisms and it is induced by a degree invariant relation on 2ω

definable in Second-Order Arithmetic, see [10]. An analogous reasoning is valid for
the structure De, [11].

What is the situation in the local substructures? In the case of the structure
of the c.e. degrees, R, the classes H,L and I are not definable. Indeed, by Solovay
(see for instance [12]), the set of the indices of the c.e. sets which are intermediate
is Π0ω+1-complete, and the sets of the indices of the c.e. sets which are in H and
L respectively are both Σ0ω+1-complete and hence are not definable in First-Order
Arithmetic. On the other hand, by Nies, Shore and Slaman [7], a relation on
c.e. degrees invariant under the double jump1 is definable in R if and only if it
is definable in First-Order Arithmetic. Therefore I,H and L are not definable
in R. From this point one may conclude that I,H and L are not definable in
GT . Indeed, following Nies, Shore and Slaman [7], a relation on degrees below 0′

T

invariant under the double jump is definable in GT if and only if it is definable in
First-Order Arithmetic. But the classes of the indeces of the ∆02-sets having Turing
degrees in I,H or L respectively are not definable in First-Order Arithmetic, since
otherwise adding to their definitions the condition of being c.e. (which is definable
in First-Order Arithmetic) would result into definitions of the indices of the c.e.
sets in I,H and L. So again I,H and L are not definable in GT . Finally, let us
consider Ge. Here one can argue in a manner similar to the above by noting that
R is isomorphic to the structure of the Π01 enumeration degrees [8], and that the
latter are definable in First-Order Arithmetic. Now assuming that one of the classes
H,L and I is definable in Ge, one can easily show the definability of the respective
class of indeces of Σ02-sets in First-Order Arithmetic. So a definition in First-Order

1A n-ary relation R on degrees is invariant under the double jump if and only if whenever
R(x1, . . . ,xn) and x′′

1 = y′′

1 , . . . ,x
′′

n = y′′

n, it is also true that R(y1, . . . ,yn).
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Arithmetic of the corresponding class of c.e. sets is obtained, once again leading to
a contradiction.

In this paper we investigate the question about the definability of the classes
I, H and L in the local theory of the structure of the ω-enumeration degrees, Dω,
which is a proper extension of De.

The structure of the ω-enumeration degrees was introduced by Soskov [14] and
further studied in a sequence of works by Soskov, M. Soskova and Ganchev [15,17,3].
Unlike the structures of the Turing degrees and of the enumeration degrees, Dω is
based on a reducibility relation between sequences of sets of natural numbers. To
be more precise, a sequence A = {Ak}k<ω is said to be ω-enumeration reducible
to a sequence B = {Bk}k<ω if and only if JB ⊆ JA, where for any sequence
X = {Xk}k<ω, JX denotes the jump class

JX = {dT (Y )| Xk is c.e. in Y (k) uniformly in k}.

The jump A′ of a sequence A is defined [15] so that the class JA′ consists
exactly of the jumps of the Turing degrees in JA, i.e. so that JA′ = J ′

A
. The jump

operator on sequences is monotone and thus induces a jump operation ′ in Dω.
Like the jump operation in DT , the range of the jump operation in Dω is exactly
the cone above the first jump of the least element 0ω. In other words, a general
jump inversion theorem is valid for Dω. Moreover, even a stronger statement turns
out to be true, namely, for every ω-enumeration degree a above 0′

ω there is a least
degree with jump equals to a. This property is neither true for DT nor for De.

The strong jump inversion theorem makes the structure Dω worth studying,
since using it one may consider a natural copy of the structure De definable in Dω
augmented by the jump operation. Moreover, the automorphism groups of De and
Dω

′ (i.e. the structure of ω-enumeration degrees augmented with jump operation)
are isomorphic.

The jump operation gives rise to the local substructure Gω consisting of all ω-
enumeration degrees below 0′

ω. Thanks to the strong jump inversion, Gω contains
a class of remarkable degrees having no analogue in either R, GT or Ge. These
degrees are denoted by on, n < ω, and are defined so that on is the least degree
whose n-th jump is equal to the (n + 1)-th jump of 0ω. In other words, on is the
least highn degree. The degrees on turn out be also connected to lown degrees.
Indeed, a degree in Gω is lown if and only if it forms a minimal pair with on.

Each one of the degrees on turns out to be definable in Gω, [3], and hence so
are the classes Hn and Ln, for n ∈ ω. The definition in Gω of on given by Ganchev
and M. Soskova [3] is based on the notion of Kalimullin pairs, or more simply K-
pairs — a notion first introduced and studied by Kalimullin in the context of the
enumeration degrees. For an arbitrary partial order D = (D,≤) a pair {a,b} is
called a K-pair if and only if

x = (x ∨ a) ∧ (x ∨ b)
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holds for every x ∈ D.

The K-pairs in Gω can be separated into two disjoint classes. The first class
consists of the K-pairs formed by two almost zero degrees (a degree in Gω is called
almost zero if and only if it is bellow each on). The other class contains the K-pairs

inherited from De[0
(n)
e ,0

(n+1)
e ] for some natural number n. The degrees on are

strongly connected with the inherited K-pairs. In fact the degree on is the greatest
degree which is the least upper bound of an inherited K-pair, which cannot be
cupped above on−1 by a degree less then on−1. On the other hand if a K-pair is
not inherited, then it is bounded by every on−1 so that we can relax the condition
on the K-pairs to be inherited in the above characterisation. Since o0 is the top
element in Gω, we can define each of the degrees on inductively in Gω.

In this paper we continue the study of the connections between the degrees on
and the K-pairs. Our aim is to prove the following theorem.

Theorem 1. The classes H,L and I are first order definable in the local
substructure Gω of the ω-enumeration degrees.

To obtain the above mentioned definability result it suffices to prove that the
set O = {on|n < ω} is definable in Gω. Indeed, we obviously have that

x ∈ H ⇐⇒ (∃n)[x ∈ Hn] ⇐⇒ (∃n)[on ≤ω x] ⇐⇒ (∃o ∈ O)[o ≤ω x].

Similarly

x ∈ L ⇐⇒ (∃n)[x ∈ Ln] ⇐⇒ (∃n)[on ∧ x = 0ω] ⇐⇒ (∃o ∈ O)[o ∧ x = 0ω].

So how do we define O? As we stated above, each on is the least upper bound
of an inherited K-pair. Then our first goal is to define the set of the inherited K-
pairs in Gω. We achieve this using a result by Kent and Sorbi [6]. Namely, we show
that a K-pair is inherited if and only if each of its elements bounds a non-splittable
degree. So we concentrate only on least upper bounds of inherited K-pairs. First
we show that for each on and for each inherited K-pair, the elements of the K-pair
are either bellow on or are incomparable with on. Then a result by Ganchev and
M. Soskova [3] allows us to show that this necessary condition is also sufficient, so
that we obtain the desired definition of O.

Moreover, we shall extend our observations for the K-pairs in Gω and charac-
terise the K-pairs in Dω. We shall see that the K-pairs in Dω either consists only of
a.z. degrees, or are inherited just like in the case of Gω. But the inherited K-pairs
are always below 0′

ω. So, knowing how to distinguish (in Dω) the inherited K-pairs
from the others and using the fact that 0′

ω can be represented as a least upper
bound of an inherited K-pair, we conclude that 0′

ω is the greatest degree which is
least upper bound of an inherited K-pair. Thus we have

Theorem 2. The first jump of the least element 0ω is first order definable in
Dω.
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2. PRELIMINARIES

We denote the set of natural numbers by ω. If not stated otherwise, a, b,
c, . . . stand for natural numbers, A, B, C, . . . for sets of natural numbers, a, b,
c, . . . for degrees and A, B, C, . . . for sequences of sets of natural numbers. We
shall further follow the following convention: whenever a sequence is denoted by a
calligraphic Latin letter, then we shall use the roman style of the same Latin letter,
indexed with a natural number, say k, to denote the k-th element of the sequence
(we always start counting from 0). Thus, if not stated otherwise, A = {Ak}k<ω,
B = {Bk}k<ω, C = {Ck}k<ω, etc. We shall denote the set of all sequences (of length
ω) of sets of natural numbers by Sω.

The notation A⊕B stands for the set {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.

We assume that the reader is familiar with the notion of enumeration reducibil-
ity, ≤e, and with the structure of the enumeration degrees (for an introduction
on the enumeration reducibilities and the respective degree structure we refer the
reader to [1, 13]).

For a natural number e and a set A ⊆ ω, we denote by WA
e the domain of the

partial function computed by the oracle Turing machine with index e and using A
as an oracle.

Intuitively, a set A is enumeration reducible (e-reducible) to a set B, if there
is an effective algorithm transforming each enumeration of B into an enumeration
of A. More formally, A ≤e B if and only if there is a natural number i, such that
for every enumeration f of B, the function {i}f is an enumeration of A. It turns
out that A ≤e B if and only if there is a c.e. set W , such that

x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈W & Du ⊆ B], (2.1)

where 〈x, u〉 denotes the code of the pair of natural numbers (x, u) under some fixed
encoding, and Du is the finite set with canonical index u. Usually this is taken as
the formal definition of the enumeration reducibility. If the setW in (2.1) has index
i, we say that A is e-reducible to B via Wi, and we shall write A =Wi(B).

The relation ≤e is a preorder on the powerset P(ω) of the natural numbers
and induces a nontrivial equivalence relation ≡e. The equivalence classes under ≡e
are called enumeration degrees. The enumeration degree which contains the set A
is denoted by de(A). The set of all enumeration degrees is denoted by De. The
enumeration reducibility between sets induces a partial order ≤e on De by

de(A) ≤e de(B) ⇐⇒ A ≤e B.

We denote by De the partially ordered set (De,≤e). The least element of De
is the enumeration degree 0e of ∅. Also, the enumeration degree of A⊕B is the
least upper bound of the degrees of A and B. Therefore De is an upper semilattice
with least element.

By A+ we shall denote the set A⊕ (ω \A).
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The enumeration jump A′
e of A is defined by A′

e = {x | x ∈ Wx(A)}
+.

The jump operation preserves the enumeration reducibility, hence we can define
de(A)

′ = de(A
′). Since A <e A

′, then we have a <e a
′ for every enumeration

degree a. The jump operator is uniform, i.e. there exists a recursive function j

such that for every sets A and B, if A =We(B) then A′ =Wj(e)(B
′).

The jump operation gives rise to the local substructure Ge, consisting of all
degrees bellow 0′

e – the jump of the least enumeration degree. Cooper [1] has
proved that Ge is exactly the collection of all Σ02 enumeration degrees.

Finally we need the following definition, which we shall use in order to char-
acterise ω-enumeration reducibility. Given a sequence A ∈ Sω we define the jump
sequence P(A) of A as the sequence {Pk(A)}k<ω such that:

1. P0(A) = A0;

2. Pk+1(A) = Pk(A)
′⊕Ak+1.

3. THE ω-ENUMERATION DEGREES

Soskov [14] introduced the structure of the ω-enumeration degrees Dω in the
following way. For every sequence A ∈ Sω, we define its jump class JA to be the
set:

JA = {dT (X) | Ak is c.e. in X(k) uniformly in k}. (3.1)

We set
A ≤ω B ⇐⇒ JB ⊆ JA.

Clearly ≤ω is a reflexive and transitive relation, and the relation ≡ω defined by

A ≡ω B ⇐⇒ A ≤ω B & B ≤ω A

is an equivalence relation. The equivalence classes under this relation are called
ω-enumeration degrees. In particular, the equivalence class dω(A) = {B | A ≡ω B}
is called the ω-enumeration degree of A. The relation ≤ω defined by

a ≤ω b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤ω B)

is a partial order on the set of all ω-enumeration degrees Dω. By Dω we shall
denote the structure (Dω,≤ω). The ω-enumeration degree 0ω of the sequence
∅ω = {∅}k<ω is the least element in Dω. Further, the ω-enumeration degree of the
sequence A ⊕ B = {Ak ⊕ Bk}k<ω is the least upper bound a ∨ b of the pair of
degrees a = dω(A) and b = dω(B). Thus Dω is an upper semi-lattice with least
element.

An explicit characterisation of the ω-enumeration reducibility is derived in
[16]. According to it, A ≤ω B ⇐⇒ An ≤e Pn(B) uniformly in n. More formally,
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A ≤ω B if and only if there is a computable function f , such that for every natural
number k, Ak = Wf(k)(Pk(B)). From here, one can show that each sequence is
ω-enumeration equivalent with its jump sequence, i.e. for all A ∈ Sω,

A ≡ω P(A). (3.2)

Further, for the sake of convenience, for sequences A,B ∈ Sω we shall write A ≤e B
if and only if for each k < ω,Ak ≤e Bk uniformly in k. So A ≤ω B ⇐⇒ A ≤e
P(B). Note that there exist only countably many computable functions, so that
there could be only countably many sequences ω-enumeration reducible to a given
sequence. In particular every ω-enumeration degree cannot contain more than
countably many sequences and hence there are continuum many ω-enumeration
degrees.

Given a set A ⊆ ω, denote by A ↑ ω the sequence (A, ∅, ∅, . . . , ∅, . . .). From the
definition of ≤ω and the uniformity of the jump operation, we have that for every
sets A and B,

A ↑ ω ≤ω B ↑ ω ⇐⇒ A ≤e B. (3.3)

The last equivalence means, that the mapping κ : De → Dω, defined by, κ(x) =
dω(X ↑ ω), where X is an arbitrary set in x, is an embedding of De into Dω.
Further, the so defined embedding κ preserves the least element and the binary
least upper bound operation. We shall denote the range of κ with D1.

4. THE JUMP OPERATOR

Following the lines of Soskov and Ganchev [15], the ω-enumeration jump A′ of
A ∈ Sω is defined as the sequence

A′ = (P1(A), A2, A3, . . . , Ak, . . .).

This operator is defined so that if A′ is the jump of A, then the jump class JA′

of A′ contains exactly the jumps of the degrees in the jump class JA of A. Note
also, that for each k, Pk(A

′) = P1+k(A), so A
′ ≡ω {Pk+1(A)}.

The jump operator is strictly monotone, i.e. A  ω A′ and A ≤ω B ⇒ A′ ≤ω
B′. This allows to define a jump operation on the ω-enumeration degrees by setting

a′ = dω(A
′),

where A is an arbitrary sequence in a. Clearly, a <ω a
′ and a ≤ω b⇒ a

′ ≤ω b
′.

Also the jump operation on ω-enumeration degrees agrees with the jump op-
eration on the enumeration degrees, i.e. we have

κ(x′) = κ(x)′, for all x ∈ De.
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We shall denote by A(n) the n-the iteration of the jump operator on A. Let
us note that

A(n) = (Pn(A), An+1, An+2, . . .) ≡ω {Pn+k(A)}k<ω. (4.1)

It is clear that if A ∈ a, then A(n) ∈ a(n), where a(n) denotes the n-th iteration of
the jump operation on the ω-enumeration degree a.

The jump operator on Dω preserves the greatest lower bound, i.e. for each
x,y, z ∈ Dω,

x ∧ y = c⇒ x′ ∧ y′ = c′.[2] (4.2)

Further, Soskov and Ganchev [15] showed that for every natural number n if b is
above a(n), then there is a least ω-enumeration degree x above a with x(n) = b.
We denote this degree by In

a
(b). An explicit representative of In

a
(b) can be given

by setting
InA(B) = (A0, A1, . . . , An−1, B0, B1, . . . , Bk, . . .), (4.3)

where each A ∈ a and B ∈ b are arbitrary.

From here it follows that for every given a ∈ Dω and n < ω, the operation In
a
is

monotone. Further, its range is a downwards closed subset of the upper cone with
least element a. In fact, even a stronger property holds: if x,a,b ∈ Dω are such
that a ≤ω x, a

(n) ≤ω b and x ≤ω I
n
a
(b), then x is equal to In

a
(x(n)). The above

property can be easily verified by simple relativisation of claim (I2) of Lemma 1 in
[3].

It what follows, when a = 0ω, we shall write In instead of In
0ω

. Finally, we
provide a property of the jump inversion operation, a proof of which can be found
in [3].

(x ∨ In(a))(n) = x(n) ∨ a. (4.4)

5. THE LOCAL THEORY AND THE on DEGREES

The structure of the degrees lying beneath the first jump of the least element
is usually referred to as the local structure of a degree structure. In the case of the
ω-enumeration degrees we shall denote this structure by Gω. When considering a
local structure, one is usually concerned with questions about the definability of
some classes of degrees, which have a natural definition either in the context of the
global structure (for example the classes of the high and the low degrees) or in the
context of the basic objects from which the degrees are built (for example the class
of the Turing degrees containing a c.e. set).

Recall that a degree in the local structure is said to be highn for some n if
and only if its n-th jump is as high as possible. Similarly, a degree in the local
structure is said to be lown for some n if and only if its n-th jump is as low as
possible. More formally, in the case of Gω, a degree a ∈ Gω is highn if and only if

a(n) = (0′
ω)
(n) = 0

(n+1)
ω , and is lown if and only if a(n) = (0′

ω)
(n).
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As usual, we denote by Hn the collection of all highn degrees, and by Ln the
collection of all lown degrees. Also H stands for the union of all the classes Hn

and analogously, L is the union of all of the classes Ln. Finally, I will stay for the
collection of the degrees that are neither highn nor lown for any n. The degrees in
I shall be referred to as intermediate degrees.

Using the corresponding results for the structure of the enumeration degrees,
it is easy to see that there exist intermediate degrees and for every natural number
n, there are degrees in the local structure of the ω-enumeration degrees, that are
high(n+1) (respectively low(n+1)) but are not highn (respectively lown).

Soskov and Ganchev [15] gave a characterisation of the classes Hn and Ln that
does not involve directly the jump operation. Let us set on to be the least n-th

jump invert of 0
(n+1)
ω , i.e., on = In(0(n+1)). Note that on is the least element of

the class Hn. Thus for arbitrary x ∈ Gω,

x ∈ Hn ⇐⇒ on ≤ω x. (5.1)

In particular, since every highn degree is also high(n+1), on+1 ≤ω on. On the
other hand, since Hn+1 \Hn ?= ∅, the equality on+1 = on is impossible, so that

0′
ω = o0 >ω o1 >ω o2 >ω · · · >ω on >ω . . . .

Recall that if a degree is beneath a least n-th jump invert above a, then it itself
is a least n-th jump invert above a. In particular, if y ≤ω on, then y = In(z) for

some degree 0
(n)
ω ≤ω z ≤ω 0

(n+1)
ω or more concretely y = In(y(n)). On the other

hand if y ∈ Gω is a least n-th jump invert, then from the monotonicity of In we
have y ≤ω on. Thus

{y ∈ Gω | y ≤ω on} = {I
n(z) | 0(n)ω ≤ω z ≤ω 0

(n+1)
ω }.

In particular, since In is injective,

[0ω,on] ≃ [0(n)ω ,0(n+1)ω ].

Ganchev and M. Soskova [3] showed that for arbitrary x ∈ Gω,

In(x(n)) = x ∧ on. (5.2)

Indeed, let us take an arbitrary x ∈ Gω. Clearly I
n(x(n)) ≤ω x and In(x(n)) ≤ω

on. On the other hand if y is such that y ≤ω x and y ≤ω on, then from the second
inequality we have y = In(z) for some z. This together with the first inequality
gives us z = (In(z))(n) = y(n) ≤ω x

(n). Thus y = In(z) ≤ω I
n(x(n)).

This gives us a characterisation of the lown degrees in terms of the partial
order ≤ω and the degrees on, namely

x ∈ Ln ⇐⇒ x ∧ on = 0ω. (5.3)
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They also show that for arbitrary a ∈ Gω, a is a degree in D1 iff

∀x ∈ Gω(x ∨ o1 = a ∨ o1 → x ≥ω a). (5.4)

The formula (5.4) characterises the degrees in D1∩Gω in terms of the ordering
≤ω and the degree o1.

Soskov and Ganchev [15] introduced the almost zero (a.z.) degrees. Following
their lines, the degree x is a.z. if and only if there is a representative X ∈ x such
that

(∀k)[Pk(X ) ≡e ∅
(k)]. (5.5)

It is clear that the class of the a.z. degrees is downward closed. Further, one can
easily show that the only a.z. degree a for which there is a natural number n such

that a(n) = 0
(n)
ω is the least element 0ω. Note also that there are continuum many

a.z. degrees and hence not all a.z. degrees are in Gω.

The a.z. degrees in Gω are exactly the degrees bounded by every degree on,
i.e.

x ∈ Ge is a.z. ⇐⇒ (∀n < ω)[x ≤ω on]. (5.6)

Further, the classes H and L can be characterised in terms of the ordering ≤ω and
the a.z. degrees [15], namely

a ∈ H ⇐⇒ (∀x− a.z.)[x ≤ω a], (5.7)

and
a ∈ L ⇐⇒ (∀x− a.z.)[x ≤ω a→ x = 0ω], (5.8)

where all quantifiers are restricted to degrees in Gω.

From the second equivalence it follows that the only lown a.z. degree is 0ω.
Further, according to (5.1) no a.z. degree is highn for any n. Thus all a.z. degrees
are intermediate degrees.

6. DEFINABILITY IN Gω

We prove in this section that the set O = {on|n < ω} is first order definable
in Gω. Thus, by (5.1) and (5.3), we may conclude the proof of the Theorem 1. For
this purpose we shall need the notion of a Kalimullin pair (or K-pair).

Definition 3. Let D = (D,≤) be a partial order. The pair {a,b} is said to
be K-pair (strictly) over u for D, if a,b,u ∈ D,u ≤ a,b (u  a,b) and for all
x ∈ D such that u ≤ x, the least upper bounds x∨a,x∨b and greatest lower bound
(x ∨ a) ∧ (x ∨ b) exist, and the following holds:

x = (x ∨ a) ∧ (x ∨ b). (6.1)
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Further, if D = (D,≤) is a partially ordered set and u,v ∈ D, we shall use
the notation D[u,v] for the set {x ∈ D|u ≤ x ≤ v} together with the partial order
inherited from D.

Clearly, there exists a first order formula K of two free variables such that if
D has a least element 0D, then

D |= K(a,b) ⇐⇒ {a,b} is a K-pair strictly over 0D for D.

Also, we shall use the fact that for each a ∈ D, the set

I = {b | {a,b} is a K-pair strictly over 0D for D}

is either empty or ideal, see for example [5].

The starting step of the first order definition in Gω of the set O is the char-
acterisation of the K-pairs in Gω, due to Ganchev and M. Soskova [3]. According
to it, whenever {a,b} is a K-pair in Gω strictly over 0ω, then either a and b are
both a.z. or the K-pair {a,b} is inherited from the structure De, i.e. there exist
sets A,B and a natural number n such that:

1. ∅(n) <e A,B ≤e ∅
(n+1) and A′ = B′ = ∅(n+1);

2. {de(A),de(B)} is a K-pair in De[0
(n)
e ,0

(n+1)
e ] strictly over 0

(n)
e ;

3. a = In(κ(de(A))) and b = In(κ(de(B))).

It is known [3] that every two degrees a,b ∈ Gω, which are inherited from De
in the above sense, form a K-pair in Gω strictly over 0ω.

Note that by definitions of the embedding κ and the least jump inversion
operation (4.3) the last condition of the above characterisation of the K-pairs in the
local theory is equivalent to the fact that the degrees a and b contain respectively
the sequences (∅, ∅, . . . , ∅︸ ︷︷ ︸

n

, A, ∅, . . . , ∅, . . .) and (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . . , ∅, . . .).

Using the above characterisation, one can prove that for each n ≥ 0, on+1 is
the greatest degree (in Gω) which is the least upper bound of a K-pair {a,b} strictly
above 0ω such that (∀x  ω on)[a∨x  ω on]. Since o0 is the greatest degree in Gω,
it follows that for each natural number n, on is first order definable in Gω.

Note that the a.z. degrees are closed under the least upper bound operation
and no on is a.z., thus if {a,b} is a K-pair {a,b} strictly over 0ω with a∨b = on,
then {a,b} is an inherited K-pair.

Now we shall show how to separate in Gω the inherited K-pairs from those
formed by a.z. degrees. Suppose that {a,b} is an inherited K-pair and let A,B ⊆ ω

and n < ω be the corresponding witnesses for this. It is known by the a result of
Kent and Sorbi [6], that every nonzero enumeration degree x ∈ De[0e,0

′
e] bounds
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a nonzero nonsplittable2 degree y ∈ De[0e,0
′
e]. Relativising this result over 0

(n)
e

we conclude that there are sets A0, B0 ⊆ ω such that ∅(n) <e A0 ≤e A, ∅
(n) <e

B0 ≤e B, such that both de(A0) and de(B0) are nonsplittable over 0
(n)
e . But then

the degrees a0 = I
n(κ(de(A0))) and b0 = I

n(κ(de(B0))) are nonsplittable. Indeed,
assume without loss of generality that a0 is splittable. Then a0 = c ∨ d for some
0ω <ω c,d <ω a0 and let C = {Cm}m<ω ∈ c,D = {Dm}m<ω ∈ d. According to
(4.3) and (3.2), (∅, ∅′, . . . , ∅(n−1)

︸ ︷︷ ︸
n

, A0, ∅
(n+1), . . .) ∈ a0, so that

P(C)⊕P(D) ≤e (∅, ∅
′, . . . , ∅(n−1)

︸ ︷︷ ︸
n

, A0, ∅
(n+1), . . .),

From here Pn(C)⊕Pn(D) ≤e A0,

P(C) ≡e (∅, ∅
′, . . . , ∅(n−1), Pn(C), ∅

(n+1), . . .)

and
P(D) ≡e (∅, ∅

′, . . . , ∅(n−1), Pn(D), ∅
(n+1), . . .).

Since a0 ≤ω c∨d, then (∅, ∅′, . . . , ∅(n−1), A0, ∅
(n+1), . . .) ≤e P(P(C)⊕P(D)). Then

we have that A0 ≤e Pn(P(C)⊕P(D)) ≡e Pn(C)⊕Pn(D),
3, so finally A0 ≡e

Pn(C)⊕Pn(D). Since de(A0) is a nonsplittable degree over 0
(n)
e , either Pn(C) ≡e A0

or Pn(D) ≡e A0. In the first case we have that a0 = c, and in the second – a0 = d,
i.e., we reach a contradiction.

Thus, if {a,b} is an inherited K-pair strictly over 0ω, then both a and b bound
nonzero nonsplitting degrees. Next we shall see that if {a,b} is a a.z. K-pair strictly
over 0ω then neither a nor b bounds a nonzero nonsplitting degree. Moreover, the
following property holds for every a.z. degree in Dω.

Lemma 4. Every nonzero a.z. degree in Dω is splittable.

Proof. Let a be a nonzero a.z. degree and let A ∈ a satisfy (5.5). We shall
construct sequences B and C such that ∅ω  ω B, C  ω A and B⊕C ≡ω A. We shall
construct B = {Bk}k<ω and C = {Ck}k<ω using induction on k. For every k we
shall set either Bk = ∅ and Ck = Ak or Bk = Ak and Ck = ∅. This condition will
ensure that B⊕C = A. So, in order to build B and C as desired, it suffices that
B, C ≤ω A and that the following requirements are satisfied:

R2e : ∃k
(
ϕe(k) ↑ ∨ Ak ?=Wϕe(k)(Pk(B))

)
,

2Let D = (D,0,≤,∨) be an upper semilattice with a least element. Let a,b ∈ D be such that
b ≤ a. We shall say that a is splittable over b if and only if there are x,y ∈ D such that

b ≤ x,y < a = x ∨ y.

When there are not such x and y we shall say that a is nonsplittable over b. In the case when b

is the least element we shall say only that a is splittable or nonsplittable.
3the last equivalence can be easily verified using induction on n < ω.
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R2e+1 : ∃k
(
ϕe(k) ↑ ∨ Ak ?=Wϕe(k)(Pk(C))

)
.

Note that B, C ≤ω A gives us automatically, that B and C satisfy (5.5). The
requirement R2e ensures that A can not be uniformly reduced to P(B) using the
e-th computable function. Similarly, R2e+1 expresses that A can not be uniformly
reduced to P(C) using the e-th computable function.

The construction: During the construction we shall use a global variable r
which shall show us the least requirement that is (possibly) not yet satisfied. We
start by setting r = 0. Also we set B0 = B1 = ∅, C0 = A0 and C1 = A1. Let
us suppose that k ≥ 2 and that Bs and Cs are defined for s ≤ k. Note that our
assumption yields that for s ≤ k, Ps(B) and Ps(C) are defined as well.

Case 1: r = 2e. If ϕe(k−2)↑ or Ak−2 ?=Wϕe(k−2)(Pk−2(B)), set Bk=Ak, Ck=∅
and augment r by 1. Otherwise set Bk = ∅, Ck = Ak and keep r the same.

Case 2: r = 2e+1. If ϕe(k − 2) ↑ or Ak−2 ?= Wϕe(k−2)(Pk−2(C)), set Bk = ∅,
Ck = Ak and augment r by 1. Otherwise set Bk = Ak, Ck = ∅ and keep r the
same.

End of construction.

First of all let us note that, according to the definition of the jump sequence P(A),
∅′′ ≤e Pk(A) for k ≥ 2 uniformly in k. Hence for k ≥ 2, given any enumeration of
Pk(A) we can uniformly decide if ϕe(k − 2) ↑. Further, for k ≥ 2, Pk−2(A)

′′ ≤e
Pk(A) uniformly in k. These properties of Pk(A) and a simple induction on k ≥
2 yield that given any enumeration of Pk(A), we can uniformly answer to the
questions

ϕe(k − 2) ↑ ∨ Ak−2 ?=Wϕe(k−2)(Pk−2(B))

and
ϕe(k − 2) ↑ ∨ Ak−2 ?=Wϕe(k−2)(Pk−2(C)).

In particular, any enumeration of Pk(A) can compute uniformly the value of r at
stage k and hence it can compute uniformly Bk and Ck. Therefore B, C ≤ω A.

It remains to prove that all the requirements are satisfied. Towards a contra-
diction assume that some requirement is not fulfilled and let n be the least index
of such a requirement. Note that the construction yields that at some stage m,
the global variable r has been set to be equal to n, and from then on r has never
changed its value. First let us suppose that n = 2e for some natural number e.
Then for every k > m, Ak−2 = Wϕe(k−2)(Pk−2(B)), so that Bk = ∅ for k > m and
Ak ≤e Pk(B) uniformly in k > m. On the other hand for 0 ≤ k ≤ m,

Bk ≤e Pk(A) ≤e ∅
(k),

which together with our previous observation yields B ≤ω ∅ω and A ≤ω B. Thus
A ≤ω ∅ω, contradicting the choice of A.
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If n = 2e + 1, we obtain in a quite similar way A ≤ω ∅ω, contradicting once
again the choice of A. Therefore our assumption that some of the requirements is
not satisfied is incorrect, and hence ∅ω  ω B, C  ω A. �

Thus, we have obtained that every inherited K-pair bounds a nonsplitting
degree, whereas every a.z. is splittable. Therefore we may define a first order
formula Kinh separating the inherited K-pairs from the ones formed by a.z. degree
by setting

Kinh(a,b) = K(a,b) & (∃x)[x ≤ω a & (∀u,v)[u,v <ω x→ u ∨ v <ω x]].

Now we have the instrument needed for the definition of the set O. Recall that
every degree on is the least upper bound of an inherited K-pair, so that we need
just to focus on the properties of the least upper bounds of such K-pairs.

Suppose that {a,b} is an inherited K-pair and let A,B ⊆ ω and n < ω be
witnesses for this. Since

(∅, ∅′ . . . , ∅(m−1)

︸ ︷︷ ︸
m

, ∅(m+1), ∅(m+2), . . .) ∈ om,

(∅, ∅′, . . . , ∅(n−1)

︸ ︷︷ ︸
n

, A, ∅(n+1), . . .) ∈ a,

(∅, ∅′, . . . , ∅(n−1)

︸ ︷︷ ︸
n

, B, ∅(n+1), . . .) ∈ b,

∅(n) <e A,B ≤e ∅
(n+1) and A′ = B′ = ∅(n+1), we have a,b <ω om for m ≤ n. On

the other hand, m > n implies that a,b ?≤ω om and om ?≤ω a,b, for otherwise we
would have A ≤e ∅

(n) and ∅(m+1) ≤e ∅
(m), respectively.

Hence, for every m < ω and every inherited K-pair {a,b}, either a,b <ω om
or a,b|ωom.

Now we claim that whenever x is the least upper bound of an inherited K-
pair and x is not om for any natural number m, there exists an inherited K-pair
{a,b} such that a|ωx and b ≤ω x. Indeed, suppose that x = c ∨ d for some
inherited K-pair {c,d} and for all m < ω, x ?= om. Let the sets C,D and the
natural number n be witnessing that the K-pair is inherited. Then the sequence
(∅, . . . , ∅︸ ︷︷ ︸

n

, C ⊕D, ∅, . . .) is an element of the degree x. Note that C,D ≤e ∅
(n+1)

and x = c ∨ d ?= on, so C ⊕D  e ∅(n+1). Since c and d are not a.z., we have
that C and D are low over ∅(n) and hence C,D ∈ ∆02(∅

(n)). But then we have
also C ⊕D ∈ ∆02(∅

(n)). In what follows we shall need the following result due to
Ganchev and M. Soskova [3].
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Theorem 5. For every total 4 enumeration degree g and every degree e, such
that g ≤e e and e contains a set ∆02 relative to g, there is a K-pair {ã, b̃} in
De[g,g

′] strictly over g, such that ã ∨ e = g′. In the case when e  e g′ we

additionally have that ã|ee and b̃ ≤e e (since e = (ã∨e)∧(b̃∨e) and ã∨e = g′).

Now let {ã, b̃} be the corresponding K-pair for g = 0
(n)
e and e = de(C ⊕D).

Let A and B be sets having enumeration degrees ã and b̃ respectively. Then the ω-
enumeration degrees a = dω(∅, . . . , ∅︸ ︷︷ ︸

n

, A, ∅, . . .) and b = dω(∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . .) form

an inherited K-pair for Gω such that a|ωx and b ≤ω x.

Thus we have proven that a degree x ≤ω 0
′
ω is on for some natural number n if

and only if x is the least upper bound of an inherited K-pair and for each inherited
K-pair {a,b} either a,b <ω x or a,b|ωx. Namely,

x ∈ O ⇐⇒ (∃a,b)[Kinh(a,b) & x = a ∨ b]&

(∀a,b)[Kinh(a,b)→ a,b ≤ω x ∨ a,b|ωx].

This gives us a first order definability in Gω of the set O as well as of the classes
H and L. A direct consequence of the latter and (5.6) is the following corollary.

Corollary 6. The set of all a.z. degrees is first order definable in Gω.

7. DEFINABILITY OF 0′
ω

In this section we characterise the class of the K-pairs strictly over 0ω for Dω.
Namely, we shall show that either such a K-pair consists of a.z. degrees, or it is
inherited. As a consequence of this characterisation and the fact that 0′

ω bounds
the elements of all inherited K-pairs we shall find a first order definition of the first
jump of the least element in the structure Dω.

First, let {a,b} be a K-pair strictly over 0ω for Dω. Let A ∈ a and B ∈ b
respectively. Using the connections between the K-pairs in De and Gω derived in
[3], we are able to conclude that for each n < ω, {de(Pn(A)),de(Pn(B))} is a K-pair

over 0
(n)
e for De[≥ 0

(n)
e ]. Hence by [5] each of de(Pn(A)) and de(Pn(B)) is quasi-

minimal over 0
(n)
e (the enumeration degree a is quasiminimal over the enumeration

degree b <e a if and only if there is no total b  e c ≤e a). Since for each n,

0
(n+1)
e ≤e de(Pn(A))

′ ≤e de(Pn+1(A)) and de(Pn(A))
′ is total (since every jump

is total), then for each n, Pn(A)
′ ≡e ∅

(n+1). The same equivalence obviously holds
also for Pn(B)

′.

4An enumeration degree is said to be total if and only if there exists a set A such that the
degree contains the set A+. With other words a degree is total if and only if it is an image of a
Turing degree under the Rogers’ embedding ι : DT → De. For example, for each n, the degree

0
(n)
e is total.
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Having in mind the last observation, consider a K-pair {a,b} strictly over 0ω
for Dω and suppose that at least one of the degrees a or b is not a.z.. Without
loss of generality, suppose that a is not a.z. degree and let A ∈ a. Therefore there
is n < ω such that Pn(A) ?≡e ∅

(n). Let a− be the ω-enumeration degree which
contains the sequence (∅, . . . , ∅︸ ︷︷ ︸

n

, Pn(A), ∅, . . .). Note that a− is bellow 0′
ω and that

{a−,b} is a K-pair strictly over 0ω for Dω. Since 0
(n)
e ≤e de(Pn(A)) ≤e 0

(n+1)
e ,

then the equality de(Pn(A))
′ = 0

(n+1)
e , together with Theorem 5, yields

de(Pn(A)) ∨ x = x′ = 0(n+1)e

for some 0
(n)
e  e x ≤e 0

(n+1)
e . So for the ω-enumeration degree κ(x), we have

that 0
(n)
ω ≤ω κ(x) ≤ω 0

(n+1)
ω and since the jump inversion operation is monotone,

In(κ(x)) ≤ω 0
′
ω. Therefore,

In(κ(x)) = (In(κ(x)) ∨ a−) ∧ (In(κ(x)) ∨ b).

Hence, using (4.4) and (4.2), we obtain

κ(x) = (κ(x) ∨ (a−)(n)) ∧ (κ(x) ∨ b(n)).

By the choice of the degree x, we have that κ(x) ∨ (a−)(n) = 0
(n+1)
ω . Therefore

b(n) ≤ω κ(x). But κ(x)
′ = 0

(n+1)
ω , so we may conclude that b(n+1) = 0

(n+1)
ω . From

here, noting that b ?= 0ω and recalling that for each nonzero a.z. degree p and each

n < ω, p(n) !ω 0
(n)
ω , we conclude that b is also not a.z. degree.

Therefore, there is m < ω such that Pm(B) ?≡e ∅
(m). Let b− be the degree

containing the sequence (∅, . . . , ∅︸ ︷︷ ︸
m

, Pm(B), ∅, . . .). Then a−,b− ≤ω 0
′
ω and {a−,b−}

is a K-pair strictly over 0ω for Dω. Note that {a−,b−} is a K-pair strictly over 0ω
also for Gω, whose elements are not a.z.. From the characterisation of the K-pairs
for Gω noted in the previous section, we conclude that m = n. Because of the
choice of n and m, we have that for all k ?= n, Pk(A) ≡e Pk(B) ≡e ∅

(k). Therefore
a = a− ∨p and b = b− ∨q where p and q are both a.z.. But p ≤ω a, so if p ?= 0ω
then {p,b} is a K-pair strictly over 0ω for Dω. Now since b is not a.z. we conclude
that p is not a.z.. A contradiction. So p must be equal to 0ω. Analogously, q = 0ω
and hence a = a−,b = b−. So we have the following characterisation of the K-pairs
{a,b} strictly over 0ω for Dω.

Theorem 7. Let {a,b} be a K-pair strictly over 0ω for Dω. Then exactly one
of the following assertions holds:

1. Both a and b are a.z..

2. There is a natural number n < ω and sets A,B ⊆ ω such that

• ∅(n) <e A,B ≤e ∅
(n+1) and A′ = B′ = ∅(n+1);
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• {de(A),de(B)} is K-pair strictly over 0
(n)
e for De[≥ 0

(n)
e ];

• (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, A, ∅, . . . , ∅, . . .) ∈ a and (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . . , ∅, . . .) ∈ b.

Note that each K-pair strictly over 0ω for Dω, whose elements are both not
a.z., is an inherited K-pair for Gω and hence its elements are bellow 0′

ω. So, by
the observations in the previous section, each of its elements bounds a nonzero
nonsplitting degree. Now, recalling Lemma 4, we have that the K-pair {a,b}
strictly over 0ω for Dω consists of non a.z. elements iff,

Dω |= Kinh(a,b),

where Kinh is the corresponding formula from the previous section. Since the
elements of each inherited K-pair are both below 0′

ω then their least upper bounds
are also below 0′

ω.

Now note that, by Kalimullin [5], 0′
e can be split by a K-pair {ã, b̃} strictly over

0e for De such that ã and b̃ are low. Then κ(ã) and κ(b̃) are not a.z. degrees and

{κ(ã), κ(b̃)} is a K-pair strictly over 0ω for Dω with κ(ã)∨κ(b̃) = 0′
ω. Thus we may

define 0′
ω as the greatest degree, which is a least upper bound of the elements of a

K-pair strictly over 0ω for Dω, whose elements are both not a.z.. Thus Theorem 2
is proved.
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