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1. INTRODUCTION

In order to approximate unbounded functions in uniform norm in [0, 1), Meyer-
Konig and Zeller (see [15]) introduced a new operator by the formula

M) = o maste)f (). (1.1)
k=0
where o) = (n + k) (1= g) ! (12)
n, kj . .

But this operator cannot be used to approximate functions in L,-norm because
it is not bounded operator in L,. Some kind of modification is needed. In this paper
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we investigate the weighted approximation of functions in L,-norm by Kantorovich
modifications of the classical Meyer-Konig and Zeller (MKZ) operator.

In 1930, Kantorovich [13] suggested a modification of the classical Bernstein
operator, replacing the function values by mean values. Analogously, Totik [16]
introduced Kantorovich type modification of MKZ operator:

DO EEED [T d

n

3 (Fiw) = 3 el k
k=0

n+k

and proved direct and converse theorems of weak type in terminology of Ditzian
and Ivanov [4] for it. Although this definition looks as the most natural one, the
operator Z\Z[T*L is not a contraction, hence it is not very suitable for approximating
functions in L,-norm for p < oo.

In [14] Miiller defined a Kantorovich modification of MKZ operator in a slightly
different way, so that the resulting operator is a contraction:

fu)du. (1.3)

k

n+k+1)(n+k+2)/nm2

Mn(f;w):Mnf(@”):Zmnvk(x)( n+1
k=0

n+k+1

Recently, in [11] by introducing an appropriate K-functional the first author
proved a direct theorem for the operators Mn( f;2). Our goal in this paper is to
extend this result for the case of weighted approximation of functions in L,-norm
by M, (f;z) operator.

Let us introduce some notations. For the sake of simplicity and brevity of our
presentation we set

n+k+1)(n+k+2 k kE+1
n,k = ( )( ); An,k) = [ 5 ] (14>
n+1 n+k+1'n+k+2
Then, the Kantorovich modification of MKZ operator (1.3) takes the form
W (f52) = 3 s (o) [ fw)do
k=0 Ank
The weights under consideration in our survey are
w(z) = (1 —x)°, aeR. (1.5)

By ¢(x) = z(1 — z)? we denote the weight which is naturally related to the
second derivative of MKZ operator. The usual first derivative operator is denoted
by D = L. Thus, Dg(z) = ¢'(z) and D*g(z) = g¥)(z) for every k € N.

We define a differential operator D by the formula

D= %(g@(m)%) = DeD.
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The space AC,.(0,1) consists of the functions which are absolutely continuous
in [a, b] for every [a,b] C (0,1). For 1 < p < oo and weight function w(z) as in (1.5)
we set

Lp(w) ={f : wf € Ly[0,1)},
{£:J,Df €ACe(0,1), wDFEL,(0,1), lim  ¢(x)Df(x) =0}, a <0,
{f: f.Df€ACIc(0,1), wDfEL,[0,1), lim o(z)Df(x) =0}, >0,
Ly(w) + Wp(w) ={f : f = fr+ fo, f € Lp(w), f2 € Wy(w)}.
Also, we define a K-functional K, (f,t), for t > 0 by

Ko(ft)p = inf {w(f = g)llp + tlwDgll, : f — g € Ly(w), g € Wp(w)}.  (1.6)

plW

Our main result is the following theorem.

Theorem 1. For1l <p < co, w defined by (1.5), M, defined by (1.3), and the
K-functional given by (1.6) there exists a positive constant C' such that for every
n > |al, n € N, and for all functions f € L,(w) + Wp(w) there holds

0 (it = Plly < CRu(£.5) . (17)

Remark 1. Converse theorem remains an open problem even for the non-
weighted case, i.e., for w(z) =1 in (1.5).

Problems on characterization of weighted K-functionals by moduli of smooth-
ness were considered by Draganov and Ivanov in [6, 7, 9]. Particularly, they char-
acterized the K-functional

Kw(fv t)p =
inf{|w(f—g)ll,+t|weD?gll, : g,Dg € AC1oc(0,1), f—g,oD?g € Ly(w)}. (1.8)

In this paper we also show that the same moduli of smoothness can be used
for computing the K-functional K, (f,t),. So, we prove the next statement.

Theorem 2. For 1 < p < oo and w, K,(f, t)p, Kuw(f,t)p, defined by (1.5),
(1.6) and (1.8), respectively, there exists a positive constant C such that for all
f € Ly(w)+ Wy(w) there holds

Ku(fit)p < C(Ky (f,1), + tEo(f)), (1.9)

where Eo(f) = infeer |[w(f — ¢)|lp is the best weighted approxzimation to f by a
constant.

Remark 2. For p = 1 and p = oo new moduli are needed. Also, a problem
on characterization of the K-functional K, (f,t), arises, but it is not the subject of
our survey here.
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Henceforth, the constant C' will always be an absolute positive constant, which
means it does not depend on f and n. Also, it may be different on each occur-
rence. The relation 01(f,t) ~ 05(f,t) means that there exists a constant ¢ > 1,
independent of f and ¢, such that

Cilal(fv t) S 92(fa t) S cel(fa t)

2. AUXILIARY RESULTS

In this section we present some properties of the operators M,,, M, basis
functions m,, i, (see [1, 10, 12]), and prove auxiliary lemmas that we need further.

The operators M,, and M,, are linear positive operators with || M, f|loo < || ]loo
and ||Mn||1 = 1. Moreover,

I, <1, 1<p<s, (2.1)
M,(1;2) =1, M, (t —z;z) =0, (2.2
M,(1;z) =1 2.3
A direct integration yields the identity:
! 1
/ My i (x)de = . (2.4)
0 Tn,k

We shall need the next three properties of the functions {m,, 1 }72, defined by
(1.2) (for proofs, see e.g., [11]).

Lemma 1. If n € N, then

1 1
1—=z n+1

I
M8

(n+k+ L)my, i (2), xz €10,1). (2.5)

b
Il

0

Lemma 2. Ifn € N, then

n

Z 1—w Zm"k Zk+g x €10,1). (2.6)

=1

Lemma 3. There exists an absolute constant C such that for every n € N the
following inequality holds true:

k+1

‘lnl—x Zm”k Z Jlrj’g

=1Q

. zelo). (2.7)
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In [16, Lemma 3] Totik proved that for 1 < p < oo,
It =2)Df@)llp < C(Ifllp + | £D*f1l)- (2.8)

In order to prove our main results we need a few additional lemmas.

Lemma 4. For every integer v there exists a constant C = C(v), such that

i (1- L)an’k(x) <c(l-z7, xel01), (2.9)

— n+k+1
for alln > |v|, n € N.

Proof. We have

> (1 ) @)

k=0
> n+1 n+k n+1
Z(n+k+1) ( 1 )xk(l—m) +
=(1-ux) k;) n—vtl)nntktl)y n—vi(T)
<(1—-2)") CW)mp—pi(z)
k=0
=Cv)(1—x)". _

Lemma 5. For every a € R there exists a constant C = C(«), such that the
following inequality is satisfied:

i (1 - L)amn,k(x) <C(-2)*  zel01), (2.10)

— n+k+1
for alln > |a|, n € N.

Proof. Let v be the smallest positive integer such that v > |a|. Then, by
Holder’s inequality it follows that

S (1 i) e

k=0
> k v sign () el el
§<Z(1_n+k+1) g m"’“”) (Zm"’k@ |
k=0

k=0
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Applying Lemma 4 we obtain

e k v sign(a) ledl/v .
<2 (1-——) mn,k@)) < (C(1—a) @)V = () (1-a).

= n+k+1
Therefore,
(o] k @
177) wi(2) < Cla)(1 — 2)°
> (1= i) el <€) -0)
and the lemma is proved. O

The next lemma is a weighted variant of (2.1).

Lemma 6. Let1 < p < oo and o € R. Then, there exists an absolute constant
C such that for alln > |a|, n €N, and f € L,(w), we have

lwdy fllp < Cllwfll,. (2.11)

Proof. First we prove (2.11) for p = 1 and p = co. Then, by applying Riesz-
Thorin theorem we obtain the estimation for every 1 < p < oo.
The case p = 1. We have

Hanfnl:/ /f 0 dt
< /0 (@) [Z%,kmn,m) /A Wdt] du

/ Z%k ( )mn,k(x)/A I(wf)(t)dt] dzx
n+k+1 n,k
Z < _1 — ) U, M, 1 (T) d,

0 k=0 n+k+1

dx

where we set

ti = [ wh)(0)]at

n,

Let v = [|a|] be the smallest positive integer such that v > |a|. Applying
Hoélder’s inequality twice we obtain

= -z .
> () swsmato

k=0 n+k+1
00 1 v sign(a) lal/v 1 o 1—|a|/v
— X
S [Z (1_k> a7z,kmn,k(x)] [Z afn,kmn,k(x)] 5
k=0 n+k+1 k=0

80 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 75-95.



thus

lecl /v

0o 1 v sign(a)
> <1k> 7k (2)

k=0 n+k+1

1
1=lal/v

(2.12)

1

Now, we estimate the first nonconstant multiplier in the right-hand side of
inequality (2.12). Let £ = v sign(«). For every integer number ¢ we have

1—e ) k) (1) (4 0)
1 mk(@) = TR D) (k1 D) (g D e (@)

< CO)mnte (@),

__k
n+k+1

hence

-z
Z<1—k> e Mo 1 (T Zankanrék (7).

= 1—x ‘ s
Z <1k> a"vkm”,k(x) <C Zan,k mn+€,k(x)
k=0 - n+k+1 1 k=0 1
G,k
<C a m =C Ll
Z nk” n+€k: ||1 ];)’YnJer
— 7
k
=CX}J*/)IWﬂ@W
k=0 Yn+e,k Ak

gcz/ ()] dt = Clluwf]s.

Since 350 an kM (x) = My, (wf;2) and | M, (wf)|l1 < |wf]i by (2.1), then
for the last multiplier in the right-hand side of (2.12) we obtain the inequality
| > reg an kil < |wf|1. Therefore,

lwM, flly < Cllwf I o f 171 = Cllw i

and the proof of the estimate (2.11) for p =1 is complete.

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 75-95. 81



The case p = co. We obtain

3 . (wh)(®)]
()3 i) /. RRACKIERIED SRR [ DOl

o Wl

< Cu) S 2k @) [ e ar
I

n,
w(n+é+1)

< Cw(@) Y mp () W
—o n+k+1
o K
= Co@lwfle Y (1= =7

k=0

) M ().
Now, by Lemma 5 we have

i (1 L)W M () < C(1—a)~°.

— n+k+1
Hence,
lwMpflloo < Cw(@)wflloo(l —2)"* = Cllwf o,
which proves (2.11) in the case p = oco.
Finally, the inequality (2.11) follows for all 1 < p < oo by the Riesz-Thorin
interpolation theorem. (]

The crucial result in our investigation is the following Jackson type inequality.

Lemma 7. Let 1 < p < oo and o € R. Then there exists an absolute constant
C, such that for alln > |a|, n € N, and f € W,(w), the following estimate holds
true:

- C, -
(it = 1), < < llwDf]l, (2.13)

(Let us note that the lemma implies that M, f — f € L,(w) for f € Wy(w).)
Proof. Let us set

T " 1
1l—2z 1—2’

qS(x) =1In x € (0, 1),

with ¢'(z) = m = ﬁ > 0, i.e., ¢(x) is an increasing function. Then we have

t ~

f(t) = f(2) + (@)[6(t) — ¢(2)] D f (x) +/ [6(t) = o) Df(u) du, € (0,1).

x
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Applying the operator M, to both sides of the latter equality and multiplying by
w(x) we obtain

w(a) (VM f(x) — F(@)) = w(a)p(e)Df () M) — o)
. ) .
w(m)Mn< / [¢<~>¢<u>]Df<u>du;x>. (2.14)

First we prove the lemma for p = 1 and p = oo. Then we apply the Riesz-
Thorin theorem to obtain (2.13) for every 1 < p < oco.

The case p = 1. In order to prove that

gD (16— 6|, < < D7l (215)

for all weights (1.5), we shall make use of the estimate

[Mng — 9|, < % (2.16)

(see [11, Proof of Theorem 1] for a complete proof).
Let @ > 0 be fixed. Then, for all n > « and f € Wi (w) we have

(@)D f(x) = / (@D (u) du = / Df(u re(0,1).

Hence,

w(a)p(x)Df ()] < wiz) / "\ ()| du < / " (wD f) ()| du < / (wD f)(w)] du,

ie.,

lw(z)p(z)Df(x)| < |lwDfll1, =z € (0,1).
Thus,
|weDf [Mng — ¢]||, < [lwDflly || Mno — 9|,

and (2.15) follows from (2.16).
Similarly, let @ < 0 be fixed. Then, for all n > —a we have —n < a < 0 and
for f € Wi (w), we consecutively obtain

(@)D f(x) = / (oD ) (u) du = / Df(u re(0,1),
(@) (@) Df ()] < w(z) / 1D f ()| du < / (wDf)(u)] du < / \(wDf)(u)| du,

ie.,

lw(x)p(x)Df(z)| < |wDfll, @€ (0,1).
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Hence, (2.16) yields (2.15).

Therefore, for arbitrary a € R\ {0} and f € Wi (w) the estimate (2.15) holds
true for n > |a|. The case o = 0 was considered by the first author in [11].

Now, we estimate the Li-norm of the second summand in the right-hand side
of (2.14). More precisely, we will prove

Jwtont, (| V160 - oD (w) i

= bl @a7)
Having in mind (1.4), for 2 € (0,1) we have

- “) .
ot [ 100 - stDswdui )

(x) kiv mo(e) [ y ( / o) - ¢<u>JW du> dt

< Cw(x) Z Tn,k mn,k(x)

X(w(ni,’zﬂﬁ )/A(/ [6(t) — #(u))|(wDf)(u >|du)dt

< CZ ( + 1) bn,k: mn,k(x)7
(n+k+1)

where

b= [ (/ o) - o) (D)) ) .

Let v be the smallest positive integer such that v > |a|. Applying twice
Hoélder’s inequality we obtain

o0 o 2) v/l lal/v
Z ( ) n kmnk lz (’UJ( )> bn,kmn,k(l‘)‘|

k=0 n+k+1

o 1-|al|/v
X lzbn kmnk ] )

k=0

n+k:+1

thus

Jotori, ([~ by ) |

0o w(z) v/|al
7 L\ bn mpy
Z ( ( k )) klTn,k

k=0 \W\ntrr1

leel /v I—|a|/v

e
E bn,kmn,k
k=0 1

<C (2.18)

1
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For estimation of the last factor in (2.18) we apply the estimate from [11] (see Proof
of Theorem 1, Case 1, therein), by simply replacing Df with wDf. So, we obtain

n,kMMn, k

C -
< ZwDf]s. (219)
1

Next, we focus on the estimating of the other multiplier in (2.18). Clearly,

0 V/Ia\ 0 .
w(x) (1 —x)(n+k+ 1)\ sisn(a)
> (,w(k)> n k1,1 (% ( 1 ) b k10 1 ().

k=0 n+k+1 k=0

[ﬁ

Let us set for simplicity ¢ = v sign(a) = [|a|] sign(a«). We have

(1—z)(n+k+1)\* (4 k+D) (n+1) - (n+0)
( nt 1 ) @) = ikt D k0 k@
< C(O) manyen(z)
< O() T my (@),
Vnk
Observe that the constant C'(¢) depends only on a.
We shall make use of the following operator defined by

oo

W) = Y tnensmnsen(o) [ fw)du (2.20)

k=0

Then,

v/lal
> w(x) ~ ¢) - )
EIQMk)> %me@<CMm(L;WO—¢meDﬂWme)

k=0 n+k+1
(2.21)

In order to estimate the Li-norm of the right-hand side in (2.21) we follow
an approach applied, e.g., in [2, pp. 41-43]. The proof in our case is much more
complicated, because the operator ]\anﬁa does not preserve the constant functions.
More precisely, it has the properties

~ ~ YN
IMnolli =1, Mya(liz) = }j%+7mHu>
k=0 Yn,k

Let us write the operator M, , from (2.20) in the form
1
@=/JQMMﬂ0%
0
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where K, (-, -) is the related kernel. Introducing the functions

¢r(x) =Inz,  do(x) = —In(1-2x),  ¢3(2) = ;

we have ¢(z) = ¢1(x) + da(z) + ¢(z) and for j = 1,2,3,
i [ 16500 — gy B (w) i)
/ Kl t/ — 5 (w))l(wDf)(w)| dudt
/K xt/ — 6;(w))|(wDf)(w)| dudt.
Then, by Fubini’s theorem we obtain:
Vo [ 166) — oDl ]
/ (WD) Z (f o ([65(0) — 650 52) d

# [ W8, - 650 s0) o) (222

|

To estimate the right-hand side of (2.22) we need estimations for the expres-
sions in the sum for each of the functions ¢;, j =1,2,3.

First, for ¢, using

/0 Mo (161 (0) — 61 (Vg 12) di = |V o ([61.) — (V] 52) 1
< é1(w) — dr(@)]4 |1
- / (61(0) — 61 () de

we have

u

/ Mo ([¢1(u) = ¢1()]4 5 2) da +/O My ([61(-) = $1(w))s s ) da

= / My o ([61(u) = 1 ()4 s 2) da — /u Mo ([91(u) = 1))+ 52) de
0 0
b [ Fha116) = 01002 do
0
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/<¢1 dx+/ o1(u)]4+ — [¢1(v) — ¢1(-)]+ 5 2) da

= up(u /q’)l )dx + / a(d1;2) de — ¢1(u /Mnalx)d

=/0 (Vo o613 7) — 61.(2)) d — 61 (u / (VEy (1) — 1) dav. (2.23)
Analogously, for ¢;, j = 2,3, we obtain
/ Mo (5 (w) = 6;(-)] 4 52) do + /Ou Mpo([65() = &5 ()] 52) da

é/ (Mi,o(j; %) —¢j(w))dx—¢j(u)/ (Myo(1;2) — 1) dz.  (2.24)

Since for z,u € (0,1),

oo
~ T2,k C
M, o(1; —12‘ : n _1‘<77
Whyo(tia) = 1) = | 30 L @) <1 < €

lupr(u)| <C, |1 —w)ga(u)| <C, |1 —u)ps(u)] < C,

then
Yo C
¢1(u) My o(L;z) = 1) do| < —,
‘ /01 ( 1 1) ’ <g (2.25)
‘(bj(u)/u (Mn,a(l;f)_l) d-T’ §g7 7 =2,3.

1. Estimation of’fo ( My o(p1;7) — ¢1(x )dm‘ We have

k+1 k+1 k k 1
t)dt = 1 - 1 -
/M(bl() nAk+2 ntk+2 ntktl ntktl g’

and for = € (0,1),

n-+¢ k o) k
(1-2x) (1—x)
¢1(z) = — -
k=1 k=n+4+1
By Lemma 2,
n+¢ k (e n+¢
(1—z)* 1

Z L _Zm”Hk(x) k+i’
k=1 k=0 i=1
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and therefore
‘A (Mo (¢1:2) — ¢1(2)) dx

da:

" n+e
= ‘/ Zmn-l-e,k 77L+ék/ (bl dt+zk d +/
. S 0 k=nten1
u 0 it .
< ‘/O Zanrf,k Wn«kék/ ¢1 dt+zk :| m“i‘g
k=0
For k> 1,
k+1 n+1k+z+1 n+l )
n+k+2 T ;ln(lJrk_H)
ntl ) )
:_;[k+i 2(k+i)2+0((k+i)3)}’
and
n+1 1 n4+1 . )
14(k+”2:g;hk+n@+¢+1f+oQk+@Q}
n+1 ntl
R CEE) +ZO( )
hence
- e o)
nn—l—k‘—l-?__i:lk—i—z 20k +1)(n+k+2) w2)
Since - 1 1
n+k+2 (W)fo(ﬁ>
then

E+1 ) k+1 E+1 41 . n+1 +(’)(1>
n .
n+k+2 n+k+2 n+k+2 “k+i  2(n+k+2)? k2

Similarly,

ko kK =~ 1 L ntl +O(i)
ntk+1"n+k+l ntk+lSk+i 2nt+k+1)2 K2/
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Therefore,

k n 1 k+1 n+1
t)dt = _
~/An,k¢1() n+k+1ek+i n+k+22k—|—z
- [(n+k+1)2_(n+k+2)2}+o(ﬁ)_@
1 « 1 1
= k+i+0(ﬁ)'

Now, we have

n+4
- 1
’Mn,a(¢l; -75) — ¢1(1’)’ < mn+[,0($)’ ln(n + 2) +1— Z ; ‘
i=1
%) ’Y n+4 1 C
n+4,k
+;mn+€,k iZkJrz Z k+z n.
From
n+¢ C
’lnn+2)—|—l—zf‘<c, —,
i=1 n
it follows .
n-+
1 C
HanrZ,O(x)‘ In(n+2)+1-%" g‘ H1 s
i=1
Moreover,
oo ’Y n+/4
In+e,k ‘
mpy
; +E7k Tn,k ;k‘FZ P k+l
o) ’Y n+¢ 1
n+€ k
<D Mgk - ’Zﬁ*ZmnHk [
k=1 i1=n+1
Now, the inequalities
ett af<€ S § < S mito <
—_— = -, My, - < — My, r) < —,
Yn,k -n +ek(® M k+i " n — ok n
yield
[e%) n+4 oo n
’Yn+e k ’ ¢ 1 ¢
;mn+é,k Zk—i—z k:—i—z _n];mn+é,k(ﬂf);k+i+n.
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By Lemma 2 we obtain

n+/

Zmn-i-é,k(x)z k+i SZ 7L+Zk k‘—l— < |lnx|
k=1 1=1 k=1

Therefore,

/ ZmnHk z;

and we conclude that

dx < <C,

1
/ Inz dx
0

/ Inxdr| <
0

‘/Ou (My,.0(6152) — ¢1(2)) dm‘ < % (2.26)

2. Estimation of’f ( My, o(po; ) — do(x )dm‘ We have

/ Go(t) dt = n—+1 N n+1 _ n—+1 N n—+1 n 1
o Tn+k+2 n+k+2 n+k+1l ntk+1 s
1 n-+1
t)dt =1— kE+1)1 (1 7>— _—
7"”“/A $a(t) (n+k+1)In R Y Ay

:lnn;riT*O(nik)’

hence,

%H,k[l n+k+1 (’)( 1 )}
na ¢27 Zmn+fk Tk n I + nik .

Applying Lemma 3 we obtain

k+1

’9252(53) - kzzomn-&-é,k@?) ; m’ < P

and then

k+1

n k+1
7+£,k1 n+Kk+ _Z
Vnk n+1 n+€+z

+ ¢
.

’ n a(¢27 ZanrZ k

Taking into account that

k k k
1%_2_: (1+n—|—2> Zn Z ((n—il—z)2)

=1 =1
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and

I
ke

i .
2
P (n+i
we estimate

7 ke~ 1 = 1 ¢
n+4,k _ —_
‘ na(¢27 Zm”'Mk Y,k ;n—kz §n+€+z’+n
v =1
0,k
<> mpen(a &_1' :
kzzo ()| T 1D
oo k k41
1 1 C
+Zmn+e,k(x)‘zn+i*_ m’*g
k=0 i=1 i=1
Since
M_l’gg’
Tn,k n
it follows that
1E SR S k
n+lk
m _1‘ <— m
Z n+£k Yok ZTL—FZ z:: n+£k z:ln
Eoog k+1 oo kL
B SUAT, Sat D SEMPIE) g
Z nt (@ ;n—kz Zn+€+z T Z nre k(T z;rH—M—z
Observe that
k k+1 1 oo ¢ C
m — m s
Z nttk (T ‘;H—FZ = n+€+1’*2 ek (@ ;” iTn

We recall that ¢ = [|a|]sign (o) and C = C(«), i.e. C is an absolute constant for a
fixed . Then, by Lemma 3 we obtain

= Yn+e,k
kzz()mn+z’k(w - ‘Zn—&—z
c c ©— 1 c
i=1
< c C

ﬁ‘i’ﬁ‘i’g“ll(l*l’”

Therefore,
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3. Estimation of|f (Mn’a(d)g,; x) — ¢3(x )dm‘ The last estimation we need

concerns the function ¢3(x) = —. We have

/An,k¢3(t)dt:1n(1+n+i+1> =n+;+1 +O<(nik)2)’

’Ynk/ #3(t) dt = n+k+2+(9<1).

n+1 n
By Lemma 1,
1 o0
¢3($) = m ;)(n + 12 + k + 1)mn+g7k($),
hence
n—|—k—|—€—|—1 n+k+4+4+2 1
n,o 3 L n -1 -
(Moo (632 Zm L ey ( n+k+1 )+O(n)
- n+k+04+1  L+1 1 1
- k:omn%k(x) ntl+1 ntk+1 +O(ﬁ>_ O(H)'
Then
b c [ C
[ taonio) - a@) ds| < & [ar< (225)
Now, from inequalities (2.22)—(2.28) it follows that
. Q) . C
|t [ 100 - o@D @] dul], < 5. (229)

The estimate (2.17) is a consequence of (2.18), (2.19), (2.21), and (2.29).

Finally, the estimate (2.13) for the case p = 1 follows from (2.14), (2.15) and
(2.17).

The case p = oc.

We proceed similarly to the case p = 1: applying Holder’s inequality for the
smallest integer > «, considering again the operator M,, , and using the following
estimation

W ( / "160) - o) (wD ()| dus x)
< wD fllow e ( / "160) - o(u) du;x)

< |ty o (Inti2) — I JuD oo + (1 - )| (2

1 .
i2) = 7| lwD Sl
+x‘Mn7a(ln(1—t);w)—ln(l—a:)MwaHoo. O

For the proof of Theorem 2 we need a weighted variant of (2.8).
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Lemma 8. Let 1 < p < oo. Then, for all functions f € Ly(w) such that
©D?f € L,(w), there exists a constant C' such that the next inequality is true

lwDeDfllp < Cllwfllp + lwpD?fll,).
Proof. The proof is analogous to the proof of [16, Lemma 3], using the obvious
Dp(@)| = |1 —a) (1 —30)| <2(1—a), O0<w<l,

and w(z) ~w(l —27%) for z € (1 —27% 1 — 27k, 0

3. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. We establish the direct inequality by means of a standard
argument.

Let 1 < p < co. For any g € Wy(w) such that f — g € L,(w) we have, by
virtue of (2.11) and Lemma 7,

lw(f = Muf)llp < Nw(f = 9llp + llwlg = Mag)llp + [l (f = )

c -
< 2lju(f = g)llp + - [wDgll
1 ~
< (s = 9)llp+ - lwDgll, ).

Taking the infimum on g we obtain the inequality (1.7) in the theorem. O

Proof of Theorem 2. For every ¢ € R, by virtue of Lemma 8, we have
[wDeDgllp = lwDpD(g — o)l
< O(|lweD?(g = e)llp + llw(g —o)llp)
= C(lwpD?glly + w(g = )llp)-
Using the latter inequality and the obvious
lwDgll, < [wDeDyll, + [weD?gll,
we have for ¢ > 0
lw(f = g)llp + twDgll,
< lw(f = 9)llp + tlwDypDyll, + tllweD?g],
= w(f = 9)llp + Ct(llweD?gll, + w(g — c)llp) + tlweD?gll,
= C(|lw(f = g)llp + tlweD?gll,) + Ctllw(g — f+ f =)l
< C(llw(f = 9)llp + tlweD?gllp) + Ctllw(g = )l + Ctlw(f = c)ll,
< C(|lw(f = 9)llp + tlhweD?gll, + tllw(f —c)llp)-
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By taking infimum over all functions g € W,(w) and all real constants ¢ we obtain
the inequality

Ku(f,t)p < Cinf {Jw(f — g)llp + tweDgll, : f—g € Ly(w), g € Wp(w)}
+ CtE(f).

To complete the proof in the case @ > 0, it remains to take into consideration
that in the definition of K, (f,t), we can, equivalently, assume that g is in C? in a
neighbourhood of 0 if f € L,(w) (see [3, p. 110]).
To complete the proof for o < 0, we will show that if g, Dg € AC},.(0,1) and
wg, wpD?g € L,[0,1), then
lim ¢(x)Dg(x) = 0.
rz—1—
To this end, we first apply [5, Lemma 1] to get (1 — z)*T'Dg(x) € L,[1/2,1).
Next, we use [8, Lemma 3.1(a)], transformed for a singularity at « = 1, with
G =¢Dgand v =a —1 < —1 to derive
lim G(z) = lim ¢(z)Dg(z) = 0. O

r—1— r—1—
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