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We were invited by the Organizing Committee of the Mathematical Conference dedica-
ted to Professor Ivan Prodanov on the occasion of the 60-th anniversary of his birth and
the 10-th anniversary of his death, held on May 16, 1995 at the Faculty of Mathematics
and Informatics of the Sofia University “St. Kliment Ohridski”, to give a talk on his
investigations in the theory of abstract spectra. All of his results in this area were
announced in a short paper published in the journal “Trudy Mat. Inst. Steklova”, 154,
1983, 200–208, and, as far as we know, their proofs were never written by him in the
form of a manuscript, preprint or paper. The very incomplete notes which we have
from Prodanov’s talks on the Seminar on Spectra, organized by him in the academic
year 1979/80 at the Faculty of Mathematics of the University of Sofia, seem to be the
only trace of a small part of the proofs of some of the results from the cited above
paper. Since the untimely death of Ivan Prodanov withheld him from preparing the
full version of this paper and since, in our opinion, it contains interesting and important
results, we undertook the task of writing a full version of it and thus making the results
from it known to the mathematical community. So, the aim of this paper is to supply
with proofs the results of Ivan Prodanov announced in the cited above paper, but we
added also a small amount of new results.
The full responsibility for the correctness of the proofs of the assertions presented below
in this work is taken by us; just for this reason our names appear as authors of the
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never happened. That is why we have decided to publish our work separately. Since
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1. INTRODUCTION

This paper contains an extended version of the invited talk given by the au-
thors at the Mathematical Conference dedicated to Professor Ivan Prodanov on
the occasion of the 60th anniversary of his birth and the 10th anniversary of his
death. The conference took place on May 16, 1995 at the Faculty of Mathematics
and Informatics of the Sofia University “St. Kliment Ohridski”. It was planned
the talks of the participants in this conference to be published in a special volume
of the Annuaire de l’Universite de Sofia “St. Kliment Ohridski, Faculte de Mathe-
matiques et Informatique, Livre 1 - Mathematiques, but this has never happened.
That is why we have decided to publish our work separately. Since our files were
lost and we had to write them once more, the paper appears only now.

In the academic year 1979/80 Professor Ivan Prodanov organized a seminar
on spectra at the Faculty of Mathematics of Sofia University. The participants in
this seminar, besides Iv. Prodanov, were G. Dimov, G. Gargov, Sv. Savchev, L.
Stoyanov, V. Tchoukanov, T. Tinchev, D. Vakarelov. The talks of Iv. Prodanov on
this seminar were on his own investigations in the theory of abstract spectra and the
uniqueness of Pontryagin–van Kampen duality. In the reviewing talks of the other
participants, Stone Duality Theorems for Boolean algebras and for distributive
lattices ([41], [42]), H. A. Priestley’s papers [27]-[30], M. Hochster papers [18] and
[19], the topological proof of Goedel Completeness Theorem given by Rasiowa and
Sikorski in [37] and many other interesting topics were discussed.

Iv. Prodanov raised a number of interesting open problems at his seminar
on spectra. Two of them were solved by some of the participants of the seminar
and these solutions caused, on their part, the appearance of other new papers.
One of these problems was whether the category LR of locally compact topological
R-modules, where R is a locally compact commutative ring, admits precisely one
(up to natural equivalence) functorial duality. (Using the classical Pontryagin-
van Kampen duality, one easily obtains a functorial duality in LR, called again
Pontryagin duality. Hence, there is always a functorial duality in LR.) L. Stoyanov
[43] showed that if R is a compact commutative ring, then the Pontryagin duality
is the unique functorial duality in LR. Later on, Gregorio [15] and Gregorio and
Orsatti [16] generalized that result of Stoyanov. The second problem was whether a
uniqueness theorem, like that for Pontryagin-van Kampen duality, can be proved in
the cases of Stone dualities for Boolean algebras and for distributive lattices. The
answers were given by G. Dimov in [8] and [9], where it was proved that the Stone
duality for Boolean algebras is unique and that there are only two (up to natural
equivalence) duality functors in the case of distributive lattices. Some very general
results about representable dualities and the group of dualities were obtained later
on by G. Dimov and W. Tholen in [11], [12]. It could be said that D. Vakarelov’s
paper [46] was also inspired by Prodanov’s seminar on spectra. This was certainly
so for the diploma thesis [39] of Sv. Savchev, written under the supervision of
Professor Iv. Prodanov, and for the paper [40].

32 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 31–70.



Iv. Prodanov presented his results on the uniqueness of Pontryagin-van Kam-
pen duality in the manuscripts [32] and [33]. The more than fifty-pages-long paper
[33] contains also an impressive list of open problems and conjectures. The pub-
lication of these manuscripts was postponed because Prodanov discovered that
analogous results were obtained earlier by D. Roeder [38]. Prodanov’s approach,
however, was different and even more general than that of D. Roeder. Only his un-
timely death withheld him from preparing these manuscripts for publication. The
task of doing that was carried out by D. Dikranjan and A. Orsatti. In their paper
[7], all results from [32] and [33] were included and some of Prodanov’s conjectures
were answered. In such a way the manuscripts [32] and [33] became known to the
mathematical community and stimulated the appearance of other papers (see [6],
[14]).

The results of Iv. Prodanov on abstract spectra and separative algebras were
announced in [31], but their proofs were never written by him in the form of a
manuscript, preprint or paper. The very incomplete notes which we have from the
Prodanov talks on the seminar on spectra seem to be the only trace of a small
part of these proofs. Since, in our opinion, the results, announced in [31], are
interesting and important, we decided to supply them with proofs. This is done
in the present paper, where we follow, in general, the exposition of [31], but some
of the announced there assertions are slightly generalized, some new statements
are added and some new applications are obtained. The main of the added results
is Theorem 2.39, which was formulated and proved by us as a generalization of
Prodanov’s assertions Corollary 2.40 and Corollary 2.41.

Section 1 of the paper is an introduction. Section 2, divided into four sub-
sections, is devoted to the abstract spectra. In Subsection 2.1 the category S of
abstract spectra and their morphisms is introduced and studied. Subsection 2.2
contains two general examples of abstract spectra (see 2.20 and 2.24). The classi-
cal spectra of rings endowed with Zariski topology appear as special cases of the
first of these examples (see 2.21), while the classical spectra of distributive lattices
with their Stone topology appear as special cases of both examples (see 2.22 and
2.25). In Subsection 2.3 the main theorem of Section 2 is proved (see 2.36). This
theorem asserts that the category S of abstract spectra and their morphisms is iso-
morphic to the category CohSp of coherent spaces and coherent maps and, hence,
by the Stone Duality Theorem for distributive lattices, the category S is dual to
the category DLat of distributive lattices and lattice homomorphisms. It is well-
known that the category OStone of ordered Stone spaces and order-preserving
continuous maps is also dual to the category DLat (see [27], [28] or [20]), and that
it is isomorphic to the category CohSp (see, for example, [20]). Therefore, the
category OStone is isomorphic to the category S. (The last fact could be also
proved directly, but we do not do this.) So, each one of the categories CohSp,
OStone and S is dual to the category DLat. In our opinion, the category S is
the most natural and symmetrical one amongst all three of them. Subsection 2.4
contains two applications (see Corollary 2.40 and Corollary 2.41) of the already
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obtained results. The one from Corollary 2.40 is important for Section 3. These
applications appear as special cases of a general theorem (see Theorem 2.39), which
we formulate and prove here as a generalization of Prodanov’s results Corollary 2.40
and Corollary 2.41. Theorem 2.39 was used later on by us in our paper [10].

At a first glance the advent of spectra in so general situations as in 2.20 is unex-
pected, since psychologically they usually are connected with separation. Actually,
in general one does not know whether there are non-trivial prime ideals, but it
turns out that if the operations × and + from 2.20 satisfy a few not very restrictive
natural conditions, then the prime ideals become as many as in the commutative
rings or in distributive lattices, for example. In this way one comes to the notion
of a separative algebra considered in Section 3.

Section 3 is divided into several subsections. In Subsection 3.1 the definition of
a preseparative algebra as an algebra with two multivalued binary operations × and
+ satisfying some natural axioms as commutativity and associativity is given, and
some calculus with these operations is developed. Subsection 3.2 is devoted to the
theory of filters and ideals in preseparative algebras. The main notion of a separative
algebra is given in Subsection 3.3. Here a far of being complete list of examples is
given: the commutative rings, the distributive lattices and also the convex spaces (=
separative algebras in which the two operations coincide) are separative algebras.
The main theorem for separative algebras - the Separation theorem, is proved
in Subsection 3.4. In Subsection 3.5 some natural new operations in separative
algebras are studied and in Subsection 3.6 a general representation theorem for
separative algebras is given. Roughly speaking, every separative algebra X =
(X,×,+) can be embedded into a distributive lattice L in such a way that the
operations in X are obtained easily from the operations in L. That is new even
for the plane: there exists a distributive lattice L ⊇ R2 such that for each segment
ab ⊂ R2 one has

ab = {x ∈ R2 : x ≤ a ∨ b} = {x ∈ R2 : x ≥ a ∧ b}.

The notion of separative algebra comes from an analysis of the separation
theorems connected with the convexity. The abstract study of convexity was started
by Prenovitz [25] and different versions of the notion of convex space appeared in
[34], [35], [44], [3], [4], [26]. All they are compared in [45]. The convexity was
examined from other aspects in [1], [5], [17], [22] and [24], a few applications are
considered in [47] and [2] contains a critique.

Y. Tagamlitzki [44] obtained a general Separation theorem for convex spaces.
It was improved (again for convex spaces) and applied to analytical separation
problems in [34] and [35] (cf. [1] and [4]). It seems however that the natural
region for that theorem are not the convex spaces but the separative algebras: the
presence of two operations makes the instrument more flexible, without additional
complications (see Subsection 3.4). This permits to obtain as special cases the
separation by prime ideals of an ideal and a multiplicative set in a commutative
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ring, or of an ideal and a filter in a distributive lattice, and also the separation of
two convex sets by a convex set with convex complement.

The paper ends with Subsection 3.8 devoted to a generalization of the Separa-
tion theorem for separative algebras supplied with a topology. Thus, even restricted
to convex spaces, one can find, as in [35], a few classical separation and representa-
tion theorems, but the presence of two operations enlarges the possibilities for new
applications.

Let us fix the notation. If C denotes a category, we write X ∈ |C| if X is an
object of C, and f ∈ C(X,Y ) if f is a C-morphism with domain X and codomain
Y . All lattices will be with top (=unit) and bottom (=zero) elements, denoted
respectively by 1 and 0. We don’t require the elements 0 and 1 to be distinct.
As usual, the lattice homomorphisms are assumed to preserve the distinguished
elements 0 and 1. DLat will stand for the category of distributive lattices and
lattice homomorphisms. If X is a set then we write Exp(X) for the set of all
subsets of X and denote by |X| the cardinality of X. If (X,T) is a topological
space and A is a subset of X then cl(X,T)A or, simply, clXA stands for the closure
of A in the space (X,T). We denote by D the two-point discrete topological space
and by Set the category of all sets and functions between them. As usual, we say
that a preordered set (X,≤) (i.e. ≤ is a reflexive and transitive binary relation on
X) is a directed set (resp. an ordered set) if for any x, y ∈ X there exists a z ∈ X
such that x ≤ z and y ≤ z (resp. if the relation ≤ is also antisymmetric).

Our main references are: [20] – for category theory and Stone dualities, [13] –
for general topology, and [23] – for algebra.

2. SPECTRA

2.1. THE CATEGORY OF ABSTRACT SPECTRA

Notation 2.1. Let (S,T+,T−) be a non-empty bitopological space. Then we
put L+ = {U ∈ T+ : S \ U ∈ T−} and L− = {U ∈ T− : S \ U ∈ T+}.

Proposition 2.2. Let (S,T+,T−) be a non-empty bitopological space. Then
the families L+ and L− (see 2.1 for the notation) are closed under finite unions
and finite intersections.

Proof. It is obvious. �

Definition 2.3. A non-empty bitopological space (S,T+,T−) is called an ab-
stract spectrum, if it has the following properties:

(SP1) L+ is a base for T+ and L− is a base for T−;
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(SP2) if F ⊆ S and S \ F ∈ T+ (resp. S \ F ∈ T−), then F is a compact
subset of the topological space (S,T−) (resp. (S,T+));

(SP3) at least one of the topological spaces (S,T+) and (S,T−) is a T0-space.

Proposition 2.4. If (S,T+,T−) is an abstract spectrum, then (S,T+) and
(S,T−) are compact T0-spaces.

Proof. By (SP3), one of the spaces (S,T+) and (S,T−) is T0-space. Let, for
example, (S,T+) be a T0-space. Then we shall prove that (S,T−) is also a T0-space.

Let x, y ∈ S and x �= y. Then there exists U ∈ T+ such that |U ∩ {x, y}| = 1.
Let, for example, x ∈ U . Then, using (SP1), we can find a V ∈ L+ such that
x ∈ V ⊆ U . Putting W = S \ V , we obtain that W ∈ T−, y ∈ W and x �∈ W .
Therefore, (S,T−) is a T0-space.

Since S is a closed subset of (S,T+), the condition (SP2) implies that S is a
compact subset of (S,T−).

Analogously, we obtain that (S,T+) is a compact space. �

Proposition 2.5. Let (S,T+,T−) be an abstract spectrum. Then L+ = {U ∈
T+ : U is a compact subset of (S,T+)} and L− = {U ∈ T− : U is a compact subset
of (S,T−)} (see 2.1 for the notation).

Proof. Let us prove first that L+ = {U ∈ T+ : U is a compact subset of
(S,T+)}.

If V ∈ L+ then S \ V ∈ T−. Hence V is a closed subset of (S,T−). This
implies, by (SP2), that V is a compact subset of (S,T+). Conversely, if U ∈ T+

and U is a compact subset of (S,T+) then for every x ∈ U there exists a Ux ∈ L+

such that x ∈ Ux ⊆ U . Choose a finite subcover {Uxi
: i = 1, . . . , n} of the cover

{Ux : x ∈ U} of the compact set U . Then U =
⋃{Uxi

: i = 1, . . . , n} and hence, by
2.2, U ∈ L+.

The proof of the equation L− = {U ∈ T− : U is a compact subset of (S,T−)}
is analogous. �

Proposition 2.6. Let (S,T+,T−) be an abstract spectrum. Then L+ = {S\U :
U ∈ L−} and L− = {S \ U : U ∈ L+} (see 2.1 for the notation).

Proof. Let us prove that L− = {S \ U : U ∈ L+}.
Take V ∈ L− and put U = S \ V . Then U ∈ T+ and S \ U ∈ L− ⊆ T−.

Hence, U ∈ L+ and V = S \ U . Conversely, if U ∈ L+ then V = S \ U ∈ T− and
S \ V ∈ L+ ⊆ T+. Therefore, S \ U ∈ L−.

The proof of the equation L+ = {S \ U : U ∈ L−} is analogous. �

Corollary 2.7. Let (S,T+,T−1 ) and (S,T+,T−2 ) be abstract spectra. Then the
topologies T−1 and T−2 coincide.
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Proof. It follows directly from 2.5, 2.6 and (SP1) (see 2.3). �

Definition 2.8. Let (S1,T
+
1 ,T

−
1 ) and (S2,T

+
2 ,T

−
2 ) be abstract spectra. Then a

function f ∈ Set(S1, S2) is called an S-morphism if f : (S1,T
+
1 ) −→ (S2,T

+
2 ) and

f : (S1,T
−
1 ) −→ (S2,T

−
2 ) are continuous maps. The class of all abstract spectra

together with the class of all S-morphisms and the natural composition between
them form, obviously, a category which will be denoted by S and will be called the
category of abstract spectra.

Definition 2.9. An abstract spectrum (S,T+,T−) is called a Stone spectrum
if the topologies T+ and T− coincide.

Proposition 2.10. Let (S,T) be a topological space. Then the bitopological
space (S,T,T) is a Stone spectrum if and only if (S,T) is a Stone space.

Proof. (⇒) Let (S,T,T) be a Stone spectrum. Then, by 2.4, (S,T) is a compact
T0-space. According to (SP1) (see 2.3), the family L+ = {U ∈ T : S \ U ∈ T} is a
base for T. Consequently (S,T) is a zero-dimensional space. We shall show that it is
also a T2-space. Indeed, let x, y ∈ S and x �= y. Then there exists a U ∈ T such that
|U ∩ {x, y}| = 1. Let, for example, x ∈ U . Since L+ is a base for T, we can find a
V ∈ L+ such that x ∈ V ⊆ U . Then x ∈ V ∈ T and y ∈ S\V ∈ T. Therefore, (S,T)
is a T2-space. So, we proved that (S,T) is a compact zero-dimensional T2-space,
i.e. a Stone space.

(⇐) Let (S,T) be a Stone space. Put L = {U ∈ T : S \U ∈ T} and T+ = T−=
T. Then L+ = L = L− (see 2.1 for the notation). We shall prove that (S,T+,T−)
is an abstract spectrum. Then it will be automatically a Stone spectrum. Since L is
a base for (S,T), the axiom (SP1) (see 2.3) is fulfilled. The axioms (SP2) and (SP3)
are also fulfilled, since (S,T) is a compact T2-space. Consequently (S,T+,T−) is
an abstract spectrum. �

Proposition 2.11. An abstract spectrum (S,T+,T−) is a Stone spectrum if
and only if (S,T+) and (S,T−) are T1-spaces.

Proof. (⇒) Since (S,T+,T−) is a Stone spectrum, we have that T+ = T−.
Then 2.10 implies that (S,T+) and (S,T−) are even T2-spaces.

(⇐) Let (S,T+) and (S,T−) are T1-spaces. We shall prove that T+ = T−.

Let U ∈ T−. Then S \U is closed in (S,T−) and hence, by 2.4, it is a compact
subset of (S,T−). Let x ∈ U . Since (S,T+) is a T1-space, for every y ∈ S \ U
there exists a Vy ∈ L+ such that x ∈ Vy ⊆ S \ {y}. Hence y ∈ S \ Vy ⊆ S \ {x}
and S \ Vy ∈ T−. Let {S \ Vyi

: i = 1, . . . , n} be a finite subcover of the cover
{S \Vy : y ∈ S \U} of S \U and let Vx =

⋂{Vyi
: i = 1, . . . , n}. Then x ∈ Vx ∈ T+

and Vx ⊆ U . We obtain that U =
⋃{Vx : x ∈ U} ∈ T+. Hence T− ⊆ T+.

Analogously, using the fact that (S,T−) is a T1-space, we prove that T+ ⊆ T−.
Therefore T+ = T−, i.e. (S,T−,T+) is a Stone spectrum. �
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Remark 2.12. Let (S,T+,T−) be an abstract spectrum. Then, arguing as in
2.4, we obtain that (S,T+) and (S,T−) are T1-spaces if and only if at least one of
them is a T1-space.

Proposition 2.13. Let (S,T+,T−) be an abstract spectrum and let us put
T = sup{T+,T−}. Then (S,T) is a Stone space and hence (see 2.10) (S,T,T) is a
Stone spectrum.

Proof. The topology T has as a subbase the family P = T+ ∪ T−. Hence the
family B = {U+ ∩ U− : U+ ∈ T+, U− ∈ T−} is a base for T. Then, obviously,
the family B0 = {U+ ∩ U− : U+ ∈ L+, U− ∈ L−} is also a base for T. For every
U ∈ L+ we have that U ∈ T+ ⊆ T and S \U ∈ T− ⊆ T. Consequently the elements
of L+ are clopen subsets of (S,T). Obviously, the same is true for the elements of
L−. Hence the elements of B0 are clopen in (S,T), which implies that (S,T) is a
zero-dimensional space. This fact, together with (SP3) (see 2.3), shows that (S,T)
is a Hausdorff space.

Applying Alexander subbase theorem to the subbase P of (S,T), we shall prove
that (S,T) is a compact space. Indeed, let S =

⋃{Uα ∈ T+ : α ∈ A} ∪ ⋃{Vβ ∈
T− : β ∈ B} and F = S \ ⋃{Uα : α ∈ A}. Then F ⊆ ⋃{Vβ : β ∈ B} and F
is closed in (S,T+). Consequently, by (SP2) (see 2.3), F is a compact subset of
(S,T−). This implies that there exist β1, . . . , βn ∈ B such that F ⊆ ⋃{Vβi

: i =
1, . . . , n}. Then G = S \ ⋃{Vβi

: i = 1, . . . , n} ⊆ ⋃{Uα : α ∈ A}. Since G is
a closed subset of (S,T−), it is a compact subset of (S,T+) (by (SP2)). Hence,
there exist α1, . . . , αm ∈ A such that G ⊆ ⋃{Uαj

: j = 1, . . . ,m}. Therefore,
S =

⋃{Uαj
: j = 1, . . . ,m} ∪ ⋃{Vβi

: i = 1, . . . , n}. This shows that (S,T) is
compact. Hence, (S,T) is a Stone space. �

Remark 2.14. Let (S,T+,T−) be an abstract spectrum and id : S −→ S,
x −→ x, be the identity function. Then, obviously, id ∈ S((S,T,T), (S,T+,T−))
(see 2.13 for the notation).

Proposition 2.15. Let (S,T+,T−) be a bitopological space such that L+ is
a base for T+ and L− is a base for T− (see 2.1 for the notation). Let T =
sup{T+,T−}, (S,T) be a compact T2-space, S1 ⊆ S, T+

1 = {U ∩ S1 : U ∈ T+}
and T−1 = {U ∩ S1 : U ∈ T−}. Then the bitopological space (S1,T

+
1 ,T

−
1 ) is an

abstract spectrum iff S1 is a closed subset of the topological space (S,T).

Proof. (⇒) Let T1 = sup{T+
1 ,T

−
1 }. Then, by 2.13, (S1,T1) is a Stone space.

Hence it is a compact Hausdorff space. Since, obviously, T1 = T|S1, we obtain that
S1 is a compact subspace of the Hausdorff space (S,T). Consequently S1 is a closed
subset of (S,T).

(⇐) We shall show that (S1,T
+
1 ,T

−
1 ) is an abstract spectrum. Let L+

1 =
{U ∩ S1 : U ∈ L+}, L−1 = {U ∩ S1 : U ∈ L−}, L+

S1
= {U ∈ T+

1 : S1 \ U ∈ T−1 } and

L−S1
= {U ∈ T−1 : S1 \ U ∈ T+

1 }. Then, obviously, L+
1 ⊆ L+

S1
and L−1 ⊆ L−S1

. Since

L+
1 (resp. L−1 ) is a base for (S1,T

+
1 ) (resp. (S1,T

−
1 )), we obtain that L+

S1
(resp.
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L−S1
) is a base for (S1,T

+
1 ) (resp. (S1,T

−
1 )). Hence the condition (SP1) (see 2.3) is

fulfilled.

In the part (⇒) of this proof, we noted that the topology T1 = sup{T+
1 ,T

−
1 } on

S1 coincides with the topology T|S1. Hence, (S1,T1) is a compact Hausdorff space
(since (S,T) is such and S1 is a closed subset of (S,T)). Let now F be a closed
subset of (S1,T

+
1 ) (resp. (S1,T

−
1 )). Then F is a closed subset of (S1,T1). Therefore

F is a compact subset of (S1,T1). Since the identity maps id : (S1,T1) −→ (S1,T
+
1 )

and id : (S1,T1) −→ (S1,T
−
1 ) are continuous, we obtain that F is a compact subset

of (S1,T
−
1 ) (resp. (S1,T

+
1 )). Hence, the condition (SP2) (see 2.3) is fulfilled.

For showing that the condition (SP3) (see 2.3) is fulfilled, it is enough to prove
that (S1,T

+
1 ) is a T0-space. Let x, y ∈ S1 and x �= y. Since (S1,T1) is a T2-space,

there exist U ∈ L+
1 and V ∈ L−1 such that x ∈ U ∩ V ⊆ S1 \ {y}. If y �∈ U then

the element U of T+
1 separates x and y. If y ∈ U then y �∈ V . Hence y ∈ S1 \ V

and x �∈ S1 \ V . Since S1 \ V ∈ T+
1 , we obtain that x and y are separated by an

element of T+
1 . Consequently, (S1,T

+
1 ) is a T0-space. �

Corollary 2.16. Let (S,T+,T−) be an abstract spectrum, T = sup{T+,T−},
S1 ⊆ S, T+

1 = {U ∩ S1 : U ∈ T+} and T−1 = {U ∩ S1 : U ∈ T−}. Then the
bitopological space (S1,T

+
1 ,T

−
1 ) is an abstract spectrum iff S1 is a closed subset of

the topological space (S,T).

Proof. It follows immediately from 2.15, 2.3 and 2.13. �

2.2. EXAMPLES OF ABSTRACT SPECTRA

Lemma 2.17. Let X be a set and Exp(X) be the family of all subsets of X.
Let us put, for every x ∈ X, Ũ+

x = {A ⊆ X : x �∈ A} and Ũ−x = {A ⊆ X : x ∈ A}.
Let P̃+ = {Ũ+

x : x ∈ X}, P̃− = {Ũ−x : x ∈ X}, T̃+ (resp. T̃−) be the topology
on Exp(X) having P̃+ (resp. P̃−) as a subbase and T̃ = sup{T̃+, T̃−}. Let us
identify the set Exp(X) with the set DX (where D is the two-point set {0, 1}) by
means of the map e : Exp(X) −→DX , A ⊆ X −→ χA, where χA : X −→D is the
characteristic function of A, i.e. χA(x) = 1 if x ∈ A and χA(x) = 0 if x �∈ A. Then
the topology T̃ on Exp(X) coincides with the Tychonoff topology on DX (where the
set D is endowed with the discrete topology).

Proof. Let P̃ = P̃+ ∪ P̃−. Then P̃ is a subbase for the topology T̃ on Exp(X).
For every x ∈ X we have, identifying Exp(X) and DX by means of the map e,
that Ũ+

x = {f ∈DX : f(x) = 0} and Ũ−x = {f ∈DX : f(x) = 1}. Now it becomes
clear that the family P̃ is also a subbase for the Tychonoff topology on DX when
D is endowed with the discrete topology. Therefore the topology T̃ on Exp(X)
coincides with the Tychonoff topology on DX . �
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Proposition 2.18. Let X be a set and S be family of subsets of X (i.e.
S ⊆ Exp(X)). Let us put, for every x ∈ X, U+

x = {p ∈ S : x �∈ p} and U−x = {p ∈
S : x ∈ p}. Let P+ = {U+

x : x ∈ X}, P− = {U−x : x ∈ X}, T+ (resp. T−) be the
topology on S having P+ (resp. P−) as a subbase and T = sup{T+,T−}.

Then the following conditions are equivalent:

(a) (S,T+,T−) is an abstract spectrum;

(b) (S,T) is a compact T2-space;

(c) S is a closed subset of the Cantor cube DX (where D is the discrete two-
point space and S is identified with a subset of DX as in 2.17).

Proof. (a)⇒ (b). This follows from 2.13.

(b)⇒ (a). Let x ∈ X. Then S \U+
x = U−x and S \U−x = U+

x . Hence P+ ⊆ L+

and P− ⊆ L− (see 2.1 for the notation). Consequently, using 2.2, we obtain that
L+ (resp. L−) is a base for (S,T+) (resp. (S,T−)). This shows that putting S1 = S
in 2.15, we get that (S,T+,T−) is an abstract spectrum.

(b)⇒ (c). It is clear from the corresponding definitions that, using the notation
of 2.17, we have Ũ+

x ∩ S = U+
x and Ũ−x ∩ S = U−x for every x ∈ X. Hence, by

2.17, the topology T on S coincides with the subspace topology on S induced by
the Tychonoff topology on DX . Then the condition (b) and the fact that DX is a
Hausdorff space imply that S is a closed subset of the Cantor cube DX .

(c)⇒ (b). In the preceding paragraph we have already noted that the topology
T on S coincides with the subspace topology on S induced by the Tychonoff topol-
ogy on DX . Therefore the condition (c) implies that (S,T) is a compact Hausdorff
space (since DX is such). �

Definition 2.19. Let X be a set endowed with two arbitrary multivalued binary
operations ⊕ and ⊗. Let us call a subset p of X a prime ideal in (X,⊕,⊗) if the
following two conditions are fulfilled:

i) if x, y ∈ p then x⊕ y ⊆ p;

ii) if (x⊗ y) ∩ p �= ∅ then x ∈ p or y ∈ p.

Let us fix two different points 0 and 1 of X. We shall say that a prime ideal
p ⊆ X is proper (or, more precisely, proper with respect to the points 0 and 1), if
0 ∈ p and 1 �∈ p.

A subset q of X is called a prime (proper) flter in (X,⊕,⊗) if the set X \ q is
a prime (proper) ideal.

Theorem 2.20. Let X be a set endowed with two arbitrary multivalued binary
operations ⊕ and ⊗ and two fixed different points ξo and ξ1. Denote by S(X) (resp.
S(X)pr) the set of all (resp. all proper) prime ideals in (X,⊕,⊗) and define the
topologies T+ and T− on S(X) (resp. T+

pr and T−pr on S(X)pr) exactly as in 2.18.
Then the bitopological spaces (S(X),T+,T−) and (S(X)pr,T

+
pr,T

−
pr) are abstract

spectra.
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Proof. We first prove that the bitopological space (S(X),T+,T−) is an abstract
spectrum. For doing this it is enough to show that S(X) is a closed subset of the
Cantor cube DX (see 2.18).

Let {pσ ∈ S(X) : σ ∈ Σ} be a net in the Cantor cube DX converging to a
point p ∈ DX . We have to prove that p ∈ S(X), i.e. that p is a prime ideal in
(X,⊕,⊗). Let fσ = e(pσ) and f = e(p) (see 2.17 for the notation). Then the net
{fσ, σ ∈ Σ} in DX converges to f , i.e., for every x ∈ X, the net {fσ(x), σ ∈ Σ} in
the discrete space D converges to f(x).

Let a, b ∈ p. Then f(a) = f(b) = 1. Therefore there exists a σ0 ∈ Σ such that
fσ(a) = 1 = fσ(b) for every σ > σ0. This means that for every σ > σ0 we have that
a ∈ pσ and b ∈ pσ. Since pσ is a prime ideal, we obtain that a ⊕ b ⊆ pσ for every
σ > σ0. Then, for every x ∈ a ⊕ b and for every σ > σ0, we have that fσ(x) = 1.
This implies that f(x) = 1 for every x ∈ a⊕ b. Hence, if x ∈ a⊕ b then x ∈ p, i.e.
a⊕ b ⊆ p.

Let a, b ∈ X and (a ⊗ b) ∩ p �= ∅. Then there exists a x ∈ (a ⊗ b) ∩ p. Hence
f(x) = 1. This implies that there exists a σ0 ∈ Σ such that fσ(x) = 1 for every
σ > σ0. Consequently x ∈ pσ for every σ > σ0. Then (a ⊗ b) ∩ pσ �= ∅ for every
σ > σ0. Hence, for every σ > σ0, we have that a ∈ pσ or b ∈ pσ, i.e. fσ(a) = 1
or fσ(b) = 1. Suppose that a �∈ p and b �∈ p. Then f(a) = 0 = f(b). Therefore,
there exists a σ1 ∈ Σ such that fσ(a) = fσ(b) = 0 for every σ > σ1. Since for
every σ > sup{σ0, σ1} we have that fσ(a) = 1 or fσ(b) = 1, we get a contradiction.
Hence we obtain that a ∈ p or b ∈ p. So, we proved that p is a prime ideal in
(X,⊕,⊗). This shows that S(X) is a closed subset of the Cantor cube DX . Hence,
the bitopological space (S(X),T+,T−) is an abstract spectrum.

If the prime ideals pσ in the above proof were proper, then, obviously, p would
be also proper. This shows that the set S(X)pr is also a closed subset of the Cantor
cube DX . So, the bitopological space (S(X)pr,T

+
pr,T

−
pr) is an abstract spectrum.�

Example 2.21. Let (A,+, .) be a commutative ring with unit (0 �= 1), x⊕y be
the ideal in the ring (A,+, .) generated by {x, y}, and x⊗y = x.y, for every x, y ∈ A.
Then, applying the construction from 2.20 to the set A with the operations ⊕ and
⊗ and with fixed points 0 and 1, we get the topological space (S(A)pr,T

+
pr). We

assert that it coincides with the classical spectrum of the ring (A,+, .).

Proof. Recall that: a) a subgroup I of the additive group (A,+) is called an
ideal in the commutative ring (A,+, .) with unit if A.I = I; b) an ideal p �= A in
the ring A is said to be a prime ideal if (x, y ∈ A, x.y ∈ p) ⇒ (x ∈ p or y ∈ p);
c) the set of all prime ideals in the commutative ring A is denoted by spec(A);
d) the family Z = {UI = {p ∈ spec(A) : I �⊆ p} : I is an ideal in A} is a topology
on the set spec(A), called Zariski topology; e) the topological space (spec(A),Z) is
the classical spectrum of the commutative ring (A,+, .) with unit.

We shall denote by I(M) the ideal in A generated by a subset M of A.

We first prove that the sets spec(A) and S(A)pr coincide.
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Let p ∈ S(A)pr. Then 1 �∈ p and hence p �= A. If a, b ∈ p then a ⊕ b ⊆ p, i.e.
I({a, b}) ⊆ p. Hence, a − b ∈ p. This shows that p is an additive subgroup of A.
Let x ∈ A and a ∈ p. Since a ⊕ a = I({a}) ⊆ p, we get that x.a ∈ p. If x, y ∈ A
and x.y ∈ p, then (x ⊗ y) ∩ p �= ∅ and, hence, x ∈ p or y ∈ p. Consequently, we
proved that p ∈ spec(A).

Conversely, let p ∈ spec(A) and a, b ∈ p. Then, obviously, I({a, b}) ⊆ p and,
hence, a⊕ b ⊆ p. If (a⊗ b) ∩ p �= ∅ then a.b ∈ p. This implies that a ∈ p or b ∈ p.
Since 1 �∈ p, we get that p ∈ S(A)pr. Therefore, S(A)pr = spec(A).

Now we prove that T+
pr = Z.

Let a ∈ A. Then, obviously, U+
a = {p ∈ S(A)pr : a �∈ p} = {p ∈ spec(A) :

I({a}) �⊆ p} ∈ Z. Hence, T+
pr ⊆ Z. Conversely, let U ∈ Z. Then there exists an

ideal I in A such that U = UI . Let p ∈ U . Then there exists an a = a(p) ∈ I \ p.
Hence p ∈ U+

a . We shall prove that U+
a ⊆ U . Indeed, if q ∈ U+

a then a �∈ q
and, consequently, I �⊆ q. This shows that q ∈ UI = U . So, we obtained that
p ∈ U+

a ⊆ U . Therefore, Z ⊆ T+
pr. �

Example 2.22. Let (L,∨,∧) be a distributive lattice with 0 and 1 and let
us put x ⊕ y = {z ∈ L : z ≤ x ∨ y} and x ⊗ y = {z ∈ L : z ≥ x ∧ y}, for
every x, y ∈ L. Then, applying the construction from 2.20 to the set L with the
operations ⊕ and ⊗ and with fixed points 0 and 1, we get the topological space
(S(L)pr,T

+
pr). We assert that it coincides with the classical spectrum spec(L) of

the distributive lattice (L,∨,∧).
Proof. Recall that: a) a sub-join-semi-lattice I of the lattice L is said to be an

ideal in L if (a ∈ I, b ∈ L and b ≤ a)⇒ (b ∈ I); b) an ideal p in L is called a prime
ideal if 1 �∈ p and (a∧ b ∈ p)⇒ (a ∈ p or b ∈ p); c) the set of all prime ideals in L is
denoted by spec(L); d) the family O = {UI = {p ∈ spec(L) : I �⊆ p} : I is an ideal
in L} is a topology on the set spec(L), called Stone topology; e) the topological
space (spec(L),O) is the classical spectrum of the lattice (L,∨,∧, 0, 1).

We first prove that the sets spec(L) and S(L)pr coincide.
Let p ∈ S(L)pr. Then 0 ∈ p and 1 �∈ p. If a, b ∈ p then a ⊕ b ⊆ p and, hence,

a ∨ b ∈ p. Let c ∈ L, a ∈ p and c ≤ a. Since a ∈ p, we have that a ⊕ a ⊆ p and,
consequently, c ∈ p. If c, d ∈ L and c ∧ d ∈ p then (c⊗ d) ∩ p �= ∅. Therefore c ∈ p
or d ∈ p. So, p ∈ spec(L).

Let p ∈ spec(L) and a, b ∈ p. Then a ∨ b ∈ p and, for all c ∈ L such that
c ≤ a ∨ b, we have that c ∈ p. Hence a ⊕ b ⊆ p. Let x, y ∈ p and (x ⊗ y) ∩ p �= ∅.
Then there exists a z ∈ p such that z ≥ x ∧ y. Hence x ∧ y ∈ p. This implies that
x ∈ p or y ∈ p. Since 1 �∈ p, we obtain that p ∈ S(L)pr. So, S(L)pr = spec(L).

Now we prove that T+
pr = O.

Let a ∈ L and I(a) = {x ∈ L : x ≤ a}. Then I(a) is an ideal in L. Obviously,
U+
a = {p ∈ S(L)pr : a �∈ p} = {p ∈ spec(L) : I(a) �⊆ p} ∈ O. Hence T+

pr ⊆ O.
Conversely, let U ∈ O. Then there exists an ideal I in L such that U = UI . Let
p ∈ U . Then there exists an a = a(p) ∈ I \ p. Hence p ∈ U+

a and we need to prove
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only that U+
a ⊆ U . Let q ∈ U+

a . Then a �∈ q. Consequently I �⊆ q, which means
that q ∈ UI = U . So, p ∈ U+

a ⊆ U . We obtained that O ⊆ T+
pr. �

Definition 2.23. Let X be a set endowed with two arbitrary single-valued
binary operations + and ×. Let us call a subset p of X an l-prime ideal in (X,+,×)
if the following two conditions are fulfilled:

i) x+ y ∈ p iff x ∈ p and y ∈ p;

ii) x× y ∈ p iff x ∈ p or y ∈ p.

Let us fix two different points 0 and 1 of X. We shall say that an l-prime ideal
p ⊆ X is proper (or, more precisely, proper with respect to the points 0 and 1), if
0 ∈ p and 1 �∈ p.

Theorem 2.24. Let X be a set endowed with two arbitrary single-valued binary
operations + and × and two fixed different points ξo ∈ X and ξ1 ∈ X. Denote by
S′(X) (resp. S′(X)pr) the set of all (proper) l-prime ideals in (X,+,×) and define
the topologies T+ and T− on S′(X) (resp. T+

pr and T−pr on S′(X)pr) exactly as
in 2.18. Then the bitopological spaces (S′(X),T+,T−) and (S′(X)pr,T

+
pr,T

−
pr) are

abstract spectra.

Proof.We first prove that the bitopological space (S′(X),T+,T−) is an abstract
spectrum. For doing this it is enough to show that S′(X) is a closed subset of the
Cantor cube DX (see 2.18).

Let {pσ ∈ S′(X) : σ ∈ Σ} be a net in the Cantor cube DX converging to a
point p ∈ DX . We have to prove that p ∈ S′(X), i.e. that p is an l-prime ideal in
(X,+,×).

Exactly as in the proof of 2.20, we show that a, b ∈ p implies that a + b ∈ p
and that if a× b ∈ p then a ∈ p or b ∈ p.

Let fσ = e(pσ) and f = e(p) (see 2.17 for the notation). Then the net {fσ, σ ∈
Σ} in DX converges to f , i.e., for every x ∈ X, the net {fσ(x), σ ∈ Σ} in the
discrete space D converges to f(x).

Let a, b ∈ X and a + b ∈ p. Then f(a + b) = 1. Hence there exists a σ0 ∈ Σ
such that fσ(a + b) = 1 for every σ ≥ σ0. Consequently, for every σ ≥ σ0, we
have that a + b ∈ pσ. Then, for every σ ≥ σ0, we get that a ∈ pσ and b ∈ pσ, i.e.
fσ(a) = 1 and fσ(b) = 1. This implies that f(a) = 1 and f(b) = 1, i.e. a ∈ p and
b ∈ p.

Let a, b ∈ X be such that a ∈ p or b ∈ p. Suppose that a × b �∈ p. Then
f(a× b) = 0. Hence there exists a σ0 ∈ Σ such that fσ(a× b) = 0 for every σ ≥ σ0.
This means that for every σ ≥ σ0, we have that a × b �∈ pσ. Consequently, a �∈ pσ
and b �∈ pσ for every σ ≥ σ0. We obtain that fσ(a) = 0 and fσ(b) = 0 for every
σ ≥ σ0. This implies that f(a) = 0 and f(b) = 0, i.e. a �∈ p and b �∈ p, which is
a contradiction. Therefore, a × b ∈ p. Hence, p is an l-prime ideal in (X,+,×).
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This shows that S′(X) is a closed subset of the Cantor cube DX . Hence, the
bitopological space (S′(X),T+,T−) is an abstract spectrum.

If the prime ideals pσ in the above proof were proper, then, obviously, p would
be also proper. This shows that the set S′(X)pr is also a closed subset of the Cantor
cube DX. So, the bitopological space (S′(X)pr,T

+
pr,T

−
pr) is an abstract spectrum.�

Example 2.25. Let (L,∨,∧) be a distributive lattice with 0 and 1 and let
us put x + y = x ∨ y and x × y = x ∧ y, for every x, y ∈ L. Then, applying
the construction from 2.24 to the set L with the operations + and × and with
fixed points 0 and 1, we get the topological space (S′(L)pr,T+

pr). We assert that it
coincides with the classical spectrum spec(L) of the distributive lattice (L,∨,∧).

Proof. We first prove that the sets spec(L) and S′(L)pr coincide.
Let p ∈ S′(L)pr. Then 0 ∈ p and 1 �∈ p. If a, b ∈ p then a + b ∈ p and, hence,

a ∨ b ∈ p. Let c ∈ L, a ∈ p and c ≤ a. Then c ∨ a = a, i.e. c+ a ∈ p. Thus c ∈ p.
If c, d ∈ L and c ∧ d ∈ p then c× d ∈ p. Therefore c ∈ p or d ∈ p. So, p ∈ spec(L).

Let p ∈ spec(L). If a, b ∈ p then a ∨ b ∈ p, i.e. a + b ∈ p. Further, if x, y ∈ L
and x+ y ∈ p, then x∨ y ∈ p and x ≤ x∨ y, y ≤ x∨ y. Hence x ∈ p and y ∈ p. So,
x+ y ∈ p iff x ∈ p and y ∈ p. Now, let a ∈ p or b ∈ p. Then a∧ b ≤ a and a∧ b ≤ b.
Therefore a ∧ b ∈ p, i.e. a× b ∈ p. Finally, if x, y ∈ L and x× y ∈ p then x ∧ y ∈ p
and, hence, x ∈ p or y ∈ p. So, x× y ∈ p iff x ∈ p or y ∈ p. Since 0 ∈ p and 1 �∈ p,
we obtain that p ∈ S′(L)pr. Therefore, we proved that S′(L)pr = spec(L).

The proof of the equality T+
pr = O is analogous to the proof of the corresponding

statement about S(L)pr, given in the proof of 2.22. �

2.3. THE MAIN THEOREM

The main theorem of Section 2, Theorem 2.36 below, will be proved here. For
doing this we need some preliminary definitions and results.

Definition 2.26. Let (S,T+,T−) be an abstract spectrum. For every two
points a, b ∈ S we put a ≤ b iff cl(S,T−){a} ⊆ cl(S,T−){b} (i.e., a ≤ b iff a is a
specialization of b in the topological space (S,T−)).

Remark 2.27. (a) The relation ≤ defined in 2.26 is a partial order on S since
(S,T−) is a T0-space (see 2.4) and, as it is well known, the specialization is a partial
order on every T0-space.

(b) It is obvious that a ≤ b iff a ∈ cl(S,T−){b} iff b ∈ cl(S,T+){a} iff cl(S,T+){b} ⊆
cl(S,T+){a}.

(c) It is easy to see that if a ∈ S then cl(S,T+){a} = {b ∈ S : b ≥ a} and
cl(S,T−){a} = {b ∈ S : b ≤ a}.

(d) If the elements of an abstract spectrum S are prime (or l-prime) ideals de-
fined as in Section 2.2 (i.e. S = S(X), where X is a set with two binary operations),
then a ≤ b iff a ⊆ b, for a, b ∈ S.
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Lemma 2.28. Let (S,T+,T−) be an abstract spectrum. If the net {aσ, σ ∈ Σ}
converges to a in (S,T−), the net {bσ, σ ∈ Σ} converges to b in (S,T+) and aσ ≤ bσ
for every σ ∈ Σ, then a ≤ b.

Proof. Let U ∈ L+ and b ∈ U . Then there exists a σ0 ∈ Σ such that bσ ∈ U for
every σ ≥ σ0. Suppose that a �∈ U . Then S \ U ∈ T− and a ∈ S \ U . Hence there
exists a σ1 ∈ Σ such that aσ ∈ S \ U for every σ ≥ σ1. Putting σ′ = sup{σ0, σ1},
we obtain that bσ′ ∈ U and aσ′ �∈ U . Therefore bσ′ �∈ cl(S,T+){aσ′}, i.e. aσ′ �≤ bσ′ ,
a contradiction. Hence a ∈ U . This shows that b ∈ cl(S,T+){a}, i.e. a ≤ b. �

Lemma 2.29. Let (S,T+,T−) be an abstract spectrum. If A ⊆ S and (A,≤)
is a directed set (where ≤ is the restriction to A of the partial order defined in
2.26), then the set A has supremum in the ordered set (S,≤).

Proof. Since (A,≤) is a directed set and A ⊆ S, {a, a ∈ A} is a net in the
compact Hausdorff space (S,T) (where T = sup{T+,T−}) (see 2.13) and, hence, it
has a cluster point b ∈ S. We shall prove that b = sup{a : a ∈ A} in (S,≤). Indeed,
let U ∈ T+ and b ∈ U . Then U ∈ T and for every a ∈ A there exists an a′ ∈ A such
that a′ ≥ a and a′ ∈ U . Hence A ⊆ U . This shows that b ∈ cl(S,T+){a} for every
a ∈ A, i.e. b ≥ a for every a ∈ A. Let now b′ ∈ S and b′ ≥ a for every a ∈ A. The
point b is a limit in (S,T) (and, hence, in (S,T−)) of a net {aσ, σ ∈ Σ} that is finer
than the net {a, a ∈ A}. Put bσ = b′ for every σ ∈ Σ. Then the net {bσ, σ ∈ Σ}
converges to b′ in (S,T+). Since aσ ≤ bσ for every σ ∈ Σ, we obtain, using 2.28,
that b ≤ b′. Hence, b = supA. �

Lemma 2.30. Let (S,T+,T−) be an abstract spectrum. If A ⊆ S and (A,≤′)
is a directed set, where ≤′ is the inverse to the restriction to A of the partial order
defined in 2.26 (i.e. a′ ≤′ a′′ iff a′ ≥ a′′, for a′, a′′ ∈ A), then the set A has infimum
in the ordered set (S,≤).

Proof. The proof is completely analogous to that of Lemma 2.29. �

Lemma 2.31. Let (S,T+,T−) be an abstract spectrum. Then for every s ∈ S
there exists an m ∈ S (resp. m′ ∈ S) such that s ≤ m (resp. m′ ≤ s) and m is
a maximal (resp. m′ is a minimal) element of the ordered set (S,≤) (where ≤ is
from 2.26).

Proof. It follows from the Zorn lemma and 2.29 (resp. 2.30). �

Notation 2.32. Let (S,T+,T−) be an abstract spectrum. We put Max(S) =
{m ∈ S : m is a maximal element of (S,≤)} and Min(S) = {m ∈ S : m is a
minimal element of (S,≤)} (where ≤ is from 2.26). We shall denote by T+

M (resp.
T−M ) the induced by T+ (resp. T−) topology on Max(S), and by T+

m (resp. T−m)
the induced by T+ (resp. T−) topology on Min(S).
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Proposition 2.33. Let (S,T+,T−) be an abstract spectrum. Then:

(a) (Max(S),T+
M ) and (Min(S),T−m) are compact T1-spaces;

(b) (Min(S),T+
m) and (Max(S),T−M ) are T2-spaces;

(c) Min(S) is dense in (S,T+) and Max(S) is dense in (S,T−).

Proof. (a) We first prove that (Max(S),T+
M ) is a compact T1-space. Since,

for every a ∈ S, cl(S,T+){a} = {b ∈ S : b ≥ a} (see 2.27(c)), we obtain that
(Max(S),T+

M ) is a T1-space. Let {aσ, σ ∈ Σ} be a net in (Max(S),T+
M ). Then

{aσ, σ ∈ Σ} is a net in the compact space (S,T+) (see 2.4) and, hence, it has
a cluster point a ∈ S in (S,T+). Now, we can find a net {aσ′ , σ′ ∈ Σ′} in
(Max(S),T+

M ) which is finer than the net {aσ, σ ∈ Σ} and converges to a in (S,T+).
By 2.31, there exists an a′ ∈Max(S) such that a ≤ a′. Then a′ ∈ cl(S,T+){a} and,
hence, the net {aσ′ , σ′ ∈ Σ′} converges to a′ in (Max(S),T+

M ). This shows that
the net {aσ, σ ∈ Σ} has a cluster point in (Max(S),T+

M ). Therefore, the space
(Max(S),T+

M ) is compact.
The proof of the fact that (Min(S),T−m) is a compact T1-space is analogous.

(b) We first prove that (Min(S),T+
m) is a Hausdorff space. Indeed, let a, b ∈

Min(S) and a �= b. Suppose that for any U, V ∈ L+ such that a ∈ U and b ∈ V ,
we have that U ∩ V �= ∅. Then the family F = {W ∈ L+ : a ∈ W or b ∈ W} has
the finite intersection property (see 2.2) and its elements are closed subsets of the
compact space (S,T−). Consequently there exists a c ∈ ⋂F. Since L+ is a base
for T+, we obtain that a ∈ cl(S,T+){c} and b ∈ cl(S,T+){c}. Hence c ≤ a and c ≤ b.
Having in mind that a, b ∈Min(S), we get that c = a and c = b, i.e. a = b, which
is a contradiction. Therefore, (Min(S),T+

m) is a Hausdorff space.
Analogously, one proves that (Max(S),T−M ) is a Hausdorff space.

(c) We first prove that Min(S) is dense in (S,T+). Indeed, let x ∈ U ∈ T+.
By 2.31, there exists an a ∈Min(S) such that a ≤ x. Then x ∈ cl(S,T+){a}. Hence
a ∈ U ∩Min(S). Therefore, Min(S) is dense in (S,T+).

The proof of the fact that Max(S) is dense in (S,T−) is analogous. �

Let us recall the definitions of the coherent spaces and coherent maps:

Definition 2.34. (see, for example, [20]) Let (X,T) be a topological space.

(a) We shall denote by KO(X,T) (or, simply, by KO(X)) the family of all
compact open subsets of X.

(b) A closed subset F of X is called irreducible if the equality F = F1 ∪ F2,
where F1 and F2 are closed subsets of X, implies that F = F1 or F = F2.

(c) We say that the space (X,T) is sober if it is a T0-space and for every non-
void irreducible subset F of X there exists a x ∈ X such that F = clX{x}.
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(d) The space (X,T) is called coherent if it is a compact sober space and the
family KO(X,T) is a closed under finite intersections base for the topology
T.

(e) A continuous map f : (X ′,T′) −→ (X ′′,T′′) is called coherent if U ′′ ∈
KO(X ′′) implies that f−1(U ′′) ∈ KO(X ′).

Notation 2.35. We denote by CohSp the category of all coherent spaces
and all coherent maps between them.

Theorem 2.36. The categories S and CohSp are isomorphic.

Proof. We shall construct two covariant functors F : S −→ CohSp and G :
CohSp −→ S such that F ◦G = IdCohSp and G ◦ F = IdS .

For every (S,T+,T−) ∈ |S|, we put F (S,T+,T−) = (S,T+). We shall prove
that (S,T+) ∈ |CohSp|. Indeed, we have: a) the space (S,T+) is compact (by 2.4);
b) KO(S,T+) = L+ (by 2.5) and hence the family KO(S,T+) is a closed under
finite intersections base for the topology T+ (by 2.2 and (SP1) of 2.3). Therefore
we need only to show that (S,T+) is a sober space. We have that (S,T+) is a
T0-space (by 2.4). Let A be a non-empty irreducible subset of (S,T+). Then A
is a closed subset of (S,T), where T = sup{T+,T−}. Hence, by 2.16, (A,T+

A ,T
−
A)

is an abstract spectrum (where T+
A (resp. T−A) is the induced by T+ (resp. T−)

topology on the subset A of S). We shall prove that |Min(A)| = 1. Suppose that
x, y ∈ Min(A) and x �= y. Let T′ be the induced by T+

A topology on Min(A).
Since (Min(A),T′) is a Hausdorff space (by 2.33(b)), there exists an U ∈ T′ such
that x ∈ U and y �∈ cl(Min(A),T′)U . Put B = cl(Min(A),T′)U and C = Min(A) \ U .
Then B and C are closed subsets of (Min(A),T′), Min(A) = B ∪C, B �= Min(A)
and C �= Min(A). Since Min(A) is dense in (A,T+

A) (by 2.33(c)), we obtain that
A = B′ ∪ C ′, where B′ = cl(A,T+

A)B and C ′ = cl(A,T+
A)C. The sets B′ and C ′

are closed in (S,T+) since they are closed in (A,T+
A) and A is closed in (S,T+).

Moreover, B′ �= A and C ′ �= A, because B′ ∩Min(A) = B and C ′ ∩Min(A) = C.
Since A is irreducible, we get a contradiction. Therefore, |Min(A)| = 1. Let
Min(A) = {a}. Then 2.33(c) implies that A = cl(S,T+){a}. So, (S,T+) is a sober
space. We proved that (S,T+) is a coherent space.

Let f ∈ S((S1,T
+
1 ,T

−
1 ), (S2,T

+
2 ,T

−
2 )). We denote by F (f) : S1 −→ S2 the

function defined by F (f)(x) = f(x) for every x ∈ S1. We shall show that F (f) :
(S1,T

+
1 ) −→ (S2,T

+
2 ) is a coherent map. Indeed, since f is a S-morphism, we have

that F (f) : (S1,T
+
1 ) −→ (S2,T

+
2 ) is a continuous map. Let K ⊆ S2, K ∈ T+

2 and
K be a compact subspace of (S2,T

+
2 ). Then, by 2.5, K ∈ L+

2 , i.e. S2 \K ∈ T−2 .
Hence f−1(K) ∈ T+

1 and f−1(S2 \K) ∈ T−1 . Since S1 \ f−1(K) = f−1(S2 \K), we
obtain that f−1(K) ∈ L+

1 . Consequently, by 2.5, f−1(K) is a compact subspace of
(S1,T

+
1 ). So, we proved that F (f) ∈ CohSp(F (S1,T

+
1 ,T

−
1 ), F (S2,T

+
2 ,T

−
2 )). The

definition of F (f) implies immediately that F preserves the identity maps and that
F (f ◦ g) = F (f) ◦ F (g). Therefore, we constructed a functor F : S −→ CohSp.
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Let now (S,T+) ∈ |CohSp|, B+ = KO(S,T+) and B− = {S \ U : U ∈ B+}.
Since B+ is closed under finite intersections and finite unions, we obtain that B−

has the same properties. Obviously,
⋃
B− = S. Hence the family T− of all subsets

of S that are unions of subfamilies of B− is a topology on S and B− is a base for the
topological space (S,T−). We shall show that the bitopological space (S,T+,T−)
is an abstract spectrum and we will put G(S,T+) = (S,T+,T−).

It is easy to see that B+ ⊆ L+ and B− ⊆ L− (see 2.1 for the notation). Since,
by the definition of a coherent space, the family B+ is a base for the topological
space (S,T+) and since the family B− is a base for the space (X,T−), we obtain
that L+ (resp. L−) is a base for (S,T+) (resp. (S,T−)). Hence the condition
(SP1) of 2.3 is fulfilled. The condition (SP3) of 2.3 is also fulfilled since (S,T+) is
a T0-space. Let us put T = sup{T+,T−}. We shall prove that the space (S,T) is
compact. This will imply immediately that the condition (SP2) of 2.3 is fulfilled.

Obviously, for proving that (S,T) is compact, it is enough to show that every
cover of S of the type Ω = Ω+ ∪ Ω−, where Ω+ (resp. Ω−) is a subfamily of
B+ \ {S} (resp. B− \ {S}), has a finite subcover. Let Ω∗ be the family of all finite
unions of the elements of Ω−. Then Ω∗ ⊆ B−,

⋃
Ω− =

⋃
Ω∗ and (Ω∗,⊆) is a

directed set (i.e. for every U, V ∈ Ω∗ there exists a W ∈ Ω∗ such that U ∪V ⊆W ).
Put H = S \ ⋃Ω+. Then H ⊆ ⋃Ω∗ and H is a closed and, hence, compact
subset of (S,T+). If we find a U0 ∈ Ω∗ such that H ⊆ U0 then we will have that
S \ U0 ⊆ S \H =

⋃
Ω+. From U0 ∈ B− we will get that S \ U0 ∈ B+ and, hence,

S \U0 will be a compact subset of (S,T+) covered by Ω+. Consequently there will
be a finite subfamily Ω+

f of Ω+ covering S \ U0. Then Ω+
f ∪ {U0} will cover S.

Therefore, we will find a finite subcover of Ω. So, it is enough to prove that there
exists an U0 ∈ Ω∗ such that H ⊆ U0.

PutH+ = {V ∩H : V ∈ B+}. ThenH+ is a base for the subspaceH of (S,T+),
H+ is closed under finite unions and finite intersections, H+ is a distributive lattice
with respect to the operations ∪ and ∩ and, sinceH is closed in (S,T+), all elements
of H+ are compact subsets of (S,T+). Furthermore, for every U ∈ Ω∗ we put
U+ = S \ U . Then U+ ∈ B+ for every U ∈ Ω∗.

Suppose that for every U ∈ Ω∗ we have that H \ U �= ∅. Then H ∩ U+ �= ∅
for every U ∈ Ω∗. Since for every U, V ∈ Ω∗ there exists a W ∈ Ω∗ such that
W+ ⊆ U+∩V +, the family {H ∩U+ : U ∈ Ω∗} has the finite intersection property.
Hence it generates a filter ϕ in H+. Let Φ be an ultrafilter in H+ containing ϕ
and let L =

⋂{cl(S,T+)W : W ∈ Φ}. Then L is a non-empty closed subset of
(S,T+) and L ⊆ H. Moreover, L ∩W0 �= ∅ for every W0 ∈ Φ. Indeed, let W0 ∈ Φ.
Then W0 ∈ H+ and, hence, W0 is a compact subset of (S,T+). It is easy to see
that the family {clW0

(W0 ∩ W ) : W ∈ Φ} has the finite intersection property.
Consequently ∅ �= ⋂{clW0(W0∩W ) : W ∈ Φ} = W0∩

⋂{clH(W0∩W ) : W ∈ Φ} ⊆
W0∩

⋂{clHW : W ∈ Φ} = W0∩L. So, we proved that L∩W0 �= ∅ for everyW0 ∈ Φ.
We shall prove now that L is an irreducible subset of (S,T+). Indeed, suppose that
L = A∪B, where A and B are closed subsets of (S,T+) and A �= L, B �= L. Then
(H \ A) ∩ L �= ∅ and (H \ B) ∩ L �= ∅. Let x ∈ (H \ A) ∩ L. Then there exists a
W ′ ∈ H+ such that x ∈ W ′ ⊆ H \ A. Since x ∈ L, we obtain that W ′ ∩W �= ∅

48 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 31–70.



for every W ∈ Φ. Consequently W ′ ∈ Φ. Analogously, taking an y ∈ (H \ B) ∩ L,
we can find a W ′′ ∈ Φ such that y ∈ W ′′ ⊆ H \ B. Putting W0 = W ′ ∩W ′′, we
get that W0 ∈ Φ. Since W0 ⊆ (H \ A) ∩ (H \ B) = H \ (A ∪ B) = H \ L, we
conclude that W0 ∩ L = ∅ – a contradiction. Therefore, L is an irreducible subset
of (S,T+). This implies, because of the fact that (S,T+) is sober, that there exists
a point l ∈ L such that L = cl(S,T+){l}. We shall show that l ∈ ⋂{U+ : U ∈ Ω∗}.
Indeed, let U ∈ Ω∗. Then H ∩ U+ ∈ ϕ ⊆ Φ. Hence U+ ∩ L �= ∅. Let x ∈ U+ ∩ L.
Then x ∈ U+ ∈ T+ and x ∈ L = cl(S,T+){l}. Consequently l ∈ U+. So, we proved
that l ∈ ⋂{U+ : U ∈ Ω∗}. On the other hand we have that l ∈ L ⊆ H ⊆ ⋃Ω∗ =⋃{S \ U+ : U ∈ Ω∗} = S \ ⋂{U+ : U ∈ Ω∗}, i.e. l �∈ ⋂{U+ : U ∈ Ω∗} – a
contradiction. It shows that there exists a U0 ∈ Ω∗ such that H ⊆ U0. Therefore,
we proved that the space (S,T) is compact and, hence, that the condition (SP2) of
2.3 is fulfilled. So, the bitopological space (S,T+,T−) is an abstract spectrum.

Let f ∈ CohSp((S1,T
+
1 ), (S2,T

+
2 )). We denote by G(f) : S1 −→ S2 the

function defined by G(f)(x) = f(x) for every x ∈ S1. We shall show that G(f) ∈
S((S1,T

+
1 ,T

−
1 ), (S2,T

+
2 ,T

−
2 )), where (Si,T

+
i ,T

−
i ) = G(Si,T

+
i ), i = 1, 2. Indeed,

we have that f : (S1,T
+
1 ) −→ (S2,T

+
2 ) is a continuous map and hence G(f) :

(S1,T
+
1 ) −→ (S2,T

+
2 ) is a continuous map. For proving that G(f) : (S1,T

−
1 ) −→

(S2,T
−
2 ) is a continuous map it is enough to show that U ∈ B−2 implies that

f−1(U) ∈ B−1 (because B−1 (resp. B−2 ) is a base for T−1 (resp. T−2 )) (here we
use the notation introduced above in the process of the definition of G on the
objects of the category CohSp). So, let U ∈ B−2 . Then S2 \ U ∈ KO(S2,T

+
2 ).

Since f is a coherent map, we obtain that V = f−1(S2 \ U) ∈ KO(S1,T
+
1 ) =

B+
1 . Obviously, V = S1 \ f−1(U). Consequently f−1(U) = S1 \ V ∈ B−1 . So,

G(f) ∈ S(G(S1,T
+
1 ), G(S2,T

+
2 )). The definition of G(f) implies immediately that

G preserves the identity maps andG(f◦g) = G(f)◦G(g). Therefore, we constructed
a functor G : CohSp −→ S.

From 2.7 and the constructions of the functors F and G we get that F ◦G =
IdCohSp and G ◦ F = IdS . So, the categories S and CohSp are isomorphic. �

Corollary 2.37. The categories DLat and S are dual.

Proof. Since the categories DLat and CohSp are dual (see, for example, [20]),
our statement follows immediately from 2.36. �

2.38. Let us recall the descriptions of the duality functors

F ′ : CohSp −→DLat and G′ : DLat −→ CohSp

(see, for example, [20]): if (X,T+) is a coherent space then

F ′(X,T+) = (KO(X,T+),∪,∩, ∅, X);

if f ∈ CohSp((X1,T
+
1 ), (X2,T

+
2 )) then F ′(f) : F ′(X2,T

+
2 ) −→ F ′(X1,T

+
1 ) is

defined by the formula
F ′(f)(U) = f−1(U)
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for every U ∈ KO(X2,T
+
2 ); if (L,∨,∧, 0, 1) ∈ |DLat| then
G′(L,∨,∧, 0, 1) = (spec(L),O),

where O is the Stone topology on spec(L) (see the proof of 2.22 for the notation);
if f ∈DLat((L1,∨1,∧1, 01, 11), (L2,∨2,∧2, 02, 12)) then

G′(f) : G′(L2,∨2,∧2, 02, 12) −→ G′(L1,∨1,∧1, 01, 11))

is defined by the formula
G′(f)(p) = f−1(p)

for every p ∈ spec(L2). The natural equivalence ψ : IdCohSp −→ G′ ◦F ′ is given
by the formula ψ(X,T+) = ψ(X,T+) for every (X,T+) ∈ |CohSp|, where

ψ(X,T+) : (X,T+) −→ (G′ ◦ F ′)(X,T+), x �→ {U ∈ F ′(X,T+) : x �∈ U}.
In particular, ψ(X,T+) is a CohSp-isomorphism for every coherent space (X,T+).
The natural equivalence φ : IdDLat −→ F ′ ◦G′ is given by the formula φ(L) = φL

for every L ∈ |DLat|, where
φL : L −→ (F ′ ◦G′)(L), l �→ {p ∈ G′(L) : l �∈ p}.

In particular, φL is a DLat-isomorphism for every distributive lattice L.

2.4. SOME APPLICATIONS

Let us start with recalling that if L is a distributive lattice with 0 and 1 then
its classical spectrum spec(L) can be interpreted as an abstract spectrum (see 2.22,
2.6 and 2.7).

We will first prove a general theorem.

Theorem 2.39. Let X be a set, S be a family of subsets of X (i.e. S ⊆
Exp(X)), T+ and T− be the topologies on S defined in 2.18, and let the bitopological
space (S,T+,T−) be an abstract spectrum. Then there exist a distributive lattice L
with 0 and 1, and a function ϕ : X −→ L such that:

(i) the set ϕ(X) generates L;

(ii) ϕ−1(q) ∈ S for every q ∈ spec(L) (see 2.22 for the notation);

(iii) Φ : spec(L) −→ S, q �→ ϕ−1(q), is an S-isomorphism;

(iv) if L′ is a distributive lattice with 0 and 1, and θ : X −→ L′ is a function
such that:

(1) θ−1(q) ∈ S for every q ∈ spec(L′), and

(2) Θ : spec(L′) −→ S, q �→ θ−1(q), is an S-morphism,

then there exists a unique lattice homomorphism l : L−→L′ with l◦ϕ=θ;
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(v) if ϕ1 : X −→ L1, where L1 is a distributive lattice with 0 and 1, is such
that:

(1′) (ϕ1)
−1(q) ∈ S for every q ∈ spec(L1), and

(2′) Φ1 : spec(L1) −→ S, q �→ (ϕ1)
−1(q), is an S-isomorphism,

then there exists a unique lattice isomorphism l : L −→ L1 with l◦ϕ = ϕ1;

(vi) ϕ : X −→ L is an injection iff for any two different points x and y of X
there exists a p ∈ S containing exactly one of them.

Proof. We shall use the notation of 2.18, 2.20 and 2.22.
By (the proof of) 2.36, we have that (S,T+) ∈ |CohSp|. We put L = F ′(S,T+)

(see 2.38), i.e. L = {U ∈ T+ : U is compact} and, hence, by 2.5, L = L+. Then L is
a distributive lattice with 0 and 1. Define the function ϕ : X −→ L by the formula
ϕ(x) = U+

x for every x ∈ X (recall that U+
x = {p ∈ S : x �∈ p} and U+

x ∈ L+ (see
2.18 and the part (b)⇒ (a) of its proof)). Hence ϕ(X) (= {U+

x : x ∈ X} = P+) is
a subbase for T+ (see 2.18). In what follows, the topological space (S,T+) will be
denoted, briefly, by S.

The proof of (i): Let L∗ be the set of all finite unions of the elements of the
set B+ of all finite intersections of the elements of P+ = ϕ(X). Then L∗ coincides
with the subset of L generated by ϕ(X) and B+ is a base for T+. If U ∈ L then
U is a compact open subset of S and, hence, it is a finite union of elements of B+.
Thus U ∈ L∗. Therefore, the set ϕ(X) generates L.

The proof of (ii) and (iii): By 2.38, we have that spec(L) = G′(L). Since the
map ψS : S −→ (G′ ◦F ′)(S), p −→ {U ∈ L : p �∈ U} is a CohSp-isomorphism (see
2.38), we get that spec(L) = ψS(S).

Let q ∈ spec(L). Then there exists a unique p ∈ S such that q = ψS(p). So,
we have that ϕ−1(q) = ϕ−1(ψS(p)) = {x ∈ X : ϕ(x) ∈ ψS(p)} = {x ∈ X : U+

x ∈
ψS(p)} = {x ∈ X : p �∈ U+

x } = {x ∈ X : x ∈ p} = p, i.e. ϕ−1(q) = ψ−1
S (q) for every

q ∈ spec(L). Since the function ψ−1
S is a CohSp-isomorphism, we conclude that

the function Φ : spec(L) −→ S, q −→ ϕ−1(q), is a CohSp-isomorphism. Now,
(the proof of) 2.36 implies, that Φ is an S-isomorphism.

The proof of (iv): Put τ = ψS ◦Θ. Then, by 2.36 and 2.38,

Θ : spec(L′) −→ (S,T+) and τ : spec(L′) −→ (G′ ◦ F ′)(S,T+)

are CohSp-morphisms. Since G′(L′) = spec(L′) and F ′(S,T+) = L, we obtain
that F ′(τ) = F ′(Θ) ◦ F ′(ψS) : (F ′ ◦ G′)(L) −→ (F ′ ◦ G′)(L′) (see 2.38). Put
l = φ−1

L′ ◦ F ′(τ) ◦ φL (using the notation from 2.38). Then l : L −→ L′ is a lattice
homomorphism. We shall prove that F ′(Θ) ◦ F ′(ψS) ◦ φL ◦ ϕ = φL′ ◦ θ. This
will imply that φ−1

L′ ◦ F ′(Θ) ◦ F ′(ψS) ◦ φL ◦ ϕ = θ and, hence, we wll have that
θ = φ−1

L′ ◦(F ′(Θ)◦F ′(ψS))◦φL ◦ϕ = (φ−1
L′ ◦F ′(τ)◦φL)◦ϕ = l◦ϕ, i.e. that θ = l◦ϕ.

Let x ∈ X. Then (φL′ ◦ θ)(x) = φL′(θ(x)) = {q′ ∈ spec(L′) : θ(x) �∈ q′}.
On the other hand, (φL ◦ ϕ)(x) = φL(ϕ(x)) = {q ∈ spec(L) : ϕ(x) �∈ q}. Put
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U = (F ′(ψS) ◦ φL ◦ ϕ)(x). Since ψ−1
S = Φ (see the proof of (ii) and (iii) above),

we get (F ′(ψS))
−1 = F ′(ψ−1

S ) = F ′(Φ). Hence (F ′(Φ))(U) = (F ′(ψS))
−1(U) =

(φL ◦ϕ)(x). Now, the definition of F ′(Φ) (see 2.38) implies (F ′(Φ))(U) = Φ−1(U).
Hence Φ−1(U) = (φL ◦ ϕ)(x). Since Φ is an isomorphism (see (iii)), we get U =
Φ((φL ◦ ϕ)(x)) = Φ({q ∈ spec(L) : ϕ(x) �∈ q}) = {Φ(q) : q ∈ spec(L), ϕ(x) �∈ q} =
{ϕ−1(q) : q ∈ spec(L), ϕ(x) �∈ q} = {ϕ−1(q) : q ∈ spec(L), x �∈ ϕ−1(q)} = {p ∈
S : x �∈ p} = U+

x , i.e U = U+
x . Therefore, (F ′(ψS) ◦ φL ◦ ϕ)(x) = U+

x . Then
(F ′(Θ) ◦ F ′(ψS) ◦ φL ◦ ϕ)(x) = (F ′(Θ))((F ′(ψS) ◦ φL ◦ ϕ)(x)) = (F ′(Θ))(U+

x ) =
Θ−1(U+

x ) = {q′ ∈ spec(L′) : Θ(q′) ∈ U+
x } = {q′ ∈ spec(L′) : θ−1(q′) ∈ U+

x } = {q′ ∈
spec(L′) : x �∈ θ−1(q′)} = {q′ ∈ spec(L′) : θ(x) �∈ q′} = (φL′ ◦ θ)(x). So, we proved
that θ = l◦ϕ. This, combined with the fact that ϕ(X) generates L (see (i)), proves
the uniqueness of l.

The proof of (v): Let ϕ1 : X −→ L1 has the properties (1′) and (2′). Then,
using (iv), we obtain a lattice homomorphism l : L −→ L1 such that l ◦ ϕ = ϕ1.
From the construction of l, given in (iv), we have that l = φ−1

L1
◦ F ′(ψS ◦ Φ1) ◦ φL.

Since Φ1 is an CohSp-isomorphism (by (2′) and 2.36), we get that l is a DLat-
isomorphism (because all other components of the composition defining l are also
DLat-isomorphisms (see 2.38)).

The proof of (vi): Let x, y ∈ X and x �= y. Then ϕ(x) = {p ∈ S : x �∈ p} and
ϕ(y) = {p ∈ S : y �∈ p}. Hence, ϕ(x) �= ϕ(y) if and only if there exists a p ∈ S
containing exactly one of the points x and y. �

Corollary 2.40. Let X be a set endowed with two arbitrary multivalued binary
operations ⊕ and ⊗ and with two fixed different points ξ0 ∈ X and ξ1 ∈ X. Then
there exist a distributive lattice (L,∨,∧) with 0 and 1, and a function ϕ : X −→ L
such that:

(i) the set ϕ(X) generates L;

(ii) ϕ−1(q) ∈ S(X)pr for every q ∈ spec(L) (resp. ϕ−1(q) ∈ S(X) for every
q ∈ spec(L)) (see 2.20 and 2.22 for the notation);

(iii) Φ : spec(L) −→ S(X)pr, q �→ ϕ−1(q) (resp. Φ : spec(L) −→ S(X),
q −→ ϕ−1(q)) is an S-isomorphism;

(iv) if L′ is a distributive lattice with 0 and 1, and θ : X −→ L′ is a function
such that:

(1) θ−1(q) ∈ S(X)pr (resp. θ−1(q) ∈ S(X)) for every q ∈ spec(L′),
and

(2) Θ : spec(L′) −→ S(X)pr, q �→ θ−1(q), (resp. Θ : spec(L′) −→
S(X), q �→ θ−1(q),) is an S-morphism,

then there exists a unique lattice homomorphism l : L−→L′ with l◦ϕ=θ;
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(v) if ϕ1 : X −→ L1, where L1 is a distributive lattice with 0 and 1, is such
that:

(1′) (ϕ1)
−1(q) ∈ S(X)pr for every q ∈ spec(L1) (resp. (ϕ1)

−1(q) ∈
S(X) for every q ∈ spec(L1)), and

(2′) Φ1 : spec(L1) −→ S(X)pr, q �→ (ϕ1)
−1(q) (resp. Φ1 : spec(L1) −→

S(X), q �→ (ϕ1)
−1(q)) is an S-isomorphism,

then there exists a unique lattice isomorphism l : L −→ L1 with l◦ϕ = ϕ1;

(vi) a ⊕ b ⊆ {x ∈ X : ϕ(x) ≤ ϕ(a) ∨ ϕ(b)} and a ⊗ b ⊆ {x ∈ X : ϕ(x) ≥
ϕ(a) ∧ ϕ(b)} for any a, b ∈ X.

Proof. Denote by S the set S(X)pr (resp. S(X)) (see 2.20 for the notation)
and define the topologies T+

pr (resp. T+) and T−pr (resp. T−) on S as in 2.18. Then,
by 2.20, the bitopological space (S,T+

pr,T
−
pr) (resp. (S,T+,T−)) is an abstract

spectrum. Hence, applying Theorem 2.39, we obtain a distributive lattice

(L,∨,∧, 0, 1)

and a function ϕ : X −→ L satisfying conditions (i)-(v) of 2.39 and, hence, our
conditions (i)-(v) as well. Consequently, we need only to check that condition (vi) is
also satisfied. In what follows, the notation of the proof of 2.39 and the construction
of the function ϕ given there are used.

Let a, b ∈ X and x ∈ a ⊕ b. Then ϕ(a) ∨ ϕ(b) = ϕ(a) ∪ ϕ(b) = {p ∈ S :
a �∈ p or b �∈ p}. Hence S \ (ϕ(a) ∪ ϕ(b)) = {p ∈ S : a ∈ p and b ∈ p}. Let
p′ ∈ ϕ(x) = U+

x = {p ∈ S : x �∈ p} and suppose that p′ �∈ ϕ(a) ∪ ϕ(b). Then a ∈ p′

and b ∈ p′. This implies that a ⊕ b ⊆ p′. Then x ∈ p′ and, hence, p′ �∈ ϕ(x) – a
contradiction. Therefore, p′ ∈ ϕ(a)∪ϕ(b). This shows that ϕ(x) ⊆ ϕ(a)∪ϕ(b), i.e.
ϕ(x) ≤ ϕ(a) ∨ ϕ(b), for every x ∈ a ⊕ b. Consequently, a ⊕ b ⊆ {x ∈ X : ϕ(x) ≤
ϕ(a) ∨ ϕ(b)} for any a, b ∈ X.

Let x ∈ a ⊗ b. We have that ϕ(a) ∧ ϕ(b) = ϕ(a) ∩ ϕ(b) = {p ∈ S : a �∈ p and
b �∈ p}. Let p′ ∈ ϕ(a)∩ϕ(b). Then a �∈ p′ and b �∈ p′. Suppose that p′ �∈ ϕ(x). Then
x ∈ p′ and, hence, (a⊗ b) ∩ p′ �= ∅. This implies that a ∈ p′ or b ∈ p′, i.e. we get a
contradiction. Therefore, p′ ∈ ϕ(x). So, ϕ(a)∩ϕ(b) ⊆ ϕ(x), i.e. ϕ(a)∧ϕ(b) ≤ ϕ(x)
for every x ∈ a⊗ b. �

Corollary 2.41. Let X be a set endowed with two arbitrary single-valued
binary operations + and × and with two fixed different points ξo ∈ X and ξ1 ∈ X.
Then there exist a distributive lattice (L,∨,∧) with 0 and 1, and a function ϕ :
X −→ L such that:

(i) the set ϕ(X) generates L;

(ii) ϕ−1(q) ∈ S′(X) for every q ∈ spec(L) (resp. ϕ−1(q) ∈ S′(X)pr for every
q ∈ spec(L)) (see 2.24, 2.22 and 2.20 for the notation);
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(iii) Φ : spec(L) −→ S′(X), q �→ ϕ−1(q), (resp. Φ : spec(L) −→ S′(X)pr,
q �→ ϕ−1(q),) is an S-isomorphism;

(iv) if L′ is a distributive lattice with 0 and 1, and θ : X −→ L′ is a function
such that:

(1) θ−1(q) ∈ S′(X) (resp. θ−1(q) ∈ S′(X)pr) for every q ∈ spec(L′),
and

(2) Θ : spec(L′) −→ S′(X), q �→ θ−1(q) (resp. Θ : spec(L′) −→
S′(X)pr, q �→ θ−1(q)) is an S-morphism,

then there exists a unique lattice homomorphism l : L−→L′ with l◦ϕ=θ;

(v) if ϕ1 : X −→ L1, where L1 is a distributive lattice with 0 and 1, is such
that:

(1′) (ϕ1)
−1(q) ∈ S′(X) for every q ∈ spec(L1) (resp. (ϕ1)

−1(q) ∈
S′(X)pr for every q ∈ spec(L1)), and

(2′) Φ1 : spec(L1) −→ S′(X), q �→ (ϕ1)
−1(q) (resp. Φ1 : spec(L1) −→

S′(X)pr, q �→ (ϕ1)
−1(q)) is an S-isomorphism,

then there exists a unique lattice isomorphism l : L −→ L1 with l◦ϕ = ϕ1;

(vi) ϕ(a+ b) = ϕ(a) ∨ ϕ(b) and ϕ(a× b) = ϕ(a) ∧ ϕ(b) for every a, b ∈ X.

Proof. Denote by S the set S′(X) (resp. S′(X)pr) (see 2.24 for the notation)
and introduce the topologies T+ (resp. T+

pr) and T− (resp. T−pr) on S as in 2.18.
Then, by 2.24, the bitopological space (S,T+,T−) (resp. (S,T+

pr,T
−
pr) ) is an ab-

stract spectrum. Hence, applying Theorem 2.39, we obtain a distributive lattice

(L,∨,∧, 0, 1)

and a function ϕ : X −→ L satisfying conditions (i)-(v) of 2.39 and, hence, our
conditions (i)-(v) as well. Consequently, we need only to check that condition (vi)
is also satisfied. This can be done easily (see the proof of 2.40). �

3. SEPARATIVE ALGEBRAS

The main aim of this section is to give a detailed exposition of the theory of
separative algebras, introduced and announced by Prodanov in [31]. This theory is
a straight generalization of the theory of convex spaces in the sense of Tagamlitzki
[44], which have been also a subject of Prodanov’s Ph.D. dissertation [36]. We will
follow very closely the style of Prodanov’s proofs from [35] and [36].
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3.1. PRESEPARATIVE ALGEBRAS

Let X �= ∅ be a set with two binary multivalued operations denoted by “ × ”
and “ + ”. This means that for any x, y ∈ X, x× y ⊆ X and x+ y ⊆ X. Later on,
instead of “ × ” and “ + ”, we shall use “.” and “ + ”, and following the common
mathematical practice, sometimes we shall omit the sign “.”.

We extend the operations “.” and “ + ” for arbitrary subsets A and B of X
putting

A.B =
⋃

a∈A,b∈B
a.b and A+B =

⋃
a∈A,b∈B

a+ b

The one element subset {x} ⊆ X will be denoted simply by x. Then for instance
x(yz) will mean {x}.(y.z).

Definition 3.1. The system X = (X, .,+) is called a preseparative algebra if
X �= ∅, “.” and “+” are binary multivalued operations in X satisfying the following
axioms: for arbitrary a, b, c, x ∈ X,

(i) ab = ba; (i ′) a+ b = b+ a;

(ii) a(bc) = (ab)c; (ii ′) a+ (b+ c) = (a+ b) + c;

(iii) from a ∈ b+ x, and c ∈ dx, it follows that (ad) ∩ (b+ c) �= ∅.
By means of the operations “.” and “+ ”, we introduce two new operations as

follows:

division: a/b = {x ∈ X : a ∈ b.x} and

difference: a− b = {x ∈ X : a ∈ b+ x}.
We extend the operations division and difference for arbitrary subsets putting

A/B =
⋃

a∈A,b∈B
a/b, A−B =

⋃
a∈A,b∈B

a− b.

Sometimes instead of A/B we will write A : B or A
B .

The following lemma follows immediately from the relevant definitions.

Lemma 3.2. Let “•” be any of the operations “.”, “+”, “/” and “−”. Then
the following conditions are true:

(i) A • ∅ = ∅ •A = ∅;
(ii) If A ⊆ A′ and B ⊆ B′ then A •B ⊆ A′ •B′;
(iii) (

⋃
i∈I Ai) • (

⋃
j∈J Bj) =

⋃
i∈I,j∈J Ai •Bj and, in particular,

(iii ′) A • (B ∪ C) = (A •B) ∪ (A • C);

(iv) (
⋂

i∈I Ai) • (
⋂

j∈J Bj) ⊆
⋂

i∈I,j∈J Ai •Bj.
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Proposition 3.3. The following is true for arbitrary A,B,C ⊆ X:

(i) (A/B) ∩ C �= ∅ if and only if A ∩ (B.C) �= ∅;
(ii) (A−B) ∩ C �= ∅ if and only if A ∩ (B + C) �= ∅.
Proof. (i) (A/B) ∩ C �= ∅ ⇔ ∃x ∈ X: x ∈ (A/B) ∩ C ⇔ ∃x ∈ X: x ∈ A/B

and x ∈ C ⇔ ∃x, a, b ∈ X a ∈ A, b ∈ B x ∈ a/b and x ∈ C ⇔ ∃x, a, b ∈ X:
a ∈ A, b ∈ B, a ∈ b.x and x ∈ C ⇔ ∃a ∈ X: a ∈ A and a ∈ B.C ⇔ ∃a ∈ X:
a ∈ A ∩ (B.C)⇔ A ∩ (B.C) �= ∅.

The proof of (ii) is similar. �

Proposition 3.4. The following conditions are true for arbitrary subsets A,B
and C of X:

(i) AB = BA ; (i ′) A+B = B +A ;

(ii) A(BC) = (AB)C, (ii ′) A+ (B + C) = (A+B) + C.

Proof. As an example we shall verify (i). The proof of the remaining conditions
is similar.

x ∈ AB ⇔ ∃a ∈ A ∃b ∈ B: x ∈ ab ⇔ (by commutativity of “.”) ∃a ∈ A
∃b ∈ B: x ∈ ba⇔ x ∈ BA. �

Associativity enables us to write A1.A2. . . . An and A1+A2+ · · ·+An without
parentheses.

We denote An = A.A . . . A (n-times) and nA = A + A + · · · + A (n-times),
putting A1 = 1A = A.

Lemma 3.5. The following conditions are true:

(i) AiAj = Ai+j ;

(i ′) iA+ jA = (i+ j)A ;

(ii)
(A ∪B)2 = A2 ∪AB ∪B2 ;

(A ∪B ∪ C)2 = A2 ∪AB ∪AC ∪BC ∪ C2 ;

(ii ′)
2(A ∪B) = 2A ∪ (A+B) ∪ 2B ;

2(A ∪B ∪ C) = 2A ∪ (A+B) ∪ (A+ C) ∪ (B + C) ∪ 2C .

Proof. (i) and (i ′) follow immediately from the definition, and (ii) and (ii ′) fol-
low from Lemma 3.2(iii ′) and commutativity. �

Proposition 3.6. The following conditions are equivalent to the Axiom (iii)
from the definition of preseparative algebras (see Definition 3.1):

(i) a+ b
c ⊆ a+b

c ;
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(ii) a(b− c) ⊆ ab− c.

Proof. As an example we show the equivalence of the Axiom (iii) with (i).

((Axiom (iii))−→ (i)). Let x ∈ a + b
c . Then there exists y ∈ X such that

x ∈ a + y, y ∈ b
c and b ∈ c + y. By Axiom (iii), (xc) ∩ (a + b) �= ∅. Then, by

Proposition 3.3(i), we obtain that x ∩ a+b
c �= ∅ and hence x ∈ a+b

c . Since x is an
arbitrary element of X, this shows that a+ b

c ⊆ a+b
c .

((i)−→ (Axiom (iii))). Let a ∈ b + x and c ∈ dx. Then x ∈ c
d and c ∈ b + c

d .
Then, by (i), c ∈ b+c

d , so that c ∩ b+c
d �= ∅. Applying Proposition 3.3(i), we obtain

that (cd) ∩ (b+ c) �= ∅, which shows that Axiom (iii) holds.

The equivalence of Axiom (iii) with (ii) can be proved similarly by using
Proposition 3.3(ii). �

Proposition 3.7. For arbitrary subsets A, B, C, D of X, the following con-
ditions are true:

(i) A+ B
C ⊆ A+B

C ;

(ii) A(B − C) ⊆ AB − C ;

(iii) (A/B)/C = A/(BC) ;

(iv) (A−B)− C = A− (B + C) ;

(v)
A

B
+

C

D
⊆ A+ C

B.D
;

(vi) (A−B)(C −D) ⊆ AC − (B +D).

Proof. (i) and (ii) are extensions of Proposition 3.6, (i) and (ii), for arbitrary
sets and follow directly from Proposition 3.6.

(iii) Let x be an arbitrary element of X. Then, applying Proposition 3.3(i), we
obtain that

x ∈ (A/B)/C ⇔ (A/B)/C ∩ x �= ∅(A/B) ∩ Cx �= ∅ ⇔ A ∩ (BCx) �= ∅
⇔ A ∩ (BC)x �= ∅ ⇔ (A/(BC)) ∩ x �= ∅ ⇔ x ∈ A/(BC).

Hence, (A/B)/C = A/(BC).

(iv) The proof can be done similarly by applying Proposition 3.3(ii).

(v)
A

B
+

C

D
⊆ A/B + C

D
⊆ (A+ C)/B

D
=

A+ C

B.D
. We have applied two times

(i) and then (iii).

(vi) The proof goes similarly by applying two times (ii) and then (iv). �
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3.2. FILTERS AND IDEALS IN PRESEPARATIVE ALGEBRAS

Definition 3.8. Let X = (X, .,+) be a preseparative algebra. A subset F ⊆ X
is called a filter in X if F.F ⊆ F . A subset I ⊆ X is called an ideal in X if I+I ⊆ I.
A subset F ⊆ X is called a prime filter in X if F is a filter and the complement
X \ F of F is an ideal in X. Dually, a subset I ⊆ X is called a prime ideal in X
if I is an ideal and X \ I is a filter in X.

Obviously the empty set ∅ and the whole set X are examples of a filter, ideal,
prime filter and prime ideal. They are in some sense trivial examples. Nontrivial
examples of filters and ideals will be given by the constructions μ(A) and α(A)
below. Constructions of prime filters and prime ideals will be given in Section 3.4
for separative algebras.

The following lemma follows immediately from the definitions of filter and
ideal.

Lemma 3.9. The intersection of any set of filters (ideals) is a filter (ideal).

Let A ⊆ X. We define μ(A) - the multiplicative closure of A, by putting μ(A)
to be the intersection of all filters containing A. By Lemma 3.9, μ(A) is the smallest
filter containing A. Analogously, the intersection of all ideals containing A, denoted
by α(A) and called the additive closure of A, is the smallest ideal containing A.

Lemma 3.10. The following claims are true:

(i) μ(A) =
⋃∞

i=1 A
i ;

(i ′) α(A) =
⋃∞

i=1 iA ;

(ii) a) If F is a filter, then F = μ(F ) ;

b) If A ⊆ B, then μ(A) ⊆ μ(B) ;

c) A ⊆ μ(A) ;

d) μ(μ(A)) = μ(A),

e) μ(A ∪ B) = μ(A) ∪ μ(A)μ(B) ∪ μ(B); if F and G are filters, then
μ(F ∪G) = F ∪FG∪G; if F is a filter and a ∈ X, then μ(F ∪a) =
F ∪ F.μ(a) ∪ μ(a) .

(ii ′)

a) If I is an ideal, then I = α(I) ;

b) If A ⊆ B then α(A) ⊆ α(B) ;

c) A ⊆ α(A) ;

d) α(α(A)) = α(A) ;
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e) α(A ∪ B) = α(A) ∪ (α(A) + α(B)) ∪ α(B); if I and J are ideals,
then α(I ∪ J) = I ∪ (I + J) ∪ J ; if I is an ideal and a ∈ X, then
α(I ∪ a) = I ∪ I.α(a) ∪ α(a).

Proof. (i) To prove the equality (i) it suffices to show that
⋃∞

i=1 A
i is the

smallest filter containing A. By Lemma 3.2(iv), we have (
⋃∞

i=1 A
i).(
⋃∞

i=1 A
i) ⊆⋃∞

i,j=1 A
i.Aj =

⋃∞
i,j=1 A

i+j ⊆ (
⋃∞

i=1 A
i), so

⋃∞
i=1 A

i is a filter, which obviously

contains A. To prove that
⋃∞

i=1 A
i is the smallest filter containing A, let α be a

filter and A ⊆ α. Applying Lemma 3.2(ii), we can show by induction on i that
Ai ⊆ αi ⊆ α and consequently

⋃∞
i=1 A

i ⊆ α.

(i ′) can be shown similarly.

(ii) The proof of the conditions a), b), c) and d) follows directly from the
definition of μ. To prove condition e), we shall show that the set F ∪ FG ∪ G,
where F = μ(A) and G = μ(B), is the smallest filter containing A ∪B.

By Lemma 3.5(ii), we obtain

(F ∪ FG ∪G)2 = F 2 ∪ F 2G ∪ FG ∪ F 2G2 ∪ FG2 ∪G2 ⊆ F ∪ FG ∪G.

This shows that F ∪FG∪G is a filter containing F and G and hence A and B. To
show that F ∪ FG ∪ G is the smallest filter containing A and B, let γ be a filter
such that A ⊆ γ and B ⊆ γ, so we have F ⊆ γ and G ⊆ γ. Then F ∪ G ⊆ γ,
FG ⊆ γγ ⊆ γ and consequently F ∪ FG ∪G ⊆ γ.

The proof of (ii ′) can be obtained in a similar way. �

Proposition 3.11. Let F be a filter and I be an ideal. Then:

(i) F − I is a filter ;

(i ′) I
F is an ideal ;

(ii) If I ∩ (F − I) �= ∅, then F ∩ I �= ∅ ;
(iii) If F ∩ I

F �= ∅, then F ∩ I �= ∅ ;
(iv) If (F − I) ∩ I

F �= ∅, then F ∩ I �= ∅.
Proof. We prove only (iv); the proofs of the other conditions are similar. Ap-

plying Proposition 3.3, we obtain:
(F − I) ∩ I

F �= ∅ ←→ F ∩ (I + I
F ) �= ∅; since I + I

F ⊆ I+I
F ⊆ I

F , we get that
F ∩ I

F �= ∅. �

Lemma 3.12. If μ(A) ∩ α(B) �= ∅, then there exist finite subsets A′ ⊆ A and
B′ ⊆ B such that μ(A′) ∩ α(B′) �= ∅.
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Proof. Let
μ(A) ∩ α(B) �= ∅. (3.1)

By Lemma 3.10(i),(i ′), we have that

μ(A) =
∞⋃
i=1

Ai and (3.2)

α(B) =
∞⋃
j=1

jB. (3.3)

From (3.1), (3.2) and (3.3), we obtain that for some x ∈ X, x ∈ ⋃∞i=1 A
i and

x ∈ ⋃∞j=1 jB. Then for some i and j we have that

x ∈ Ai and (3.4)

x ∈ jB. (3.5)

It follows from (3.4) that there exist a set A′ = {a1, . . . , ai} ⊆ A such that
x ∈ {a1, . . . , ai}. From here we obtain that {a1 . . . ai} ⊆ μ(A′) and consequently

x ∈ μ(A′) ⊆ (A). (3.6)

In an analogous way we obtain from (3.5) that there exists a finite subset
B′ = {b1, . . . , bj} ⊆ B such that

x ∈ α(B′) ⊆ α(B). (3.7)

Then from (3.1) and (3.6) and (3.7) we obtain

μ(A′) ∩ α(B′) �= ∅ (3.8)

Thus, for some finite subsets A′ ⊆ A and B′ ⊆ B, we have μ(A′) ∩ α(B′) �= ∅. �

3.3. SEPARATIVE ALGEBRAS

Let X = (X, .,+) be a preseparative algebra. For x, y ∈ X define

x ≤ y iff μ(x) ∩ α(y) �= ∅.

Definition 3.13. A preseparative algebra X = (X, .,+) is called a separative
algebra if the following axiom is satisfied:

(Sep 0) The relation ≤ is transitive.

A separative algebra X is called a convex space if the operations “.” and “ + ”
coincide. In this case the filters and the ideals are called convex sets and the prime
filters correspond to the notion of half-space.
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Convex spaces have been studied by several authors: Tagamlitzki [44], Pro-
danov [34] and [35], Bair [1], Bryant [3], Bryant and Webster [4].

We will now give several examples of separative algebras.

Example 3.14. Let L = (L,∨,∧, 0, 1) be a distributive lattice and for x, y ∈ X
define x × y = {z ∈ L : z ≥ x ∧ y} and x + y = {z ∈ L : z ≤ x ∨ y} (see Example
2.22). Then X is a separative algebra.

Example 3.15. Let X = (X, 1,+, .) be a commutative ring and for x, y ∈ X
define x × y = x.y and x + y = A(x, y) , where A(x, y) is the ring-ideal generated
by the set {x, y} (see Example 2.21). Then X is a separative algebra.

Example 3.16. Let X be a real linear space. For arbitrary a, b ∈ X, we set
a× b = a+ b = {ta+ (1− t)b : 0 ≤ t ≤ 1}. Then X is a convex space.

Apart from these starting examples, there is a number of other ones. It seems
that whenever we have a satisfactory theory of prime ideals, then there is also a
structure of separative algebra.

Example 3.17. Let X be an ordered linear topological space. Then X is a
separative algebra with respect to the operations

a× b = {x ∈ X : ∃y ∈ ab with x ≤ y},
a+ b = {x ∈ X : ∃y ∈ ab with x ≥ y},

where ab = {ta+ (1− t)b : 0 ≤ t ≤ 1}.
Example 3.18. Let X = (X, .) be a commutative semigroup. Then X is a

convex space.

The following lemma for filters and ideals is very important.

Lemma 3.19. Let X be a separative algebra. Then for any A,B ⊆ X and
x ∈ X, we have that if μ(A) ∩ α(B ∪ x) �= ∅ and μ(x ∪ A) ∩ α(B) �= ∅, then
μ(A) ∩ α(B) �= ∅.

Proof. Suppose that the lemma does not hold and proceed to obtain a contra-
diction. Then for some A,B ⊆ X and x ∈ X we have that

μ(A) ∩ α(B ∪ x) �= ∅, (3.9)

μ(x ∪A) ∩ α(B) �= ∅, and (3.10)

μ(A) ∩ α(B) = ∅. (3.11)

By Lemma 3.10((ii)e),((ii ′)e), we obtain:

μ(x ∪A) = μ(A) ∪ μ(A)μ(x) ∪ μ(x) and (3.12)
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α(B ∪ x) = α(B) ∪ (α(B) + α(x)) ∪ α(x). (3.13)

From (3.9), (3.11) and (3.13), we obtain that
either (a) μ(A) ∩ (α(B) + α(x)) �= ∅,
or (b) μ(A) ∩ α(x) �= ∅.
From (3.10), (3.11) and (3.12), we obtain that
either (a ′) (μ(A)μ(x)) ∩ α(B) �= ∅,
or (b ′) μ(x) ∩ α(B) �= ∅.
So, we have to consider and to obtain a contradiction in each of the following

combinations of cases: (a, a ′), (a, b ′), (b, a ′) and (b, b ′). As an example we shall
treat of only the case (a, a ′) - the remaining cases can be treated in a similar way.
For the sake of brevity, we put F = μ(A), I = α(B); note that F is a filter and I
is an ideal. Now (a) and (a ′) become:

(a) F ∩ (I + α(x)) �= ∅ and
(a ′) I ∩ (F.μ(x)) �= ∅.
Applying Proposition 3.3 to (a) and (a ′), we obtain

μ(x) ∩ I

F
�= ∅ and (3.14)

α(x) ∩ (F − I) �= ∅. (3.15)

By (3.14), we conclude that there exists y ∈ X such that

y ∈ μ(x) and (3.16)

y ∈ I

F
. (3.17)

By (3.15), we obtain that for some z ∈ X we have

z ∈ α(x) and (3.18)

z ∈ F − I. (3.19)

Conditions (3.16) and (3.18) are equivalent respectively to

y ∩ μ(x) �= ∅ and (3.20)

z ∩ α(x) �= ∅. (3.21)

Since y ⊆ α(y), using (3.20), we get

μ(x) ∩ α(y) �= ∅ (3.22)

and, consequently, x ≤ y.
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Since z ⊆ μ(z), using (3.21), we get

μ(z) ∩ α(x) �= ∅ (3.23)

and, consequently, z ≤ x.
Now, by the axiom (Sep0), we obtain that z ≤ y and, consequently,

μ(z) ∩ α(y) �= ∅. (3.24)

By Proposition 3.11(i), F − I is a filter and since, by (3.19), z ∈ F − I, we get
that

μ(z) ⊆ F − I. (3.25)

By Proposition 3.11(i ′), I
F is an ideal and since, by (3.17), y ∈ I

F , we get that

α(y) ⊆ I

F
. (3.26)

From (3.25) and (3.26), we get that

μ(z) ∩ α(y) ⊆ (F − I) ∩ I

F
. (3.27)

By (3.24) and (3.27), we obtain that

(F − I) ∩ I

F
�= ∅. (3.28)

Applying Proposition 3.11(iv), we obtain that F ∩ I �= ∅, i.e. μ(A)∩α(B) �= ∅,
which contradicts (3.11). This completes the proof of the lemma. �

Corollary 3.20. If F is a filter, I is an ideal and F ∩ I = ∅, then, for any
x ∈ X, either μ(F ∪ x) ∩ I = ∅ or F ∩ α(I ∪ x) = ∅.

3.4. SEPARATION THEOREM

Definition 3.21. Let X = (X, .,+) be a preseparative algebra. The following
statement is called the Separation principle for X:

(Sep) If F0 is a filter, I0 is an ideal and F0 ∩ I0 = ∅ then there exist a prime
filter F and a prime ideal I such that F0 ⊆ F , I0 ⊆ I and F ∩ I = ∅.

The main aim of this section is the following:

Theorem 3.22. (Separation theorem for separative algebras) Let X = (X, .,+)
be a separative algebra. Then X satisfies the Separation principle (Sep).
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Proof. Let F0 be a filter in X, I0 be an ideal in X and F0 ∩ I0 = ∅.
Let M = {F : F is a filter in X,F0 ⊆ F and F ∩ I0 = ∅}. It is easy to see that

M with the set-inclusion ⊆ is an inductive set and hence, by the Zorn lemma, M
has a maximal element, say F .

Let N = {I : I is an ideal, I0 ⊆ I and F ∩ I = ∅}. The set N supplied with
the set-inclusion is also an inductive set and hence, by the Zorn lemma, it has a
maximal element, say I. We shall show that F is a prime filter and I is a prime
ideal.

Since F is a filter, I is an ideal and F ∩ I = ∅, it is enough to show that
F ∪ I = X. Let x ∈ X. We shall show that either x ∈ F or x ∈ I. Since F ∩ I = ∅,
Corollary 3.20 implies that either μ(F ∪ x) ∩ I = ∅ or F ∩ α(I ∪ x) = ∅.

Case 1: μ(F∪x)∩I = ∅. Since I0 ⊆ I, we obtain that μ(F∪x)∩I0 = ∅. We also
have that F0 ⊆ F ⊆ μ(F ∪ x). From here we obtain that the filter μ(F ∪ x) ∈ M .
By the maximality of F in M , we obtain that μ(F ∪ x) = F , and hence x ∈ F .

Case 2: F ∩α(I∪x) = ∅. Since I0 ⊆ I ⊆ α(I∪x), we obtain that α(I∪x) ∈ N .
Then, by the maximality of I in N , we obtain that α(I ∪ x) = I, and hence x ∈ I.

So we have found a prime filter F ⊇ F0 and a prime ideal I ⊇ I0 such that
F ∩ I = ∅, which proves the theorem. �

Let us note that Theorem 3.22 generalizes a few well known statements: the
Stone separation theorem for filters and ideals in distributive lattices [42] and in
Boolean algebras [41], as well as the separation theorem for convex sets in convex
spaces from [44].

Theorem 3.23. Let X = (X, .,+) be a preseparative algebra. Then the fol-
lowing conditions are equivalent:

(i) X is a separative algebra ;

(ii) X satisfies the Separation principle (Sep).

Proof. The implication (i)−→(ii) is just Theorem 3.22. For the converse
implication (ii)−→(i), we have to show that (Sep) implies (Sep0) (see Definition
3.13 for (Sep0)). So, let a, b, c ∈ X,

a ≤ b ( i.e., μ(a) ∩ α(b) �= ∅) and (3.29)

b ≤ c ( i.e., μ(b) ∩ α(c) �= ∅) (3.30)

and suppose that

a � c ( i.e., μ(a) ∩ α(c) = ∅). (3.31)

Then (3.31) and (Sep) imply that there exist a prime filter F and and a prime ideal
I such that
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F ∩ I = ∅ (i.e. X \ F = I), (3.32)

μ(a) ⊆ F and (3.33)

α(c) ⊆ I. (3.34)

From (3.29) and (3.33) we obtain

F ∩ α(b) �= ∅. (3.35)

From (3.30) and (3.34) we obtain

μ(b) ∩ I �= ∅. (3.36)

For the element b we have, by (3.32), that either b ∈ F or b ∈ I.

Case 1: b ∈ F . Then μ(b) ⊆ F and, by (3.36), we obtain that F ∩ I �= ∅ - a
contradiction with (3.32).

Case 2: b ∈ I. Then α(b) ⊆ I and, by (3.35), we obtain that F ∩ I �= ∅ - again
a contradiction with (3.32).

This completes the proof of the theorem. �
We shall conclude this section by showing that the Separation theorem is

equivalent to the following statement, which is a generalization of the well known
Wallman’s lemma:

Theorem 3.24. Let X = (X, .,+) be a preseparative algebra. Then the fol-
lowing conditions are equivalent:

(i) X is a separative algebra ;

(ii) (Wallman’s lemma) Let M be a filter in X and let, for any prime filter
F ⊇M , an element xF ∈ F be chosen. Then there exists a finite number
of prime filters Fi ⊇M , i = 1, . . . , n, such that M∩α({xF1

, . . . , xFn
}) �=∅.

Proof. (i)−→(ii). Let X be a separative algebra and M be a filter in X. Denote
by N the set of all elements xF , chosen as in the condition of the Wallman’s
lemma. Then M ∩ α(N) �= ∅. To prove this suppose the contrary. Then there
exists a prime filter F ⊇M such that F ∩α(N) = ∅. But this is impossible because
xF ∈ N ⊆ α(N). So, M ∩ α(N) �= ∅. Now, by Lemma 3.12, there exists a finite
subset {xF1

, . . . , xFn
} ⊆ N such that M ∩ α({xF1

, . . . , xFn
}) �= ∅.

(ii)−→(i). Suppose the Wallman’s lemma. We shall prove the Separation
principle (Sep). Suppose, for the sake of contradiction, that (Sep) does not hold.
Then, for some filter F0 and some ideal I0 such that F0 ∩ I0 = ∅, we have that
any prime filter F extending F0 has a non-empty intersection with I0, i.e, there
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exists xF ∈ F ∩ I0. Then, by the Wallman lemma, there exists a finite set
{xF1

, . . . , xFn
} such that F0 ∩ α({xF1

, . . . , xFn
}) �= ∅. But {xF1

, . . . , xFn
} ⊆ I0,

so that α({xF1 , . . . , xFn}) ⊆ I0, which implies F0 ∩ I0 �= ∅, a contradiction. �

3.5. STANDARDIZATION OF THE OPERATIONS

Here we shall consider two couples of natural operations in a given separative
algebra.

Let X = (X,⊗,⊕) be a separative algebra and, for any a, b ∈ X, define the
following two new multivalued operations, called convex operations:

a.b = μ({a, b}) and a+ b = α({a, b})
Theorem 3.25. If X is a separative algebra then it remains separative algebra

with respect to its convex operations.

Proof. The easy proof follows from the observation that the filters and ideals
with respect to convex operations remain the same. �

Let X = (X,⊗,⊕) be a separative algebra.For any A ⊆ X, let μρ(A) be the
intersection of all prime filters containing A, and αρ(A) be the intersections of all
prime ideals containing A. A subset A of X will be called a radical filter (resp., a
radical ideal) if μρ(A) = A (resp., αρ(A) = A).

It follows from the Separation theorem that if A is an ideal (resp. filter), then

αρ(A) = {x ∈ X : μ(x) ∩A �= ∅}, (resp., μρ(A) = {x ∈ X : α(x) ∩A �= ∅}).
The following two new operations in X are called radical operations:

a.b = μρ({a, b}) and a+ b = αρ({a, b}),
where a, b ∈ X.

Theorem 3.26. If X = (X,⊗,⊕) is a separative algebra, then it is a separative
algebra with respect to its radical operations as well.

The proof follows from the observation that the filters and ideals with respect
to the radical operations are the radical filters and radical ideals with respect to
the initial operations, but the order ≤ do not change. To show this, note that
μρ(a) = μρ(μ(a)) and αρ(b) = αρ(α(b)). Then, by the above observation, we have
that

μρ(a) = μρ(μ(a)) = {x ∈ X : α(x) ∩ μ(a) �= ∅} = {x ∈ X : a ≤ x} and

αρ(b) = αρ(α(b)) = {x ∈ X : μ(x) ∩ α(b) �= ∅} = {x ∈ X : x ≤ b}.
Then μρ(a) ∩ αρ(b) �= ∅ iff ∃x: a ≤ x and x ≤ b iff a ≤ b. �
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3.6. CANONICAL REPRESENTATION

Let X be a separative algebra. Then X has a canonical representation ϕ :
X → L into a distributive lattice with the properties from Corollary 2.40. Now ϕ
has some additional properties.

First of all, the inequality a ≤ b takes place if and only if ϕ(a) ⊆ ϕ(b). There-
fore ϕ(a) = ϕ(b) if and only if the radical ideals containing a contain b. If we do
not distinguish such points (which is natural, if we are interested only in radical
ideals and filters), ϕ becomes an embedding.

Now the operations from Corollary 2.40(v) look in the following manner:

a.b = {x ∈ X : ϕ(x) ≤ ϕ(a) ∨ ϕ(b)} and a+ b = {x ∈ X : ϕ(x) ≥ ϕ(a) ∧ ϕ(b)},
where a.b and a+b are the radical operations. In particular, if the initial operations
coincide with radical ones, as it is in Example 3.16, we can get the separative
structure of X from suitable embedding of X into a distributive lattice.

Now, let X be a ring with the separative structure from Example 3.15, and
let ϕ : X −→ L be the canonical representation. Then L can be identified with
the distributive lattice of all finitely generated radical ideals of X (the whole X
is included), and, for arbitrary a ∈ X, the image ϕ(a) is the radical ideal in X
generated by a.

3.7. TOPOLOGICAL VERSION OF THE SEPARATION THEOREM

Definition 3.27. We shall say that a preseparative algebra X = (X, .,+) is
topological, if X is endowed with a topology such that the mappings a.x and a+ x
are lower semi-continuous, i.e., for every a ∈ X, the multi-valued maps

ϕa : X −→ X, x �→ a+ x, and ψa : X −→ X, x �→ a.x,

are lower semi-continuous. Recall that a multi-valued map f : X −→ Y between
two topological spaces X and Y is said to be lower semi-continuous if, for every
open subset U of Y , the set f−1(U) is open in X (here, as usual,

f−1(U) = {x ∈ X : f(x) ∩ U �= ∅});
equivalently, f is lower semi-continuous if, for every x0 ∈ X and every open subset
U of Y with U ∩ f(x0) �= ∅, there exists a neighborhood V of x0 in X such that
U ∩ f(x) �= ∅, for every x ∈ V . For a+ x, for example, this means that if a, b ∈ X
and U is an open set with (a+ b) ∩ U �= ∅, then there exists a neighborhood V of b
such that (a+ x) ∩ U �= ∅, for each x ∈ V .

A topological preseparative algebra will be called a separative space if, for each
open filter U in X, the conditions α(a) ∩ U �= ∅ and b ∈ μ(a) imply α(b) ∩ U �= ∅.

A separative space X = (X, .,+) is called a topological convex space if the
operations “.” and “ + ” in X coincide (see [34], [35]).
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Clearly, every separative algebra X endowed with the discrete topology is a
separative space, but there are also analytical examples. Now we shall only note
that if X is a topological preseparative algebra such that the topology of X has a
basis from open filters, then X is a separative space.

The next statement, which we include here without proof, is a topological
version of the Separation theorem.

Theorem 3.28. Let X be a separative space, I0 be an ideal in X and F0 be
an open filter in X such that F0 ∩ I0 = ∅. Then there exist a closed prime ideal I
and an open prime filter F in X such that F0 ⊆ F , I0 ⊆ I and F ∩ I = ∅.

For a proof of Theorem 3.28 for topological convex spaces see [44]. We shall
notice only one application of the theorem which uses the separative (not convex)
structure: Example 3.17 and Theorem 3.28 give the classical separation theorem
in ordered linear spaces, and, in particular, the general representation theorem of
Kadison [21].
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inequality
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1. INTRODUCTION

The famous prime twins conjecture states that there exist infinitely many
primes p such that p + 2 is a prime too. This hypothesis is still not proved but
there are established many approximations to this result.

Throughout, Pr will stand for an integer with no more than r prime factors,
counted with their multiplicities. In 1973 Chen [2] showed that there are infinitely
many primes p with p+ 2 = P2.

Here are some examples of problems, concerning primes p with p+ 2 = Pr for
some r ≥ 2.

In 1937, Vinogradov [16] proved that every sufficiently large odd n can be
represented as a sum

p1 + p2 + p3 = n (1.1)
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of primes p1, p2, p3. In 2000 Peneva [10] and Tolev [14] looked for representations
(1.1) with primes pi, subject to pi + 2 = Pri for some ri ≥ 2. It was established in
[14] that if n is sufficiently large and n ≡ 3 (mod 6), then (1.1) has a solution in
primes p1, p2, p3 with

p1 + 2 = P2, p2 + 2 = P5, p3 + 2 = P7.

In 1947 Vinogradov [17] established that if 0 < θ < 1/5, then there are infinitely
many primes p satisfying the inequality

||αp+ β|| < p−θ. (1.2)

In 2007 Todorova and Tolev [13] proved that if α ∈ R\Q , β ∈ R and 0 < θ ≤ 1/100,
then there are infinitely many primes p with p + 2 = P4, satisfying the inequality
(1.2). Latter Matomäki [8] proved a Bombieri-Vinogradov type result for linear
exponential sums over primes and showed that this actually holds with p+ 2 = P2

and θ = 1/1000.

The present paper is devoted to another popular problem for primes pi, which
is studied under the additional restrictions pi+2 = Pri for some ri ≥ 2. According
to R. C. Vaughan’s [18], there are infinitely many ordered triples of primes p1, p2, p3
with

|λ1p1 + λ2p2 + λ3p3 + η| < (max pj)
−ξ+δ

for ξ = 1/10, δ > 0 and some constants λj , j = 1, 2, 3, η, subject to the following
restrictions:

λi ∈ R, λi �= 0, i = 1, 2, 3 ; (1.3)

λ1, λ2, λ3 not all of the same sign; (1.4)

λ1/λ2 ∈ R \Q ; (1.5)

η ∈ R . (1.6)

Latter the upper bound for ξ was improved and the strongest published result is
due to K. Matomäki with ξ = 2/9.

Here we prove the following result:

Theorem 1. Let B be an arbitrary large and fixed. Then under the condi-
tions (1.3), (1.4), (1.5), (1.6) there are infinitely many ordered triples of primes
p1, p2, p3 with

|λ1p1 + λ2p2 + λ3p3 + η| < [log(max pj)]
−B (1.7)

and
p1 + 2 = P ′8, p2 + 2 = P ′′8 , p3 + 2 = P ′′′8 .
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2. NOTATIONS

By p and q we always denote primes. By ϕ(n), μ(n), Λ(n) we denote Euler’s
function, Möbius’ function and Mangoldt’s function, respectively. We denote by
τ(n) the number of the natural divisors of n. The notations (m1, m2) and [m1, m2]
stand for the greatest common divisor and the least common multiple of m1, m2,
respectively. Instead of m ≡ n (mod k) we write for simplicity m ≡ n(k). As
usual, [y] denotes the integer part of y, e(y) = e2πiy,

θ(x, q, a) =
∑
p≤x

p≡a (q)

log p ;

E(x, q, a) = θ(x, q, a)− x

ϕ(q)
; (2.1)

For positive A and B we write A � B instead of A� B � A.

Let q0 be an arbitrary positive integer and X be such that

q20 =
X

(logX)A
, A ≥ 5 ; (2.2)

ε =
1

(logX)B+1
, B > 1 is arbitrary large; (2.3)

H =
1000 logX

ε
; (2.4)

Δ =
(logX)A+1

X
; (2.5)

D =
X1/3

(logX)A
; (2.6)

z = Xα , 0 < α < 1/4 ; (2.7)

P (z) =
∏

2<p≤z

p ;

Sk(α) =
∑

λ0X<p≤X

p+2≡0 (k)

e(αp) log p, 0 < λ0 < 1 . (2.8)

The restrictions on A, λ0 and the value of α will be specified latter.

3. OUTLINE OF THE PROOF

We notice that if (p + 2, P (z)) = 1, then p + 2 = P[1/α]. Our aim is to prove
that for a specific (as large as possible) value of α there exists a sequence X1, X2, . . .
→∞ and primes pi ∈ (λ0Xj , Xj ], i = 1, 2, 3 with |λ1p1+λ2p2+λ3p3+η| < ε and
pi + 2 = P[1/α], i = 1, 2, 3 . In such a way, we get an infinite sequence of triples of
primes p1, p2, p3 with the desired properties.
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Our method goes back to Vaughan [18], but we also use the Davenport -
Heilbronn adaptation of the circle method (see [19, ch. 11]) combined with a
vector sieve similar to that one from [15].

We choose a function υ such that

υ(x) = 1 for |x| ≤ ε/2;

0 < υ(x) < 1 for ε/2 < |x| < ε; (3.1)

υ(x) = 0 for |x| ≥ ε ,

and υ(x) has derivatives of sufficiently large order.

So if ∑
λ0X<p1,p2,p3≤X

(pi+2,P (z))=1,i=1,2,3

υ(λ1p1 + λ2p2 + λ3p3 + η) log p1 log p2 log p3 > 0, (3.2)

then the number of the solutions of (1.7) in primes pi ∈ (λ0X, X], pi + 2 = P[1/α],
i = 1, 2, 3, is positive.

Let λ±(d) be the lower and upper bounds Rosser’s weights of level D, hence

|λ±(d)| ≤ 1, λ±(d) = 0 if d ≥ D or μ(d) = 0 . (3.3)

For further properties of Rosser’s weights we refer to [5], [6].

Let Λi =
∑

d|(pi+2,P (z))

μ(d) be the characteristic function of primes pi, such that

(pi + 2, P (z)) = 1 for i = 1, 2, 3. Then from (3.2) we obtain the condition∑
λ0X<p1,p2,p3≤X

υ(λ1p1 + λ2p2 + λ3p3 + η)Λ1Λ2Λ3 log p1 log p2 log p3 > 0 . (3.4)

To set up a vector sieve, we use the lower and the upper bounds

Λ±i =
∑

d|(pi+2,P (z))

λ±(d) , i = 1, 2, 3 .

From the linear sieve we know that Λ−i ≤ Λi ≤ Λ+
i (see [1, Lemma 10]). Moreover,

we have the simple inequality

Λ1Λ2Λ3 ≥ Λ−1 Λ
+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3 , (3.5)

analogous to the one in [1, Lemma 13]. Using (3.4) we get∑
λ0X<p1,p2,p3≤X

υ(λ1p1 + λ2p2 + λ3p3 + η)

× (Λ−1 Λ+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3

)
log p1 log p2 log p3 > 0 . (3.6)
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Let Υ(x) =

∞∫
−∞

υ(t)e(−tx)dt be the Fourier transform of the function υ defined

in (3.1). Then

|Υ(x)| ≤ min

(
3ε

2
,

1

π|x| ,
1

π|x|
(

k

2π|x|ε/4
)k)

, (3.7)

for all k ∈ N - see [11].

We substitute the function υ(λ1p1 + λ2p2 + λ3p3 + η) in (3.6) with its Fourier
transform:∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

×
∞∫

−∞
Υ(t)e

(
(λ1p1 + λ2p2 + λ3p3 + η)t

)
Λ1Λ2Λ3dt > 0 . (3.8)

Our next argument is based on the following consequence of (3.8).

Lemma 1. If the following integral is positive,

Γ(X) =

∞∫
−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

e
(
(λ1p1 + λ2p2 + λ3p3 + η)t

)
log p1 log p2 log p3

× (Λ−1 Λ
+
2 Λ

+
3 + Λ+

1 Λ
−
2 Λ

+
3 + Λ+

1 Λ
+
2 Λ

−
3 − 2Λ+

1 Λ
+
2 Λ

+
3 ) dt

= Γ1(X) + Γ2(X) + Γ3(X)− 2Γ4(X) > 0 ,

(3.9)

then the number of the solutions of (1.7) in primes pi ∈ (λ0X, X], pi + 2 = P[1/α],
i = 1, 2, 3, is positive. Here

Γ1(X) =

∞∫
−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(
(λ1p1 + λ2p2 + λ3p3 + η)t

)
Λ−1 Λ

+
2 Λ

+
3 dt ;

Γ2(X) =

∞∫
−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(
(λ1p1 + λ2p2 + λ3p3 + η)t

)
Λ+
1 Λ

−
2 Λ

+
3 dt ;

Γ3(X) =

∞∫
−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(
(λ1p1 + λ2p2 + λ3p3 + η)t

)
Λ+
1 Λ

+
2 Λ

−
3 dt ;
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Γ4(X) =

∞∫
−∞

Υ(t)
∑

λ0X<p1,p2,p3≤X

log p1 log p2 log p3

× e
(
(λ1p1 + λ2p2 + λ3p3 + η)t

)
Λ+
1 Λ

+
2 Λ

+
3 dt .

We shall estimate Γ1(X), the remaining integrals Γ2(X), Γ3(X), Γ4(X) can be
treated in a similar way. Changing the order of summation we obtain

Γ1(X) =

∞∫
−∞

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt , (3.10)

where
L±(t, X) =

∑
d|P (z)

λ±(d)
∑

λ0X<p≤X

p+2≡0(d)

e(p t) log p . (3.11)

Let us split Γ1(X) into three integrals,

Γ1(X) = Γ
(1)
1 (X) + Γ

(2)
1 (X) + Γ

(3)
1 (X) , (3.12)

where

Γ
(1)
1 (X) =

∫
|t|≤Δ

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt, (3.13)

Γ
(2)
1 (X) =

∫
Δ<|t|<H

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt, (3.14)

Γ
(3)
1 (X) =

∫
|t|≥H

Υ(t)e(ηt)L−(λ1t, X)L+(λ2t, X)L+(λ3t, X)dt . (3.15)

Here the functions Δ = Δ(X) and H = H(X) are defined in (2.5) and (2.4).

We estimate Γ
(3)
1 (X),Γ

(1)
1 (X),Γ

(2)
1 (X), respectively, in the sections 4, 5, 6. In

section 7 we complete the proof of the theorem.

4. UPPER BOUND FOR Γ
(3)
1 (X).

Lemma 2. For the integral Γ
(3)
1 (X), defined by (3.15), we have

Γ
(3)
1 (X)� 1.
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Proof. From (2.8) and (3.11) it follows that

|L±(t, X)| ≤
∑

d|P (z)

|λ±(d)|.|Sd(t)| .

For |Sd(t)| we use the trivial estimate

|Sd(t)| ≤
∑
n≤X

n+2≡0 (d)

logX ≤ logX

(
X

d
+ 1

)
� X logX

d
+ logX .

Combining with (3.3) we obtain

L±(t, X)�
∑
d≤D

logX

(
X

d
+ 1

)
� X(logX)2 (4.1)

Bearing in mind that|Υ(t)| ≤ 1

πt

(
k

2πtε/4

)k

(see (3.7)), from (4.1) and (3.15) one

concludes that

Γ
(3)
1 (X)� X3(logX)6

∞∫
H

1

t

(
k

2πtε/4

)k

dt =
X3(logX)6

k

(
2k

πεH

)k

. (4.2)

The choice k = [logX] provides logX − 1 < k ≤ logX and by (2.4) it follows(
2k

πεH

)k

�
(

logX

ε 1000 logX
ε

)logX

� 1

X log 1000
. (4.3)

Finally, (4.2) and (4.3) imply

Γ
(3)
1 (X)� 1. (4.4)

5. ASYMPTOTIC FORMULA FOR Γ
(1)
1 (X).

We will derive the main term of the integral Γ1(X) from Γ
(1)
1 (X). Making use

of (2.8), one expresses the sums (3.11) as

L±(t, X) =
∑

d|P (z)

λ±(d)Sd(t) . (5.1)

We change the order of summation and integration in (3.13) to obtain

Γ
(1)
1 (X) =

∑
di|P (z)
i=1,2,3

λ−(d1)λ+(d2)λ
+(d3)

×
∫

|t|≤Δ

Υ(t)e(ηt)Sd1
(λ1t)Sd2

(λ2t)Sd3
(λ3t)dt .

(5.2)
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Let

Si = Sdi
(λit) , (5.3)

Ii = Idi
(λit) =

1

ϕ(di)

X∫
λ0X

e(λity)dy , (5.4)

Ri = Rdi = (1 +ΔX) max
y∈[λ0X,X]

|E(y, di,−2)| , (5.5)

where E(x, q, a) is defined by (2.1). Using (2.6), it is not difficult to prove the
estimate

Si � X logX

di
. (5.6)

From the inequality
n

ϕ(n)
≤ eγ log log n (see [4, §XV III, Theorem 328]) we get

the following estimate for |Ii|:

|Ii| ≤ X

ϕ(di)
� X log logX

di
� X logX

di
. (5.7)

Our aim is to separate the main part of the sum (5.2).

As the first step, we replace the product S1S2S3 by I1I2I3, as far as the integral
over I1I2I3 is easier to be estimated. We use the identity

S1S2S3 = I1I2I3 + (S1 − I1)I2I3 + S1(S2 − I2)I3 + S1S2(S3 − I3) . (5.8)

Let 2 � k. Applying Abel’s transform to Sk(α), one gets

Sk(α) = −
X∫

λ0X

∑
λ0X<p≤t

p+2≡0 (k)

log p.
d

dt
e(αt)dt+ e(αX)

∑
λ0X<p≤X

p+2≡0 (k)

log p .

Using (2.1), we have

Sk(α) =−
X∫

λ0X

[
t− λ0X

ϕ(k)
+ E(t, k,−2)− E(λ0X, k,−2)

]
d

dt
e(αt)dt

+

[
X − λ0X

ϕ(k)
+ E(X, k,−2)− E(λ0X, k,−2)

]
e(αX)

=
1

ϕ(k)

[
−

X∫
λ0X

(t− λ0X)
d

dt
e(αt)dt+ (X − λ0X)e(αX)

]

+O
( X∫
λ0X

max
y∈(λ0X,X]

|E(y, k,−2)||α|dt
)
+O

(
max

y∈(λ0X,X]
|E(y, k,−2)|

)
,
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whence

Sk(α) =
1

ϕ(k)

X∫
λ0X

e(αt)dt+O
(

max
y∈(λ0X,X]

|E(y, k,−2)|(1 + |α|X)

)
.

Let |α| ≤ Δ . Then from (5.3), (5.4) and (5.5) we obtain

Si = Ii +O(Ri), i = 1, 2, 3 . (5.9)

From (5.5) - (5.9) it follows that

S1S2S3 − I1I2I3 �(X logX)2(1 + ΔX)

( max
y∈(λ0X,X]

|E(y, d1,−2)|
d2d3

+

max
y∈(λ0X,X]

|E(y, d2,−2)|
d1d3

+

max
y∈(λ0X,X]

|E(y, d3,−2)|
d1d2

)
.

Using (5.2) and the above inequality one gets

Γ
(1)
1 (X) = M (1) +O(R(1)) , (5.10)

where

M (1) =
∑

di|P (z)
i=1,2,3

λ−(d1)λ+(d2)λ
+(d3)

∫
|t|≤Δ

Υ(t)e(ηt)I1(λ1t)I2(λ2t)I3(λ3t)dt , (5.11)

R(1) =(X logX)2(1 + ΔX)
∑

di|P (z)
i=1,2,3

|λ−(d1)λ+(d2)λ
+(d3)|

( max
y∈(λ0X,X]

|E(y, d1,−2)|
d2 d3

+

max
y∈(λ0X,X]

|E(y, d2,−2)|
d1 d3

+

max
y∈(λ0X,X]

|E(y, d3,−2)|
d1 d2

) ∫
|t|≤Δ

|Υ(t)| dt.

Let us estimate R(1). Since |Υ(t)| ≤ 3ε

2
(see (3.7)), we find

∫
|t|≤Δ

|Υ(t)| dt � εΔ.

Then using (3.3) we obtain

R(1) ≤εΔ(X logX)2(1 + ΔX)
∑
di≤D
i=1,2,3
2� di

( max
y∈(λ0X,X]

|E(y, d1,−2)|
d2d3

+

max
y∈(λ0X,X]

|E(y, d2,−2)|
d1d3

+

max
y∈(λ0X,X]

|E(y, d3,−2)|
d1d2

)
� εΔ(1 +ΔX)X2(logX)4

∑
d≤D
2� d

max
y∈(λ0X,X]

|E(y, d,−2)| .

(5.12)
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We shall use the following well-known result.

Theorem 2 (Bombieri - Vinogradov). For any A > 0 the following in-
equality is fulfilled (see [3, ch.28]):∑

q≤X
1
2 /(logX)C+5

max
y≤X

max
(a, q)=1

∣∣∣∣E(y, q, a)

∣∣∣∣� X

(logX)C
.

We apply the above theorem with C = 4A+5 to the last sum in (5.12). Using
(2.6) and (2.5) we obtain

R(1) � εΔ(1 +ΔX)X2(logX)4
X

(logX)4A+5
� εΔ2X4

(logX)4A+1
. (5.13)

Then from (5.10) and (5.13) it follows

Γ
(1)
1 (X)−M (1) � εΔ2X4

(logX)4A+1
. (5.14)

As a second step we represent M (1) in the form

M (1) =
∑

di|P (z)
i=1,2,3

λ−(d1)λ+(d2)λ
+(d3)

ϕ(d1)ϕ(d2)ϕ(d3)
B(X) +R , (5.15)

where

B(X) =

∞∫
−∞

Υ(t)e(ηt)

( X∫
λ0X

X∫
λ0X

X∫
λ0X

e(t(λ1y1+λ2y2+λ3y3))dy1dy2dy3

)
dt , (5.16)

R�
∣∣∣∣
∞∫

Δ

Υ(t)e(ηt)

( X∫
λ0X

e(λ1ty1)dy1

X∫
λ0X

e(λ2ty2)dy2

X∫
λ0X

e(λ3ty3)dy3

)
dt

∣∣∣∣
×
∑

di|P (z)
i=1,2,3

|λ−(d1)λ+(d2)λ
+(d3)|

ϕ(d1)ϕ(d2)ϕ(d3)
.

On using

∣∣∣∣ X∫
λ0X

e(λityi)dyi

∣∣∣∣� 1

|λi| t and |Υ(t)| ≤ 3ε

2
(see (3.7)) we obtain

R� ε

Δ2

∑
di|P (z)
i=1,2,3

|λ−(d1)λ+(d2)λ
+(d3)|

ϕ(d1)ϕ(d2)ϕ(d3)
.

From (2.6), (3.3) and the equality∑
n≤x

1

ϕ(n)
= C log x+ C ′ +O(x−1+ε)
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(see [9, ch. 4, §4.4, ex. 4.4.14]), we find

R� ε

Δ2

⎛⎝∑
d≤D

1

ϕ(d)

⎞⎠3

� ε log3 X

Δ2
. (5.17)

From (5.15) and (5.17) we obtain

M (1) = B(X)
∑

di|P (z)
i=1,2,3

λ−(d1)λ+(d2)λ
+(d3)

ϕ(d1)ϕ(d2)ϕ(d3)
+O

(
ε log3 X

Δ2

)

and from (5.14) we have

Γ
(1)
1 (X) =B(X)

∑
d1|P (z)

λ−(d1)
ϕ(d1)

∑
d2|P (z)

λ+(d2)

ϕ(d2)

∑
d3|P (z)

λ+(d3)

ϕ(d3)

+O
(
ε log3 X

Δ2

)
+O

(
εΔ2X4

(logX)4A+1

)
.

(5.18)

The function Δ defined by (2.5) is such that
ε log3 X

Δ2
=

εΔ2X4

(logX)4A+1
. Therefore,

using (2.3), (2.5) and (5.18), we find

Γ
(1)
1 (X) = B(X)

∑
d1|P (z)

λ−(d1)
ϕ(d1)

∑
d2|P (z)

λ+(d2)

ϕ(d2)

∑
d3|P (z)

λ+(d3)

ϕ(d3)

+O
(

X2

(logX)2A+B

)
.

(5.19)

Let

G± =
∑

d|P (z)

λ±(d)
ϕ(d)

. (5.20)

Then from (5.19) and (5.20) it follows

Γ
(1)
1 (X) = B(X)G−(G+)2 +O

(
X2

(logX)2A+B

)
. (5.21)

We conclude this section with the following lemma:

Lemma 3. If (1.3), (1.4) hold and

λ0 < min

(
λ1

4|λ3| ,
λ2

4|λ3| ,
1

16

)
,

then B(X) defined by (5.16) satisfies

B(X)� εX2 ,

and the constant in “�” depends only on λ1, λ2 and λ3.
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Proof. Let us consider B(X). We change the order of integration and use that
Υ(t) is Fourier’s transform of υ(t) to obtain

B(X) =

X∫
λ0X

X∫
λ0X

X∫
λ0X

υ(λ1y1 + λ2y2 + λ3y3 + η)dy1dy2dy3 .

From the definition (3.1) of υ follows the inequality

B(X) ≥
∫∫∫
V

dy1dy2dy3 = B1(X) , (5.22)

where

V = {|λ1y1 + λ2y2 + λ3y3 + η| < ε/2, λ0X ≤ yj ≤ X, j = 1, 2, 3} .
Since λ1, λ2, λ3 are not all of the same sign, we may assume that λ1 > 0, λ2 > 0
and λ3 < 0. We substitute λ1y1 = z1, λ2y2 = z2, λ3y3 = −z3, then

B1(X) =
1

λ1λ2|λ3|
∫∫∫
V ′

dz1dz2dz3 (5.23)

with V ′ = {(z1, z2, z3) : |z1+z2−z3+η| < ε/2, λ0|λj |X ≤ zj ≤ |λj |X, j = 1, 2, 3}.
Set

ξ1 =
2λ0|λ3|

λ1
, ξ2 =

2λ0|λ3|
λ2

,

ξ′1 = 2ξ1, ξ′2 = 2ξ2 ,

λ0 < min

(
λ1

4|λ3| ,
λ2

4|λ3| ,
1

16

)
.

Then λ0 < ξ1 < ξ′1 < 1, λ0 < ξ2 < ξ′2 < 1,

λ0λ1X < ξ1λ1X <z1 < ξ′1λ1X < λ1X ,

λ0λ2X < ξ2λ2X <z2 < ξ′2λ2X < λ2X ,

λ0|λ3|X < z1 + z2 − ε/2 + η <z3 < z1 + z2 + ε/2 + η < |λ3|X ,

(5.24)

and from (5.22), (5.23) and (5.24) there follows

B(X) ≥ B1(X)�
ξ′1λ1X∫

ξ1λ1X

( ξ′2λ2X∫
ξ2λ2X

( z1+z2+ε/2+η∫
z1+z2−ε/2+η

dz3

)
dz2

)
dz1

= ε(ξ′2 − ξ2)λ2X(ξ′1 − ξ1)λ1X = 4λ2
0λ

2
3εX

2

� εX2 .
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6. UPPER BOUND FOR Γ
(2)
1 (X).

We shall use (2.6) and the following lemma:

Lemma 4 ([13, Lemma 1], [15, Lemma 12]). Suppose α ∈ R\Q with a

rational approximation
a

q
satisfying

∣∣∣∣α − a

q

∣∣∣∣ < 1

q2
, where (a, q) = 1, q ≥ 1, a �= 0.

Let D be defined by (2.6), ξ(d) be complex numbers defined for d ≤ D and ξ(d)� 1.
If

L(X) =
∑
d≤D

ξ(d)
∑

X/2<p≤X
p+2≡0 (d)

e(αp) log p , (6.1)

then we have

L(X)� ( logX)37( X

q1/4
+

X

(logX)A/2
+X3/4q1/4

)
.

Let us consider any sum L±(α, X) denoted by (3.11). We represent it as sum
of finite number of sums of the type

L(α, Y ) =
∑
d≤D

ξ(d)
∑

Y/2<p≤Y
p+2≡0(d)

e(αp) log p ,

where

ξ(d) =

{
λ±(d), if d|P (z) ,
0, otherwise.

We have
L±(α, X)� max

λ0X≤Y≤X
L(α, Y ) .

If

q ∈
[
(logX)A,

X

(logX)A

]
, (6.2)

then from the above lemma for the sums L(α, Y ) we get

L(α, Y )� Y

(log Y )A/4−37
. (6.3)

Therefore

L±(α, X)� max
λ0X≤Y≤X

Y

(log Y )A/4−37
� X

(logX)A/4−37
.

Let
V (t, X) = min

{|L±(λ1t, X)|, |L±(λ2t, X)|} . (6.4)

We shall need the following result:
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Lemma 5. Let t, X, λ1, λ2 ∈ R,

|t| ∈ (Δ, H) , (6.5)

where Δ and H are defined by (2.5) and (2.4), let λ1, λ2 satisfy (1.5) and V (t, X)
be defined by (6.4). Then there exists a sequence of real numbers X1, X2, . . . with
limXn =∞ such that

V (t ,Xj)� Xj

(logXj)A/4−37
, j = 1, 2, . . . . (6.6)

Proof. Our goal is to prove that there exists a sequence X1, X2, . . .→∞ such
that for every j ∈ N at least one of the numbers λ1t and λ2t, with t fulfilling (6.5),
can be approximated by rational numbers with denominators satisfying (6.2). Then
the proof follows from (6.3) and (6.4).

Since
λ1

λ2
∈ R/Q then, by [12, Corollary 1B], there exist infinitely many frac-

tions
a0
q0

with arbitrary large denominators such that

∣∣∣∣λ1

λ2
− a0

q0

∣∣∣∣ < 1

q20
, (a0, q0) = 1 . (6.7)

Let q0 be sufficiently large and X be such that q20 =
X

(logX)A
(see (2.2)). Let us

notice that there exist a1, q1 ∈ Z such that∣∣∣∣λ1t− a1
q1

∣∣∣∣ < 1

q1q20
, (a1, q1) = 1, 1 < q1 < q20 , a1 �= 0 . (6.8)

The Dirichlet theorem (see [7, ch.10, §1]) implies the existence of integers a1 and

q1 satisfying the first three conditions in (6.8). If a1 = 0, then |λ1t| < 1

q1q20
and

from (6.5) it follows

λ1Δ < λ1|t| < 1

q20
, q20 <

1

λ1Δ
.

From the last inequality, (2.2) and (2.5), one obtains

X

(logX)A
<

X

λ1(logX)A+1
,

which is impossible for large q0, respectively, for a large X. So a1 �= 0. By analogy
there exist a2, q2 ∈ Z, such that∣∣∣∣λ2t− a2

q2

∣∣∣∣ < 1

q2q20
, (a2, q2) = 1, 1 < q2 < q20 , a2 �= 0 . (6.9)
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If qi ∈
[
(logX)A,

X

(logX)A

]
for i = 1 or i = 2, then the proof is completed.

From (2.2), (6.8) and (6.9) we have

qi ≤ X

(logX)A
= q20 , i = 1, 2 .

Thus it remains to prove that the case

qi < (logX)A , i = 1, 2 (6.10)

is impossible. Let qi < (logX)A, i = 1, 2. From (6.8), (6.9) and (6.10) it follows
that

1 ≤ |ai| ≤ 1

q20
+ qiλi|t| < 1

q20
+ qiλiH ,

1 ≤ |ai| < 1

q20
+

1000(logX)A+1λi

ε
, i = 1, 2 .

(6.11)

We have

λ1

λ2
=

λ1t

λ2t
=

a1
q1

+

(
λ1t− a1

q1

)
a2
q2

+

(
λ2t− a2

q2

) =
a1q2
a2q1

· 1 + T1

1 + T2
, (6.12)

where Ti =
qi
ai

(
λit− ai

qi

)
, i = 1, 2. From (6.8), (6.9) and (6.12) we obtain

|Ti| < qi
|ai| ·

1

qiq20
=

1

|ai|q20
≤ 1

q20
, i = 1, 2 ,

λ1

λ2
=

a1q2
a2q1

·
1 +O

(
1

q20

)
1 +O

(
1

q20

) =
a1q2
a2q1

(
1 +O

(
1

q20

))
.

Thus
a1q2
a2q1

= O(1) and

λ1

λ2
=

a1q2
a2q1

+O
(

1

q20

)
. (6.13)

Therefore, both fractions
a0
q0

and
a1q2
a2q1

approximate
λ1

λ2
. Using (6.9), (6.10) and

inequality (6.11) with i = 2 we obtain

|a2|q1 < 1 +
1000(logX)2A+1λ2

ε
� (logX)2A+B+2 <

q0
logX

, (6.14)
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so |a2|q1 �= q0 and the fractions
a0
q0

and
a1q2
a2q1

are different. On using (6.14) we

obtain ∣∣∣∣a0q0 − a1q2
a2q1

∣∣∣∣ = |a0a2q1 − a1q2q0|
|a2|q1q0 ≥ 1

|a2|q1q0 �
logX

q20
. (6.15)

On the other hand, from (6.7) and (6.13) we have∣∣∣∣a0q0 − a1q2
a2q1

∣∣∣∣ ≤ ∣∣∣∣a0q0 − λ1

λ2

∣∣∣∣+ ∣∣∣∣λ1

λ2
− a1q2

a2q1

∣∣∣∣� 1

q20
,

which contradicts (6.15). Therefore (6.10) can not happen. Let q
(1)
0 , q

(2)
0 , . . . be

an infinite sequence of values of q0, satisfying (6.7). Then using (2.2) one gets an
infinite sequence X1, X2, . . . of values of X, such that at least one of the numbers
λ1t and λ2t can be approximated by rational numbers with denominators, satisfying
(6.2). The proof of Lemma 5 is completed. �

Let us estimate the integral Γ
(2)
1 (Xj), defined by (3.14). Using |Υ(t)| ≤ 3ε

2
(see (3.7)), (6.4) and estimate (6.6), we find

Γ
(2)
1 (Xj)�ε

∫
Δ<|t|<H

V (t,Xj)
[|L−(λ1t,Xj)L

+(λ3t,Xj)|+|L+(λ2t, Xj)L
+(λ3t, Xj)|

]
dt

�ε

∫
Δ<|t|<H

V (t,Xj)

(
|L−(λ1t, Xj)|2 + |L+(λ2t, Xj)|2 + |L+(λ3t, Xj)|2

)
dt

� εXj

(logXj)A/4−37
max
1≤k≤3

∫
Δ<|t|<H

|L±(λkt, Xj)|2 dt .

Since the above integral has the same value over the positive and the negative t,
one gets

Γ
(2)
1 (Xj)� εXj

(logXj)A/4−37
max
1≤k≤3

Ik , (6.16)

where Ik =

H∫
Δ

|L±(λkt, Xj)|2 dt. In order to estimate Ik, let y = |λk|t , dt = 1

|λk|dy.

Using |L±(y, Xj)|2 ≥ 0 one obtains

Ik ≤ 1

|λk|

[
|λk|H

]
+1∫

0

|L±(y, Xj)|2 dy .

From (3.11) it follows

|L±(y, Xj)|2 =
∑

di|P (z)
i=1,2

λ±(d1)λ±(d2)
∑

λ0Xj<p1, p2≤Xj
p1+2≡0(d1)
p2+2≡0(d2)

e((p1 − p2)y) log p1 log p2 .
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Then

Ik ≤ 1

|λk|
∑

di|P (z)
i=1,2

λ±(d1)λ±(d2)

×
∑

λ0Xj<p1, p2≤Xj
p1+2≡0(d1)
p2+2≡0(d2)

log p1 log p2

[
|λk|H

]
+1∫

0

e((p1 − p2)y)dy .

(6.17)

Since e(my), m ∈ Z is periodical with period 1, there holds[
|λk|H

]
+1∫

0

e((p1 − p2)y)dy =

([|λk|H
]
+ 1

) 1∫
0

e((p1 − p2)y)dy . (6.18)

From
1∫

0

e((p1 − p2)y) dy =

{
1, if p1 = p2 ,

0, if p1 �= p2 ,

(6.18) and (6.17) one gets

Ik ≤
[|λk|H

]
+ 1

|λk|
∑

di|P (z)
i=1,2

λ±(d1)λ±(d2)
∑

λ0Xj<p≤Xj
p+2≡0(d1)
p+2≡0(d2)

(log p)2 .

From the last inequality and using (3.3) we find

Ik � H(logXj)
2

∑
di≤D

μ(di) �=0, i=1,2

∑
λ0Xj<p≤Xj

p+2≡0([d1, d2])

1 . (6.19)

Let d = (d1, d2), ki =
di
d
, [d1, d2] = dk1k2. Since μ(di) �= 0, i = 1, 2, then

(d, ki) = 1, i = 1, 2. Now from (2.4), (2.6) and (6.19) we obtain

Ik � (logXj)
3

ε

∑
d≤D

∑
ki≤D

d
i=1,2

∑
λ0Xj<n≤Xj
n+2≡0(dk1k2)

1

� (logXj)
3

ε

∑
d≤D

∑
ki≤D

d
i=1,2

Xj

dk1k2

=
Xj(logXj)

3

ε

∑
d≤D

1

d

(∑
l≤D

d

1

l

)2

� Xj(logXj)
6

ε
.
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From the last inequality and using (6.16) we get

Γ
(2)
1 (Xj)� εXj

(logXj)A/4−37
· Xj(logXj)

6

ε
� X2

j

(logXj)A/4−43
. (6.20)

Summarizing, from (3.12), (4.4), (5.21) and (6.20) we obtain

Γ1(Xj) = B(Xj)G
−(G+)2 +O

(
X2

j

(logXj)A/4−43

)
. (6.21)

7. PROOF OF THEOREM 1.

Since the sums Γ2(Xj), Γ3(Xj) and Γ4(Xj) are estimated in the same fashion
as Γ1(Xj), we obtain from (3.9) and (6.21)

Γ(Xj) ≥ B(Xj)W (Xj) +O
(

X2
j

(logXj)A/4−43

)
, (7.1)

where

W (Xj) = 3(G+)2
(
G− − 2

3
G+

)
. (7.2)

Let f(s) and F (s) are the lower and the upper functions of the linear sieve. We
know that if

s =
logD

log z
=

1

3α
, 2 < s < 3 (7.3)

then
F (s) = 2eγs−1 , f(s) = 2eγs−1 log(s− 1) (7.4)

(see [1, Lemma 10]). Using (5.20) and [1, Lemma 10], we get

F(z)
(
f(s) +O((logX)−1/3

)) ≤ G− ≤ F(z) ≤ G+

≤ F(z)
(
F (s) +O((logX)−1/3

))
.

(7.5)

Here,

F(z) =
∏

2<p≤z

(
1− 1

p− 1

)
� 1

logX
, (7.6)

see Mertens formula [9, ch.9, §9.1, Theorem 9.1.3] and (2.7). To estimate W (Xj)
from below, we shall use the inequalities (see (7.5))

G− − 2

3
G+ ≥ F(z)

(
f(s)− 2

3
F (s) +O((logX)−1/3

))
,

G+ ≥ F(z) .
(7.7)
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Let X = Xj . Then from (7.2) and (7.7) it follows

W (Xj) ≥ 3F3(z)

(
f(s)− 2

3
F (s) +O((logX)−1/3

))
. (7.8)

We choose s =
logD

log z
= 2.994. Then

f(s)− 2

3
F (s) ≥ 0, 0000001 ,

and from (7.3) we get
1

α
= 8.982. From (2.3), (7.1),(7.6), (7.8) and Lemma 3 we

obtain:

Γ(Xj)�
X2

j

(logXj)B+4
+

X2
j

(logXj)A/4−43
. (7.9)

We choose A ≥ 4B + 192. Then

Γ(Xj)�
X2

j

(logXj)B+4
.

Finally, we note that if Γ0(Xj) is the number of the triples pi ∈ [λ0Xj , Xj ], pi+
2 = P8, i = 1, 2, 3, satisfying (1.7), then there exists a positive constant c such
that

Γ0(Xj) ≥ 1

(logXj)3
Γ(Xj) ≥

cX2
j

(logXj)B+7

and for every prime factor q of pi + 2, i = 1, 2, 3 we have q ≥ X0.1113. That
completes the proof of Theorem 1.
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ON VECTOR–PARAMETER FORM OF THE SU(2)→ SO(3,R) MAP

VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA, IVAÏLO M. MLADENOV

By making use of the Cayley maps for the isomorphic Lie algebras su(2) and so(3) we

have found the vector parameter form of the well-known Wigner group homomorphism
W : SU(2) → SO(3,R) and its sections. Based on it and pulling back the group
multiplication in SO(3,R) through the Cayley map su(2) → SU(2) to the covering
space, we present the derivation of the explicit formulas for compound rotations. It is
shown that both sections are compatible with the group multiplications in SO(3,R) up
to a sign and this allows uniform operations with half-turns in the three-dimensional
space. The vector parametrization of SU(2) is compared with that of SO(3,R) generated
by the Gibbs vectors in order to discuss their advantages and disadvantages.

Keywords: Lie groups and algebras, Cayley map, vector-parametrization of rotations

2000 Math. Subject Classification: 15A16, 15A23, 22E60, 22E70

1. INTRODUCTION

Parameterizations are used to describe Lie groups in an easier way. Let G be
a finite dimensional Lie group with Lie algebra g. A vector parametrization of G
is a map g → G, which is diffeomorphic onto its image. Before studying vector
parametrizations, let us compare them with the exponential map exp : g → G. It
is locally bijective and need not to be such globally. For example in the case of
G = GLn(C) and g = gl (n,C) for arbitrary integers k1, . . . , kn the diagonal matrix
diag(2πik1, . . . , 2πikn) is transformed into the unit matrix In. If G is connected
and compact as it is in cases under consideration the exponential map is surjective,
see [3]. Besides, the group multiplication μ : G ×G → G admits a local pull-back
on the Lie algebra level via the commutative diagram (see Fig. 1).
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g × g g

G×G G

(1.1)

μ

exp exp

Figure 1: Local pullback of the multiplication law μ for the Lie group G in the
corresponding Lie algebra g .

This pull-back is given by the Baker–Campbell–Hausdorff formula in commu-
tator-free form

BCH(X,Y ) = X + Y +

∞∑
n=2

∑
|ω|=n

gωω , (1.1)

where the inner sum is over all the “words” ω = ω1 . . . ωn of length n in the alphabet
{X,Y }. Here, gω are the Goldberg’s rational coefficients [9, 15]. In general, it is
difficult to compute (1.1) and there is an ongoing research in this area (see [1, 4, 17]).
However, the first few terms of (1.1) in commutator form are given by the formula

BCH(X,Y ) =X + Y +
1

2
[X,Y ] +

1

12
([X, [Y,X]]− [Y, [X,Y ]])

(1.2)

− 1

24
[Y, [X, [X,Y ]]] + · · ·

The image of the parametrization need not be the whole group G. For SO(3,R),
the image of the Cayley map consists of all rotations with angles θ �= ±π, i.e., the
matrices R ∈ SO(3,R) with no eigenvalues of -1.
In Section 2 of the paper we derive a vector parametrization of SU(2) and make use
of it for expressing the composition law in this group. We show that the Cayley map
su(2) → SU(2) is bijective onto its image. Section 3 provides an explicit formula
for the double cover map SU(2) → SO(3,R) in terms of the vector parameters of
the source and the target manifold.

2. VECTOR PARAMETRIZATION OF SU(2) AND THE PULL-BACK OF
THE COMPOSITION LAW

2.1. THE CASE OF SO(3,R)

The Lie algebra so(3) consists of the real anti-symmetric 3× 3 matrices. The
Cayley map of so(3) → SO(3,R) gives the so called Gibbs vector parametrization
of SO(3,R). The matrices

J1 =

⎛⎝ 0 0 0
0 0 −1
0 1 0

⎞⎠ , J2 =

⎛⎝ 0 0 1
0 0 0

−1 0 0

⎞⎠ , J3 =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ (2.1)
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form a basis of so(3) over the filed of the real numbers. For arbitrary i, j, k ∈
{1, 2, 3} let εijk = 1 if i, j, k is an even permutation of 1, 2, 3, εijk = −1 for an odd
permutation of 1, 2, 3 and εijk = 0 otherwise. The following relations hold:

[Ji, Jj ] = εijkJk, i, j, k ∈ {1, 2, 3}. (2.2)

Any C ∈ so(3) has a unique representation

c �→ C = c · J = c1J1 + c2J2 + c3J3 =

⎛⎝ 0 −c3 c2
c3 0 −c1

−c2 c1 0

⎞⎠ ,

where

c = (c1, c2, c3), c2 := c21 + c22 + c23 = c.c = |c|2 = c2. (2.3)

Hereafter we shall use c and c to denote respectively the vector c and its norm c.
This convention applies to other vectors as well.

The Hamilton–Cayley theorem for C reads as C3 = −c2C. That is why the
exponential map exp : so(3)→ SO(3,R) is given explicitly by the formula

exp(C) = I+
sin c

c
C+

1− cos c

c2
C2. (2.4)

In order to compare, let us recall that the Cayley map for so(3) associates with
c · J ∈ so(3) the matrix

R(c) = Cayso(3)(c) = (I+ C)(I− C)−1 = (I− C)−1(I+ C). (2.5)

One checks immediately that

(I− C)−1 = I+
1

1 + c2
C+

1

1 + c2
C2 (2.6)

and (2.5) can be expressed in the form

Cayso(3)(c) = I+
2

1 + c2
C+

2

1 + c2
C2 (2.7)

for all c ∈ R3. Is is well known that in SO(3,R), the half-turns are described by
symmetric rotation matrices. Note that Cayso(3) is bijective onto its image (see
[14])

�Cayso(3) = {R ∈ SO(3,R) ; R �= Rt} = SO(3,R)\S(3,R) , (2.8)

where S(3,R) is the set of all symmetric 3×3 matrices with real entries. The image
R(c) of c by Cayso(3) is

c→ R(c) =
2

1 + c2

⎛⎝ 1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c1c3 − c2 c2c3 + c1 1 + c23

⎞⎠− I. (2.9)
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The rotation R = R(n, θ) at angle θ about the axis n is represented by Gibbs
parameter c = tan θ

2 n, see [2]. In order to express the group law in SO(3,R) by the
means of the Cayley map let us denote by c̃ the vector parameter of the product
R(c̃ ) = R(a)R(c) of the elements of SO(3,R), corresponding to a, c ∈ R3. Then,
as pointed out in [7]

R(c̃ ) = R(a)R(c), c̃ = c̃ (a, c) = 〈a, c〉 = a+ c+ a× c

1− a.c
· (2.10)

In the case of so(3) it is shown in [6] that the Baker–Campbell–Hausdorff formula
takes the form

BCH(A,C) = BCH(a · J, c · J) = αA+ βC+ γ[A,C] , (2.11)

with

α =
sin−1(q)

q

m

θ
, β =

sin−1(q)

q

n

ψ
, γ =

sin−1(q)

q

p

θψ
,

where ψ = |a|, θ = |c|, ∠(a, c) = cos−1

(
a.c

|a||c|
)

and

m = sin (θ) cos2 (ψ/2)− sin (ψ) sin2 (θ/2) cos(∠(a, c)) ,
n = sin (ψ) cos2 (θ/2)− sin (θ) sin2 (ψ/2) cos(∠(a, c)) ,

p =
1

2
sin (θ) sin (ψ)− 2 sin2 (θ/2) sin2 (ψ/2) cos(∠(a, c)) ,

q =

√
m2 + n2 + 2mn cos(∠(a, c)) + p2 sin2(∠(a, c)) .

Note that equation (2.10) is much simpler and more convenient when compared
with (2.11). The vector parameter form of SO(3,R) matrices and the corresponding
composition law (2.10) are exploited in the decomposition method of the three
dimensional rotations about three almost arbitrary axes, see [2]. In this vector
parameter form of SO(3,R), the half-turns, i.e., rotations at angles θ = ±π, can
not be described. Henceforth we denote the matrix of the half-turn about the axis
n, i.e., R(n, π) , by O(n). The composition of the two rotations is not well defined
also when 1− a.c = 0, which is exactly the condition that the compound rotation
c̃ is a half-turn.

2.2. DESCRIPTION OF su(2)

A coordinate free description [11] of su(2) can be given. Let i be the imaginary
unit and σ1, σ2, σ3 be three elements which obey the rules

σ2
1 = σ2

2 = σ2
3 = 1

(2.12)
σ1σ2 = −σ2σ1 = iσ3, σ2σ3 = −σ3σ2 = iσ1, σ3σ1 = −σ1σ3 = iσ2.
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If we define the spin vector σ as

σ := (σ1, σ2, σ3) (2.13)

and n and m are arbitrary unit vectors in R3, then the following properties hold:

(n · σ)2 = 1, (m · σ)(n · σ) = m.n+ i(m× n) · σ ,

σ · (n · σ) = n+ in× σ, (n · σ) · σ = n− in× σ , (2.14)

(m · σ)σ(n · σ) = (m · σ)n+ (n · σ)m− i(m× n)− (m.n) · σ .

A concrete matrix realization of σ1, σ2, σ3 in (2.12) are the Pauli’s matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
· (2.15)

The matrices s1, s2 and s3 defined by

s1 = − i

2
σ1, s2 = − i

2
σ2, s3 = − i

2
σ3 (2.16)

form a R−basis of su(2). Direct calculation shows that

[si, sj ] = εijksk, i, j, k ∈ {1, 2, 3}. (2.17)

Denoting s = (s1, s2, s3) we express the su(2) algebra in the following way:

su(2) =
{
c · s = c1s1 + c2s2 + c3s3 ; c = (c1, c2, c3) ∈ R3

}
. (2.18)

The corresponding matrix realization of c · s is⎛⎝ −i c3
2

−c2
2
− i

c1
2c2

2
− i

c1
2

i
c3
2

⎞⎠ . (2.19)

Obviously, the map

c1s1 + c2s2 + c3s3 −→ c1J1 + c2J2 + c3J3 (2.20)

is a linear isomorphism between su(2) and so(3).

2.3. CAYLEY MAP FROM su(2) TO SU(2)

Till the end of this section I will stand for the unit matrix with dimension
consistent with the context. Let

A = a1s1 + a2s2 + a3s3 = − i

2
a · σ ∈ su(2) , (2.21)
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where

a = (a1, a2, a3), a2 = a21 + a22 + a23 = a.a = |a|2 = a2. (2.22)

Let us recall also that (see [8]) the exponential map for su(2) is globally defined
and surjective. It maps A ∈ su(2) to

exp(A) = cos (a/2)I− sin a/2

a/2
A. (2.23)

The Hamilton–Cayley theorem implies the identity A2 = −a2

4
I. The image of A

under the Cayley map is

U(a) = Caysu(2)(A) = (I+A)(I−A)−1. (2.24)

In general, the Cayley map Caysu(n) for the Lie algebra su(n) of skew-hermitian

matrices (A† = A
t
= −A) with trace zero takes values in U(n). Indeed, let us

take any A ∈ su(n) and its image Caysu(n)(A) = U. Taking into account that

(U†)−1 = (U−1)†, we obtain

UU† = (I+A)(I−A)−1((I+A)(I−A)−1)†

= (I+A)(I−A)−1((I−A)−1)†(I+A)†
(2.25)

= (I+A)(I−A)−1(I+A)−1(I−A)

= (I+A)(I−A)−1(I−A)(I+A)−1 = I.

Lemma 1. For each element A ∈ su(2) there holds

(I+A)(I−A) = (I−A)(I+A) = I−A2 =
(
1 +

a2

4

)
I , (2.26)

i.e.,

(I−A)−1 =
(
1 +

a2

4

)−1
(I+A), (I+A)−1 =

(
1 +

a2

4

)−1
(I−A). (2.27)

Besides (2.27), from Lemma 1 we also infer

U(a) = (I+A)(I−A)−1 =
(
1 +

a2

4

)−1
(I+A)2

=
(
1 +

a2

4

)−1
(I+ 2A+A2) =

(
1 +

a2

4

)−1(
I+ 2A− a2

4
I
)

(2.28)

=
(
1 +

a2

4

)−1
((

1− a2

4

)
I− ia · σ

)
.
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The matrix form of U(a) is

U(a) =
1− a2

4

1 +
a2

4

I+
1

1 +
a2

4

( −ia3 −a2 − ia1
a2 − ia1 ia3

)
. (2.29)

The matrix U(a) defined in (2.29) is unitary due to (2.25). Direct calculation shows
that

detU(a) = det

((
1 +

a2

4

)−1
(I+A)2

)
=
(
1 +

a2

4

)−2
(det (I+A))2 = 1 (2.30)

i.e., U(a) ∈ SU(2). Following Wigner [18] we can use the explicit homomorphism
map W : SU(2)→ SO(3,R) given by(

α β

−β α

)
=

(
α1 + iα2 β1 + iβ2

−β1 + iβ2 α1 − iα2

)
(2.31)

W−→
⎛⎝α2

1 − α2
2 − β2

1 + β2
2 2(α1α2 + β1β2) 2(α2β2 − α1β1)

2(β1β2 − α1α2) α2
1 − α2

2 + β2
1 − β2

2 2(α2β1 + α1β2)
2(α1β1 + α2β2) 2(α2β1 − α1β2) α2

1 + α2
2 − β2

1 − β2
2

⎞⎠ ·
The comparison of (2.29) and (2.31) yields

α = α1 + iα2 =
1− a2

4

1 +
a2

4

+ i
−a3

1 +
a2

4

, β = β1 + iβ2 =
−a2

1 +
a2

4

+ i
−a1

1 +
a2

4

· (2.32)

In the case of the SU(2) group manifold, which is diffeomorphic to the sphere
S3, there is a homotopy obstruction for the existence of a global diffeomorphism
R3  su(2) → SU(2)  S3, so that no vector parametrization su(2) → SU(2)
exists onto the entire group SU(2). Actually, the Cayley map provides a vector
parametrization

Caysu(2): su(2)→ SU(2)\{−I} , (2.33)

whose inverse is

Cay−1
su(2)

(
α1 + iα2 β1 + iβ2

−β1 + iβ2 α1 − iα2

)
= − i

2
a · σ ,

(2.34)

a = (a1, a2, a3) = − 2

1 + α1
(β2, β1, α2).

By means of (2.31) and (2.32) one calculates straightforwardly that the image
RU(a) of U(a) under the Wigner map W is

8

(4+a2)
2

⎛⎜⎜⎝
(4+a2)

2

4 −4a22−4a23 4a1a2−a3
(
4−a2

)
4a1a3+a2

(
4−a2

)
4a1a2+a3

(
4−a2

) (4+a2)
2

4 −4a21−4a23 4a2a3−a1
(
4−a2

)
4a1a3−a2

(
4−a2

)
4a2a3+a1

(
4−a2

) (4+a2)
2

4 −4a21−4a22

⎞⎟⎟⎠−I. (2.35)
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Let A = − i

2
a · σ, C = − i

2
c · σ ∈ su(2). The term of third degree in BCH(A,C)

(cf. (1.2)) is
1

2
[A,C] = − i

2
(a× c) · σ, and that one of degree four is

1

12
([A, [C,A]]− [C, [A,C]]) = − i

2
c̃ 4 · σ, c̃ 4 = (u4, v4, w4) , (2.36)

with

u4 =
1

12
(a1a2c1 + a1c1c2 + a2a3c3 + a3c2c3 − a21c2 − a23c2 − a2c

2
1 − a2c

2
3) ,

v4 =
1

12
(a1a2c2 + a1a3c3 + a2c1c2 + a3c1c3 − a22c1 − a23c1 − a1c

2
2 − a1c

2
3) , (2.37)

w4 =
1

12
(a1c1c3 + a1a3c1 + a2c2c3 + a2a3c2 − a21c3 − a22c3 − a3c

2
1 − a3c

2
2).

Note that the coefficients of the term of degree four are homogeneous polynomials
of a1, a2, a3, c1, c2, c3 of degree three. It is interesting to compare the composition
rule (2.10) of SO(3,R), expressed through the Gibbs vector parameter with the
following formula

A+ C+
1

2
[A,C] = − i

2

(
a+ c+

a× c

2

) · σ. (2.38)

2.4. COMPOSITION LAW IN SU(2)

Proposition 1. Let U1(c),U2(a) ∈ SU(2) are the images of A1 = c · s and
A2 = a · s under the map (2.24) of the vectors a, c ∈ R3. Let

U3(〈a, c〉SU(2)) = U2(a).U1(c) (2.39)

denote the composition of U2(a) and U1(c) in SU(2). The corresponding vector-
parameter ã ∈ R3, for which Caysu(2)(A3) = U3, A3 = ã · s is

ã =

(
1− c2

4

)
a+

(
1− a2

4

)
c+ 4

a

2
× c

2

1− 2
a

2
· c
2
+

a2

4

c2

4

· (2.40)

The vector ã equals to 0 if only if c = −a or c = 2 tan
θ

4
n and a = 2 tan

2π − θ

4
n,

where n ∈ R3,n2 = 1 and θ ∈ [0, 2π). In both cases, c = −a and c = 2 tan
θ

4
n ,

a = 2 tan
2π − θ

4
n , these vectors represent inverse rotations.
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Proof. From (2.28) we obtain that

U3 =
(
1 +

a2

4

)−1((
1− a2

4

)
I− ia · σ)(1 + c2

4

)−1((
1− c2

4

)
I− ic · σ)

(2.14)
=

(
1− a2

4

)(
1− c2

4

)
I−i
(
1− a2

4

)
c · σ−i

(
1− c2

4

)
a · σ−a.c I−i(a× c) · σ(

1+
a2

4

)(
1+

c2

4

)
=

(
1− a2

4

)(
1− c2

4

)− a.c(
1 +

a2

4

)(
1 +

c2

4

) I− i

(
1− a2

4

)
c+
(
1− c2

4

)
a+ 4

a

2
× c

2(
1 +

a2

4

)(
1 +

c2

4

) · σ.

(2.41)

The general formulas (2.29) and (2.41) will be compatible if we have simultaneously

1− ã 2

4

1 +
ã 2

4

=

(
1− a2

4

)(
1− c2

4

)− a.c(
1 +

a2

4

)(
1 +

c2

4

) ,

(2.42)

ã

1 +
ã 2

4

=

(
1− a2

4

)
c+
(
1− c2

4

)
a+ 4

a

2
× c

2(
1 +

a2

4

)(
1 +

c2

4

) ·

From (2.42) we get

ã 2

4
=

a2

4
+

c2

4
+ 2

a

2
· c
2

1− 2
a

2
· c
2
+

a2

4

c2

4

, 1 +
ã 2

4
=

1 +
a2

4
+

c2

4
+

a2

4

c2

4

1− 2
a

2
· c
2
+

a2

4

c2

4

· (2.43)

Taking into account that

1 +
a2

4
+

c2

4
+

a2

4

c2

4
=
(
1 +

a2

4

)(
1 +

c2

4

)
and multiplying the numerator and denominator of the second fraction in (2.41)

by 1 − 2
a

2
· c
2
+

a2

4

c2

4
(when this expression is non-zero), we get the result in the

second case in (2.40), i.e., the composition law in vector-parameter form for SU(2).
To rigorously see when the composition is not well defined, we investigate the

case in which the denominator equals zero. According to the identity

1− 2
a

2
· c
2
+

a2

4

c2

4
=
(
1− a

2
· c
2

)2
+
(a
2
× c

2

)2
, (2.44)

the denominator of (2.40) vanishes if only if a = 2 tan
θ2
4
n, c = 2 tan

θ1
4
n and
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1 = tan
θ2
4
tan

θ1
4
. This implies cos

θ1 + θ2
4

= 0, θ1+θ2 = 2π and allows to express

c = 2 tan
θ

4
n, a = 2 tan

2π − θ

4
n. (2.45)

Substituting the results from (2.45) in (2.42) gives ã (a, c) = 0 , which corresponds
to the identity element I. If c ≡ −a , then ã = 0. �

In the particular case when one and the same rotation (a ≡ c) is applied twice
the resulting vector is

ã =
2
(
1− a2

4

)
a(

1− a2

4

)2 =
4
a

2

1− a2

4

·

It is important to investigate when the composition ã is such that | ã | ≤ 4.
Using (2.43) we obtain

ã 2

4
=

a2

4
+

c2

4
+ 2

a

2
· c
2

1− 2
a

2
· c
2
+

a2

4

c2

4

≤ 1 (2.46)

and this is equivalent to the inequality

a.c ≤ (1− a2

4

)(
1− c2

4

)
. (2.47)

Similar conditions for | ã | < 4, | ã | = 4 and | ã | > 4 cases follow immediately.

3. THE COVERING MAP SU(2)→ SO(3,R) AND ITS SECTIONS IN
VECTOR-PARAMETER FORM

Proposition 2. Let a be the vector-parameter of a generic SU(2) element
(i.e., it is not associated with some half-turn, a2 = 4). Then the Gibbs vector c,
which represents this rotation in SO(3,R), is given by

c(a) =
a

1− a2

4

· (3.1)

On the other hand, if c is the Gibbs vector, representing a rotation from SO(3,R),
then the preimages of this rotation in SU(2) correspond to the vector parameters

a+(c) =
2(
√
1 + c2 − 1)

c2
c, a−(c) = −2(

√
1 + c2 + 1)

c2
c. (3.2)

Moreover, they are connected by the formulas

a+ = − 4

a2−
a−, a− = − 4

a2+
a+, a2−a

2
+ = 16. (3.3)
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Proof. We have to find a Gibbs parameter c such that

R(c) =
2

1 + c2

⎛⎝ 1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c1c3 − c2 c2c3 + c1 1 + c23

⎞⎠− I = RU(a) (3.4)

and where RU(a) is given by (2.35). Equating the corresponding matrix elements,

R(c)32 − R(c)23 = RU(a)32 − RU(a)23

R(c)13 − R(c)31 = RU(a)13 − RU(a)31
(3.5)

R(c)21 − R(c)12 = RU(a)21 − RU(a)12

trR(c) = trRU(a)

we end up with the following equalities

2

1 + c2
c1 =

8(4− a2)

(4 + a2)
2 a1 ,

2

1 + c2
c2 =

8(4− a2)

(4 + a2)
2 a2 ,

2

1 + c2
c3 =

8(4− a2)

(4 + a2)
2 a3 ,

2(3 + c2)

1 + c2
=

8(−8a2)
(4 + a2)

2 + 6.

(3.6)

From (3.6) we have

2

1 + c2
c =

8(4− a2)

(4 + a2)
2 a (3.7)

and separating 1 + c2 in (3.6) we obtain

2

1 + c2
= 2

(
4 + a2

)2 − 16a2(
4 + a2

)2 = 2

(
4− a2

)2(
4 + a2

)2 ·
Substituting this expression in (3.7), we obtain (3.1), which is the first statement
in the proposition. To invert (3.1), we firstly calculate c2 and get

c2 =
a2(

1− a2

4

)2 ·
If a2 �= 4 (i.e., a does not represent a half-turn), this equality is equivalent to the
following quadratic equation for a2:

(a2)2c2 − 8(2 + c2)a2 + 16c2 = 0. (3.8)

The solutions of (3.8) are

a2± =
4(2 + c2)∓ 8

√
1 + c2

c2
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and hence

a2±
4

=
2 + c2 ∓ 2

√
1 + c2

c2
= 1 +

2∓ 2
√
1 + c2

c2
, 1− a2±

4
= −2(1∓√1 + c2)

c2
· (3.9)

Substituting this result in (3.1) we obtain (3.2). It follows from (3.2) that

a+ =
2 (
√
1 + c2 − 1)

c2
c = −

√
1 + c2 − 1√
1 + c2 + 1

a−
(3.10)

= −2 + c2 − 2
√
1 + c2

c2
a− = −a2+

4
a− ,

therefore a− = − 4

a2+
a+. From a2− =

16

a4+
a2+, a2−a

2
+ = 16 we find a+ = − 4

a2−
a−,

which completes the proof of Proposition 2. �
The relations obtained above are depicted in Fig. 2. Notice that a± and c

actually act between the algebras and also that the Cayley map is not surjective
onto the given groups, see equations (2.8) and (2.33).

su(2)

SU(2)

so(3)

SO(3)

Cayley
(2.28)

Cayley
(2.5)

1 : 1, (2.20)

2 : 1

c = c(a), (3.1)

a− = a−(c), (3.2)

a+ = a+(c), (3.2)

Figure 2: Informal depiction of the relations between the Lie algebras su(2) and
so(3) and the Lie groups SU(2) and SO(3,R).

Viewing a+ and a− as functions of c (see Fig. 3) one concludes that

a+(c) ≤ 2 ≤ a−(c), lim
c→∞ a+(c) = lim

c→∞ a−(c) = 2. (3.11)
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5 10 15 20

1

2

3

4

a−

a+

a±

c

Figure 3: Graphs of a− and a+ as functions of c.

In order to obtain the SU(2) elements U±(c) corresponding to the SO(3,R)
rotation with vector-parameter c, we substitute a±(c) from (3.2) in U(a) from
(2.29) and get

U±(c) = ± 1√
1 + c2

(
1− ic3 −c2 − ic1
c2 − ic1 1 + ic3

)
. (3.12)

Let c = tan
θ

2
n represent a SO(3,R) rotation at angle θ about the axis n. The

corresponding SU(2) vectors a+(c) and a−(c) are

a+(c) = 2 tan
θ

4
n, a−(c) = −2 tan 2π − θ

4
n. (3.13)

The matrix corresponding to a+ is the familiar axis-angle representation of rotations
in SU(2), i.e.,

U(a+) = U(n, θ) = cos
θ

2
I+ sin

θ

2

( −in3 −n2 − in1

n2 − in1 in3

)
. (3.14)

In SU(2) the half-turns about the axis n are represented by the matrices

U(±n, π) = ±
( −in3 −n2 − in1

n2 − in1 in3

)
. (3.15)

In the derived vector-parameter form the half-turns are represented by the vectors
±2n, which are well defined and are of length 2. This is an advantage, because
a half-turns O(n) in the Gibbs vector parameter form of SO(3,R) rotations are
represented by vectors with infinitely large norm and direction ±n. Such vectors
will be referred further on as “rays” and will be denoted by [n] (for more discussion,
see e.g. [2] and [12]). Let R = O(n) be a half-turn about the axis n, represented
by ±n in SU(2). Applying the limit a → 2 in (3.1), we can informally write

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 91–107. 103



lim
a→±2n

c(a) = [n]. Roughly speaking, the Gibbs parameter, associated with O(n) is

c = limθ→π tan
θ

2
n = [n]. Actually, we have

lim
θ→π

U±(tan
θ

2
n)

(3.12)
= ± lim

c2→∞
1√

1 + c2

(
1− ic3 −c2 − ic1
c2 − ic1 1 + ic3

)
(3.15)
= U(±n, π). (3.16)

We observe that if c = tan
θ

2
n represents an infinitesimal SO(3,R) rotation R(n, θ),

then as SU(2) element it is represented by two vectors, one with infinitesimal norm
a+ and the other one a− with infinite norm, i.e.,

lim
c→0

a2+(c) = 0, lim
c→0

a2−(c) =∞. (3.17)

When storing infinitesimal rotations in applications, loss of information may occur
because of the operations performed with very small numbers. Equation (3.17)
offers an alternative way (by usage of a−) for computer storage of infinitesimal
rotations. This is so because in many of the commercial software systems there are
packages for dealing with large numbers.

3.1. COMPATIBILITY OF THE COMPOSITION LAWS IN SU(2) AND SO(3,R)

Recall that a map ϕ : G1 → G2 of the groups G1, G2 is a group homomorphism
if it is compatible with the group operations in G1 and G2 by the rule ϕ(ab) =
ϕ(a)ϕ(b) for all a, b ∈ G1. For an arbitrary subset S1 ⊂ G1, which is not necessarily
a subgroup of G1, we say that a map ψ : S1 → G2 is compatible with the group
operations in G1 and G2 if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ S1.

Proposition 3. Let a and c are some non-zero Gibbs parameters of two
SO(3,R) rotations and such that a.c �= 1. Let

U1(c) =
1√

1 + c2

(
1− ic3 −c2 − ic1
c2 − ic1 1 + ic3

)
, U2(a) =

1√
1 + a2

(
1− ia3 −a2 − ia1
a2 − ia1 1 + ia3

)
be the respective images of a, c under the “+” sections of the maps (??) and (3.12).
Then the equality

U2(a)U1(c) = U(c̃ ) (3.18)

holds up to a sign, i.e., the “+” correspondences are compatible up to a sign with
the group operations in SO(3,R) and SU(2).

Proof. Let U3 = U2(a)U1(c). We will prove that

U3 =
±1√
1 + c̃ 2

(
1− ic̃ 3 −c̃ 2 − ic̃ 1

c̃ 2 − ic̃ 1 1 + ic̃ 3

)
. (3.19)
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Direct multiplication shows that

U3 =
1− a.c√

1 + a2
√
1 + c2

(
α β

−β α

)
, (3.20)

where

α = 1− i
a3 + c3 + a1c2 − a2c1

1− a.c
= 1− ic̃ 3

(3.21)

β = −a2 + c2 + a3c1 − a1c3
1− a.c

− i
a1 + c1 + a2c3 − a3c2

1− a.c
= −c̃ 2 − ic̃ 1.

For c̃ we have that

c̃ 2 =
a2 + c2 + (a× c)2 + 2a.c

(1− a.c)2
=

(1 + c2)(1 + a2)

(1− a.c)2
− 1. (3.22)

Thus

1√
1 + c̃ 2

=
|1− a.c|√

1 + a2
√
1 + c2

. (3.23)

Now from (3.19), (3.20) and (3.23) we get that U2(a)U1(c) = U(c̃ ) up to a sign.
The case a.c = 1 in Proposition 3, as well as the cases where half-turns are involved
in the composition will be treated elsewhere. �

Note that Proposition 3 holds also for the negative signs of the above sections.
If c1, c2 are represent two SO(3,R) rotations and the vectors a1,a2 are defined
by the section a+ in (3.2) then the SO(3,R) vector parameter corresponding to
〈a2,a1〉SU(2) is exactly 〈c2, c1〉SO(3,R), i.e., we have the commutative diagram below.
Therefore, the pull-back of the composition in SO(3,R) to the covering group SU(2)
allows to bypass the singularities in the vector-parameter description of the base
manifold.

(
c2, c1

)

(
a2(c2),a1(c1)

)

c3

a3(c2, c1)

〈c2, c1〉SO(3,R), (2.10)

〈a2(c2), a1(c1)〉SU(2), (2.40)

(3.2)±,± (3.1)

Figure 4: Composition of the three-dimensional rotations through
a pull-back to the covering group SU(2).
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4. CONCLUDING REMARKS

Despite of the attractive simplicity of the composition law for SO(3,R) rota-
tions, neither the half-turns nor the composition of rotations whose Gibbs vector-
parameters have a scalar product equal to one are directly manageable. The de-
rived vector-parametrization of SU(2) has the advantage to represent all rotations
including the half-turns. Table 1 presents the numbers of operations needed for the
composition of two rotations.

Table 1: The numbers of operations necessary to perform when composing two
rotations in various representations.

Representations Multiplications Additions
Memory needed
for the result

SO(3,R)
matrix 27 18 9

vector-parameter 12 12 3

SU(2)
matrix 16 16 4

vector-parameter 28 18 3
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A CLASSIFICATION OF CONFORMALLY FLAT RIEMANNIAN
MANIFOLDS LOCALLY ISOMETRIC TO HYPERSURFACES

IN EUCLIDEAN OR MINKOWSKI SPACE
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We prove that the local theory of conformally flat Riemannian manifolds, which can
be locally isometrically embedded as hypersurfaces in Euclidean or Minkowski space, is
equivalent to the local theory of Riemannian manifolds of quasi-constant sectional cur-
vatures (QC-manifolds). Riemannian QC-manifolds are divided into two basic classes:
with positive or negative horizontal sectional curvatures. We prove that the Rieman-
nian QC-manifolds with positive horizontal sectional curvatures are locally equivalent
to canal hypersurfaces in Euclidean space, while the Riemannian QC-manifolds with
negative horizontal sectional curvatures are locally equivalent to canal space-like hy-
persurfaces in Minkowski space. These results give a local geometric classification of
conformally flat hypersurfaces in Euclidean space and conformally flat space-like hy-
persurfaces in Minkowski space.

Keywords: Riemannian manifolds of quasi-constant sectional curvatures, canal space-
like hypersurfaces in Minkowski space, rotational space-like hypersurfaces in Minkowski
space, classification of conformally flat hypersurfaces in Euclidean or Minkowski space

2000 Math. Subject Classification: Primary 53A35, Secondary 53B20

1. INTRODUCTION

Conformally flat n-dimensional Riemannian manifolds appear as hypersurfaces
in two standard models of flat spaces: Euclidean or Minkowski space. Historically,
there were many attempts to describe conformally flat hypersurfaces, especially
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in Euclidean space. Essential steps in this direction were made by Cartan [3],
Schouten [18]. Kulkarni in [15] reached to a partial description of conformally flat
hypersurfaces in Euclideasn space dividing them into: hypersurfaces of constant
curvature; hypersurfaces of revolution; tubes. Yano and Chen proved in [4] that
canal hypersurfaces in Euclidean space, i.e. envelopes of one-parameter families of
hyperspheres, are special conformally flat hypersurfaces. Compact conformally flat
hypersurfaces in Euclidean space were studied in [15] and [6].

In this paper we study the close relation between the local theory of Rie-
mannian manifolds of quasi-constant sectional curvatures and the local theory of
conformally flat Riemannian hypersurfaces in the Euclidean space Rn+1 or in the
Minkowski space Rn+1

1 . We give a local classification of Riemannian manifolds of
quasi-constant sectional curvatures proving that they can locally be embedded as
canal hypersurfaces in Rn+1 or Rn+1

1 . Thus we obtain a geometric description of
conformally flat hypersurfaces in Euclidean space and conformally flat space-like
hypersurfaces in Minkowski space.

Riemannian QC-manifolds are Riemannian manifolds (M, g, ξ) endowed with
a unit vector field ξ besides the metric g, satisfying the curvature condition: the
sectional curvatures at any point of the manifold only depend on the point and the
angle between the section and the vector ξ at that point. All tangent sections at a
given point, which are perpendicular to the vector ξ at that point, have one and the
same sectional curvature. We call these sectional curvatures horizontal sectional
curvatures.

Everywhere in this paper we consider the case dimM = n ≥ 4.

The structural group of Riemannian manifolds (M, g, ξ) is O(n − 1) × 1 and
two Riemannian manifolds (M, g, ξ) and (M ′, g′, ξ′) are equivalent if there exists
a diffeomorphism f : M → M ′ preserving both structures: the metric g and the
vector field ξ. We call such a diffeomorphism a ξ-isometry.

In [11] we proved the following statements:

Any canal hypersurface M in the Euclidean space Rn+1 is a Riemannian QC-
manifold with positive horizontal sectional curvatures.

Any Riemannian QC-manifold with positive horizontal sectional curvatures is
locally ξ-isometric to a canal hypersurface in the Euclidean space Rn+1.

The first problem we treat here is to give a local classification of Riemannian
QC-manifolds with negative horizontal sectional curvatures.

In Section 3 we introduce canal space-like hypersurfaces in the Minkowski space
Rn+1

1 and divide them into three types. In Subsections 3.1 - 3.3 we study these
three types of canal space-like hypersurfaces and show that:

Any canal space-like hypersurface in the Minkowski space Rn+1
1 is a Rieman-

nian QC-manifold with negative horizontal sectional curvatures.

The basic results are proved in Section 4. The local classification of Rie-
mannian QC-manifolds with negative horizontal sectional curvatures is given by
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Theorem 4.1:

Any Riemannian QC-manifold with negative horizontal sectional curvatures is
locally ξ-isometric to a canal space-like hypersurface in the Minkowski space Rn+1

1 .

The second problem we deal with is to obtain a geometric description of con-
formally flat hypersurfaces in Euclidean space and conformally flat space-like hy-
persurfaces in Minkowski space. Using results of Cartan and Schouten, we are able
to bring the second fundamental form of the hypersurface into consideration. This
allows us to give a local geometric classification of conformally flat Riemannian
hypersurfaces in Euclidean or Minkowski space:

Any conformally flat hypersurface in Euclidean space, which is free of umbilical
points, locally is a part of a canal hypersurface.

Any conformally flat space-like hypersurface in Minkowski space, which is free
of umbilical points, locally is a part of a canal space-like hypersurface.

The picture of the local isometric embeddings of a conformally flat Riemannian
manifold into Euclidean or Minkowski space can be described briefly as follows.

Let (M, g) be a conformally flat Riemannian manifold, free of points in which all
sectional curvatures are constant. The manifold (M, g) can be locally isometrically
embedded into Rn+1 (Rn+1

1 ) if and only if its Ricci operator has two different from
zero eigenvalues at every point: one of them of multiplicity n − 1 and the other
of multiplicity 1. The latter eigenvalue generates a unit vector field ξ, such that
(M, g, ξ) is a Riemannian QC-manifold with positive (negative) horizontal sectional
curvatures. Any two isometrical realizations of (M, g) are locally congruent.

Generalizing, we obtain that a conformally flat Riemannian manifold is locally
isometric to a hypersurface into Rn+1 (Rn+1

1 ) if and only if its Ricci operator at any
point has a root of multiplicity at least n−1. This fact gives an approach to further
investigations of conformally flat Riemannian manifolds studying the spectrum of
their Ricci operator.

It is interesting to mention Riemannian subprojective manifolds forming a sub-
class of Riemannian QC-manifolds characterized by the condition: the structural
vector field ξ is geodesic. If (M, g, ξ) is a Riemannian subprojective manifold with
scalar curvature τ (dτ �= 0), then the structural vector field ξ is collinear with grad τ .
Any Riemannian subprojective manifold is locally isometric (up to a motion) to a
rotational hypersurface in Euclidean space or in Minkowski space.

2. PRELIMINARIES

Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian manifold with metric g and
a unit vec-tor field ξ. The structural group of these manifolds is O(n − 1) × 1.
TpM and XM will stand for the tangent space to M at a point p and the algebra
of smooth vector fields on M , respectively. The 1-form corresponding to the unit
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vector ξ is denoted by η, i.e. η(X) = g(ξ,X), X ∈ XM . The distribution of the
1-form η is denoted by Δ, i.e.

Δ(p) = {X ∈ TpM : η(X) = 0}.

The orthogonal projection of a vector field X ∈ XM onto the distribution Δ
is denoted by the corresponding small letter x, i.e.

X = x+ η(X) ξ. (2.1)

Any section E in TpM determines an angle ∠(E, ξ). Then the notion analogous
to the notion of a Riemannian manifold of constant sectional curvatures is described
as follows [11].

Definition 2.1. A Riemannian manifold (M, g, ξ) (dimM ≥ 3) is said to be of
quasi-constant sectional curvatures (a Riemannian QC-manifold) if for an arbitrary
2-plane E in TpM, p ∈ M , with ∠(E, ξ) = ϕ, the sectional curvature of E only
depends on the point p and the angle ϕ.

Let ∇ be the Levi-Civita connection of the metric g and R be its Riemannian
curvature tensor. The structure (g, ξ) generates the following tensors π and Φ:

π(X,Y, Z, U) = g(Y, Z)g(X,U)− g(X,Z)g(Y, U),

Φ(X,Y, Z, U) = g(Y, Z)η(X)η(U)− g(X,Z)η(Y )η(U)

+ g(X,U)η(Y )η(Z)− g(Y, U)η(X)η(Z); X,Y, Z, U ∈ XM.

These tensors have the symmetries of the curvature tensor R and are invariant
under the action of the structural group of the manifold.

Riemannian manifolds of quasi-constant sectional curvatures are characterized
by the following statement [11]:

Proposition 2.2. A Riemannian manifold (M, g, ξ) is of quasi-constant sec-
tional curvatures if and only if its curvature tensor has the form

R = a π + bΦ, (2.2)

where a and b are some functions on M .

Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian manifold of quasi-constant
sectional curvatures. This means that the curvature tensor R of g has the form
(2.2). If b �= 0 everywhere, then the manifold (M, g, ξ) has the properties [11]:

• The distribution of the function a is the structural distribution Δ:

da = ξ(a) η. (2.3)
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• The distribution Δ is involutive, i.e.

dη(x, y) = 0, x, y ∈ Δ. (2.4)

• If θ is the 1-form defined by θ(X) = dη(ξ,X), X ∈ XM , then dη = θ∧ η and

θ(x) = dη(ξ, x) =
1

b
db(x), x ∈ Δ. (2.5)

• The integral submanifolds of the distribution Δ are totally umbilical in M ,
i.e.

∇xξ = k x, k =
ξ(a)

2b
, x ∈ Δ. (2.6)

• The distribution of the function k is the structural distribution Δ:

dk = ξ(k) η. (2.7)

Let Sp be the maximal integral submanifold of the distribution Δ, containing
a given point p ∈ M , and K be the curvature tensor of the Riemannian manifold
(Sp, g). Then we have:

(i) All sections tangent to Sp have one and the same sectional curvature a(p)
with respect to the tensor R. We say that the function a(p) is the horizontal
sectional curvature of the manifold.

(ii) All sections tangent to Sp have one and the same sectional curvatures
a(p) + k2(p) with respect to the tensor K.

Proposition 2.2 implies the following statement.

Proposition 2.3. A Riemannian QC-manifold (M, g, ξ), free of points in
which the sectional curvatures are constant, i.e. b �= 0, is characterized by the
following two conditions:

- (M, g) is conformally flat;

- the Ricci operator ρ of (M, g) at any point has two non-zero roots, namely:

(n− 1)a+ b, of multiplicity n− 1, which generates the distribution Δ:

ρ(x) = [(n− 1)a+ b]x, x ∈ Δ;

(n− 1)(a+ b), of multiplicity 1, which generates the structural vector field ξ:

ρ(ξ) = (n− 1)(a+ b) ξ.

Proposition 2.3 implies that the notion of a QC-manifold is a notion in Rie-
mannian geometry. The next statement is an immediate consequence from this
proposition.
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Theorem 2.4. Let (M, g, ξ) and (M̄, ḡ, ξ̄) be two QC-manifolds free of points
in which the sectional curvatures are constant. If ϕ : M → M̄ is an isometry,
then it is a ξ-isometry, i.e. ϕ∗ξ = ξ̄.

The above mentioned geometric functions a and a + k2 on (M, g, ξ) generate
four basic classes of Riemannian manifolds of quasi-constant sectional curvatures
characterized by the conditions:

1) a > 0;

2) a < 0, a+ k2 > 0;

3) a+ k2 < 0;

4) a+ k2 = 0.

The class of Riemannian QC-manifolds contains the remarkable subclass of
Riemannian subprojective manifolds. V. Kagan [12, 13] called an n-dimensional
space An with symmetric linear connection ∇ a subprojective space if there ex-
ists locally a coordinate system with respect to which every geodesic of ∇ can be
represented by n − 2 linear equations and another equation, that need not be lin-
ear (see also [19]). P. Rachevsky [17] proved necessary and sufficient conditions
characterizing Riemannian subprojective spaces. T. Adati [1] studied Riemannian
subprojective manifolds concerning concircular and torse-forming vector fields.

As Riemannian QC-manifolds (M, g, ξ) the Riemannian subprojective mani-
folds are characterized by any of the following additional properties [11]:

i) db = ξ(b) η;

ii) the vector field ξ is geodesic (on M);

iii) the 1-form η is closed.

Let τ be the scalar curvature of a Riemannian subprojective manifold. If
dτ �= 0, then the structural distribution Δ is the distribution of the 1-form dτ and
the vector field grad τ is an eigenvector of the Ricci operator at every point.

3. CANAL SPACE-LIKE HYPERSURFACES IN MINKOWSKI SPACE

A hypersurface M (dimM = n) in the Minkowski space Rn+1
1 is said to be

space-like (or Riemannian) if the induced metric on M is positive definite. The
normal vector field to a space-like hypersurface M in the Minkowski space Rn+1

1 is
necessarily time-like.

In this section we study the envelope of a one-parameter family of space-like
hyperspheres {Sn(s)}, s ∈ J ⊂ R in Rn+1

1 , given as follows

Sn(s) : (Z − z(s))2 = −R2(s), R(s) > 0,
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where z = z(s) is the center and R(s) is the radius of the corresponding hypersphere
Sn(s).

Let the cross-section of a space-like hypersphere Sn with a hyperplane in the
Minkowski space Rn+1

1 be an (n− 1)-dimensional surface. We have:

1) The cross-section of a space-like hypersphere Sn with a space-like hyper-
plane Rn is a Euclidean hypersphere Sn−1 in Rn, and Sn−1 is of positive
constant sectional curvatures.

2) The cross-section of a space-like hypersphere Sn with a time-like hyper-
plane Rn

1 is a hyperbolic hypersphere Hn−1 in Rn
1 , and Hn−1 is of negative

constant sectional curvatures.

3) The cross-section of a space-like hypersphere Sn with a light-like hyper-
plane Rn

0 is a parabolic hypersphere Pn−1 in Rn
0 , and Pn−1 is of zero

sectional curvatures.

We shall describe in more details the cross-section Pn−1 of a space-like hy-
persphere Sn(z,R) with a light-like hyperplane Rn

0 . It is clear that Rn
0 can not

pass through the center z of Sn. The pair (Rn
0 , g) is an n-dimensional affine space

with metric g, whose rank equals n − 1. This means that Rn
0 contains a light-

like direction U , determined by a given light-like vector t. The light-like direction
U can also be considered as a point at infinity in the infinite hyperplane of Rn

0 .
Any hyperplane En−1 of Rn

0 , which does not contain U , is a Euclidean hyper-
plane, i.e. it can be endowed with a basis e1, . . . , en−1, satisfying the property
g(ei, ej) = δij , i, j = 1, . . . , n− 1, δij being the Kronecker’s deltas.

Let En−1 be a Euclidean hyperplane in Rn
0 with a fixed point T ∈ En−1

and an orthonormal basis e1, . . . , en−1. Adding the light-like vector t, we obtain
a coordinate system T, e1, . . . , en−1, t in Rn

0 . If Z(z1, . . . , zn−1; zn) is the position
vector of any point Z in Rn

0 , then we consider the quadrics Pn−1(q) in Rn
0 , given

by the equation

Pn−1(q) : z21 + · · ·+ z2n−1 − 2q zn = 0, q = const > 0.

The one-parameter family of quadrics Pn−1(q) is characterized by the proper-
ties:

(i) Pn−1(q) is a quadric, which is tangent to the infinite hyperplane of Rn
0 at

U and to the hyperplane En−1 at T ;

(ii) The cross-section of Pn−1(q) with any Euclidean hyperplane zn = const>0
(parallel to En−1) is a Euclidean hypersphere in this hyperplane.

We call these quadrics parabolic hyperspheres of the light-like hyperplane (Rn
0 , g).

The parabolic hyperspheres have the following remarkable property:
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Proposition 3.1. Any parabolic hypersphere in a light-like hyperplane Rn
0 is

a flat (n− 1)-dimensional Riemannian manifold.

Proof: Since the only tangent hyperplane to the parabolic hypersphere Pn−1(q),
which contains U , is the infinite hyperplane of Rn

0 , then (Pn−1(q), g) is an (n− 1)-
dimensional Riemannian manifold.

We consider the projection

π : Pn−1(q) → En−1

of the parabolic hypersphere onto the Euclidean hyperplane En−1, parallel to the
direction U . It is an easy verification that the projection π is an isometry between
the Riemannian manifolds (Pn−1(q), g) and (En−1, g), excluding the common point
T . This implies the assertion. �

Next, we call the (n−1)-dimensional cross-sections of a space-like hypersphere
with a hyperplane spheres of codimension two and use the common denotation
Sn−1.

Let M = {Sn−1(s)}, s ∈ J ⊂ R be a space-like hypersurface in Rn+1
1 , which is

a one-parameter family of spheres Sn−1(s) of codimension two. Any sphere Sn−1(s)
is said to be a spherical generator of M .

At first canal surfaces in R3 have been introduced and studied in the classical
works of Enneper [7, 8, 9, 10]. We use the following definition:

Definition 3.2. A space-like hypersurface M = {Sn−1(s)}, s ∈ J ⊂ R in
Rn+1

1 is said to be a canal space-like hypersurface if the normals to M at the points
of any fixed spherical generator pass through a fixed point.

Let now Z = Z(s;u1, u2, . . . , un−1), s ∈ J, (u1, u2, . . . , un−1) ∈ D be the
position vector field of a canal space-like hypersurface M . The partial derivatives
of Z are denoted as follows: Zs = ∂Z

∂s , Zi = ∂Z
∂ui ; i = 1, . . . , n − 1, and similar

denotations are used for other vector functions.

Denoting by z(s), s ∈ J the common point of the normals to M at the points of
any spherical generator Sn−1(s), we consider the space-like hypersphere Sn(s) with
center z(s) containing Sn−1(s). If R(s) is the radius of Sn(s), then the position
vector Z of M satisfies the equality

(Z − z(s))2 = −R2(s), R(s) > 0, s ∈ J ⊂ R. (3.1)

Differentiating (3.1) with respect to the parameter s, we get

(Z − z(s))Zs − (Z − z(s))z′(s) = −R(s)R′(s). (3.2)

Under the condition that the normal to M at any point of a fixed generator Sn−1(s)
is collinear with Z − z(s), the equalities (3.1) and (3.2) are equivalent to

(Z − z(s))2 = −R2(s),

(Z − z(s))z′(s) = R(s)R′(s).
(3.3)

116 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 109–132.



A space-like hypersurface M in Rn+1
1 is said to be the envelope of a one-

parameter family of space-like hyperspheres {Sn(z(s), R(s))}, s ∈ J if the position
vector Z(s;u1, . . . , un−1) of M satisfies the equations (3.3).

Let M be a space-like hypersurface, which is the envelope of a one-parameter
family of space-like hyperspheres {Sn(z(s), R(s))}, s ∈ J . It follows from (3.3) that
M is a one parameter family of spheres Sn−1(s), s ∈ J . Differentiating the first
equality of (3.3), we have

(Z − z)Zs = 0, (Z − z)Zi = 0, i = 1, . . . , n− 1,

which shows that the time-like vector field Z − z at the points of any generator
Sn−1(s) of M is normal to both: the hypersurface M and the hypersphere Sn(s).

Hence, as in the classical case [7, 8, 9, 10, 20], we have

Lemma 3.3. A space-like hypersurface M in Rn+1
1 is canal if and only if it is

the envelope of a one-parameter family of space-like hyperspheres.

Let M be a space-like canal hypersurface, given by (3.3). We denote the
tangent vector to the curve of centers z(s) as usual by t(s) = z′(s). The unit
normal vector field N to M is collinear with Z − z and we always choose

N = −Z − z

R
. (3.4)

In view of (3.3), the vector field N has the properties:

N2 = −1, Nt = −R′.

Differentiating (3.4), we have

Ni = − 1

R
Zi, i = 1, . . . , n− 1,

Zs +RNs = t−R′N.

(3.5)

The second equality in (3.5) means that the vector field t−R′N is tangent to
M . Since the normals to M at the points of a spherical generator cannot be parallel
to the vector t, then the vector field t − R′N is space-like and (t − R′N)2 > 0.
Furthermore, the second equality in (3.3) implies that t Zi = 0, i = 1, ..., n−1, and
therefore t−R′N is perpendicular to all Zi.

We introduce the unit tangent vector field ξ as follows:

ξ :=
1√

(t−R′N)2
(t−R′N). (3.6)

Then the distribution Δ := {x ∈ TpM : x ⊥ξ} is exactly Δ = span{Z1, . . . , Zn−1}.
For the purposes of our investigations we need to introduce three types of canal

space-like hypersurfaces.
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Definition 3.4. A canal space-like hypersurface M in Rn+1
1 , given by (3.3), is

said to be a canal space-like hypersurface of elliptic, hyperbolic or parabolic type if
the curve z = z(s), s ∈ J of the centers of the hyperspheres is time-like, space-like
or light-like, respectively.

Rotational space-like hypersurfaces are introduced in a natural way:

Definition 3.5. A canal space-like hypersurface M in Rn+1
1 , given by (3.3),

is said to be a rotational space-like hypersurface if the curve z = z(s), s ∈ J of the
centers of the hyperspheres lies on a straight line.

Any of the three types of canal space-like hypersurfaces generates the corre-
sponding subclass of rotational space-like hypersurfaces.

3.1. CANAL SPACE-LIKE HYPERSURFACES OF ELLIPTIC TYPE IN MINKOWSKI

SPACE

Let M be a canal space-like hypersurface in Rn+1
1 of elliptic type, given by

(3.3). The curve of centers z = z(s), s ∈ J , parameterized by its natural parameter,
satisfies the condition z′2 = t2 = −1.

Since (t−R′N)2 = R′2 − 1 > 0, then the function R(s) in the case of a canal
space-like hypersurface of elliptic type satisfies the inequalities

R2(s) > 0, R′2(s)− 1 > 0; s ∈ J.

Next we find the second fundamental form of M .

Let ∇′ be the standard flat Levi-Civita connection in Rn+1
1 and h be the second

fundamental tensor of M . The Levi-Civita connection of the induced metric on the
hypersurface M is denoted by ∇. Taking into account (3.5) and (3.6), we get

∇′Zi
N = Ni = − 1

R
Zi, ∇′Zi

ξ = ξi = − R′√
R′2 − 1

Ni =
R′

R
√
R′2 − 1

Zi.

These equalities can be written as follows:

∇′xN = − 1

R
x, ∇′xξ = ∇xξ =

R′

R
√
R′2 − 1

x = k x, x ∈ Δ,

and the function k is

k =
R′

R
√
R′2 − 1

. (3.1.1)

Hence, the shape operator A of M satisfies

Ax =
1

R
x, x ∈ Δ. (3.1.2)
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Since g(N,N) = −1, then

h(x, y) = −g(Ax, y) = − 1

R
g(x, y), x, y ∈ Δ. (3.1.3)

The equality (3.1.2) means that the tangent space Δ is invariant with respect
to the shape operator A. This implies that the vector field ξ is also an eigenvector
field of A, i.e.

Aξ = ν ξ. (3.1.4)

Assuming the standard summation convention, we can put

ξ = φiZi + φZs, φ �= 0 (3.1.5)

for some functions φ1, . . . , φn−1; φ on M . Since ξ is perpendicular to all Zi, we
have

ξZs =
1

φ
. (3.1.6)

Taking into account (3.1.5), we compute

∇′ξN = φiNi + φNs = − 1

R
φiZi + φNs. (3.1.7)

On the other hand, because of (3.5) and (3.6), we have

Zs +RNs =
√
R′2 − 1 ξ. (3.1.8)

In view of (3.1.5) and (3.1.8) equality (3.1.7) implies that

∇′ξN = − 1

R
(1− φ

√
R′2 − 1)ξ = −ν ξ

and

ν − 1

R
= −

√
R′2 − 1

R
φ . (3.1.9)

Using (3.1.2), (3.1.3) and (3.1.4), we obtain the shape operator of M :

AX =
1

R
X +

(
ν − 1

R

)
η(X) ξ, X ∈ XM.

The last equality and (3.1.9) imply that the second fundamental tensor of M
has the form

h(X,Y ) = − 1

R
g(X,Y ) + φ

√
R′2 − 1

R
η(X)η(Y ), X, Y ∈ XM. (3.1.10)

Further we replace (3.1.10) into the Gauss equation for the hypersurface M ,
and taking into account (3.1.6), we obtain the curvature tensor R of a canal space-
like hypersurface M of elliptic type:

R = − 1

R2
π +

√
R′2 − 1

R2(ξZs)
Φ = aπ + bΦ. (3.1.11)
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Now (3.1.11) and (3.1.1) imply that

a = − 1

R2
< 0, a+ k2 =

1

R2(R′2 − 1)
> 0.

Thus we obtained the following

Proposition 3.6. Any canal space-like hypersurface of elliptic type in Rn+1
1 is

a Riemannian manifold of quasi-constant sectional curvatures with functions a < 0
and a+ k2 > 0.

Next we prove that the rotational space-like hypersurfaces of elliptic type are
Riemannian subprojective manifolds satisfying the conditions in Proposition 3.6.

Using (3.1.8), we have

ξZs +R (ξNs) =
√
R′2 − 1.

In order to compute the function ξNs, we use the equality ξNs + ξsN = 0.
Differentiating (3.6) by s, we find

ξsN =
t′N +R′′√
R′2 − 1

.

Therefore

ξZs =
RR′′ +R′2 − 1 +R(t′N)√

R′2 − 1

and

b =
R′2 − 1

R2{RR′′ +R′2 − 1 +R(t′N)} .

According to Proposition 3.6, the hypersurface M is a Riemannian QC-manifold.
Any Riemannian QC-manifold is subprojective if and only if the functions a and b
generate one and the same distribution. Therefore, M is subprojective if and only
if the function b does not depend on the parameters ui; i = 1, . . . , n− 1, i.e. t′ = 0.
Since t′ = 0 characterizes a straight line c, we obtain the following statement.

Proposition 3.7. A canal space-like hypersurface M of elliptic type in Rn+1
1

is a Riemannian subprojective manifold if and only if M is a rotational space-like
hypersurface of elliptic type.

Combining with Proposition 3.6, we have

Proposition 3.8. Any rotational space-like hypersurface of elliptic type in
Rn+1

1 is a subprojective Riemannian manifold with functions a < 0 and a+ k2 > 0.

The curvature tensor of a rotational space-like hypersurface of elliptic type has
the form

R = − 1

R2
π +

R′2 − 1

R2(RR′′ +R′2 − 1)
Φ.
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3.2. CANAL SPACE-LIKE HYPERSURFACES OF HYPERBOLIC TYPE IN MINKOWSKI

SPACE

Let M be a canal space-like hypersurface of hyperbolic type, given by (3.3).
The curve of centers z = z(s), s ∈ J , parameterized by its natural parameter,
satisfies the condition z′2 = t2 = 1.

In the case considered, the inequality (t − R′N)2 = R′2 + 1 > 0 is always
satisfied. Hence, R(s) satisfies the only condition R(s) > 0.

We compute

∇′xN = − 1

R
x, ∇′xξ = ∇xξ =

R′

R
√
R′2 + 1

x = k x, x ∈ Δ,

where the function k(s) is

k =
R′

R
√
R′2 + 1

. (3.2.1)

Therefore,

Ax =
1

R
x, x ∈ Δ (3.2.2)

and the vector field ξ is an eigenvector for A:

Aξ = ν ξ, (3.2.3)

Putting ξ = φiZi + φZs, we compute

∇′ξN = − 1

R
φiZi + φNs,

and taking into account that

Zs +RNs =
√
R′2 + 1 ξ,

we find

∇′ξN = − 1

R
(1− φ

√
R′2 + 1)ξ = −ν ξ,

and

ν =
1

R
(1− φ

√
R′2 + 1).

Using (3.2.2) and (3.2.3), we obtain the second fundamental form h of the
hypersurface M :

h = − 1

R
g + φ

√
R′2 + 1

R
η ⊗ η.

Applying the Gauss equation and the equality φ (ξZs) = 1, we calculate the
curvature tensor of the hypersurface M .

R = − 1

R2
π +

√
R′2 + 1

R2 (ξZs)
Φ = aπ + bΦ.
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Therefore, a = −1/R2. In view of (3.2.1), we find

a+ k2 =
−1

R2(R′2 + 1)
< 0.

Thus we obtained the following statement.

Proposition 3.9. Any canal space-like hypersurface of hyperbolic type in Rn+1
1

is a Riemannian manifold of quasi-constant sectional curvatures with function
a+ k2 < 0.

Next we prove that the rotational space-like hypersurfaces of hyperbolic type
are Riemannian subprojective manifolds satisfying the condition in Proposition 3.9.

Differentiating (3.6) with respect to s, we compute

ξsN =
t′N +R′′√
R′2 + 1

. (3.2.4)

Using the equality ξsN + ξNs = 0, (3.2.4) and (3.5), we find

ξZs =
RR′′ +R′2 + 1 +R (t′N)√

R′2 + 1

and

b =
R′2 + 1

R2{RR′′ +R′2 + 1 +R (t′N)} .

Applying similar arguments as in Subsection 3.1, we conclude that M is sub-
projective if and only if t′ = 0, which characterizes a straight line c.

Thus we obtained the following statement.

Proposition 3.10. A canal space-like hypersurface M of hyperbolic type in
Rn+1

1 is a Riemannian subprojective manifold if and only if M is a rotational space-
like hypersurface of hyperbolic type.

Combining with Proposition 3.9, we have

Proposition 3.11. Any rotational space-like hypersurface of hyperbolic type
in Rn+1

1 is a subprojective Riemannian manifold with function a+ k2 < 0.

The curvature tensor of a rotational space-like hypersurface of hyperbolic type
has the form

R = − 1

R2
π +

R′2 + 1

R2(RR′′ +R′2 + 1)
Φ.
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3.3. CANAL SPACE-LIKE HYPERSURFACES OF PARABOLIC TYPE IN MINKOWSKI

SPACE

Let M be a canal space-like hypersurface of parabolic type, given by (3.3). The
curve of centers z = z(s), s ∈ J , satisfies the condition z′2 = t2 = 0.

In this case (t−R′N)2 = R′2 > 0 and the function R(s) satisfies the conditions
R(s) > 0 and R′(s) �= 0.

Next we find the second fundamental form of M .

We compute

∇′xN = − 1

R
x, ∇′xξ = ∇xξ =

1

R
x = kx, x ∈ Δ

and find

Ax =
1

R
x, x ∈ Δ, (3.3.1)

k =
1

R
(3.3.2)

and
Aξ = ν ξ. (3.3.3)

Further we again put
ξ = φiZi + φZs

and compute

∇′ξN = φiNi + φNs = − 1

R
φiZi + φNs, i = 1, 2, . . . , n− 1. (3.3.4)

Using the equality
Zs = R′ ξ −RNs,

we obtain from (3.3.4) that

∇′ξN = − 1

R
(1− φR′)ξ = −ν ξ,

and

ν =
1

R
(1− φR′). (3.3.5)

Now equalities (3.3.1), (3.3.3) and (3.3.5) imply that

h = − 1

R
g + φ

R′

R
η ⊗ η.

Finally, replacing h into the Gauss equation and using the equality φ (ξZs) = 1,
we find the curvature tensor of the hypersurface M in the form

R = − 1

R2
π +

R′

R2 (ξZs)
Φ = aπ + bΦ,
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which shows that M is a Riemannian QC-manifold with function a = −1/R2. In
view of (3.3.2) we find

a+ k2 = 0.

Thus we obtained the following statement.

Proposition 3.12. Any canal space-like hypersurface of parabolic type in
Rn+1

1 is a Riemannian manifold of quasi-constant sectional curvatures with function
a+ k2 = 0.

Next we prove that the rotational space-like hypersurfaces of parabolic type are
Riemannian subprojective manifolds satisfying the condition in Proposition 3.12.

Differentiating (3.6) with respect to s, we get

ξsN =
t′N +R′′

R′
. (3.3.6)

Using the equality ξsN + ξNs = 0, (3.3.6) and (3.5), we find

ξZs =
RR′′ +R′2 +R′ (t′N)

R′

and

b =
R′2

R2{RR′′ +R′2 +R′ (t′N)} .

Applying similar arguments as in Subsection 3.1, we conclude that M is sub-
projective if and only if t′ = 0, which characterizes a straight line c.

Thus we obtained the following statement.

Proposition 3.13. A canal space-like hypersurface M of parabolic type in
Rn+1

1 is a Riemannian subprojective manifold if and only if M is a rotational space-
like hypersurface of parabolic type.

Combining with Proposition 3.12, we have

Proposition 3.14. Any rotational space-like hypersurface of parabolic type in
Rn+1

1 is a subprojective Riemannian manifold with function a+ k2 = 0.

The curvature tensor of a rotational space-like hypersurface of parabolic type
has the form

R = − 1

R2
π +

R′2

R2(RR′′ +R′2)
Φ.
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4. A LOCAL CLASSIFICATION OF RIEMANNIAN QC-MANIFOLDS

Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian QC-manifold. Then the
Riemannian curvature tensor R of M has the form

R = aπ + bΦ. (4.1)

We consider manifolds free of points in which the tensor R is of constant
sectional curvatures, i.e. b �= 0 in all points of M .

We note that the condition a = 0 implies that b = 0.

In [11] we proved that a Riemannian QC-manifold with positive horizontal
sectional curvatures, i.e. a > 0, can be locally embedded as a canal hypersurface
in Euclidean space Rn+1.

In this section we study Riemannian QC-manifolds with negative horizontal
sectional curvatures, i.e. a < 0.

The basic step in our classification of Riemannian QC-manifolds is the following
theorem.

Theorem 4.1. Let (M, g, ξ) (dimM = n ≥ 4) be a Riemannian QC-manifold
with curvature tensor (4.1) satisfying the conditions:

b �= 0, a < 0.

Then the manifold is locally ξ-isometric to a canal space-like hypersurface in Rn+1
1 .

Moreover, the manifold is locally ξ-isometric to a canal space-like hypersurface
of elliptic, hyperbolic or parabolic type, according to

a+ k2 > 0, a+ k2 < 0 or a+ k2 = 0,

respectively.

Proof. Under the conditions of the theorem the curvature tensor of the manifold
M has the form (4.1) and all equalities (2.3) - (2.7) are valid. We put

α =
√−a, β = − b√−a

and consider the symmetric tensor

h =
√−a g − b√−a η ⊗ η = α g + β η ⊗ η (4.2)

on M .

An immediate verification shows that the curvature tensor R of the manifold
(M, g, ξ) has the following construction

R(X,Y, Z, U) = −{h(Y, Z)h(X,U)− h(X,Z)h(Y, U)}, (4.3)
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i.e.
R = −(α2 π + αβ Φ), a = −α2, b = −αβ.

We shall show that the tensor h satisfies the Codazzi equation

(∇′Xh)(Y, Z)− (∇′Y h)(X,Z) = 0, X, Y ∈ XM. (4.4)

Taking into account (4.2), we calculate

(∇′Xh)(Y, Z)− (∇′Y h)(X,Z) = dα(X) g(Y, Z)− dα(Y ) g(X,Z)

+ (dβ(X) η(Y )− dβ(Y ) η(X)) η(Z)

+β dη(X,Y ) η(Z)

+β (η(Y )(∇′Xη)(Z)− η(X)(∇′Y η)(Z)).

(4.5)

We prove that the right hand side of (4.5) is identically zero. Since any tangent
vector is decomposable as in (2.1), we divide the proof into four steps. Taking into
account that a = −α2, b = −αβ, we apply equalities (2.3) - (2.7) and obtain
consequently:

1) If X = x, Y = y, Z = z, then the right hand side of (4.5) reduces to

dα(x) g(y, z)− dα(y) g(x, z),

which is zero because of (2.3).

2) If X = x, Y = y, Z = ξ, then the right hand side of (4.5) reduces to

β dη(x, y),

which is zero in view of (2.4).

3) If X = x, Y = ξ, Z = ξ, then the right hand side of (4.5) reduces to

dβ(x) + β dη(x, ξ),

which is zero as a consequence of (2.5).

4) If X = ξ, Y = y, Z = z, then the right hand side of (4.5) reduces to

ξ(α) g(y, z)− β(∇′yη)(z),

which is zero because of (2.6).

Combining the above cases 1) - 4), we conclude that the right hand side of (4.5)
is equal to zero for all X,Y, Z ∈ XM , i.e. the tensor h satisfies (4.4) identically.

Now we can apply the fundamental embedding theorem for hypersurfaces in
Rn+1

1 and obtain that the Riemannian QC-manifold (M, g, ξ) can be locally em-
bedded as a hypersurface in the Minkowski space Rn+1

1 .
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If N is the unit normal vector field to a hypersurface with second fundamental
form h, then the curvature tensor R of this hypersurface satisfies the identity

R(X,Y, Z, U) = g(N,N) {h(Y, Z)h(X,U)− h(X,Z)h(Y, U)}.
Comparing with (4.3) we obtain that the Riemannian QC-manifold (M, g, ξ) is
embedded locally as a space-like hypersurface in Rn+1

1 . Further, we denote this
hypersurface again with (M, g, ξ).

Now (M, g, ξ) is a space-like hypersurface in Rn+1
1 , whose second fundamental

form h satisfies (4.2).

Next we prove that M is locally a part of a space-like canal hypersurface in
Rn+1

1 .

Let Z be the position vector field of M and p be a fixed point in M . Denote
by Sp the maximal integral submanifold of the distribution Δ containing p. Using
the property dα = ξ(α) η, we get α = const on Sp. Then the equality

∇′xN = −αx

implies that the vector function Z − (1/α)N is constant at the points of Sp. We
set

z = Z − 1

α
N,

and conclude that Sp lies on the time-like hypersphere Sn with center z and radius
R = (1/α), and both hypersurfaces, M and Sn, have the same normals at the
points of Sp.

Since the distribution Δ determines a one-parameter family of submanifolds
Qn−1(s), s ∈ J in a neighborhood U of p, then U is a part of the envelope of this
family.

Finally we apply Propositions 3.6, 3.9, 3.12 and obtain the second part of the
theorem. �

Applying Theorem 4.1, we obtain immediately

Theorem 4.2. Let (M, g, ξ) (dimM = n ≥ 4) be a subprojective Riemannian
manifold with curvature tensor (4.1) satisfying the conditions:

b �= 0, a < 0.

Then the manifold is locally ξ-isometric to a rotational space-like hypersurface in
Rn+1

1 .

Moreover, the manifold is locally ξ-isometric to a rotational space-like hyper-
surface of elliptic, hyperbolic or parabolic type, according to

a+ k2 > 0, a+ k2 < 0 or a+ k2 = 0,

respectively.
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5. CONFORMALLY FLAT RIEMANNIAN HYPERSURFACES IN
EUCLIDEAN OR MINKOWSKI SPACE

5.1. CONFORMALLY FLAT HYPERSURFACES IN EUCLIDEAN SPACE

A hypersurface M in Euclidean space is said to be quasi-umbilical [5] if its
second fundamental form h satisfies the equality

h = α g + β η ⊗ η (5.1)

for some functions α �= 0, β �= 0, and a unit 1-form η on M . The close relation
between conformally flat hypersurfaces in Euclidean space from one hand side,
and quasi-umbilical hypersurfaces in Rn+1 from another hand side, is the following
statement [3, 18] (see also [16]):

Lemma 5.1. (Cartan - Schouten) Let M be a conformally flat hypersurface
in Rn+1. Then the shape operator of M at any point has a root of multiplicity at
least n− 1.

As a result of Lemma 5.1 we have

Lemma 5.2. Any conformally flat hypersurface M in Euclidean space, which
is free of umbilical points, is quasi-umbilical.

Proof. Let A be the shape operator of the hypersurface M . Since M is free
of umbilical points, then according to Lemma 5.1 the operator A has at any point
two different eigenvalues α and α+ β of multiplicity n− 1 and 1, respectively. Let
ξ be the unit eigenvector field, corresponding to the function α + β. Denoting by
η the 1-form, corresponding to ξ with respect to the metric g, we obtain (5.1). �

Equality (5.1) implies that the curvature tensor R of M has the form

R = α2 π + αβ Φ ; α2 > 0, αβ �= 0,

i.e. (M, g, ξ) is a Riemannian QC-manifold with positive horizontal sectional cur-
vatures.

Applying Proposition 3 [11], we obtain:

Theorem 5.3. Any conformally flat hypersurface M in Rn+1, which is free
of umbilical points, locally lies on a canal hypersurface.

If (M, g) is a conformally flat hypersurface in Rn+1, then the manifold (M, g)
admits a unit vector field ξ, such that (M, g, ξ) is a Riemannian QC-manifold with
positive horizontal sectional curvatures a > 0. Any two locally isometric confor-
mally flat hypersurfaces are locally ξ-isometric, i.e. rigid. Taking into account
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Theorem 2.4, we obtain that any isometric embedding of a conformally flat Rie-
mannian manifold into Rn+1 is locally determined up to a motion. We also recall
the results of R. Beez [2] and W. Killing [14]:

A hypersurface in the Euclidean space is rigid if at least three principal cur-
vatures are different from zero at each point of it, i.e. the hypersurface has type-
number ≥ 3 at each point.

Thus, we obtained that

The local theory of conformally flat Riemannian manifolds, isometrically em-
bedded as hypersurfaces in Euclidean space, is equivalent to the local theory of Rie-
mannian QC-manifolds with positive horizontal sectional curvatures.

Taking into account the local classification of hypersurfaces in Euclidean space
of constant sectional curvature and Theorem 5.3, we obtain a local geometric clas-
sification of conformally flat hypersurfaces in Rn+1:

Theorem 5.4. Any conformally flat hypersurface M in Rn+1 is locally a part
of one of the following hypersurfaces:

(i) hyperplane (α = β = 0);

(ii) hypersphere (α �= 0, β = 0);

(iii) developable hypersurface (α = 0, β �= 0);

(iv) canal hypersurface (α �= 0, β �= 0).

5.2. CONFORMALLY FLAT SPACE-LIKE HYPERSURFACES IN MINKOWSKI SPACE

Let M be a space-like hypersurface in Minkowski space with second funda-
mental form h. Similarly to the Euclidean case, we call the hypersurface M quasi-
umbilical if

h = α g + β η ⊗ η (5.2)

for some functions α �= 0, β �= 0, and a unit 1-form η on M .

The proof of Lemma 5.1 is also valid without any essential changes for confor-
mally flat hypersurfaces in Minkowski space.

Lemma 5.5. Let M be a conformally flat space-like hypersurface in Rn+1
1 .

Then the shape operator of M at any point has a root of multiplicity at least n− 1.

Analogously to Subsection 5.1., Lemma 5.5 implies the following statement.

Lemma 5.6. Any conformally flat space-like hypersurface M in Minkowski
space, which is free of umbilical points, locally is quasi-umbilical.

Equality (5.2) implies that the curvature tensor R of M has the form

R = −α2 π − αβ Φ ; α2 > 0, αβ �= 0,
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i.e. (M, g, ξ) is a Riemannian QC-manifold with negative horizontal sectional cur-
vatures.

Applying Theorem 4.1, we obtain:

Theorem 5.7. Any conformally flat space-like hypersurface M in Minkowski
space, which is free of umbilical points, locally is a part of a canal space-like hyper-
surface.

If (M, g) is a conformally flat space-like hypersurface in Rn+1
1 , then the man-

ifold (M, g) admits a unit vector field ξ, such that (M, g, ξ) is a Riemannian QC-
manifold with negative horizontal sectional curvatures a < 0. Any two locally iso-
metric conformally flat space-like hypersurfaces are locally ξ-isometric, i.e. rigid.
All isometric realizations of a conformally flat Riemannian manifold into Rn+1

1 are
locally congruent.

Thus we have:

The local theory of conformally flat Riemannian manifolds, isometrically im-
mersed as space-like hypersurfaces in Minkowski space, is equivalent to the local
theory of Riemannian QC-manifolds with negative horizontal sectional curvatures.

Taking into account the local classification of space-like hypersurfaces of con-
stant sectional curvatures in Minkowski space, and Theorem 5.7, we obtain the
following geometric classification of conformally flat space-like hypersurfaces in
Minkowski space:

Theorem 5.8. Any conformally flat space-like hypersurface M in Minkowski
space is locally a part of one of the following hypersurfaces:

(i) a space-like hyperplane (α = β = 0);

(ii) a space-like hypersphere (α �= 0, β = 0);

(iii) a space-like developable hypersurface (α = 0, β �= 0);

(iv) a space-like canal hypersurface (α �= 0, β �= 0).
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20. von Lilienthal, R.: Encyklopädie der mathematischen Wissenschaften mit Einschluss
ihrer Anwendungen, Band III - Geometrie, 3. Teil, D. Differentialgeometrie, 5.
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1. INTRODUCTION

The differential geometry of the manifolds equipped with an almost contact
structure is well studied (see, e.g. [3]). The almost contact manifolds with B-
metric are introduced and classified in [6]. These manifolds are the odd-dimensional
counterpart of the almost complex manifolds with Norden metric [5, 7].

An object of special interest is the case of the lowest dimension of the considered
manifolds. We investigate the almost contact B-metric manifolds in dimension
three and get explicit results. Some curvature identities of the three-dimensional
manifolds of this type are studied in [11, 12].
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Almost contact manifolds with B-metric can be constructed on Lie algebras.
It is known that all three-dimensional real Lie algebras are classified in [1, 2].
The main goal of this paper is to find a relation between the classes in the Bianchi
classification and the classification of almost contact B-metric manifolds given in [6].
Moreover, the present work gives some geometrical characteristics of the considered
manifolds in certain special classes.

The paper is organized as follows. In Section 2 we recall some preliminary
facts about the almost contact B-metric manifolds. In Section 3 we equip each
Bianchi-type Lie algebra with an almost contact B-metric structure. In Section 4
we give the relation between the Bianchi classification and the classification given
in [6]. Section 5 is devoted to the curvature properties of some of the considered
manifolds.

2. PRELIMINARIES

Let (M,ϕ, ξ, η, g) be an almost contact manifold with B-metric or an almost
contact B-metric manifold, where M is a (2n + 1)-dimensional differentiable ma-
nifold, (ϕ, ξ, η) is an almost contact structure consisting of an endomorphism ϕ of
the tangent bundle, a Reeb vector field ξ and its dual contact 1-form η. Moreover,
M is equipped with a pseudo-Riemannian metric g, called a B-metric, such that
the following algebraic relations are satisfied [6]:

ϕξ = 0, ϕ2 = −Id + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,
g(ϕx, ϕy) = −g(x, y) + η(x)η(y),

where Id is the identity. In the latter equalities and further, x, y, z, w will stand
for arbitrary elements of the algebra of the smooth vector fields on M or vectors
in the tangent space TpM of M at an arbitrary point p in M .

The associated B-metric g̃ of g is determined by g̃(x, y) = g(x, ϕy) + η(x)η(y).
The manifold (M,ϕ, ξ, η, g̃) is also an almost contact B-metric manifold. The sig-
nature of both metrics g and g̃ is necessarily (n+1, n). We denote the Levi-Civita
connection of g and g̃ by ∇ and ∇̃, respectively.

A classification of almost contact B-metric manifolds, consisting of eleven basic
classes F1, F2, . . . , F11, is given in [6]. This classification is made with respect to
the tensor F of type (0,3) defined by

F (x, y, z) = g
(
(∇xϕ) y, z

)
(2.1)

and having the following properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

The special class determined by the condition F (x, y, z)=0 is denoted by F0.
This class is the intersection of all the basic classes. Hence F0 is the class of almost
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contact B-metric manifolds with∇-parallel structures, i.e. ∇ϕ = ∇ξ = ∇η = ∇g =
∇g̃ = 0. Therefore F0 is the class of the cosymplectic manifolds with B-metric.

According to [10], the square norm of ∇ϕ is defined by:

‖∇ϕ‖2 = gijgksg
(
(∇eiϕ) ek,

(∇ejϕ
)
es
)
. (2.2)

It is clear that ‖∇ϕ‖2 = 0 is valid if (M,ϕ, ξ, η, g) is a cosymplectic manifold with
B-metric, but the inverse implication is not always true. An almost contact B-
metric manifold having a zero square norm of ∇ϕ is called an isotropic-cosymplectic
B-metric manifold.

If {ei; ξ} (i = 1, 2, . . . , 2n) is a basis of TpM and
(
gij
)
is the inverse matrix of

(gij), then the 1-forms θ, θ∗, ω, called Lee forms, are associated with F and defined
by:

θ(z) = gijF (ei, ej , z), θ∗(z) = gijF (ei, ϕej , z), ω(z) = F (ξ, ξ, z).

Let now consider the case of the lowest dimension of the almost contact B-
metric manifold M , i.e. dimM = 3.

We introduce an almost contact structure (ϕ, ξ, η) on M defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0, ξ = e3,
η(e1) = η(e2) = 0, η(e3) = 1

(2.3)

and a B-metric g such that

g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1, g(ei, ej) = 0, i �= j ∈ {1, 2, 3}. (2.4)

Let us denote the components Fijk = F (ei, ej , ek) of F with respect to a ϕ-basis
{e1, e2, e3} of TpM .

According to [8], the components of the Lee forms are

θ1 = F111 − F221, θ2 = F112 − F211, θ3 = F113 − F223,
θ∗1 = F112 + F211, θ∗2 = F111 + F221, θ∗3 = F123 + F213,
ω1 = F331, ω2 = F332, ω3 = 0.

Then, if Fs (s = 1, 2, . . . , 11) are the components of F in the corresponding
basic classes Fs and x = xiei, y = yjej , z = zkek for arbitrary vectors in TpM , we
have [8]:

F1(x, y, z) =
(
x1θ1 − x2θ2

) (
y1z1 + y2z2

)
,

θ1 = F111 = F122, θ2 = −F211 = −F222;

F2(x, y, z) = F3(x, y, z) = 0;

F4(x, y, z) =
1

2
θ3

{
x1
(
y3z1 + y1z3

)− x2
(
y3z2 + y2z3

)}
,

1

2
θ3 = F131 = F113 = −F232 = −F223;

(2.5)
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F5(x, y, z) =
1

2
θ∗3
{
x1
(
y3z2 + y2z3

)
+ x2

(
y3z1 + y1z3

)}
,

1

2
θ∗3 = F132 = F123 = F231 = F213;

F6(x, y, z) = F7(x, y, z) = 0;

F8(x, y, z) = λ
{
x1
(
y3z1 + y1z3

)
+ x2

(
y3z2 + y2z3

)}
,

λ = F131 = F113 = F232 = F223;

F9(x, y, z) = μ
{
x1
(
y3z2 + y2z3

)− x2
(
y3z1 + y1z3

)}
,

μ = F132 = F123 = −F231 = −F213;

F10(x, y, z) = νx3
(
y1z1 + y2z2

)
, ν = F311 = F322;

F11(x, y, z) = x3
{(

y1z3 + y3z1
)
ω1 +

(
y2z3 + y3z2

)
ω2

}
,

ω1 = F313 = F331, ω2 = F323 = F332.

(2.6)

Obviously, the class of three-dimensional almost contact B-metric manifolds is

F1 ⊕F4 ⊕F5 ⊕F8 ⊕F9 ⊕F10 ⊕F11.

Let R = [∇,∇]−∇[ , ] be the curvature (1,3)-tensor of ∇. The corresponding
curvature (0, 4)-tensor is denoted by the same letter: R(x, y, z, w) = g(R(x, y)z, w).
The following properties are valid:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),
R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

It is known from [11] that every 3-dimensional cosymplectic B-metric manifold
is flat, i.e. R = 0.

The Ricci tensor ρ and the scalar curvature τ for R as well as their associated
quantities are defined respectively by

ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej),
ρ∗(y, z) = gijR(ei, y, z, ϕej), τ∗ = gijρ∗(ei, ej),

where {e1, e2, . . . , e2n+1} is an arbitrary basis of TpM .

Let α be a non-degenerate 2-plane (section) in TpM . It is known that the spe-
cial 2-planes with respect to (ϕ, ξ, η, g) are: a totally real section if α is orthogonal
to its ϕ-image ϕα, a ϕ-holomorphic section if α coincides with ϕα and a ξ-section
if ξ lies on α.

The sectional curvature k(α; p)(R) of α with an arbitrary basis {x, y} at p is

k(α; p)(R) =
R(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2
.

According to [9], a manifold M whose Ricci tensor satisfies

ρ = λg + μg̃ + νη ⊗ η

is said to be an η-complex-Einstein manifold.
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3. EQUIPPING OF EACH BIANCHI-TYPE LIE ALGEBRA WITH ALMOST
CONTACT B-METRIC STRUCTURE

It is known that L. Bianchi has categorized all three-dimensional real (and
complex) Lie algebras. He proved that every three-dimensional Lie algebra is iso-
morphic to one, and only one, Lie algebra of his list (cf. [1, 2]). These isomorphism
classes form the so-called Bianchi classification and are noted by Bia(I), Bia(II),
Bia(IV), Bia(V), Bia(VIh) (h ≤ 0), Bia(VIIh) (h ≥ 0), Bia(VIII) and Bia(IX).
The class Bia(III) coincides with Bia(VI−1). The following theorem introduces the
Bianchi classification.

Theorem A. ([1, 2]) Let l be a real three-dimensional Lie algebra. Then l
is isomorphic to exactly one of the following Lie algebras (R3, [·, ·]), where the Lie
bracket is given on the canonical basis {e1, e2, e3} as follows:

Bia(I) : [e1, e2] = o, [e2, e3] = o, [e3, e1] = o;
Bia(II) : [e1, e2] = o, [e2, e3] = e1, [e3, e1] = o;
Bia(IV) : [e1, e2] = o, [e2, e3] = e1 − e2, [e3, e1] = e1;
Bia(V) : [e1, e2] = o, [e2, e3] = e2, [e3, e1] = e1;
Bia(VIh) (h ≤ 0) : [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 − e2;
Bia(VIIh) (h ≥ 0) : [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 + e2;
Bia(VIII) : [e1, e2] = −e3, [e2, e3] = e1, [e3, e1] = e2;
Bia(IX) : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Here, o is the zero vector in l.

The geometrization conjecture, associated with W. Thurston, states that ev-
ery closed manifold of dimension three could be decomposed in a canonical way
into pieces, connected to one of the eight types of Thurston’s geometric structures
([13]): Euclidean geometry E3, Spherical geometry S3, Hyperbolic geometry H3,
the geometry of S2 × R, the geometry of H2 × R, the geometry of the universal
cover S̃L(2,R) of the special linear group SL(2,R), the Nil geometry, the Solv
geometry.

Seven of the eight Thurston geometries can be associated to a class of the
Bianchi classification as it is shown in the following table. The Thurston geometry
on S2 × R has no such a realization (see, e.g., [4]).

TABLE 1. Relations between the Bianchi types and the Thurston geometries

Bia(I) E3

Bia(II) Nil
Bia(III) H2 × R
Bia(IV)
Bia(V) H3

Bia(VI0) Solv

Bia(VIh<0)
Bia(VII0) E3

Bia(VIIh>0)

Bia(VIII) ˜SL(2,R)
Bia(IX) S3
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Let us consider each Lie algebra from the Bianchi classification, equipped with
an almost contact structure (ϕ, ξ, η) and a B-metric g as in (2.3) and (2.4).

The presence of the structure (ϕ, ξ, η, g) gives us a reason to consider the
relation between the Bianchi types and the classification of almost contact B-metric
manifolds in [6].

We obtain immediately the following

Proposition 3.1. Some Bianchi types can be equipped with a structure (ϕ, ξ, η,
g) in several ways. In the cases Bia(I) and Bia(IX) there is only one variant. In
the remaining cases, there are three possible subtypes of each type, obtained from
each other by a cyclic change of the basic vectors e1, e2 and e3. All subtypes are
given in Table 2:

TABLE 2. Equipping of the Bianchi types Lie algebras with a (ϕ, ξ, η, g) structure

Bia(I)
(1) [e1, e2] = o, [e2, e3] = o, [e3, e1] = o
Bia(II)
(1) [e1, e2] = o, [e2, e3] = e1, [e3, e1] = o
(2) [e1, e2] = o, [e2, e3] = o, [e3, e1] = e2
(3) [e1, e2] = e3, [e2, e3] = o, [e3, e1] = o
Bia(III) ≡ Bia(VI−1)
(1) [e1, e2] = o, [e2, e3] = e1 + e2, [e3, e1] = −e1 − e2
(2) [e1, e2] = −e2 − e3, [e2, e3] = o, [e3, e1] = e2 + e3
(3) [e1, e2] = e1 + e3, [e2, e3] = −e1 − e3, [e3, e1] = o
Bia(IV)
(1) [e1, e2] = o, [e2, e3] = e1 − e2, [e3, e1] = e1
(2) [e1, e2] = e2, [e2, e3] = o, [e3, e1] = e2 − e3
(3) [e1, e2] = −e1 + e3, [e2, e3] = e3, [e3, e1] = o
Bia(V)
(1) [e1, e2] = o, [e2, e3] = e2, [e3, e1] = e1
(2) [e1, e2] = e2, [e2, e3] = o, [e3, e1] = e3
(3) [e1, e2] = e1, [e2, e3] = e3, [e3, e1] = o
Bia(VIh), h ≤ 0
(1) [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 − e2
(2) [e1, e2] = he2 − e3, [e2, e3] = o, [e3, e1] = e2 − he3
(3) [e1, e2] = −he1 + e3, [e2, e3] = −e1 + he3, [e3, e1] = o
Bia(VIIh), h ≥ 0
(1) [e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 + e2
(2) [e1, e2] = he2 + e3, [e2, e3] = o, [e3, e1] = e2 − he3
(3) [e1, e2] = −he1 + e3, [e2, e3] = e1 + he3, [e3, e1] = o
Bia(VIII)
(1) [e1, e2] = −e3, [e2, e3] = e1, [e3, e1] = e2
(2) [e1, e2] = e3, [e2, e3] = −e1, [e3, e1] = e2
(3) [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = −e2
Bia(IX)
(1) [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2

138 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 133–144.



4. ALMOST CONTACT B-METRIC MANIFOLDS OF EACH BIANCHI TYPE

Let us consider the Lie group L corresponding to the given Lie algebra l. Each
definition of a Lie algebra for the different subtypes in Proposition 3.1 generates a
corresponding almost contact B-metric manifold denoted by (L,ϕ, ξ, η, g). In this
section we characterize the obtained manifolds with respect to the classification in
[6].

Using (2.5)–(2.6), we obtain the corresponding components of F in each sub-
types (1), (2), (3) in Proposition 3.1 and determine the corresponding class of
almost contact B-metric manifolds. The results are given in the following

Theorem 4.1. The manifold (L,ϕ, ξ, η, g), determined by each type of Lie
algebra given in Proposition 3.1, belongs to a class from the classification in [6] as
given in Table 3:

TABLE 3. Relations between the Bianchi types and the classes in [6]

Bia(I)
(1) F0

Bia(II)
(1) F4 ⊕F10

(2) F4 ⊕F10

(3) F8 ⊕F10

Bia(III)
(1) F5 ⊕F10

(2) F1 ⊕F4 ⊕F8 ⊕F11

(3) F1 ⊕F4 ⊕F8 ⊕F10 ⊕F11

Bia(IV)
(1) F4 ⊕F5 ⊕F10

(2) F1 ⊕F4 ⊕F10 ⊕F11

(3) F1 ⊕F8 ⊕F10 ⊕F11

Bia(V)
(1) F9

(2) F1 ⊕F11

(3) F1 ⊕F11

Bia(VI0)
(1) F10

(2) F4 ⊕F8

(3) F4 ⊕F8 ⊕F10

Bia(VIh), h < 0
(1) F5 ⊕F10

(2) F1 ⊕F4 ⊕F8 ⊕F11

(3) F1 ⊕F4 ⊕F8 ⊕F10 ⊕F11

Bia(VII0)
(1) F4

(2) F4 ⊕F8 ⊕F10

(3) F4 ⊕F8

Bia(VIIh), h > 0
(1) F4 ⊕F5

(2) F1 ⊕F4 ⊕F8 ⊕F10 ⊕F11

(3) F1 ⊕F4 ⊕F8 ⊕F11

Bia(VIII)
(1) F4 ⊕F8 ⊕F10

(2) F8 ⊕F10

(3) F8 ⊕F10

Bia(IX)
(1) F4 ⊕F8 ⊕F10

Proof. We give our arguments for the case of Bia(II), the other cases are proven
in a similar way.

Using Theorem A, Eq. (2.4) and the Koszul equality

2g (∇eiej , ek) = g ([ei, ej ], ek) + g ([ek, ei], ej) + g ([ek, ej ], ei) ,

we obtain the components of the Levi-Civita connection ∇ of g. Then, by them,
(2.1) and (2.3), we get the following non-zero components Fijk and θk for the
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different subtypes:

(1) F113 = F131 = −F223 = −F232 = − 1
2 , F311 = F322 = −1, θ3 = −1;

(2) F113 = F131 = −F223 = −F232 = − 1
2 , F311 = F322 = 1, θ3 = −1;

(3) F113 = F131 = F223 = F232 = 1
2 , F311 = F322 = 1.

Bearing in mind (2.5)–(2.6), we conclude that the corresponding classes of each
subtype of Bia(II) are as follows:

(1) (L,ϕ, ξ, η, g) ∈ F4 ⊕F10;
(2) (L,ϕ, ξ, η, g) ∈ F4 ⊕F10;
(3) (L,ϕ, ξ, η, g) ∈ F8 ⊕F10.

�

5. CURVATURE PROPERTIES OF THE CONSIDERED MANIFOLDS IN
SOME BIANCHI CLASSES

Now we focuss our considerations on the Bianchi classes depending on a real
parameter h. They are Bia(VIh) and Bia(VIIh). Actually, these two classes are
families of manifolds whose properties are functions of h. The classes regarding F
corresponding to Bia(VIh), h < 0 and Bia(VIIh), h > 0, according to Theorem 4.1,
can not be restricted for special values of h.

In this section our interest is in the curvature properties of these manifolds in
terms of h.

In view of Proposition 3.1, it is reasonable to investigate all three subtypes of
the Bianchi classes Bia(VIh), h ≤ 0 and Bia(VIIh), h ≥ 0.

5.1. Bia(VIh), h ≤ 0.

Let us consider subtype (1) of this Bianchi class as given in Proposition 3.1:

[e1, e2] = o, [e2, e3] = e1 − he2, [e3, e1] = he1 − e2.

We calculate the non-zero components of ∇ for Bia(VIh):

∇e1e1 = he3, ∇e1e3 = −he1, ∇e2e2 = −he3,
∇e2e3 = −he2, ∇e3e1 = −e2, ∇e3e2 = −e1. (5.1)

Using (2.2), (2.3), (2.4) and (5.1), we obtain for the square norm of ∇ϕ

‖∇ϕ‖2 = 4(2− h2). (5.2)

Further, we calculate the basic components Rijkl = R(ei, ej , ek, el) of the cur-
vature tensor R, ρjk = ρ(ej , ek) of the Ricci tensor ρ, ρ∗jk = ρ∗(ej , ek) of the
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associated Ricci tensor ρ∗, the values of the scalar curvatures τ and τ∗ and of the
sectional curvatures kij = k(ei, ej). They are as follows:

R1212 = −R1313 = R2323 = −h2;
ρ11 = −ρ22 = ρ33 = −2h2, ρ∗12 = ρ∗21 = −h2;

τ = −6h2, τ∗ = 0;
k12 = k13 = k23 = −h2.

(5.3)

Using (5.3) we obtain the following

Proposition 5.1. In the case Bia(VIh), subtype (1), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is flat if and only if h = 0;

2). (L,ϕ, ξ, η, g) is an isotropic-cosymplectic B-metric manifold if and only if
h = −√2;

3). The scalar curvature and the sectional curvatures are constant and non-
positive;

4). (L,ϕ, ξ, η, g) is ∗-scalar flat, i.e. τ∗ = 0;

5). (L,ϕ, ξ, η, g) is an Einstein manifold.

In the same fashion we obtain the analogues of (5.2) and (5.3) and derive the
corresponding propositions in the remaining cases. For subtype (2) we have:

‖∇ϕ‖2 = 2(1− 5h2);
R1212 = −R1313 = R2323 = −h2;

ρ11 = −ρ22 = ρ33 = −2h2, ρ∗12 = ρ∗21 = −h2;
τ = −6h2, τ∗ = 0;
k12 = k13 = k23 = −h2,

whence we deduce the following

Proposition 5.2. In the case Bia(VIh), subtype (2), all the statements from

Proposition 5.1 hold true, with h = −√2 replaced by h = −
√
5
5 in statement 2).

In the case of subtype (3) we obtain:

‖∇ϕ‖2 = 10(h2 + 1);
R1212 = R2323 = h2 + 1, R1313 = 1− h2, R1223 = 2h;
ρ11 = ρ33 = 2h2, ρ13 = ρ31 = −2h, ρ22 = −2(h2 + 1);

ρ∗12 = ρ∗21 = h2 + 1, ρ∗23 = ρ∗32 = −2h;
τ = 2(3h2 + 1), τ∗ = 0;

k12 = k23 = h2 + 1, k13 = h2 − 1.

The latter equalities imply
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Proposition 5.3. In the case Bia(VIh), subtype (3), the following statements
are valid:

1). The square norm of ∇ϕ and the scalar curvature are positive;

2). (L,ϕ, ξ, η, g) is ∗-scalar flat;

3). The sectional curvatures of the ϕ-holomorphic sections are constant and
positive.

5.2. Bia(VIIh), h ≥ 0.

Here we focus on the three subtypes of Bia(VIIh). Firstly, let us consider the
subtype (1). As in the previous subsection, we find:

‖∇ϕ‖2 = 4(1− h2);
R1212 = −(h2 + 1), R1313 = −R2323 = h2 − 1, R1323 = −2h;

ρ11 = −ρ22 = −2h2, ρ12 = ρ21 = 2h, ρ33 = 2(1− h2);
ρ∗12 = ρ∗21 = −(h2 + 1), ρ∗33 = 4h;

τ = 2(1− 3h2), τ∗ = 4h;
k12 = −(h2 + 1), k13 = k23 = 1− h2.

Applying these results we obtain

Proposition 5.4. In the case Bia(VIIh), subtype (1), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is an isotropic-cosymplectic B-metric manifold if and only if
h = 1;

2). (L,ϕ, ξ, η, g) is scalar flat if and only if h =
√
3
3 ;

3). (L,ϕ, ξ, η, g) is ∗-scalar flat if and only if h = 0;

4). The sectional curvatures of the ϕ-holomorphic sections are constant and
negative;

5). The sectional curvatures of the ξ-sections are constant;

6). (L,ϕ, ξ, η, g) is an η-complex-Einstein manifold.

Analogously, we get the corresponding results for subtype (2):

‖∇ϕ‖2 = −10(h2 − 1);
R1212 = −R1313 = −(h2 − 1), R2323 = −(h2 + 1), R1213 = 2h;

ρ11 = −2(h2 − 1), ρ22 = −ρ33 = 2h2, ρ23 = ρ32 = −2h;
ρ∗12 = ρ∗21 = −(h2 − 1), ρ∗13 = ρ∗31 = 2h;

τ = −2(3h2 − 1), τ∗ = 0;
k12 = k13 = −(h2 − 1), k23 = −(h2 + 1).

The latter equalities imply the following
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Proposition 5.5. In the case Bia(VIIh), subtype (2), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is an isotropic-cosymplectic B-metric manifold if and only if
h = 1;

2). (L,ϕ, ξ, η, g) is scalar flat if and only if h =
√
3
3 ;

3). (L,ϕ, ξ, η, g) is ∗-scalar flat;

4). (L,ϕ, ξ, η, g) is horizontal flat, i.e. R|H = 0 for H = ker(η), if and only
if h = 1;

5). ρ∗ and g̃ are proportional on H as ρ∗|H = (h2 − 1)g̃|H ;

6). (L,ϕ, ξ, η, g) is horizontal ∗-Ricci flat, i.e. ρ∗|H = 0, if and only if h = 1.

Finally, for the case of the subtype (3) we have:

‖∇ϕ‖2 = 2(5h2 + 1);
R1212 = −R1313 = R2323 = h2;

ρ11 = −ρ22 = ρ33 = 2h2;
ρ∗12 = ρ∗21 = h2;

τ = 6h2, τ∗ = 0;
k12 = k13 = k23 = h2,

whence we deduce our last proposition:

Proposition 5.6. In the case Bia(VIIh), subtype (3), the following statements
are valid:

1). (L,ϕ, ξ, η, g) is flat if and only if h = 0;

2). The square norm of ∇ϕ is positive;

3). (L,ϕ, ξ, η, g) is ∗-scalar flat;

4). The scalar curvature and the sectional curvatures are constant and non-
negative;

5). (L,ϕ, ξ, η, g) is an Einstein manifold.
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1. INTRODUCTION

We study quadrature formulae of the type

Q[f ] =

n∑
i=1

ai f(xi), 0 ≤ x1 < x2 < · · · < xn ≤ 1 , (1.1)

that serve as an estimate for the definite integral

I[f ] :=

1∫
0

f(x) dx. (1.2)

Throughout this paper πk will stand for the set of algebraic polynomials of degree
not exceeding k.
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The classical approach for construction of quadrature formulae is based on the
concept of algebraic degree of precision. The quadrature formula (1.1) is said to
have algebraic degree of precision m (in short, ADP (Q) = m), if its remainder

R[Q; f ] := I[f ]−Q[f ]

vanishes whenever f ∈ πm, and R[Q; f ] �= 0 when f is a polynomial of degree m+1.

The ADP-concept is justified by the Weierstrass theorem about the density of
algebraic polynomials in spaces of continuous functions on compacts. The pursuit
of quadrature formulae (1.1) with the highest possible ADP leads to the well-
known quadrature formulae of Gauss, Radau and Lobatto. The latter are uniquely
determined by having ADP equal to 2n− 1, 2n− 2 and 2n− 3, respectively, where,
in addition, the Radau quadrature formula has one fixed node being an end-point
of the integration interval, and the Lobatto quadrature formula has two fixed nodes
at the ends of the integration interval.

An alternative concept for evaluation of the quality of quadrature formulae
emerged in the forties of the 20-th century, namely, the concept of optimality in
a given class of functions. Its founders are A. Kolmogorov, A. N. Sard and S. M.
Nikolskii. Let us briefly describe the setting of optimal quadrature formulae in a
given class of functions.

Let X be a normed linear space of functions defined in [0, 1], with a norm ‖ · ‖ .
For a quadrature formula Q of the form (1.1), we denote by E(Q,X) the largest
possible error of Q for functions from the unit ball of X, i.e.

E(Q,X) := sup
‖f‖X≤1

|R[Q; f ]|.

We look for the best possible choice of the coefficients {ai}ni=1 and the nodes {xi}ni=1

of Q, and set
En(X) := inf

Q
E(Q,X).

If the infimum is attained for a quadrature formula Qopt of the form (1.1), then
Qopt is said to be an optimal quadrature formula of the type (1.1) in the space X.
Of particular interest is the case when X is some of the Sobolev classes of functions
W̃ r

p and W r
p , defined by

W̃ r
p := {f ∈ Cr−1[0, 1], f − 1–periodic , f (r−1) abs. cont. , ‖f‖p <∞},

W r
p := {f ∈ Cr−1[0, 1], f (r−1) abs. cont. , ‖f‖p <∞},

where

‖f‖p :=
(∫ 1

0

|f(t)|pdt
)1/p

, if 1 ≤ p <∞, and ‖f‖∞ = sup
t∈(0,1)

vrai |f(t)|.

In the periodic Sobolev classes W̃ r
p there is an universal optimal quadrature for-

mula (i.e. optimal for all r ∈ N and p ≥ 1) of the form (1.1), namely, the n-point
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rectangles quadrature formula and its translates. This is a result due to Zhensyk-
baev [14], special cases have been obtained earlier by Motornii [10], and Ligun [9].
The existence and uniqueness of optimal quadrature formulae in the non-periodic
Sobolev spaces W r

p is equivalent to the existence and uniqueness of specific monos-
plines of degree r with a minimal Lq-deviation from zero, (1/p + 1/q = 1). This
was proved by Zhensykbaev [15], and Bojanov extended Zhensykbaev’s result to
more general classes of quadrature formulae involving derivatives of the integrand.
Obviously, En(W̃ r

p ) ≤ En(W r
p ), and it is known that (see Brass [6]) for 1 < p ≤ ∞,

lim
n→∞

En(W̃ r
p )

En(W r
p )

= 1.

A drawback of the optimality concept is that, in general, the explicit form of
the optimal quadrature formulae is unknown, a fact that vitiates their importance
from practical point of view. In particular, except for some special cases of r = 1
and r = 2, the optimal quadrature formulae in the non-periodic Sobolev spaces W r

p

are unknown.

The way out of this situation is to step back from the requirement for opti-
mality, and to look for quadrature formulae which are nearly optimal. A sequence
{Qn} of quadrature formulae is said to be asymptotically optimal in the function
class X, if

lim
n→∞

E(Qn, X)

En(X)
= 1

(here, Qn is supposed to be a quadrature formula with n nodes).

It has been shown in [8] that the Gauss-type quadrature formulae associated
with the spaces of spline functions with equidistant knots are asymptotically opti-
mal in the non-periodic Sobolev classes W r

p . The existence and uniqueness of such
Gauss-type quadrature formulae is equivalent to the fundamental theorem of alge-
bra for monosplines satisfying zero boundary conditions, which was proved in [7].
This fact was a motivation for investigation of such quadratures. Algorithms for
the construction along with sharp error estimates of the Gauss-type quadrature for-
mulae associated with spaces of linear and parabolic spline functions were proposed
in [11] and [13] (see also [12] for the case of cubic splines with double equidistant
knots). Recently, an algorithm for the construction of Gaussian quadrature formu-
lae associated with spaces of cubic splines with equidistant knots was proposed in
[1].

It should be noted that the complexity of the algorithms for the construction
of Gauss-type quadrature formulae associated with spaces of spline functions with
equidistant knots increases with increasing of the degree (that is, of parameter r in
W r

p ). For r ≥ 3 such quadratures are constructed only numerically. This requires
high accuracy computations, especially when the number of the nodes is large. An
additional difficulty causes the fact that the mutual location of the spline knots
and the quadratures nodes is unknown.
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In [2] we proposed an alternative approach for generation of sequences of
asymptotically optimal quadrature formulae. There we constructed sequences of
asymptotically optimal quadrature formulae in the Sobolev classes W 4

p , for p = 2
and p = ∞. Our approach makes use of Euler–MacLaurin–type summation for-
mulae, in which the derivatives are replaced by suitable formulae for numerical
differentiation. An advantage of our quadrature formulae, besides their asymptot-
ical optimality, is the explicit form of their weights and nodes. In fact, most of the
nodes of our quadrature formulae are either those of the compound trapezium or
of the compound midpoint quadratures, to which we add a few more nodes.

Here we continue our study on this subject. The paper is organized as fol-
lows. In Section 2 we provide some well-known facts, including the Peano kernel
representation of linear functionals, the Bernoulli polynomials, monosplines and
numbers, the Euler–MacLaurin–type expansion formulae, and the error representa-
tion of the compound trapezium and midpoint quadrature formulae in the periodic
Sobolev classes W̃ r

p . In Section 3 we construct some sequences of asymptotically
optimal quadrature formulae in the non-periodic Sobolev classes W 3

1 , 1 ≤ p ≤ ∞,
and evaluate their sharp error constants in the cases p = 1, 2, ∞. In Section 4
we construct two sequences of asymptotically optimal quadrature formulae in the
Sobolev classes W 4

1 . Section 5 contains some concluding remarks.

2. PRELIMINARIES

2.1. SPLINE FUNCTIONS AND PEANO KERNELS OF LINEAR FUNCTIONALS

A spline function of degree r − 1 (r ∈ N) with knots x1 < x2 < · · · < xn is a
function s(t) satisfying the requirements

1) s(t)|t∈(xi,xi+1) ∈ πr−1, i = 0, . . . , n,

2) s(t) ∈ C(R) ,

where x0 := −∞ and xn+1 := ∞. The set Sr−1(x1, . . . , xn) of spline functions of
degree r − 1 with knots x1 < x2 < · · · < xn is a linear space of dimension n + r,
and a basis of Sr−1(x1, . . . , xn) is given by the functions

{1, t, . . . , tr−1, (t− x1)
r−1
+ , . . . , (t− xn)

r−1
+ },

where u+(t) is defined by

u+(t) = max{t, 0} , t ∈ R .

If L is a linear functional defined on C[0, 1] which vanishes on πs, then by a
classical result of Peano, for r ∈ N, 1 ≤ r ≤ s + 1 and f ∈ W r

1 , L admits the
integral representation

L[f ] =
∫ 1

0

Kr(t)f
(r)(t) dt, where Kr(t) = L

[ (· − t)r−1
+

(r − 1)!

]
, t ∈ [0, 1] .
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In the case when L is the remainder R[Q; ·] of a quadrature formulaQ with algebraic
degree of precision s, the function Kr(t) = Kr(Q; t) is referred to as the r-th Peano
kernel of Q. For Q as in (1.1), explicit representations for Kr(Q; t), t ∈ [0, 1], are

Kr(Q; t) =
(1− t)r

r!
− 1

(r − 1)!

n∑
i=1

ai(xi − t)r−1
+ , (2.1)

Kr(Q; t) = (−1)r
[ tr
r!
− 1

(r − 1)!

n∑
i=1

ai(t− xi)
r−1
+

]
. (2.2)

If the integrand f belongs to the Sobolev class W r
p , (1 ≤ p ≤ ∞), then from

R[Q; f ] =

∫ 1

0

Kr(Q; t)f (r)(t) dt

and from Hölder’s inequality one obtains the sharp error estimate

|R[Q; f ]| ≤ cr,p(Q)‖f (r)‖p, where cr,p(Q) = ‖Kr(Q; ·)‖q, p−1 + q−1 = 1. (2.3)

In other words, we have E(Q,W r
p ) = cr,p(Q). Throughout, cr,p(Q) will be referred

to as the error constant of Q in the Sobolev class W r
p .

Kr(Q; t) is also called a monospline of degree r with knots {xi : xi ∈ (0, 1)}.
From Kr(Q;x) = R[Q; (· − x)r−1

+ /(r − 1)!] we deduce that Kr(Q;x) = 0 for some
x ∈ (0, 1) if and only if Q evaluates to the exact value the integral of the spline
function f(t) = (t−x)r−1

+ . Thus, in order that a quadrature formula Q has maximal
spline degree of precision, i.e., Q is exact for a space of spline functions of degree
r−1 with a maximal dimension, it is necessary and sufficient that the corresponding
monospline Kr(Q; ·) has maximal number of zeros in (0, 1). Quadrature formulae
of the form (1.1) with maximal spline degree of precision are called, analogously
to the classical algebraic case, as Gauss, Radau, and Lobatto quadrature formulae,
associated with the corresponding spaces of spline functions. Similarly to the clas-
sical Gauss–type quadrature formulae, all the nodes of the Gauss-type quadratures
associated with spaces of spline functions lie in the integration interval, and all
their weights are positive [7, Theorem 7.1].

2.2. BERNOULLI POLYNOMIALS AND MONOSPLINES. EULER–MACLAURIN TYPE

SUMMATION FORMULAE

Recall that the Bernoulli polynomials Bν are defined recursively by

B0(x) = 1, B′ν(x) = Bν−1(x), and

∫ 1

0

Bν(t) dt = 0, ν ∈ N .

In particular, B1(x) = x− 1

2
, B2(x) =

x2

2
− x

2
+

1

12
, B3(x) =

x3

6
− x2

4
+

x

12
,

B4(x) =
x2(1− x)2

24
− 1

720
.
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The Bernoulli numbers Bν are defined by Bν =
Bν(0)

ν!
.

The notation B̃ν(x) stands for the 1-periodic extension of the Bernoulli poly-
nomial Bν(x) on R. The functions B̃ν(x), ν = 0, 1, . . . , are called Bernoulli monos-
plines.

Throughout this paper, n ∈ N will be fixed, and {xk,n}nk=0 and {y�,n}n�=1 are
given by

xk,n =
k

n
, k = 0, . . . , n; y�,n =

2�− 1

2n
, � = 1, . . . , n . (2.4)

The points {xk,n}nk=0 and {y�,n}n�=1 are the nodes of the n-th compound trapezium
and midpoint quadrature formulae QTr

n+1 and QMi
n , given by

QTr
n+1[f ] =

1

2n

(
f(x0,n) + f(xn,n)

)
+

1

n

n−1∑
k=1

f(xk,n) , (2.5)

QMi
n [f ] =

1

n

n−1∑
k=1

f(yk,n) . (2.6)

Our asymptotically optimal quadrature formulae are obtained as appropriate mod-
ifications of QTr

n+1 and QMi
n .

The following summation formulae of Euler–MacLaurin type (adopted for the
interval [0, 1]) are well-known, see, e.g., [6, Satz 98, 99]:

Lemma 1. Assume that f ∈W s
1 . Then

1∫
0

f(x) dx =QTr
n+1[f ]−

[ s2 ]∑
ν=1

B2ν

(2ν)!

f (2ν−1)(1)− f (2ν−1)(0)

n2ν

+
(−1)s
ns

1∫
0

B̃s(nx)f
(s)(x) dx

(2.7)

and

1∫
0

f(x) dx =QMi
n [f ] +

[ s2 ]∑
ν=1

(
1− 21−2ν

) B2ν

(2ν)!

f (2ν−1)(1)− f (2ν−1)(0)

n2ν

+
(−1)s
ns

1∫
0

B̃s

(
nx− 1

2

)
f (s)(x) dx .

(2.8)

Here, [t] denotes the integer part of t.
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2.3. THE SHARP ERROR BOUNDS OF QTr
n+1 AND QMi

n IN W̃ r
p

As was already mentioned, the midpoint quadrature formulae {QMi
n }∞n=1 and

their translates are the unique optimal quadrature formulae in the periodic Sobolev
classes W̃ r

p . The trapezium quadrature formulae {QTr
n+1}∞n=1 also can be considered

as translates of {QMi
n }∞n=1, as the values of the integrand at the endpoints are

equal. For f ∈ W̃ s
p , 1 ≤ p ≤ ∞, the sums in the right-hand sides of (2.7) and (2.8)

disappear, due to the periodicity of the integrand. Hence we obtain

R[QTr
n+1; f ] =

(−1)s
ns

1∫
0

[
B̃s(nx)− d

]
f (s)(x) dx (2.9)

and

R[QMi
n ; f ] =

(−1)s
ns

1∫
0

[
B̃s

(
nx− 1

2

)
− d
]
f (s)(x) dx , (2.10)

where d is an arbitrary constant. Applying Hölder’s inequality to (2.9) and (2.10),
and taking into account that QTr

n+1 and QMi
n are optimal quadrature formulae in

W̃ s
p , we obtain

|R[QTr
n+1; f [| ≤ En(W̃ s

p ) ‖f (s)‖p , |R[QMi
n ; f [| ≤ En(W̃ s

p ) ‖f (s)‖p ,
where

En(W̃ s
p ) =

1

ns
inf
d
‖Bs − d‖q =: ‖Bs − ds,p‖q , 1

p
+

1

q
= 1 . (2.11)

Some known values of the constant ds,p are (see, e.g., [14])

ds,p = 0 for odd s ∈ N and 1 ≤ p ≤ ∞, (2.12)

ds,p =

⎧⎪⎨⎪⎩
2−sBs(0) for even s ∈ N and p = 1,

0 for all s ∈ N and p = 2,

Bs

(
1
4

)
for even s ∈ N and p =∞ .

(2.13)

We shall need constants En(W̃ s
p ) for s = 3, 4 and p = 1, 2 and ∞. In the case

s = 3, these constants are

En(W̃ 3
∞) =

1

n3
‖B3‖1 =

1

192n3
, (2.14)

En(W̃ 3
2 ) =

1

n3
‖B3‖2 =

1

12
√
210n3

, (2.15)

En(W̃ 3
1 ) =

1

n3
‖B3‖∞ =

1

72
√
3n3

. (2.16)
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In the case s = 4, the corresponding constants are

En(W̃ 4
∞) =

1

n4
‖B4(·)−B4(1/4)‖1 =

5

6144n4
, (2.17)

En(W̃ 4
2 ) =

1

n4
‖B4‖2 =

1

240
√
21n4

, (2.18)

En(W̃ 4
1 ) =

1

n4
‖B4(·)− 2−4B4(0)‖∞ =

1

768n4
. (2.19)

3. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE IN W 3
p

Let us start with a brief outline of our method for the construction of asymp-
totically optimal quadrature formulae in the Sobolev classes W 3

p .

The Euler–MacLaurin summation formulae in Lemma 1 in the case s = 3
reduce to

1∫
0

f(x) dx =QTr
n+1[f ]−

1

12n2

[
f ′(1)− f ′(0)

]
+

1

n3

1∫
0

B̃3(nx) f
(3)(x) dx (3.1)

and

1∫
0

f(x) dx =QMi
n [f ] +

1

24n2

[
f ′(1)− f ′(0)

]
+

1

n3

1∫
0

B̃3

(
nx− 1

2

)
f (3)(x) dx . (3.2)

The derivatives f ′(0) and f ′(1) appearing in the right-hand side of (3.1) and
(3.2) will be replaced by suitable formulae for numerical differentiation. For the
sake of brevity, we give the following definition.

Definition 1. Given 0 ≤ t1 < t2 < t3 < 1, we denote by D1(t1, t2, t3)[f ]
the interpolatory formula for numerical differentiation with nodes {ti}3i=1, which
approximates f ′(0), i.e.

D1[f ] = D1(t1, t2, t3)[f ] =

3∑
i=1

ci f(ti) ≈ f ′(0) .

We shall use formulae for numerical differentiation with t3 = O(n−1). For
instance, such a formula is

D1(x0,n, y1,n, x2,n)[f ] =
n

6

[− 15f(x0,n) + 16f(y1,n)− f(x2,n)
]
.
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For the sake of simplicity, f ′(1) is approximated by a numerical differentiation
formula, obtained from D1(t1, t2, t3)[f ] by a reflection, i.e.,

f ′(1) ≈ D̃1[f ] := D1(t1, t2, t3)[g] , g(t) = −f(1− t) .

The linear functionals L[f ] := f ′(0)−D1[f ] and L̃[f ] := f ′(1) − D̃1[f ] vanish
on π2, and by Peano’s theorem, for f ∈W 3

1 they are representable in the form

L[f ] =

1∫
0

K3(L; t)f
′′′(t) dt , L̃[f ] =

1∫
0

K3(L̃; t)f
′′′(t) dt

with K3(L; t) = L
[
(· − t)2+/2

]
and K3(L̃; t) = L̃

[
(· − t)2+/2

]
. This representation

also implies

K3(L; t) ≡ 0 for t ∈ (t3, 1] ,

K3(L̃; t) ≡ 0 for t ∈ [0, 1− t3) .

Replacement in (3.1) of f ′(0) and f ′(1) byD1[f ] and D̃1[f ], respectively, results
in a new quadrature formula Q,

Q[f ] = QTr
n+1[f ] +

1

12n2

3∑
i=1

ci
[
f(ti) + f(1− ti)

]
(3.3)

with at most n+7 nodes (including {xk,n}nk=0), and a Peano kernel K3(Q; t) given
by

K3(Q; t) =
1

n3
B̃3(n t) +

1

12n2

[
K3(L; t)−K3(L̃; t)

]
, t ∈ [0, 1] .

Analogously, replacement in (3.1) of f ′(0) and f ′(1) by D1[f ] and D̃1[f ], re-
spectively, yields a quadrature formula Q,

Q[f ] = QMi
n [f ]− 1

24n2

3∑
i=1

ci
[
f(ti) + f(1− ti)

]
(3.4)

with at most n+ 6 nodes (including {y�,n}n�=1), and a Peano kernel K3(Q; t) given
by

K3(Q; t) =
1

n3
B̃3

(
nx− 1

2

)
− 1

24n2

[
K3(L; t)−K3(L̃; t)

]
, t ∈ [0, 1] .

An important observation for quadrature formulae (3.3) and (3.4) is that their
third Peano kernels coincide in the interval t ∈ (t3, 1 − t3) with n−3B̃3(n t) and
n−3B̃3(n t−1/2), respectively. That is to say, except for some small neighborhoods
of the endpoints, their third Peano kernels coincide with the third Peano kernels
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is an odd function with respect to t = 1/2. We proceed with evaluating the error
constant c3,p(Qn+1), p =∞ and p = 2. By symmetry, we have

c3,∞(Qn+1) = ‖K3(Qn+1; ·)‖1 = 2

x2,n∫
0

|K3(Qn+1; t)| dt+
xn−2,n∫
x2,n

|K3(Qn+1; t)| dt .

For t ∈ (x2,n, xn−2,n) we have K3(Qn+1; t) = n−3B̃3(n t), therefore for the second
summand we have

xn−2,n∫
x2,n

|K3(Qn+1; t)| dt = 1

n3

n−2
n∫

2
n

|B̃3(n t)| dt = n− 4

n3
‖B3‖1 =

n− 4

192n4
.

Before evaluating the first summand, we show thatK3(Qn+1; t) > 0 for t ∈ (0, x2,n).
Performing a change of the variable t = u/n, u ∈ (0, 2), we obtain, for t ∈ (0, x2,n),

K3(Qn+1; t) = − t3

6
+

3

16n
t2 +

7

12n
(t− x1,n)

2
+ =

1

n3

[
− u3

6
+

3u2

16
+

7(u− 1)2+
12

]
.

The term in the brackets is positive for u ∈ (0, 2) . Indeed, if 0 < u ≤ 1, then

−u3

6
+

3u2

16
+

7(u− 1)2+
12

=
3u2

16

(
1− 8u

9

)
> 0 ,

while, if 1 < u < 2, then

−u3

6
+

3u2

16
+

7(u− 1)2+
12

= −u3

6
+

37u2

48
− 7u

6
+

7

12
= (2− u)

(u2

6
− 7u

16
+

7

24

)
> 0 .

Therefore,

2

x2,n∫
0

|K3(Qn+1; t)| dt = 2

2
n∫

0

[
− t3

6
+

3

16n
t2 +

7

12n

(
t− 1

n

)2
+

]
dt

=
2

n4

2∫
0

[
− u3

6
+

3u2

16
+

7(u− 1)2+
12

]
du =

1

18n4
.

Hence,

c3,∞(Qn+1) =
n− 4

192n4
+

1

18n4
=

1

192n3

(
1 +

20

3n

)
.

In a similar manner we evaluate the error constant c3,2(Qn+1). We have

[c3,2(Qn+1)]
2 =

1∫
0

[K3(Qn+1; t]
2 dt = 2

x2,n∫
0

[K3(Qn+1; t)]
2 dt+

xn−2,n∫
x2,n

[K3(Qn+1; t)]
2 dt .
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The second summand is

xn−2,n∫
x2,n

[K3(Qn+1; t)]
2 dt =

1

n6

n−2
n∫

2
n

[B̃3(n t)]2 dt =
n− 4

n7
‖B3‖22 ,

and for the first one after some algebra we find

2

x2,n∫
0

[K3(Qn+1; t)]
2 dt =

2

n7

2∫
0

[
− u3

6
+

3u2

16
+

7(u− 1)2+
12

]2
du

=
2

n7

( 1∫
0

[
− u3

6
+

3u2

16

]2
du+

2∫
1

[
− u3

6
+

3u2

16
+

7(u− 1)2

12

]2
du

)

=
13

10080n7
=

39

n7
‖B3‖22 .

After summing the two expressions and taking square root we obtain

c3,2(Qn+1) =
1

n3
‖B3‖2

(
1 +

35

n

)1/2

=
1

12
√
210n3

(
1 +

35

n

)1/2

.

Comparison of the error constants c3,∞(Qn+1) and c3,2(Qn+1) of quadrature
formula (3.6) with the best possible constant (2.14) and (2.15) in the corresponding
1-periodic Sobolev classes shows the asymptotical optimality of {Qn+1}∞n=6 in the
Sobolev classes W 3

∞ and W 3
2 . Certainly, this sequence is not asymptotically optimal

in W 3
1 , as is seen also on Figure 1. In fact, ‖K3(Qn+1; ·)‖∞ is attained at the point

t∗n = 3
4n , and

c3,1(Qn+1) = K3(Qn+1; t
∗
n) =

9

256n3
=

81
√
3

32
En(W̃ 3

1 ) ≈ 4.384 En(W̃ 3
1 ) ,

i.e., the error constant is more than four times greater than the best possible. We
shall however construct sequences of quadrature formulae, which are asymptotically
optimal in W 3

1 , too, see quadrature formulae (3.9) and (3.13) below.

The next quadrature formulae are obtained in the same way as quadrature
formula (3.6), and the evaluation of their coefficient and error constants follows the
same lines as above. That is why we only give the results.

2. A quadrature formula generated by D1(x0,n, y1,n, x1,n)[f ].

Here, D1(x0,n, y1,n, x1,n)[f ] = n
( − 3f(x0,n) + 4f(y1,n) − f(x1,n)

)
, and the

resulting quadrature formula (3.3) involves n+ 3 nodes,

Qn+3[f ] =

n+3∑
k=1

Ak,n+3 f(τk,n+3) . (3.8)
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Table 1. The coefficients, nodes and error constants of quadrature formula (3.8).

A1,n+3, An+3,n+3 A2,n+3, An+2,n+3 A3,n+3, An+1,n+3 Ak,n+3, 4 ≤ k ≤ n

1

4n

1

3n

11

12n

1

n

τ1,n+3 τ2,n+3 τk,n+3, 3 ≤ k ≤ n + 1 τn+2,n+3 τn+3,n+3

x0,n y1,n xk−2,n yn,n xn,n

c3,∞(Qn+3) c3,2(Qn+3)

1

192n3

(
1 +

2

3n

) 1

12
√
210n3

(
1 +

7

4n

)1/2

The coefficients, nodes and error constants of this quadrature formula are given in
Table 1.

3. A quadrature formula generated by D1(x0,n, x1,3n, x2,3n)[f ]. Here,
D1(x0,n, x1,3n, x2,3n)[f ] =

3n
2

(− 3f(x0,n) + 4f(x1,3n)− f(x2,3n)
)
, and by (3.3) we

obtain the (n+ 5)-point quadrature formula

Qn+5[f ] =
n+5∑
k=1

Ak,n+5f(τk,n+5) (3.9)

with coefficients, nodes and error constants given in Table 2.

Table 2. The coefficients, nodes and error constants of quadrature formula (3.9).

A1,n+5, An+5,n+5 A2,n+5, An+4,n+5 A3,n+5 , An+3,n+5 Ak,n+5, 5 ≤ k ≤ n + 1

1

8n

1

2n
− 1

8n

1

n

τ1,n+5 τ2,n+5 τ3,n+5 τk,n+5, 4≤k≤n+2 τn+3,n+5 τn+4,n+5 τn+5,n+5
x0,n x1,3n x2,3n xk−3,n x3n−2,3n x3n−1,3n xn,n

c3,∞(Qn+5) c3,2(Qn+5) c3,1(Qn+5)

1

192n3

(
1− 22

27n

) 1

12
√
210n3

(
1 +

8

81n

)1/2 1

72
√
3n3

Here we would like to point out that, unlike the situation with quadrature
formulae (3.6) and (3.8), here the third Peano kernel of quadrature formula (3.9)
attains its C[0, 1]-norm away from the boundary intervals affected by the numerical
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Table 3. The coefficients and error constants of quadrature formula (3.10).

A1,n, An,n A2,n, An−1,n A3,n, An−2,n Ak,n, 3 ≤ k ≤ n− 3

13

12n

7

8n

25

24n

1

n

c3,∞(Qn) c3,2(Qn)

1

192n3

(
1 +

10.83836617

n

) 1

12
√
210n3

(
1 +

475

4n

)1/2

2. A quadrature formula generated by D1(x0,n, y1,n, x1,n)[f ].

We already applied this formula for numerical differentiation in the preceding
section, this time we get through (3.4) an (n+ 4)-point quadrature formula

Qn+4[f ] =

n+4∑
k=1

Ak,n+4 f(τk,n+1) (3.11)

with coefficients, nodes and error constants given in Table 4.

Table 4. The coefficients, nodes and error constants of quadrature formula (3.11).

A1,n+4, An+4,n+4 A2,n+4, An+3,n+4 A3,n+4, An+2,n+4 Ak,n+4, 4 ≤k≤n + 1

1

8n

5

6n

1

24n

1

n

τ1,n+4 τ2,n+4 τ3,n+4 τk,n+4, 4≤k≤n+1 τn+2,n+4 τn+3,n+4 τn+3,n+4
x0,n y1,n x1,n yk−2,n xn−1,n yn−1,n xn,n

c3,∞(Qn+4) c3,2(Qn+4)

1

192n3

(
1− 175

384n

) 1

12
√
210n3

(
1 +

25

16n

)1/2

3. A quadrature formula generated by D1(x0,n, y1,n, y2,n)[f ].

In this case, D1(x0,n, y1,n, y2,n)[f ] =
n
3

(− 8f(x0,n) + 9f(y1,n)− f(y2,n)
)
, and

by (3.4) we obtain an (n+ 2)-point quadrature formula

Qn+2[f ] =

n+2∑
k=1

Ak,n+2 f(τk,n+2) (3.12)

with coefficients, nodes and error constants given in Table 5.
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Table 5. The coefficients, nodes and error constants of quadrature formula (3.12).

A1,n+2, An+2,n+2 A2,n+2, An+1,n+2 A3,n+2, An,n+2 Ak,n+2, 4 ≤k≤n−1

1

9n

7

8n

73

72n

1

n

τ1,n+2 τk,n+2, 2≤k≤n+1 τn+2,n+2
x0,n yk−1,n xn,n

c3,∞(Qn+2) c3,2(Qn+2)

1

192n3

(
1− 0.06659022

n

) 1

12
√
210n3

(
1 +

19

4n

)1/2

4. A quadrature formula generated by D1(x0,n, x1,6n, x1,3n)[f ].

We showed that (3.10), (3.11) and (3.12) generate sequences of asymptotically
optimal quadrature formulae in the Sobolev classes W 3

∞ and W 3
2 , however, the

asymptotical optimality does not hold in W 3
1 . With D1(x0,n, x1,6n, x1,3n)[f ] we

obtain through (3.4) an (n+ 6)-point quadrature formula

Qn+6[f ] =
n+6∑
k=1

Ak,n+6 f(τk,n+6) , (3.13)

which generates a sequence of asymptotically optimal quadrature formulae in all
Sobolev classes W 3

p , 1 ≤ p ≤ ∞. The coefficients, nodes and error constants of
(3.13) are given in Table 6.

Table 6. The coefficients, nodes and error constants of quadrature formula (3.13).

A1,n+6, An+6,n+6 A2,n+6, An+5,n+6 A3,n+6 , An+4,n+6 Ak,n+6, 4 ≤ k ≤ n + 3

3

8n
− 1

2n

1

8n

1

n

τ1,n+6 τ2,n+6 τ3,n+6 τk,n+6, 4≤k≤n+3 τn+4,n+6 τn+5,n+6 τn+6,n+6
x0,n x1,6n x1,3n yk−3,n x3n−2,3n x6n−1,6n xn,n

c3,∞(Qn+6) c3,2(Qn+6) c3,1(Qn+6)

1

192n3

(
1− 4

27n

) 1

12
√
210n3

(
1 +

841

1296n

)1/2 1

72
√
3n3
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3.3. COMPARISON OF THE ERROR CONSTANTS

It is clear that quadrature formulae obtained in Sections 3.1 and 3.2 are of
nearly the same quality as being asymptotically optimal in the Sobolev classes
W 3

p , 1 < p ≤ ∞. Nevertheless, it makes sense to compare their error constants
in W 3

∞ and in W 3
2 under the assumption that they involve the same number of

nodes n, n ≥ 7. Interestingly, we have a clear winner in both W 3
∞ and W 3

2 , namely,
quadrature formula (3.12). The ranking of quadrature formulae (3.6), (3.8), (3.9),
(3.10), (3.11), (3.12) and (3.13) according to the magnitude of their error constants
c3,∞(Qn) and c3,2(Qn) is given in Table 7 (the smaller error constant, the higher
ranking).

Table 7. The ranking of quadrature formulae according to their error constants.

quadrature formula (3.6) (3.8) (3.9) (3.10) (3.11) (3.12) (3.13)

position according to
the size of c3,∞(Qn)

2 3 6 4 5 1 7

position according to
the size of c3,2(Qn)

6 2 4 7 3 1 5

The ranking is made assuming that n is big enough, e.g., n ≥ 59. For small n,
some small changes occur: in the ranking with respect to c3,∞(Qn), (3.10) overtakes
(3.8) (if n ≤ 58) and even (3.6) (if 7 ≤ n ≤ 30) whilst in the ranking with respect
to c3,2(Qn), (3.6) overtakes (3.13) if 7 ≤ n ≤ 9.

4. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE IN W 4
1

In [2] the idea described in the beginning of the preceding section was exploited
for the construction of asymptotically optimal quadrature formulae in the Sobolev
classes W 4

∞ and W 4
2 . To this, we add here two sequences of quadrature formulae,

which are asymptotically optimal in the Sobolev class W 4
1 .

The difference with the Sobolev classes W 3
p is that, in the cases of W 4

p there is

a shift d4,p (depending on p) of the 1-periodic Bernoulli monospline B̃4 so that the
shifted Bernoulli monospline has minimal Lq-deviation from zero (1/p+ 1/q = 1),
see (2.13). In particular,

d4,1 =
1

16
B4(0) , (4.1)

and

inf
d
‖B4 − d‖∞ = ‖B4 − 2−4 B4(0)‖∞ =

1

768
. (4.2)
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The Euler-MacLauren formulae (2.7) and (2.8) in the case s = 4 reduce to

1∫
0

f(x) dx =QTr
n+1[f ]−

1

12n2

[
f ′(1)− f ′(0)

]
+

1

720n4

[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫
0

B̃4(nx) f (4)(x) dx ,

1∫
0

f(x) dx =QMi
n [f ] +

1

24n2

[
f ′(1)− f ′(0)

]− 7

5760n4

[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫
0

B̃4

(
nx− 1/2

)
f (4)(x) dx ,

and we rewrite these formulae in the form

1∫
0

f(x) dx =QTr
n+1[f ]−

1

12n2

[
f ′(1)− f ′(0)

]
+

1

768n4

[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫
0

[
B̃4(nx)− 2−4B4(0)

]
f (4)(x) dx ,

(4.3)

1∫
0

f(x) dx =QMi
n [f ] +

1

24n2

[
f ′(1)− f ′(0)

]− 1

768n4

[
f ′′′(1)− f ′′′(0)

]

+
1

n4

1∫
0

[
B̃4

(
nx− 1/2

)− 2−4B4(0)
]
f (4)(x) dx .

(4.4)

Definition 2. Given 0 ≤ t1 < t2 < t3 < t4 < 1, we denote by D1(t1, t2, t3)[f ]
and D3(t1, t2, t3)[f ] the interpolatory formulae for numerical differentiation with
nodes {ti}4i=1, which approximate f ′(0) and f ′′′(0), respectively, i.e.

D1[f ] := D1(t1, t2, t3, t4)[f ] =

4∑
i=1

ci,1 f(ti) ≈ f ′(0) ,

D3[f ] := D3(t1, t2, t3, t4)[f ] =

4∑
i=1

ci,3 f(ti) ≈ f ′′′(0) .

We approximate derivatives f ′(0) and f ′′′(0) appearing in (4.3)–(4.4) by D1[f ]
and D3[f ], respectively. The derivatives f ′(1) and f ′′′(1) are approximated by
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the formulae for numerical differentiation D̃1[f ] and D̃3[f ], respectively, which are
obtained from D1[f ] and D3[f ] by a reflection, i.e.,

D̃1[f ] = D1[g], D̃3[f ] = D3[g], g(x) := −f(1− x) .

We observe that linear functionals L1[f ] := f ′(0) − D1[f ], L3[f ] := f ′′′(0) −
D3[f ], L̃1[f ] := f ′(0)− D̃1[f ] and L̃3[f ] := f ′′′(0)− D̃3[f ] vanish on π3, therefore,
by Peano’s theorem, for f ∈W 4

1 they possess integral representations of the form

L[f ] =

1∫
0

K4(L;x)f
(4)(x) dx, with K4(L; t) = L

[
(· − t)3+/3!

]
.

Replacement of derivatives in (4.3) by the formulae for numerical differentiation
yields a new quadrature formula Q,

1∫
0

f(x) dx = Q[f ] +

1∫
0

K4(Q;x)f (4)(x) dx ,

where

Q[f ] = QTr
n+1[f ] +

1

12n2

4∑
i=1

ci,1
[
f(ti) + f(1− ti)

]
− 1

768n4

4∑
i=1

ci,3
[
f(ti) +f(1− ti)

]
,

(4.5)

and

K4(Q;x) =
1

n4

[
B̃4(nx)− 2−4B4(0)

]
+

1

12n2

[
K4(L1;x)−K4(L̃1;x)

]
− 1

768n4

[
K4(L3;x)−K4(L̃3;x)

]
.

(4.6)

Analogously, replacement of derivatives in (4.4) by the formulae for numerical
differentiation yields a new quadrature formula Q,

Q[f ] = QMi
n [f ]− 1

24n2

4∑
i=1

ci,1
[
f(ti) + f(1− ti)

]
+

1

768n4

4∑
i=1

ci,3
[
f(ti) +f(1− ti)

]
,

(4.7)

and

K4(Q;x) =
1

n4

[
B̃4(nx−1/2)− 2−4B4(0)

]− 1

24n2

[
K4(L1;x)−K4(L̃1;x)

]
+

1

768n4

[
K4(L3;x)−K4(L̃3;x)

]
.

(4.8)
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Here, as in the preceding section, it is assumed that t4 = O(n−1), and as a
result, for x ∈ [t4, 1− t4] the fourth Peano kernels of quadrature formulae (4.5) and
(4.7) coincide with n−4

[
B̃4(nx)− 2−4B4(0)

]
and n−4

[
B̃4(nx− 1/2)− 2−4B4(0)

]
,

respectively. Hence, for Q being either (4.5) or (4.7) we have

‖K4(Q; ·)‖C[t4,1−t4] =
1

n4
‖B4 − 2−4B4(0)‖∞ =

1

768n4
. (4.9)

Both (4.5) and (4.7) are symmetric quadrature formulae with at most n+9 nodes.
In view of (2.19), (4.9) and the obvious inequality

En(W 4
1 ) ≥ En(W̃ 4

1 ) =
1

768n4
,

a sufficient condition for either of (4.5) and (4.7) to generate a sequence of asymp-
totically optimal quadrature formulae in W 4

1 is

‖K4(Q; ·)‖C[0,t4] ≤
1

768n4
. (4.10)

Indeed, in such a case (4.10) and (4.9) imply

c4,1(Q) = ‖K4(Q; ·)‖C[0,1] =
1

768n4

and since Q has at most n+ 9 nodes, then for Qn, the n-point quadrature formula
of the same kind, with n > 9, we have

c4,1(Qn) ≤ 1

768 (n− 9)4
.

Consequently,

1 ≤ lim
n→∞

c4,1(Qn)

En(W 4
1 )
≤ lim

n→∞

1
768 (n−9)4

En(W̃ 4
1 )

= lim
n→∞

1
768 (n−9)4

1
768n4

= 1 ,

whence the asymptotical optimality holds.

4.1. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON QTr
n+1

We make use of the following formulae for numerical differentiation:

D1(x0,n, x1,3n, x2,3n, x1,n)[f ] =
n

2

[−11f(x0,n)+18f(x1,3n)−9f(x2,3n)+2f(x1,n)
]

D3(x0,n, x1,3n, x2,3n, x1,n)[f ] = 27n3
[−f(x0,n)+3f(x1,3n)−3f(x2,3n)+f(x1,n)

]
.

The resulting quadrature formula (4.5) involves n+ 5 nodes,

Qn+5 =

n+5∑
k=1

Ak,n+5 f(τk,n+5) . (4.11)
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we have

‖K4(Qn+5; ·)‖C[0,x1,n] = |K4(Qn+5;x1,n)| = 1

n4

∣∣B̃4(nx1,n)− 2−4B4(0)
∣∣

=
1− 2−4

n4

∣∣B4(0)
∣∣ = 1

768n4
.

Thus, condition (4.10) is verified, and the asymptotical optimality in W 4
1 of the

sequence of quadrature formulae {Qn+5} given by (4.11) is proved.

4.2. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON QMi
n

Here we apply formulae for numerical differentiation with nodes x0,n, y1,3n,
x1,3n and y1,n, namely

D1(x0,n, y1,3n, x1,3n, 11,n)[f ] = n
[−11f(x0,n)+18f(y1,3n)−9f(x1,3n)+2f(y1,n)

]
D3(x0,n, y1,3n, x1,3n, y1,n)[f ] = 216n3

[−f(x0,n)+3f(y1,3n)−3f(x1,3n)+f(y1,n)
]
.

By (4.7) we obtain a quadrature formula with n+ 6 nodes,

Qn+6 =
n+6∑
k=1

Ak,n+6 f(τk,n+6) . (4.12)

The weights and the nodes of Qn+6 are given in Table 9.

Table 9. The weights and the nodes of quadrature formula (4.12).

A1,n+6, An+6,n+6 A2,n+6, An+5,n+6 A3,n+6, An+4,n+5 A4,n+6, An+3,n+6 Ak,n+6, 5≤k≤n+2

17

96n

3

32n
− 15

32n

115

96n

1

n

τ1,n+6 τ2,n+6 τ3,n+6 τk,n+6, 4≤k≤n+3 τn+4,n+6 τn+5,n+6 τn+6,n+6

x0,n y1,3n x1,3n yk−3,n x3n−1,3n y3n,3n xn,n

We proceed with showing that the sequence of quadrature formulae {Qn+6}n∈N
defined in (4.12) is asymptotically optimal in W 4

1 . To this end, we need to show
that the fourth Peano kernel of Q = Qn+6 satisfies condition (3.10), with [0, t4]
replaced by [0, y1,n]. We have

K4(Qn+6;x) =
x4

24
− 1

6

[ 17

96n
x3+

3

32n

(
x− 1

6n

)3
+
− 15

32n

(
x− 1

3n

)3
+

]
, x ∈ [0, y1,n],

or, after change of the variable, x = u/n with u ∈ [0, 1/2],

K4(Qn+6;x) =
1

24n4

[
u4 − 17

24
u3 − 3

8
(u− 1/6)3+ +

15

8
(u− 1/3)3+

]
=:

1

24n4
h(u).
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formulae can be generated as well by making use of different formulae for numerical
differentiation for approximation of the derivatives at the end points of integration
interval.

The same approach can be applied for the construction of sequences of asymp-
totically optimal quadrature formulae in the Sobolev classes W 4

p , r > 4, though the
calculation of their sharp error constants cr,p, even for p = 1, 2,∞, becomes rather
elaborate.
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267–281.

[12] Nikolov, G.: On certain definite quadrature formulae. J. Comput. Appl. Math., 75,
1996, 329–343.

[13] Nikolov, G., Simian, C.: Gauss-type quadrature formulae for parabolic splines with
equidistant knots. In: Approximation and Computation - In Honor of Gradimir V.
Milovanovic (W. Gautschi, G. Mastroianni, Th. M. Rassias, eds.), Springer Opti-
mization and its Applications, Springer Verlag, Berlin - Heidelberg - New York, 2010,
207–229.

[14] Zhensykbaev, A.: Best quadrature formulae for some classes of periodic differen-
tiable functions. Izv. Akad. Nauk SSSR Ser. Mat., 41, 1977 (in Russian); English
Translation in: Math. USSR Izv., 11, 1977, 1055–1071.

[15] Zhensykbaev, A.: Monosplines and optimal quadrature formulae for certain classes
of non-periodic functions. Anal. Math., 5, 1979, 301–331 (in Russian).

Received on December 17, 2014

Ana Avdzhieva, Geno Nikolov

Faculty of Mathematics and Informatics
“St. Kl. Ohridski” University of Sofia
5, J. Bourchier blvd., BG-1164 Sofia
BULGARIA

e-mails:
aavdzhieva@fmi.uni-sofia.bg
geno@fmi.uni-sofia.bg

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 145–169. 169





GODIXNIK NA SOFI�SKI� UNIVERSITET
”
SV. KLIMENT OHRIDSKI“

FAKULTET PO MATEMATIKA I INFORMATIKA
Tom 102

ANNUAL OF SOFIA UNIVERSITY
”
ST. KLIMENT OHRIDSKI“

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 102

ON THE NOTION OF JUMP STRUCTURE

STEFAN V. VATEV

For a given countable structure A and a computable ordinal α, we define its α-th jump
structure A(α). We study how the jump structure relates to the original structure.
We consider a relation between structures called conservative extension and show that
A(α) conservatively extends the structure A. It follows that the relations definable in
A by computable infinitary Σα formulae are exactly the relations definable in A(α) by
computable infinitary Σ1 formulae. Moreover, the Turing degree spectrum of A(α) is
equal to the α′-th jump Turing degree spectrum of A, where α′ = α+ 1, if α < ω, and
α′ = α, otherwise.

Keywords: Computability, structures, definability
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1. INTRODUCTION

The jump of an abstract structure is a notion that has gathered the attention
of many researchers for the past decade. Various versions were suggested and
studied independently. Montalbán [6] uses predicates for computable infinitary Σ1

formulae; Baleva [3], I. Soskov and A. Soskova [10] use Moschovakis extensions;
Stukachev [12] uses hereditarily finite extensions. In [7] the reader can find very
good historical notes and bibliography on this topic.

Here we consider the notion of jump structure as suggested by A. Soskova and
I. Soskov [10], where the first jump of a structure is defined. Later, the author
[13] extended their definition to arbitrary finite jumps and studied its properties
in the context of a relation between structures called conservative extension. In

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 171–206. 171



this paper, which is based on a chapter of the author’s Ph.D. dissertation [14], we
offer a natural continuation of this line of research. We lift the results from [13] to
arbitrary computable ordinals.

We work with abstract structures of the form A = (A;P0, . . . , Ps−1), where
A is countable and infinite, the predicates Pi ⊆ Ani and the equality is among
P0, . . . , Ps−1. We will use the letters A, B to denote structures and the letters A,
B to denote their domains. We call f an enumeration of the set A if f is a total
one-to-one mapping of N onto A. We say that f is an enumeration of the structure
A if f is an enumeration of its domain A. For every k ∈ N, we will implicitly use
an effective encoding of Nk onto N. By 〈x1, . . . , xk〉 we denote the natural number
corresponding to the tuple (x1, . . . , xk). If R ⊆ An, we denote the pullback of R as
the set f−1(R) = {〈x0, . . . , xn−1〉 | (f(x0), . . . , f(xn−1)) ∈ R}.

Given a countable structure A = (A;P0, . . . , Ps−1), we define the copy of A via
the enumeration f as the total function f−1(A), where:

f−1(A)(u) =

{
1, if u = s · 〈x1, . . . , xni

〉+ i & i < s & (f(x1), . . . , f(xni
)) ∈ Pi

0, if u = s · 〈x1, . . . , xni
〉+ i & i < s & (f(x1), . . . , f(xni

)) �∈ Pi.

We can also look at f−1(A) as the structure with domain N obtained from A
via the isomorphism f . Moreover, for a structure with domain N, let us denote by
D(A) the set of all codes of formulae belonging to the atomic diagram of A, given
by some Gödel numbering of all formulae in the relevant language. This means
that f−1(A) gives us the set of codes of formulae belonging to the atomic diagram
of the structure obtained from A via the isomorphism f . When we say that the
structure A is computable, or belongs to the computability-theoretic class C , we
mean that its atomic diagram D(A) is computable, or belongs to C .

Definition 1 (Richter [9]). The degree spectrum of the structure A is the set
of Turing degrees

DS(A) = {a | a computes a copy of A}.

For a computable ordinal α, we define the α-th jump degree spectrum of A as

DSα(A) = {a(α) | a ∈ DS(A)}.

A countable structure A is automorphically trivial if there is a finite subset F
of its domain A such that every permutation of A whose restriction to F is the
identity, is an automorphism of A. A set of Turing degrees A is closed upwards if
for all Turing degrees a and b, a ∈ A & a ≤ b→ b ∈ A .

Theorem 1 (Knight [5]). Let A be a countable structure in a (possibly infinite)
language. Then exactly one of the following holds:

1) the spectrum of A is closed upwards with respect to Turing reducibility ;
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2) A is automorphically trivial.

Henceforth, we suppose that the structures we consider are automorphically
non-trivial, so their degree spectra are closed upwards. The notion of degree spectra
gives us one way to compare structures. That is, for structures A and B and
computable ordinals α, β, we ask whether DSα(A) = DSβ(B).

Now we give an informal definition of the set of the computable infinitary Σα

and Πα formulae in the language of A, denoted Σc
α and Πc

α. The Σc
0 and Πc

0

formulae are the finitary quantifier free formulae. For α > 0, a Σc
α formula ϕ(x̄) is

a disjunction of a c.e. set of formulae of the form ∃yψ(x̄, ȳ), where ψ(x̄, ȳ) is a Πc
β

formula, for some β < α. The Πc
α formulae are the negations of the Σc

α formulae.
We list a few properties of the computable infinitary formulae, which will be used
throughout the paper:

- Given an index for a Σc
α (or Πc

α) formula ϕ, we can effectively find an index
for a Πc

α (or Σc
α) formula neg(ϕ) that is logically equivalent to ¬ϕ.

- Given indices for a pair of Σc
α (or a pair of Πc

α) formulae ϕ and ψ, we can
effectively find indices for two Σc

α (or two Πc
α) formulae logically equivalent

to (ϕ ∨ ψ) and (ϕ ∧ ψ).

We refer the reader to the book of Ash and Knight [1, Chapter 7] for details and
more background information on computable infinitary formulae.

For a set of natural numbers X and a computable ordinal α, we denote by
X(α) the α-th Turing jump of X. Moreover, we define

Δ0
α+1(X) = X(α), if α < ω,

Δ0
α+1(X) = X(α+1), if α ≥ ω,

Δ0
α(X) =

⋃
p

{〈y, p〉 | y ∈ Δ0
α(p)+1(X)}, if α = limα(p).

We write Δ0
α for Δ0

α(∅). We remark that for technical reasons, we choose at limit
levels to work only with sequences of successors and if α is a computable limit
ordinal such that α = limα(p), then α(0) ≥ 1.

Theorem 2 (Ash [1]). Let A be an arbitrary structure with domain N. For a
formula ϕ(x̄), let us denote ϕA = {ā ∈ A | A |= ϕ(ā)}. If ϕ(x̄) is a Σc

α formula, then
ϕA is Σ0

α(D(A)), and if ϕ(x̄) is a Πc
α formula, then ϕA is Π0

α(D(A)). Moreover,
given an index for the Σc

α (or Πc
α) formula ϕ and a notation for the ordinal α, we

can effectively find an index for ϕA as a set c.e. (or co-c.e.) relative to Δ0
α(D(A)).

The index is independent of A.

A relation R ⊆ Ar is Σc
α (or Πc

α) definable in the structure A if there is a Σc
α

(or Πc
α) formula ψ(x̄, y) and a finite number of parameters a in A such that b̄ ∈ R

if and only if A |= ψ(b̄, a). We denote by Σc
α(AA) (or Πc

α(AA)) the family of all
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relations Σc
α (or Πc

α) definable in A with parameters in A. We will write Σc
α(A) (or

Πc
α(A)) for the family of relations definable in A by Σc

α (or Πc
α) formulae without

parameters.

The notion of definability gives us another way to compare structures. That is,
for structures A, B such that A ⊆ B and computable ordinals α, β, we ask whether
(∀r ∈ N)(∀R ⊆ Ar)[R ∈ Σc

α(AA)↔ R ∈ Σc
β(BB)].

Definition 2. Let A be an arbitrary countable structure. We say that a relation
R on A is relatively intrinsically Σ0

α (or Π0
α) on A if for every enumeration f of

A, f−1(R) is c.e. (or co-c.e.) relative to Δ0
α(f

−1(A)).

The relation R is uniformly relatively intrinsically Σ0
α (or Π0

α) on A if there

is an index e such that for every enumeration f of A, f−1(R) = W
Δ0

α(f−1(A))
e (or

N\f−1(R) = W
Δ0

α(f−1(A))
e ). In this case we say that the number e is a Σ0

α (or Π0
α)

index for R.

The next theorem gives a very nice syntactical characterisation of relatively
intrinsically Σ0

α sets.

Theorem 3 (Ash-Knight-Manasse-Slaman [2], Chisholm [4]). Let A be a
countable structure. For every relation R on A, R is relatively intrinsically Σ0

α

(or Π0
α) on A if and only if R is definable in A with a Σc

α (or Πc
α) formula with

parameters.

Moreover, R is uniformly relatively intrinsically Σ0
α on A if and only if R is

definable in A by a Σc
α formula without parameters. Given a Σ0

α index for R, we
can effectively find an index for the Σc

α formula, and conversely, given an index for
the Σc

α formula, we can effectively find a Σ0
α index for R.

Although the second part of Theorem 3 is not explicitly stated in [2], [4], it
follows in a straightforward manner from the proof of the first part of Theorem 3.

2. CONSERVATIVE EXTENSIONS

Before turning our attention to the notion of jump structure, we need to con-
sider how we will relate the original structure to its jump structure. I. Soskov ob-
served that many common features are shared between the structures constructed
by A. Soskova and I. Soskov [10], namely the Moschovakis’ extension, the jump
structure and the Marker’s extension of a structure, which is a construction for
obtaining jump-invert structures. It turns out that all these structures relate to
the initial structure in a similar way. In the terminology that we are going to in-
troduce, the Moschovakis’ extension of A is (1, 1)-conservative extension of A. One
of our main results will be that the α-th jump structure of A is (α′, 1)-conservative
extension of A, where α′ = α+ 1, if α < ω, and α′ = α, otherwise.

We begin by defining a relation between enumerations of structures.
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Definition 3 (Soskov). Let f and h be enumerations for the countable struc-
tures A and B respectively. We write f ≤α

β h if

1) Δ0
α(f

−1(A)) ≤T Δ0
β(h

−1(B)) and

2) E(f, h) = {〈x, y〉 | x, y ∈ N & f(x) = h(y)} is Σ0
β(h

−1(B)).

Definition 4 (Soskov). Let A and B be countable structures, possibly in dif-
ferent languages.

1) A⇒α
β B if for every enumeration h of B there exists an enumeration f of

A such that f ≤α
β h.

2) A⇐α
β B if for every enumeration f of A there exists an enumeration h of

B such that h ≤β
α f .

3) A⇔α
β B if A⇒α

β B and A⇐α
β B.

We say that B is an (α, β)-conservative extension of A if A ⊆ B and A⇔α
β B.

The following theorem motivates the use of the term conservative extension, i.e.
if B is an (α, β)-conservative extension of A then Σc

α definability in A is equivalent
to Σc

β definability in B for the subsets of A.

Theorem 4. Let A and B be countable structures with A ⊆ B. For all
α, β < ωCK

1 ,

1) if A⇒α
β B, then (∀X ⊆ A)[X ∈ Σc

α(AA)→ X ∈ Σc
β(BB)];

2) if A⇐α
β B, then (∀X ⊆ A)[X ∈ Σc

β(BB)→ X ∈ Σc
α(AA)];

3) if A⇔α
β B, then (∀X ⊆ A)[X ∈ Σc

α(AA)↔ X ∈ Σc
β(BB)].

Proof. 1) Let A⇒α
β B. Then for every enumeration h ofB, there exists an enu-

meration f of A such that f ≤α
β h. Let X be a subset of A such that X ∈ Σc

α(AA).

According to Theorem 3, for every enumeration f of A, f−1(X) is Σ0
α(f

−1(A)).
We will show that for every enumeration h of B, h−1(X) is Σ0

β(h
−1(B)).

Let us take an arbitrary enumeration h of B. Since A⇒α
β B, there is an enu-

meration f of A such that Δ0
α(f

−1(A)) ≤T Δ0
β(h

−1(B)) and E(f, h) is Σ0
β(h

−1(B)).

Moreover, f−1(X) is c.e. relative to Δ0
α(f

−1(A)) ≤T Δ0
β(h

−1(B)). It follows from

the equivalence x ∈ h−1(X) ↔ (∃y ∈ N)[(y, x) ∈ E(f, h) & y ∈ f−1(X)] that
h−1(X) is Σ0

β(h
−1(B)), which is what we wanted to show.

The proof of 2) is similar to that of 1). �

As remarked in [13], we do not always have the other directions in Theorem 4.
We give a very simple counterexample. Let A = (A; =) and takeB = A. It is easy to
see that for every computable ordinal α, (∀X ⊆ A)[X ∈ Σc

α(AA)→ X ∈ Σc
1(AA)].
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It we assume that we have the reverse directions in Theorem 4, then we would
have (∀α < ωCK

1 )[A ⇒α
1 A], which is evidently not true. To see this, it is enough

to take an enumeration f of A such that f−1(A) is computable. Then there is no
enumeration h of A such that h−1(A)′ ≤T f−1(A) ≡T ∅.

For a computable ordinal α, we define the ordinal α′ as

α′ =

{
α+ 1, if α < ω

α, if α ≥ ω.

The reason behind this notation is that a set X is Σ0
n+1 if and only if X is c.e.

in ∅(n), when n < ω, and X is Σ0
α, α ≥ ω if and only if X is c.e. in ∅(α).

We also have that for a countable structure A, DSα(A) = {dT (Δ0
α′(f

−1(A))) |
f is an enumeration of A}.

Theorem 5. Let A and B be countable structures with A ⊆ B.

1) If A⇒α′
β′ B then DSβ(B) ⊆ DSα(A).

2) If A⇐α′
β′ B then DSα(A) ⊆ DSβ(B);

3) If A⇔α′
β′ B then DSα(A) = DSβ(B).

Proof. We prove only 1) since the others are similar.

Let A ⇒α′
β′ B and b ∈ DSβ(B). We show that b ∈ DSα(A). Since A is a

non-trivial structure, DSα(A) is closed upwards and it is enough to prove that there
exists a Turing degree a ∈ DSα(A) such that a ≤T b. Let f be an enumeration
of B and dT (Δ

0
β′(f

−1(B))) = b. Since A ⇒α′
β′ B, there is an enumeration h of A

such that h ≤α′
β′ f . For a = dT (Δ

0
α′(h

−1(A))) we have a ∈ DSα(A) and a ≤T b. �

We note that we do not have the other directions in Theorem 5. For example,
let us consider the structures N = (N; =) and M = (N;GSucc,=), where GSucc is
the graph of the successor function on N. It is easy to see that DS(N) = DS(M) =
{a | 0 ≤T a}. If we assume that M ⇔1

1 N, then the Σc
1 definable sets in N with

parameters are also Σc
1 definable in M with parameters. But the sets X ∈ Σc

1(NN)
are just the finite and co-finite sets, whereas the sets X ∈ Σc

1(MN) are all c.e. sets.
This is a contradiction.

2.1. THE NOTION OF FORCING

We define a forcing relation with conditions all finite injective mappings from
N into the domain of the countable structure A = (A;P0, . . . , Ps−1). We call them
finite parts and we use the letters τ, ρ, δ to denote them. Let PA be the set of
all finite parts and let P2 be the set of all finite functions on the natural numbers
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taking values in {0, 1}. Given a finite part τ , we define the finite function τ−1(A)
in the following way:

τ−1(A)(u) ↓= 1↔ (∃i < s)(∃x1, . . . , xni
∈ Dom(τ))[u = s · 〈x1, . . . , xni

〉+ i &

(τ(x1), . . . , τ(xni
)) ∈ Pi],

τ−1(A)(u) ↓= 0↔ (∃i < s)(∃x1, . . . , xni
∈ Dom(τ))[u = s · 〈x1, . . . , xni

〉+ i &

(τ(x1), . . . , τ(xni
)) �∈ Pi],

τ−1(A)(u) ↑ in all other cases. We should note that in the definition of τ−1(A) we
make the same assumptions about the coding of tuples of natural numbers as in
the definition of f−1(A).

If ϕ is a partial function and e ∈ N, then by Wϕ
e we will denote the set of all

x such that the computation {e}ϕ(x) halts successfully. We assume that if during
a computation the oracle ϕ is called with an argument outside of its domain, then
the computation halts unsuccessfully.

For every e, x ∈ N, every finite part τ and every computable ordinal α ≥ 1, we
define the forcing relations τ �α Fe(x) and τ �α ¬Fe(x) in the following way:

(i) τ �1 Fe(x)↔ x ∈W
τ−1(A)
e .

(ii) Let α = β + 1. Then

τ �β+1 Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & τ �β Fz(z)) ∨
(δ(z) = 0 & τ �β ¬Fz(z))]].

(iii) Let α = limα(p). Then

τ �α Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

((δ(z) = 1 & τ �α(pz) Fxz
(xz)) ∨

(δ(z) = 0 & τ �α(pz) ¬Fxz
(xz)))]].

(iv) τ �α ¬Fe(x) ↔ (∀δ ∈ P2)[δ ⊇ τ → δ ��α Fe(x)].

The forcing relation depends also on the structure A. To avoid ambiguity, we
will write τ �A

α Fe(x), when necessary.

Lemma 1. For every computable ordinal α ≥ 1 and every e, x ∈ N, we have
the following properties:

1) for any finite parts τ ⊆ ρ, if τ �α Fe(x), then ρ �α Fe(x);

2) for any finite parts τ ⊆ ρ, if τ �α ¬Fe(x), then ρ �α ¬Fe(x);
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Proof. We prove 1) and 2) simultaneously by transfinite induction on α. The
case α = 1 for 1) follows directly from the fact that τ ⊆ ρ→ τ−1(A) ⊆ ρ−1(A).

For 2), let τ �1 ¬Fe(x) and assume that ρ ∈ PA is such that τ ⊆ ρ, but
ρ ��1 ¬Fe(x). It follows that there exists δ ⊇ ρ ⊇ τ such that δ �1 Fe(x). But then
(∃δ ⊇ τ)[δ �1 Fe(x)] implies τ ��1 ¬Fe(x). We reach a contradiction. Therefore,

τ �1 ¬Fe(x)→ ρ �1 ¬Fe(x).

Let α = β + 1. By the induction hypothesis for 1) and 2),

τ �β+1 Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & τ �β Fz(z)) ∨ (δ(z) = 0 & τ �β ¬Fz(z))]]

→ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & ρ �β Fz(z)) ∨ (δ(z) = 0 & ρ �β ¬Fz(z))]]

↔ ρ �β+1 Fe(x).

For 2), we apply the same argument as in the case of α = 1. Let τ �α ¬Fe(x)
and assume that ρ ∈ PA is such that τ ⊆ ρ, but ρ ��α ¬Fe(x). Then (∃δ ⊇ τ)[δ �α

Fe(x)], which implies τ ��α ¬Fe(x). We reach a contradiction.

Let α = limα(p). Then, again using the induction hypothesis for 1) and 2),

τ �α Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

((δ(z) = 1 & τ �α(pz) Fxz
(xz)) ∨ (δ(z) = 0 & τ �α(pz) ¬Fxz

(xz)))]]

→ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

((δ(z) = 1 & ρ �α(pz) Fxz
(xz)) ∨ (δ(z) = 0 & ρ �α(pz) ¬Fxz

(xz)))]]

↔ ρ �α Fe(x).

For 2), we again use the same argument. �

Proposition 1. There is a computable function h such that for any computable
ordinal α > 0, finite part τ , and natural numbers e, x,

τ �α Fe(x) ↔ τ �α+1 Fh(e)(x);

τ �α ¬Fe(x) ↔ τ �α+1 ¬Fh(e)(x).

Moreover, there is a computable function h′ such that for any computable limit
ordinal α = limα(p), finite part τ , and natural numbers e, x, p,

τ �α(p) Fe(x) ↔ τ �α Fh′(p,e)(x);

τ �α(p) ¬Fe(x) ↔ τ �α ¬Fh′(p,e)(x).
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Proof. Firstly, it is easy to see by the relativised Sm
n theorem that there exists

a computable function g such that

(∀σ ∈ P2)[x ∈W σ
e → W σ

g(e,x) = N],

(∀σ ∈ P2)[x �∈W σ
e → W σ

g(e,x) = ∅].
Then we have for any σ ∈ P2,

x ∈W σ
e ↔ W σ

g(e,x) = N↔ g(e, x) ∈W σ
g(e,x),

and it follows that for any computable ordinal α > 0,

τ �α Fe(x) ↔ τ �α Fg(e,x)(g(e, x)).

Now we take h to be a computable function such that for any e and x,

(∀σ ∈ P2)[x ∈W σ
h(e) ↔ σ(g(e, x)) = 1]. (2.1)

In other words, (∀σ ∈ P2)[x ∈ W σ
h(e) ↔ {〈g(e, x), 1〉} ⊆ Graph(σ)]. Our goal is to

prove that τ �α Fe(x) if and only if τ �α+1 Fh(e)(x). It is enough to prove that
τ �α Fg(e,x)(g(e, x)) if and only if τ �α+1 Fh(e)(x).

For the (→) part, we use that for the finite function σ with Graph(σ) =
{〈g(e, x), 1〉}, we have x ∈W σ

h(e). Thus,

τ �α Fg(e,x)(g(e, x)) ↔ (∃σ ∈ P2)[Graph(σ) = {〈g(e, x), 1〉}&τ �α Fg(e,x)(g(e, x))]

↔ (∃σ ∈ P2)[x ∈W σ
h(e) & Graph(σ) = {〈g(e, x), 1〉} &

τ �α Fg(e,x)(g(e, x))]

→ (∃σ ∈ P2)[x ∈W σ
h(e) & (∀z ∈ Dom(σ))[

(σ(z) = 1 & τ �α Fz(z)) ∨ (σ(z) = 0 & τ �α ¬Fz(z))]]

→ τ �α+1 Fh(e)(x).

For the (←) part, let τ �α+1 Fh(e)(x) and consider one such σ ∈ P2 for which we
have that x ∈W σ

h(e) and

(∀z ∈ Dom(σ))[(σ(z) = 1 & τ �α Fz(z)) ∨ (σ(z) = 0 & τ �α ¬Fz(z))]].

By Equivalence (2.1), since x ∈ W σ
h(e), it follows that the number g(e, x) is among

the numbers z ∈ Dom(σ) for which σ(z) = 1. In this way, for z = g(e, x), we obtain
g(e, x) ∈ Dom(σ), σ(g(e, x)) = 1 and hence τ �α Fg(e,x)(g(e, x)). We conclude that

τ �α+1 Fh(e)(x) → τ �α Fg(e,x)(g(e, x)).

It is easy to see that we also have the following:

τ �α ¬Fe(x) ↔ (∀ρ ⊇ τ)[ρ ��α Fe(x)]↔ (∀ρ ⊇ τ)[ρ ��α+1 Fh(e)(x)]

↔ τ �α+1 ¬Fh(e)(x).
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For the second part, let α = limα(p) and take h′ to be a computable function
such that for any index e and natural numbers x, p,

(∀σ ∈ P2)[x ∈W σ
h′(e,p) ↔ σ(〈g(e, x), p〉) = 1]. (2.2)

In other words,

(∀σ ∈ P2)[x ∈W σ
h′(e,p) ↔ {〈〈g(e, x), p〉, 1〉} ⊆ Graph(σ)].

It suffices to prove that τ �α(p) Fg(e,x)(g(e, x)) iff τ �α Fh′(e,p)(x). For the (→)
part, we have the equivalences:

τ �α(p) Fg(e,x)(g(e, x)) ↔ (∃σ ∈ P2)[Graph(σ) = {〈〈g(e, x), p〉, 1〉}
& τ �α(p) Fg(e,x)(g(e, x))]

↔ (∃σ ∈ P2)[x ∈W σ
h′(e,p) & Graph(σ) = {〈〈g(e, x), p〉, 1〉}

& τ �α(p) Fg(e,x)(g(e, x))]

→ (∃σ ∈ P2)[x ∈W σ
h′(e,p) & (∀z ∈ Dom(σ))[z = 〈xz, pz〉

& ((σ(z) = 1 & τ �α(pz) Fxz
(xz)) ∨

(σ(z) = 0 & τ �α(pz) ¬Fxz
(xz)))]]

→ τ �α Fh′(e,p)(x).

Now for the (←) part, let τ �α Fh′(e,p)(x) and consider one such σ ∈ P2 for which
we have

x ∈W σ
h′(e,p) & (∀z ∈ Dom(σ))[z = 〈xz, pz〉 & ((σ(z) = 1 & τ �α(pz) Fxz

(xz)) ∨
(σ(z) = 0 & τ �α(pz) ¬Fxz

(xz)))]].

By Equivalence (2.2), since x ∈ W σ
h′(e,p), it follows that the number 〈g(e, x), p〉 is

among the numbers 〈xz, pz〉 ∈ Dom(σ) for which σ(〈xz, pz〉) = 1. In this way,
for xz = g(e, x) and pz = p, we obtain 〈g(e, x), p〉 ∈ Dom(σ), σ(〈g(e, x), p〉) = 1,
and hence τ �α(p) Fg(e,x)(g(e, x)). We conclude that if τ �α Fh′(e,p)(x), then
τ �α(p) Fg(e,x)(g(e, x)). It is again easy to see that τ �α(p) ¬Fe(x) if and only if
τ �α ¬Fh′(e,p)(x). �

Let f be an enumeration of A. For every e, x ∈ N and every computable
ordinal α ≥ 1, we define the modelling relations f |=α Fe(x) and f |=α ¬Fe(x) in
the following way:

(i) f |=1 Fe(x) ↔ x ∈W
f−1(A)
e

(ii) Let α = β + 1. Then

f |=β+1 Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & f |=β Fz(z)) ∨
(δ(z) = 0 & f |=β ¬Fz(z))]].
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(iii) Let α = limα(p). Then

f |=α Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

((δ(z) = 1 & f |=α(pz) Fxz (xz)) ∨
(δ(z) = 0 & f |=α(pz) ¬Fxz (xz)))]].

(iv) f |=α ¬Fe(x) ↔ f �|=α Fe(x).

Lemma 2. For any computable ordinal α ≥ 1, and any enumeration f of A,

x ∈W
Δ0

α(f−1(A))
e ↔ f |=α Fe(x),

x �∈W
Δ0

α(f−1(A))
e ↔ f |=α ¬Fe(x).

Proof. The proof is by induction on α. The case α = 1 follows from the
definition of |=1. Let α = β + 1. Recall that for any set of natural numbers X,
Δ0

α(X) = (Δ0
β(X))′. For any ρ ∈ P2, we have:

ρ ⊆ Δ0
α(f

−1(A)) ↔ (∀z ∈ Dom(ρ))[(ρ(z) = 1 & z ∈ Δ0
α(f

−1(A)))

∨ (ρ(z) = 0 & z �∈ Δ0
α(f

−1(A)))]

↔ (∀z ∈ Dom(ρ))[(ρ(z) = 1 & z ∈W
Δ0

β(f
−1(A))

z )

∨ (ρ(z) = 0 & z �∈W
Δ0

β(f
−1(A))

z )]

↔ (∀z ∈ Dom(ρ))[(ρ(z) = 1 & f |=β Fz(z))

∨ (ρ(z) = 0 & f |=β ¬Fz(z)), ]

where the last equivalence follows from the induction hypothesis for β. Thus, we
have the equivalences:

x ∈W
Δ0

α(f−1(A))
e ↔ (∃ρ ∈ P2)[x ∈W ρ

e & ρ ⊆ Δ0
α(f

−1(A))]

↔ (∃ρ ∈ P2)[x ∈W ρ
e & (∀z ∈ Dom(ρ))[

(ρ(z) = 1 & f |=β Fz(z)) ∨
(ρ(z) = 0 & f |=β ¬Fz(z))]]

↔ f |=α Fe(x).

Let α = limα(p). For any ρ ∈ P2, we have:

ρ ⊆ Δ0
α(f

−1(A)) ↔ (∀z ∈ Dom(ρ))[z = 〈xz, pz〉 &
(ρ(z) = 1 & xz ∈ Δ0

α(pz)+1(f
−1(A)))

∨ (ρ(z) = 0 & xz �∈ Δ0
α(pz)+1(f

−1(A)))]

↔ (∀z ∈ Dom(ρ))[z = 〈xz, pz〉 &
(ρ(z) = 1 & xz ∈W

Δ0
α(pz)(f

−1(A))
xz )

∨ (ρ(z) = 0 & xz �∈W
Δ0

α(pz)(f
−1(A))

xz )]
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↔ (∀z ∈ Dom(ρ))[z = 〈xz, pz〉 &
(ρ(z) = 1 & f |=α(pz) Fxz

(xz))

∨ (ρ(z) = 0 & f |=α(pz) ¬Fxz
(xz))],

where we have used the induction hypothesis for ordinals α(p) < α. Let us recall
that according to our definition for limit ordinals α = limα(p),

〈x, p〉 ∈ Δ0
α(X) ↔ x ∈ Δ0

α(p)+1(X) ↔ x ∈W
Δ0

α(p)(X)
x .

Thus, we have the equivalences:

x ∈W
Δ0

α(f−1(A))
e ↔ (∃ρ ∈ P2)[x ∈W ρ

e & ρ ⊆ Δ0
α(f

−1(A))]

↔ (∃ρ ∈ P2)[x ∈W ρ
e & (∀z ∈ Dom(ρ))[z = 〈xz, pz〉

(ρ(xz) = 1 & f |=α(pz) Fxz (xz))∨
(ρ(xz) = 0 & f |=α(pz) ¬Fxz (xz))]]

↔ f |=α Fe(x).

�

Definition 5. Let α > 1 be a computable ordinal and A a countable structure.
An enumeration f of A is called α-generic in the following two cases:

1) α = β + 1, and for every e, x ∈ N

(∃τ ∈ P2)[τ ⊆ f & (τ �β Fe(x) ∨ τ �β ¬Fe(x))].

2) α = limα(p), and for every e, x, p ∈ N

(∃τ ∈ P2)[τ ⊆ f & (τ �α(p) Fe(x) ∨ τ �α(p) ¬Fe(x))].

Proposition 2. For every computable ordinal α > 1, if g is a not α-generic
enumeration of A, then there exist numbers e, x such that

(∀τ ⊆ g)[τ ��α Fe(x) & τ ��α ¬Fe(x)].

Proof. Let α = β + 1. Since g is not α-generic, there exist numbers e, x such
that

(∀τ ⊆ g)[τ ��β Fe(x) & τ ��β ¬Fe(x)].

By Proposition 1, let e0 = h(e) be such that for every finite part τ

τ �β+1 Fe0(x) ↔ τ �β Fe(x),

τ �β+1 ¬Fe0(x) ↔ τ �β ¬Fe(x).
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Since α = β + 1, it follows that

(∀τ ⊆ g)[τ ��α Fe0(x) & τ ��α ¬Fe0(x)].

Let α = limα(p). Since g is not α-generic, there exist numbers e, x, p for which

(∀τ ⊆ g)[τ ��α(p) Fe(x) & τ ��α(p) ¬Fe(x)].

Again by Proposition 1, let e0 = h′(p, e) be such that for every finite part τ

τ �α Fe0(x) ↔ τ �α(p) Fe(x) and τ �α ¬Fe0(x) ↔ τ �α(p) ¬Fe(x).

It follows that
(∀τ ⊆ g)[τ ��α Fe0(x) & τ ��α ¬Fe0(x)].

�

Lemma 3. 1) Let α > 1. If g is a (α+ 1)-generic enumeration of A, then g
is also α-generic.

2) Let α = limα(p). If g is a α-generic enumeration of A, then g is also α(p)-
generic for any number p.

Proof. For the first part, suppose that g is (α + 1)-generic, but g is not α-
generic. By Proposition 2, this means that there exist natural numbers e, x for
which

(∀τ ⊆ g)[τ ��α Fe(x) & τ ��α ¬Fe(x)].

This contradicts the fact that g is (α+ 1)-generic.

For the second part, suppose that g is α-generic, but g is not α(p)-generic, for
some natural number p. Again by Proposition 2, there exist numbers e, x for which

(∀τ ⊆ g)[τ ��α(p) Fe(x) & τ ��α(p) ¬Fe(x)].

This contradicts the fact that g is α-generic. �

Lemma 4. For every e, x ∈ N, we have the following properties:

1) for any enumeration f of A, f |=1 Fe(x) iff (∃τ ⊆ f)[τ �1 Fe(x)];

2) for α > 1 and every α-generic enumeration g of A, g |=α Fe(x) iff
(∃τ ⊆ g)[τ �α Fe(x)];

3) for α ≥ 1 and every (α+ 1)-generic enumeration g of A, g |=α ¬Fe(x) iff
(∃τ ⊆ g)[τ �α ¬Fe(x)].

Proof. Part 1) follows from the facts:

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 171–206. 183



- if τ ⊆ f and x ∈W
τ−1(A)
e , then x ∈W

f−1(A)
e ;

- if x ∈W
f−1(A)
e , then there is τ ⊆ f such that x ∈W

τ−1(A)
e .

We prove 2) and 3) by transfinite induction on α. We start with 3) for α = 1. Let
g be 2-generic. For the (→) part, let g |=1 ¬Fe(x), but assume ( � ∃τ ⊆ g)[τ �1

¬Fe(x)]. Since g is 2-generic, τ �1 Fe(x), for some τ ⊆ g. But by 1),

τ �1 Fe(x) & τ ⊆ g → g |=1 Fe(x).

We reach a contradiction.

For the direction (←), let us fix a finite part τ ⊆ g such that τ �1 ¬Fe(x), but
assume g �|=1 ¬Fe(x), which, by definition, means g |=1 Fe(x). Then by 1), there
is a finite part δ ⊆ g such that δ �1 Fe(x). By 1) of Lemma 1, we can take δ to be
such that τ ⊆ δ. But then again by Lemma 1,

τ �1 ¬Fe(x) & τ ⊆ δ → δ �1 ¬Fe(x).

It follows that δ ��1 Fe(x), which is a contradiction with our choice of δ.

Let α = β + 1 and let g be α-generic. We first consider the direction (→) of
2). Suppose we have g |=β+1 Fe(x). Then

g |=β+1 Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & g |=β Fz(z)) ∨
(δ(z) = 0 & g |=β ¬Fz(z))]]

Fix one such δ ∈ P2. Then by the induction hypothesis for 2) and 3),

(∀z ∈ Dom(δ))[(δ(z) = 1 & (∃τz ⊆ g)[τz �β Fz(z)]) ∨
(δ(z) = 0 & (∃τz ⊆ g)[τz �β ¬Fz(z)])]].

Choose appropriate finite parts τz and let τ =
⋃

z∈Dom(δ) τz. Then by Lemma 1,
since every τz ⊆ τ ,

τz �β Fz(z) → τ �β Fz(z),

τz �β ¬Fz(z) → τ �β ¬Fz(z).

It follows that

g |=β+1 Fe(x) → (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & τ �β Fz(z)) ∨
(δ(z) = 0 & τ �β ¬Fz(z))]]

→ τ �β+1 Fe(x).

We conclude that g |=β+1 Fe(x) → (∃τ ⊆ g)[τ �β+1 Fe(x)].
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Now we consider part (←) of 2). Suppose there is τ ⊆ g such that τ �β+1 Fe(x).
Then, by definition and the induction hypothesis for 2) and 3),

τ �β+1 Fe(x)↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & τ �β Fz(z)) ∨
(δ(z) = 0 & τ �β ¬Fz(z))]]

→ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & g |=β Fz(z)) ∨
(δ(z) = 0 & g |=β ¬Fz(z))]]

↔ g |=β+1 Fe(x).

We conclude that (∃τ ⊆ g)[τ �β+1 Fe(x)]→ g |=β+1 Fe(x).

The proof of 3) is essentially the same as in the case α = 1.

Let α = limα(p) and let g be α-generic. For the (→) part of 2), suppose
g |=α Fe(x).

g |=α Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

(δ(z) = 1 & g |=α(pz) Fxz (xz)) ∨
(δ(z) = 0 & g |=α(pz) ¬Fxz (xz))]].

Fix one such δ ∈ P2. Then, by 1) and the induction hypothesis for 2) and 3),

(∀z ∈ Dom(δ))[z = 〈xz, pz〉 & (δ(z) = 1 & (∃τz ⊆ g)[τz �α(pz) Fxz
(xz)]) ∨

(δ(z) = 0 & (∃τz ⊆ g)[τz �α(pz) ¬Fxz
(xz)])]].

Again, choose appropriate τz and let τ =
⋃

z∈Dom(δ) τz. Then by Lemma 1, since
every τz ⊆ τ ,

τz �α(pz) Fxz
(xz) → τ �α(pz) Fxz

(xz),

τz �α(pz) ¬Fxz (xz) → τ �α(pz) ¬Fxz (xz).

It follows that

g |=α Fe(x) → (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

(δ(z) = 1 & τ �α(pz) Fxz
(xz)) ∨

(δ(z) = 0 & τ �α(pz) ¬Fxz
(xz))]]

→ τ �α Fe(x).

We conclude that
g |=α Fe(x) → (∃τ ⊆ g)[τ �α Fe(x)].
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For part (←) of 2), suppose that there is τ ⊆ g such that τ �β+1 Fe(x). Then, by
definition and the induction hypothesis for 2) and 3),

τ |=α Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

(δ(z) = 1 & τ �α(pz) Fxz
(xz)) ∨

(δ(z) = 0 & τ �α(pz) ¬Fxz
(xz))]]

→ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

(δ(z) = 1 & g |=α(pz) Fxz
(xz)) ∨

(δ(z) = 0 & g |=α(pz) ¬Fxz
(xz))]]

↔ g |=α Fe(x).

We conclude that
(∃τ ⊆ g)[τ �α Fe(x)]→ g |=α Fe(x).

The proof of 3) for α = limα(p) is again very similar to the proof in the case
of α = 1. �

Let var be a computable mapping of the natural numbers onto the variables.
By Xi we denote the variable var(i). For a finite set D = {d0 < d1 < · · · < dk−1}
of natural numbers and a formula Φ with free variables including {Xi | i ∈ D}, it
is convenient to denote

(∃D)Φ ≡ (∃Xd0
. . . ∃Xdk−1

)Φ.

Moreover, for any finite part ρ and any formula Φ, by Φ(ρ̄) we denote the formula
obtained from Φ by replacing each occurrence of the free variable Xi in Φ by the
constant ρ(i), for every i ∈ Dom(ρ).

Lemma 5 (Definability of forcing). Let A be a structure in the language
L = {P0, . . . , Ps−1}, which include equality. Then for every non-empty finite set
D of natural numbers, every natural numbers e, x and a computable ordinal α ≥ 1,
we can effectively find a Σc

α formula Φα
D,e,x and a Πc

α formula Θα
D,e,x in the lan-

guage L with free variables in {Xi | i ∈ D} such that for every finite part δ with
Dom(δ) = D, we have the following:

δ �α Fe(x) ↔ A |= Φα
D,e,x(δ̄),

δ �α ¬Fe(x) ↔ A |= Θα
D,e,x(δ̄)

Proof. We will define the formulae Φα
D,e,x by effective transfinite recursion on

the computable ordinals α following the definition of the forcing relation. For every
e, x, let We,x = {κ ∈ P2 | x ∈Wκ

e }, which is a c.e. set.

Let α = 1. Then, by definition,

τ �1 Fe(x) ↔ x ∈W τ−1(A)
e ↔ (∃κ ∈ P2)[x ∈Wκ

e & κ ⊆ τ−1(A)].

We define the atomic formulae Ψ1
D,κ,u in the following way:
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- if u = s · 〈i1, . . . , inr
〉+ r for r < s and i1, . . . , inr

∈ D, then

Ψ1
D,κ,u ≡

{
Pr(Xi1 , . . . , Xinr

), if κ(u) = 1,

¬Pr(Xi1 , . . . , Xinr
), if κ(u) = 0.

- otherwise, we set Ψ1
D,κ,u ≡ ¬(Xd = Xd), where d is some element of D.

We define the atomic formula Ψ1
D,κ with free variables in {Xi | i ∈ D} as

Ψ1
D,κ ≡

∧
d �=d′,

d,d′∈D

Xd �= Xd′ &
∧

u∈Dom(κ)

Ψ1
D,κ,u.

We have the property:

κ ⊆ δ−1(A) ↔ (∀u ∈ Dom(κ))[A |= Ψ1
Dom(δ),κ,u(δ̄)]

and hence
κ ⊆ δ−1(A) ↔ A |= Ψ1

Dom(δ),κ(δ̄).

In the end, we define

Φ1
D,e,x ≡

∨
κ∈We,x

Ψ1
D,κ,

which is a Σc
1 formula with free variables in {Xi | i ∈ D}.

Let us fix e, x and δ ∈ PA. Let D = Dom(δ). We have the equivalences:

δ �1 Fe(x) ↔ (∃κ ∈ P2)[x ∈Wκ
e & κ ⊆ δ−1(A)]

↔ A |=
∨

κ∈We,x

Ψ1
D,κ(δ̄)

↔ A |= Φ1
D,e,x(δ̄),

δ �1 ¬Fe(x) ↔ ( � ∃ρ ∈ PA)[ρ ⊇ δ & A |= Φ1
Dom(ρ),e,x(ρ̄)]

↔ ( � ∃D′ ⊇ D)[A |= (∃D′\D)Φ1
D′,e,x(δ̄)]

↔ A |= ¬
∨

D′⊇D

(∃D′\D)Φ1
D′,e,x(δ̄).

We set
Θ1

D,e,x ≡ ¬
∨

D′⊇D

(∃D′\D)Φ1
D′,e,x.

Let α = β + 1. Let us consider κ ∈We,x. Then for every u ∈ Dom(κ), we define

Ψα
D,κ,u ≡

⎧⎪⎨⎪⎩
Φβ

D,u,u, if κ(u) = 1

Θβ
D,u,u, if κ(u) = 0.
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By definition, Ψα
D,κ,u is either a Σc

β or a Πc
β formula. We let

Ψα
D,κ ≡

∧
d �=d′,

d,d′∈D

Xd �= Xd′ &
∧

u∈Dom(κ)

Ψα
D,κ,u,

which is a finite conjunction of Σc
β and Πc

β formulae with free variables in {Xi | i ∈
D}. We can view Ψα

D,κ as a finite conjunction of Σc
β+1 formulae and hence it is

equivalent to a Σc
β+1 formula. In the end, we define

Φα
D,e,x ≡

∨
κ∈We,x

Ψα
D,κ,

which is a Σc
α formula with free variables in {Xi | i ∈ D}.

Now we are ready to show that the formula Φα
D,e,x defines the forcing relation

δ �α Fe(x), where D = Dom(δ). We have the following equivalences:

δ �α Fe(x) ↔ (∃κ ∈ P2)[x ∈Wκ
e & (∀u ∈ Dom(κ))[

(κ(u) = 1 & δ �β Fu(u)) ∨ (κ(u) = 0 & δ �β ¬Fu(u))]]

↔ A |=
∨

κ∈We,x

∧
u∈Dom(κ)

Ψα
D,κ,u(δ̄)

↔ A |= Φα
D,e,x(δ̄)

Again, it is easy to see that the Πc
α formula

Θα
D,e,x ≡ ¬

∨
D′⊇D

(∃D′\D)Φα
D′,e,x

defines in A the relation δ �α ¬Fe(x).

Let α = limα(p) and consider κ ∈We,x. Then for every u ∈ Dom(κ) we define
the formula Ψα

D,κ,u in the following way:

- if u = 〈xu, pu〉, then

Ψα
D,κ,u ≡

⎧⎪⎨⎪⎩
Φ

α(pu)
D,xu,xu

, if κ(u) = 1

Θ
α(pu)
D,xu,xu

, if κ(u) = 0

- otherwise, we set Ψα
D,κ,u ≡ ¬(Xd0

= Xd0
), where d0 is some element of D.

Again we set

Ψα
D,κ ≡

∧
d �=d′,

d,d′∈D

Xd �= Xd′ &
∧

u∈Dom(κ)

Ψα
D,κ,u,
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which is a finite conjunction of Σc
β and Πc

β formulae, for various β < α, with free
variables in {Xi | i ∈ D}. Therefore, Ψα

D,κ is also a Σc
γ formula for some γ < α.

In the end, we define the Σc
α formula

Φα
D,e,x ≡

∨
κ∈We,x

Ψα
D,κ.

By the induction hypothesis we obtain:

δ �α Fe(x) ↔ (∃κ ∈ P2)[x ∈Wκ
e & (∀u ∈ Dom(κ))[u = 〈xu, pu〉 &

(κ(u) = 1 & δ �α(pu) Fxu
(xu)) ∨

(κ(u) = 0 & δ �α(pu) ¬Fxu
(xu))]]

↔ A |=
∨

κ∈We,x

∧
u∈Dom(κ)

Ψα
D,κ,u(δ̄)

↔ A |=
∨

κ∈We,x

Ψα
D,κ(δ̄)

↔ A |= Φα
D,e,x(δ̄),

where D = Dom(δ). Moreover, δ �α ¬Fe(x) ↔ A |= Θα
Dom(δ),e,x(δ̄), where

Θα
D,e,x ≡ ¬[

∨
D′⊇D

(∃D′\D)Φα
D′,e,x].

�

2.2. MOSCHOVAKIS’ EXTENSION

We proceed with the investigation of conditions under which we have the other
directions in Theorem 4. For this purpose we need firstly to introduce some coding
machinery and then the sets KA

α which will serve as universal predicates for the Σc
α

formulae.

Following Moschovakis [8], we define the least acceptable extension A� of A,
which we call the Moschovakis’ extension of A. Let 0 be an object which does
not belong to A and Π be a pairing operation chosen so that neither 0 nor any
element of A is an ordered pair. Let A� be the least set containing all elements of
A0 = A ∪ {0} and closed under Π.

We associate an element n� of A� with each n ∈ N by induction. Let

0� = 0 and (n+ 1)� = Π(0, n�).

We denote by N� the set of all elements n�. Let L and R be the functions on A�

satisfying the following conditions:

L(0) = R(0) = 0;

(∀t ∈ A)[L(t) = R(t) = 1�];

(∀s, t ∈ A�)[L(Π(s, t)) = s & R(Π(s, t)) = t].
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The pairing function allows us to code finite sequences of elements. Let

Π1(t1) = t1 and Πn+1(t1, . . . , tn+1) = Π(t1,Πn(t2, . . . , tn+1)),

for every t1, . . . , tn+1 ∈ A�. For each predicate Pi of the structure A define the
respective predicate P �

i on A� by

P �
i (t)↔ (∃a1, . . . , ani ∈ A)[t = Πni(a1, . . . , ani) & Pi(a1, . . . , ani)].

For an enumeration f of A�, we denote

f−1(Πn)(x0, . . . , xn−1) = y ↔ (∃a0, . . . , an−1 ∈ A)[
∧
i<n

f(xi) = ai &

Πn(a0, . . . , an−1) = f(y)]

Definition 6. Moschovakis’ extension of A is the structure

A� = (A�;A0, P
�
1 , . . . , P

�
s , GΠ, GL, GR,=),

where GΠ, GL and GR are the graphs of Π, L and R respectively.

When we have two structures A and B with domains A ⊆ B, we assume that
their respective Moschovakis’ extensions A� and B� are defined so that A� ⊆ B�.
We proceed with a few technical results which will be used often when we want to
show that a property for A also holds for A� or vice-versa.

Proposition 3. Let f be an enumeration of A. We define the enumeration
f� of A� such that

f�(0) = 0�,

f�(2n+ 1) = f(n),

f�(2
k+1(2n+ 1)) = Π(f�(k), f�(n)).

Then f� ≤1
1 f , and f ≤1

1 f�.

Proof. We follow Lemma 7 of [10] to show that f−1(A) ≡T f−1
� (A�).

Let J(x, y) = 2x+1(2y+1). Denote by induction for any x1, . . . , xn, J1(x1) = x1

and Jn+1(x1, . . . , xn+1) = J(x1, Jn(x2, . . . , xn+1)). Let l and r be computable
functions satisfying the equalities:

l(0) = r(0) = 0;

l(2x+ 1) = r(2x+ 1) = 2 = J(0, 0);

l(J(x, y)) = x, r(J(x, y)) = y.

It is easy to see that

190 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 171–206.



f−1
� (A0) = {2n+ 1 | n ∈ N} ∪ {0};
f−1
� (GΠ) = {〈x, y, z〉 | Π(f�(x), f�(y)) = f�(z)} = {〈x, y, z〉 | J(x, y) = z};
f−1
� (GL) = {〈x, y〉 | L(f�(x)) = f�(y)} = {〈x, y〉 | l(x) = y};
f−1
� (GR) = {〈x, y〉 | R(f�(x)) = f�(y)} = {〈x, y〉 | r(x) = y}.

Then for any relation P ⊆ An,

〈x1, . . . , xn〉 ∈ f−1(P )↔ (f(x1), . . . , f(xn)) ∈ P

↔ (f�(2x1 + 1), . . . , f�(2xn + 1)) ∈ P

↔ Πn(f�(2x1 + 1), . . . , f�(2xn + 1)) ∈ P �

↔ Jn(2x1 + 1, . . . , 2xn + 1) ∈ f−1
� (P ).

Since f and f� are bijective, f−1(=A) = f�(=
�) = {〈z, z〉 | z ∈ N}, where =A is the

equality on A and =� is the equality on A�. We conclude that f−1(A) ≡T f−1
� (A�).

To prove f� ≤1
1 f and f ≤1

1 f�, it is enough to check that E(f�, f) is c.e. in
f−1(A). By the definition of f�, we have

E(f�, f) = {〈2x+ 1, x〉 | x ∈ N}.

Now it is clear that E(f�, f) is c.e. and hence it is clearly c.e. in f−1(A). �

Proposition 4. Let f be an enumeration of A�. There is an enumeration f�A
of A such that f�A ≤1

1 f .

Proof. Since A is a relation in A�, f−1(A) is computable in f−1(A�). Let us
fix a computable in f−1(A�) enumeration {xn}n∈N of the set f−1(A). Define the
enumeration f�A of A as f�A(n) = f(xn). Then E(f�A, f) = {〈n, xn〉 | n ∈ N} is
clearly computable in f−1(A�). For any predicate Pi in A, the equivalences

〈y1, . . . , yni
〉 ∈ f−1

�A (Pi)↔ (∃z)[z = f−1(Πni
)(xy1

, . . . , xyni
) & z ∈ f−1(P �

i )],

〈y1, . . . , yni
〉 �∈ f−1

�A (Pi)↔ (∃z)[z = f−1(Πni
)(xy1

, . . . , xyni
) & z �∈ f−1(P �

i )],

show that f−1
�A (Pi) ≤T f−1(A�). We conclude that f�A ≤1

1 f . �

Proposition 5. For any countable structure A and computable ordinal α > 0,
we have A⇔α

α A�. In other words, A� is (α, α)-conservative extension of A.

Proof. Fix α > 0. Let f be an enumeration of A� and let f�A be defined as in
Proposition 4. Since f�A ≤1

1 f , we have f�A ≤α
α f . Thus, A⇒α

α A�.

For the other direction, let f be an enumeration of A. Consider f�, defined as
in Proposition 3. Since f� ≤1

1 f , we have f� ≤α
α f . Thus, A⇐α

α A�. �
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Fix an enumeration f of A�. We define a coding scheme for finite sequences of
natural numbers in the following way:

Jf (x, y) = f−1(Π(f(x), f(y)));

Jf
1 (x) = x, Jf

n+1(x0, . . . , xn) = Jf (x0, J
f
n (x1, . . . , xn)).

We assign a measure ‖x‖f for every natural number x in the following way:

‖x‖f =

{
0, if x ∈ f−1(A0);

m+ 1, if x = Jf (y, z) & m = max{‖y‖f , ‖z‖f}.

It is easy to see that Jf and ‖.‖f are functions computable in f−1(A�).

Lemma 6. Let A and B be countable structures with domains A ⊆ B. Then
for any computable ordinals α, β > 0, A⇔α

β B if and only if A� ⇔α
β B�.

Proof. We prove only the part A⇒α
β B if and only if A� ⇒α

β B�. Then it is easy
to see that we can apply a similar argument to prove that A⇐α

β B ↔ A� ⇐α
β B�.

Let A ⇒α
β B. We prove A� ⇒α

β B�. Let h be an enumeration of B�. By
Proposition 4, h�B is an enumeration of B. Since A⇒α

β B, there exists f of A such
that f ≤α

β h�B . We shall show that for the enumeration f� of A�, we have f� ≤α
β h.

Since h�B ≤1
1 h and f ≤α

β h�B , we have

Δ0
α(f

−1
� (A�)) ≤T Δ0

α(f
−1(A)) ≤T Δ0

β(h
−1
�B (B)) ≤T Δ0

β(h
−1(B�)).

Thus, Δ0
α(f

−1
� (A�)) ≤ Δ0

β(h
−1(B�)), so we only need to prove that E(f�, h) is

Σ0
β(h

−1(B�)). We remark that if 〈x, y〉 ∈ E(f�, h), then ‖x‖f� = ‖y‖h. We define

the sets Ei = {〈x, y〉 | ‖x‖f� = ‖y‖h ≤ i & 〈x, y〉 ∈ E(f�, h)}. Clearly, E(f�, h) =⋃
i∈N Ei. We define by recursion on i a computable function μ such that for every

i, Ei = W
Δ0

β(h
−1(B�))

μ(i) . We will use the fact that

〈x, y〉 ∈ Ei+1 ↔ 〈x, y〉 ∈ E0 ∨ (∃u, v, c, d)[x = Jf�(u, v) & y = Jh(c, d) &

〈u, c〉 ∈ Ei & 〈v, d〉 ∈ Ei].

Let i = 0. Fix x0 = f−1
� (0�) and y0 = h−1(0�). Then

E0 = {〈x0, y0〉} ∪ {〈x, y〉 | x ∈ f−1
� (A) & 〈x, y〉 ∈ E(f�, h)}

and by the definitions of f� and h�B , for u ∈ f−1
� (A),

〈u, v〉 ∈ E(f�, h) if and only if (∃n)[u = 2n+ 1 & 〈n, xv〉 ∈ E(f, h�B)],

where {xn}n∈N is a computable in h−1(B�) enumeration of h−1(B), which was used
in the definition of h�B in Proposition 4. We know that E(f, h�B) is Σ0

β(h
−1(B�)).

Thus, E0 = W
Δ0

β(h
−1(B�))

e0 for some index e0. Let μ(0) = e0.
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Let i = j + 1. Since Jf� and Jh are functions computable in Δ0
β(h

−1(B�)),
define μ(j + 1) to be an index such that

〈x, y〉 ∈W
Δ0

β(h
−1(B�))

μ(j+1) ↔ 〈x, y〉 ∈W
Δ0

β(h
−1(B�))

μ(0) ∨
(∃u, v, c, d)[x = Jf�(u, v) & y = Jh(c, d) &

〈u, c〉 ∈W
Δ0

β(h
−1(B�))

μ(j) & 〈u, d〉 ∈W
Δ0

β(h
−1(B�))

μ(j) ].

Thus, E(f�, h) is Σ
0
α(h

−1(B�)) and hence f� ≤α
β h.

Let A� ⇒α
β B�. We will prove A⇒α

β B. Take an enumeration h of B and h�

as defined in Proposition 3. Fix the enumeration f of A� such that f ≤α
β h�. We

will show that f�A ≤α
β h. By the following chain,

Δ0
α(f

−1
�A (A)) ≤ Δ0

α(f
−1(A�)) ≤T Δ0

β(h
−1
� (B�)) ≤T Δ0

β(h
−1(B)),

we have Δ0
α(f

−1
�A (A)) ≤ Δ0

β(h
−1(B). Moreover, 〈u, v〉 ∈ E(f�A, h) if and only if

u ∈ f−1(A) & 2v + 1 ∈ h−1
� (B) & 〈xu, 2v + 1〉 ∈ E(f, h�), where {xn}n∈N is a

computable in f−1(A�) enumeration of f−1(A), Thus, E(f�A, h) is Σ0
β(h

−1(B))
and f�A ≤α

β h. �

2.3. CODING TUPLES IN A�

For each finite part τ ∈ PA, τ �= ∅ with Dom(τ) = {x1 < x2 < · · · < xn} and
τ(xi) = ai, we associate the element of A�, τ� = Πn(Π(x�

1, a1), . . . ,Π(x�
n, an)). For

τ = ∅, let τ� = 0�. We denote P�
A = {τ� | τ ∈ PA}.

Proposition 6. The sets N� and P�
A are uniformly relatively intrinsically com-

putable in A�. Thus, N� and P�
A are definable in A� by Σc

1 and Πc
1 formulae without

parameters.

Proof. We briefly describe why N� is uniformly relatively intrinsically com-
putable in A�. The proof for P�

A is similar.

For an enumeration f of A�, fix z such that f(z) = 0�. This is the unique
element z ∈ f−1(A0) such that 〈z, z〉 ∈ f−1(GR). Then x ∈ f−1(N�) if and
only if x = z or x = Jf

n (z, . . . , z), where n ≥ 2 is the least number such that
there are numbers y1, . . . , yn−1, different from z, and 〈x, y1〉 ∈ f−1(GR), 〈y1, y2〉 ∈
f−1(GR), . . . , 〈yn−1, z〉 ∈ f−1(GR). �

Corollary 1. The following relations are uniformly relatively intrinsically
computable in A�:

– Dm(x, y) if and only if (∃τ ∈ PA)[y = τ� & x ∈ Dom(τ)],

– Rn(x, y) if and only if (∃τ ∈ PA)[y = τ� & x ∈ Ran(τ)],
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– Sb(x, y) if and only if (∃τ, ρ ∈ PA)[x = τ� & y = ρ� & τ ⊆ ρ].

Lemma 7. For a countable structure A = (A;P0, . . . , Ps−1), computable ordi-
nal α ≥ 1, and natural numbers e, x,

1) Xα
e,x = {τ� | τ �A

α Fe(x)} is definable in A� by a Σc
α formula without

parameters;

2) Y α
e,x = {τ� | τ �A

α ¬Fe(x)} is definable in A� by a Πc
α formula without

parameters;

3) Zα
e,x = {τ� | (∃δ ∈ PA)[δ ⊇ τ & δ �A

α Fe(x)} is definable in A� by a Σc
α

formula without parameters.

Given natural numbers e, x, and a computable ordinal α ≥ 1, we can effectively
find these formulae.

Proof. Following the proof of Lemma 5 step by step, it is easy to see that for
every non-empty set D of natural numbers, every e, x, and computable ordinal
α ≥ 1, we can effectively find a Σc

α formula Φ�,α
D,e,x and a Πc

α formula Θ�,α
D,e,x in the

language of A� with free variables in {Xi | i ∈ D} such that for every δ ∈ PA with
Dom(δ) = D, we have

δ �A
α Fe(x) ↔ A |= Φα

D,e,x(δ̄) ↔ A� |= Φ�,α
D,e,x(δ̄),

δ �A
α ¬Fe(x) ↔ A |= Θα

D,e,x(δ̄) ↔ A� |= Θ�,α
D,e,x(δ̄).

We will just show how to produce the Σc
1 formulae Φ�,1

D,e,x. We start by defining

the finitary Σ1 formulae Ψ�,1
D,κ,u:

- if u = s · 〈i1, . . . , inr
〉+ r for r < s and i1, . . . , inr

∈ D, then

Ψ�,1
D,κ,u ≡

{
(∃Z)[Z = Πr(Xi1 , . . . , Xinr

) & P �
r (Z)], if κ(u) = 1,

(∃Z)[Z = Πr(Xi1 , . . . , Xinr
) & ¬P �

r (Z)], if κ(u) = 0,

- otherwise, we set Ψ�,1
D,κ,u ≡ ¬(Xd = Xd), where d is some element of D.

We define the finitary Σ1 formula Ψ�,1
D,κ with free variables in {Xi | i ∈ D} as

Ψ�,1
D,κ ≡

∧
i∈D

A(Xi) &
∧
i �=j

i,j∈D

Xi �= Xj &
∧

u∈Dom(κ)

Ψ�,1
D,κ,u,

where A(X) ≡ (∃Y, Z)[A0(X) & GR(Z,Z) & GΠ(Z,Z, Y ) & GR(X,Y )]. Here we
used the fact that A = {x | x ∈ A0 & R(x) = 1�}. We have the property:

κ ⊆ δ−1(A) ↔ A� |= Ψ�,1
Dom(δ),κ(δ̄).
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In the end, we define

Φ�,1
D,e,x ≡

∨
κ∈We,x

Ψ�,1
D,κ,

which is a Σc
1 formula with free variables in {Xi | i ∈ D}. Now, we have the

following equivalences:

u ∈ Xα
e,x ↔

∨
D={d1<···<dn}

(∃a1, . . . , an)[Πn(Π(d�1, a1), . . . ,Π(d�n, an)) = u &

A� |= Φ�,α
D,e,x(a1, . . . , an)]

z ∈ Zα
e,x ↔

∨
D={d1<···<dn}

(∃a1, . . . , an)[Πn(Π(d�1, a1), . . . ,Π(d�n, an)) = z &

A� |=
∨

D′⊇D

(∃D′\D)Φ�,α
D′,e,x(a1, . . . , an)]

Since Φ�,α
e,x is a Σc

α formula, it should be clear that the right-hand sides of the
equivalences can be expressed as Σc

α formulae. Y α
e,x = P�

A \ Zα
e,x and by the fact

that P�
A ∈ Πc

1(A
�), it follows that Y α

e,x ∈ Πc
α(A

�) �

Since we can produce the corresponding formulae uniformly in e and x, we
obtain the following corollary.

Corollary 2. The sets Xα={Π3(e
�, x�, τ�) |τ �αFe(x)} and Zα={Π3(e

�, x�, τ�)
| (∃δ ⊇ τ)[δ �α Fe(x)]} are definable in A� by Σc

α formulae without parameters.
The set Y α = {Π3(e

�, x�, τ�) | τ �α ¬Fe(x)} is definable in A� by a Πc
α formula

without parameters. We can find indices for these formulae effectively in α.

Proof. The sets Xα and Zα are definable by formulae, which are essentially
infinite disjunctions over e and x of all formulae Σc

α which define the sets Xα
e,x and

Zα
e,x. Let Y

α
e,x be definable by the Πc

α formula Θ�,α
e,x in A�. Define the Πc

α formula

Ξα(X,Y, Z) ≡
∧

e,x∈N
[X = x� & Y = e� → Θ�,α

e,x (Z)].

Since y∈Y α if and only if A� |=Ξα(L(y), L(R(y)), R2(y))&L(y)∈N� &L(R(y))∈N�

and N� ∈ Πc
1(A

�), we conclude that Y α ∈ Πc
α(A

�). �

Corollary 3. Since we have uniformity in e, x and α, for a computable limit
ordinal α = limα(p), each of the following sets

– X̂α = {Π4(e
�, x�, p�, τ�) | τ �α(p) Fe(x)},

– Ŷ α = {Π4(e
�, x�, p�, τ�) | τ �α(p) ¬Fe(x)},

– Ẑα = {Π4(e
�, x�, p�, τ�) | (∃δ ⊇ τ)[δ �α(p) Fe(x)]}
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is definable in A� by a Σc
α formula and by a Πc

α formula without parameters. We
can find indices for these formulae effectively in the notation of α.

Proof. The fact that X̂α ∈ Σc
α(A

�) and Ẑα ∈ Σc
α(A

�) follows directly from
Corollary 2, because we can find indices for the formulae defining Xα(p) and Zα(p)

uniformly in p. By the same argument Ŷ α ∈ Πc
α(A

�).

Since α = lim(α(p) + 1) and Xα(p) ∈ Πc
α(p)+1(A

�), Zα(p) ∈ Πc
α(p)+1(A

�), as

in Corollary 2 we can show that X̂α ∈ Πc
α(A

�) and Ẑα ∈ Πc
α(A

�). Similarly,
Ŷ α ∈ Σc

α(A
�). �

2.4. CHARACTERISATION

Let us fix an enumeration f of A�. Following [10], we show how to associate
a finite mapping τ ∈ PA with natural numbers relative to f . For every natural
number n, we denote nf = f−1(n�) and Nf = f−1(N�). For finite parts τ ∈ PA,
we associate with τ� the natural number τf = f−1(τ�). For example, if τ� =
Πn(Π(x�

1, a1), . . . ,Π(x�
n, an)), then τf = Jf

n (J
f (xf

1 , f
−1(a1)), . . . , J

f (xf
n, f

−1(an))).

Sometimes we will look at τf as a finite mapping withDom(τf ) = {xf
1 , . . . , x

f
n}

and τf (xf
i ) = f−1(τ(xi)). We assume that Dom(τf ) = ∅ if τf = 0. Notice that

f(τf (xf )) = τ(x) for all x ∈ Dom(τ). By Corollary 1, there exists a computable
in f−1(A�) predicate P such that for τ, δ ∈ PA, P (τf , δf ) = 1 if and only if τ ⊆ δ.
We will slightly abuse our notation and write τf ⊆ δf instead of P (τf , δf ) = 1.

The next results give conditions under which we have the other directions of
Theorem 4.

Theorem 6. Let A and B be countable structures with A� ⊆ B. Then for any
computable ordinals α, β > 0,

(∀X ⊆ A�)[X ∈ Σc
α(A

�
A�)→ X ∈ Σc

β(BB)] → A⇒α
β B.

Proof. Let us fix an enumeration f of B. We will show that there exists an
enumeration g of A such that g ≤α

β f .

Since A ∈ Σc
1(A

�
A�), we have A ∈ Σc

β(BB) and then by Theorem 3, f−1(A) is

Σ0
β(f

−1(B)). Fix a bijection μ : N→ f−1(A), which is computable in Δ0
β(f

−1(B)).
We have two cases to consider.

Let α = 1. We take the enumeration g of A defined as g(n) = f(μ(n)). Clearly
the set E(g, f) is Σ0

β(f
−1(B)), because

〈x, y〉 ∈ E(g, f) ↔ g(x) = f(y) ↔ y = μ(x).
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Let Pi be any relation in A. We have Pi ∈ Σc
β(BB) and Ani \ Pi ∈ Σc

β(BB).

Thus, both f−1(Pi) and f−1(Ani \ Pi) are Σ0
β(f

−1(B)). Moreover,

u ∈ g−1(Pi) ↔ (∃x1, . . . , xni
< u)[u = 〈x1, . . . , xni

〉 &
〈μ(x1), . . . , μ(xni

)〉 ∈ f−1(Pi)],

u ∈ N \ g−1(Pi) ↔ ¬(∃x1, . . . , xni < u)[u = 〈x1, . . . , xni〉] ∨
(∃x1, . . . , xni < u)[u = 〈x1, . . . , xni〉 &

〈μ(x1), . . . , μ(xni)〉 ∈ f−1(Ani \ Pi)].

Since g−1(Pi) and N \ g−1(Pi) are both Σ0
β(f

−1(B)), g−1(A) is Δ0
β(f

−1(B)) and

hence g ≤1
β f .

Let α > 1. We build an α-generic enumeration g of A such that g ≤α
β f . We

essentially use the sets defined in Lemma 7.

- Let α = γ + 1. By Corollary 2, Y γ ∈ Πc
γ(A

�) and hence Y γ ∈ Σc
α(A

�). It
follows that the sets Xγ , Y γ and Zγ are all in Σc

β(BB). Thus, f−1(Xγ),

f−1(Y γ) and f−1(Zγ) are all Σ0
β(f

−1(B)).

- Let α = limα(p). By Corollary 3, for the fixed enumeration f of B, f−1(X̂α),
f−1(Ŷ α) and f−1(Ẑα) are all Σ0

β(f
−1(B)).

Recall that for any natural number x, we denote by xf = f−1(x�) and Nf is the
set of all these xf .

Claim 1. There exists an α-generic enumeration g of A such that gf is
Δ0

β(f
−1(B)), where gf : Nf → f−1(A) is defined as gf (xf ) = f−1(g(x)).

Proof. We describe a construction in which at each stage s we define a finite
part τs ⊆ τs+1. In the end, the α-generic enumeration of A will be defined as
g =

⋃
s τs. Let τ0 = ∅ and suppose we have already defined τs.

a) Case s = 2r. We make sure that g is one-to-one and onto A. Let x be the least
natural number not in Dom(τs). Find the least p such that μ(p) �∈ Ran(τfs ).
Set τs+1(x) = f(μ(p)) and τs+1(z) = τs(z) for every z �= x and z ∈ Dom(τs).
Leave τs+1(z) undefined for any other z. Since Nf and μ are Δ0

β(f
−1(B)), we

can find τfs+1 effectively relative to Δ0
β(f

−1(B)).

b) Case s = 2r + 1. We satisfy the requirement that g is α-generic.

Let α = γ +1 and s = 2〈e, x〉+1. Check whether there exists an extension δ of
τs such that δ �γ Fe(x). This is equivalent to asking which one of the following
is true:

Jf
3 (e

f , xf , τfs ) ∈ f−1(Y γ) or Jf
3 (e

f , xf , τfs ) ∈ f−1(Zγ).

We can answer this question effectively relative to the oracle Δ0
β(f

−1(B)).
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- If Jf
3 (e

f , xf , τfs ) ∈ f−1(Y γ), then τs �γ ¬Fe(x) and we set τs+1 = τs.

- If Jf
3 (e

f , xf , τfs ) ∈ f−1(Zγ), we search for δf ∈ Pf
A such that τfs ⊆ δf and

Jf
3 (e

f , xf , δf ) ∈ f−1(Xγ). We can find such δf effectively in Δ0
β(f

−1(B)).

Set τs+1 = δ, where δf is the first we find.

Let α = limα(p) and s = 2〈e, x, p〉+1. This time we check whether there exists
an extension δ of τs such that δ �α(p) Fe(x). This is equivalent to asking:

Jf
4 (e

f , xf , pf , τfs ) ∈ f−1(Ŷ α) or Jf
4 (e

f , xf , pf , τfs ) ∈ f−1(Ẑα).

Again we can answer this question effectively relative to the oracle Δ0
β(f

−1(B)).
If there is no such δ, we set τs+1 = τs. If such δ does exists, then τs+1 = δ,
where δf is the first we find. Again, we can do all this effectively relative to the
oracle Δ0

β(f
−1(B)), because, as explained above, the sets f−1(X̂α), f−1(Ŷ α),

and f−1(Ẑα) are Σ0
β(f

−1(B)).

End of construction
It follows from the construction that the graph of gf is Σ0

β(f
−1(B)). �

Claim 2. For the enumeration g of A we have the following:

i) the relation E(g, f) is Σ0
β(f

−1(B));

ii) the relation τf ⊆ gf is Σ0
β(f

−1(B)).

Proof. i) The equivalences g(x) = f(y) ↔ f−1(g(x)) = y ↔ gf (xf ) = y
and the fact that the graph of gf is Σ0

β(f
−1(B)) imply that the set E(g, f) is

Σ0
β(f

−1(B)).

ii) Since f(gf (xf )) = g(x), f(τf (xf )) = τ(x), and equality is among the
relation symbols in the language of A�, we have:

τf ⊆ gf ↔ (∀xf ∈ Dom(τf ))[τf (xf ) = gf (xf )]

↔ (∀xf ∈ Dom(τf ))[f(τf (xf )) = τ(x) = g(x) = f(gf (xf )))]

↔ (∀xf ∈ Dom(τf ))[f(τf (xf )) = g(x)]

↔ (∀xf ∈ Dom(τf ))(∃y)[g(x) = f(y) & f(τf (xf )) = f(y)]

↔ (∀xf ∈ Dom(τf ))(∃y)[〈x, y〉 ∈ E(g, f) & 〈τf (xf ), y〉 ∈ f−1(=�)].

Here we denote by =� the equality on A�. Since we have all of the following:

- the sets {xf | x ∈ N} and {τf | τ ∈ PA} are Σ0
β(f

−1(B));

- given a number x ∈ Dom(τf ), we can effectively relative to Δ0
β(f

−1(B)) find

the value of τf (xf );
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- the sets E(g, f) and f−1(=�) are Σ0
β(f

−1(B)),

it follows that the relation τf ⊆ gf is Σ0
β(f

−1(B)). �

We note that if E(g, f) is c.e. in the set Z, then the relation τf ⊆ gf is c.e. in
Δ0

β(f
−1(B))⊕ Z. Since g is α-generic, we obtain the following equivalences.

Let α = γ + 1. Then

x ∈ Δ0
α(g

−1(A))↔ g |=γ Fx(x) ↔ (∃τ ⊆ g)[τ �γ Fx(x)]

↔ (∃τf ⊆ gf )[Jf
3 (x

f , xf , τf ) ∈ f−1(Xγ)].

x �∈ Δ0
α(g

−1(A))↔ g |=γ ¬Fx(x) ↔ (∃τ ⊆ g)[τ �γ ¬Fx(x)]

↔ (∃τf ⊆ gf )[Jf
3 (x

f , xf , τf ) ∈ f−1(Y γ)].

Let α = limα(p). Then

〈x, p〉 ∈ Δ0
α(g

−1(A)) ↔ x ∈ Δ0
α(p)+1(g

−1(A)) ↔ g |=α(p) Fx(x)

↔ (∃τ ⊆ g)[τ �α(p) Fx(x)].

↔ (∃τf ⊆ gf )[Jf
4 (x

f , xf , pf , τf ) ∈ f−1(X̂α)].

〈x, p〉 �∈ Δ0
α(g

−1(A)) ↔ x �∈ Δ0
α(p)+1(g

−1(A)) ↔ g |=α(p) ¬Fx(x)

↔ (∃τ ⊆ g)[τ �α(p) ¬Fx(x)].

↔ (∃τf ⊆ gf )[Jf
4 (x

f , xf , pf , τf ) ∈ f−1(Ŷ α)].

It follows that Δ0
α(g

−1(A)) is Δ0
β(f

−1(B)). We conclude that for the enumer-
ation g of A, g ≤α

β f and hence A⇒α
β B. �

Examining closely the proof of Theorem 6, we obtain the following corollary by
isolating the requirements we need in the construction of the generic enumeration.

Corollary 4. Let A and B be countable structures with A� ⊆ B, and let
α > 0, β > 0 be computable ordinals. Suppose that for every relation Pi in A�, Pi

and (A�)ni \ Pi are in Σc
β(BB), and

- if α ≥ 2 and α = γ + 1, then Xγ ∈ Σc
β(BB), Y

γ ∈ Σc
β(BB), Z

γ ∈ Σc
β(BB);

- if α is a limit ordinal, then X̂α ∈ Σc
β(BB), Ŷ

α ∈ Σc
β(BB), Ẑ

α ∈ Σc
β(BB).

Then we have A⇒α
β B.

Moreover, for every enumeration f of B and every α-generic enumeration g
of A, if E(f, g) is c.e. in Z, then Δ0

α(g
−1(A)) ≤T Δ0

β(f
−1(B))⊕ Z.

Corollary 5. For any two countable structures A, B with domains A ⊆ B
and computable ordinals α, β > 0,

A⇒α
β B↔ (∀X ⊆ A�)[X ∈ Σc

α(A
�
A�)→ X ∈ Σc

β(B
�
B�)].
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In the special case when A = B,

A⇔α
β B↔ (∀X ⊆ A�)[X ∈ Σc

α(A
�
A�)↔ X ∈ Σc

β(B
�
B�)].

Proof. (→) Let A ⇒α
β B. By Lemma 6, we have A� ⇒α

β B�. Then by
Theorem 4, (∀X ⊆ A�)[X ∈ Σc

α(A
�
A�)→ X ∈ Σc

β(B
�
B�)].

(←) We apply Theorem 6 for the structures A and B� and obtain A ⇒α
β B�.

Take any enumeration h of B and consider h� of B�, defined as in Proposition 3.
There exists f of A such that f ≤α

β h�. Since h
−1
� (B�) ≡T h−1(B), and E(h�, h) is

computable, we obtain E(f, h) is Σ0
β(h

−1(B)) and Δ0
α(f

−1(A)) ≤T Δ0
β(h

−1(B)).
It follows that f ≤α

β h and hence A⇒α
β B. �

3. JUMP STRUCTURES

For any countable structure A, we will define its α-jump structure A(α), which
(α, 1)-conservatively extends the original structure A.

Definition 7. Let A be a countable structure. We define, for every computable
ordinal α > 0, the set KA

α in the following way:

– if α < ω, KA
α = {Π3(e

�, x�, τ�) | τ �α ¬Fe(x) & e, x ∈ N & τ ∈ PA}.
– if α ≥ ω and α = β + 1,

KA
α = {Π3(e

�, x�, τ�) | τ �β ¬Fe(x) & e, x ∈ N & τ ∈ PA}.

– if α = limα(p),

KA
α = {Π4(e

�, x�, p�, τ�) | τ �α(p) ¬Fe(x) & e, x ∈ N & τ ∈ PA}.

Definition 8. Let A be a countable structure. For every computable ordinal
α > 0, we define the α-th jump of A in the following way.

A(0) = A and A(α) = (A�,KA
α ),

where A� is the Moschovakis’ extension of A. The language of the jump structures
is the language of the structure A� plus the predicate symbol K.

We remark that A. Soskova and I. Soskov [10] define the jump structure of A
as A′ = (A�, R), where R = A� \KA

1 . Recall that we defined α′ = α+ 1, if α < ω,
and α′ = α, otherwise. The next lemma explains why the definition of KA

α involves
so many cases for different α.

Lemma 8. For any countable structure A and computable ordinal α > 0, KA
α

is uniformly relatively intrinsically Δ0
α′ on A�.
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Proof. Essentially the proof is an application of Corollary 2 and Corollary 3.

Let α < ω. Here α′ = α+ 1. In this case we have KA
α = Y α and hence KA

α is
definable by a Πc

α formula without parameters. Thus, KA
α is uniformly relatively

intrinsically Δ0
α+1 on A�.

Let α ≥ ω and α = β + 1. Here KA
α = Y β and hence KA

α is Πc
β definable

without parameters in A�. Thus, KA
α is uniformly relatively intrinsically Δ0

α on
A�.

Let α = limα(p). We have that KA
α = Ŷ α and by the fact that Ŷ α is defin-

able by both Σc
α and Πc

α formulae without parameters, KA
α is uniformly relatively

intrinsically Δ0
α on A�. �

Corollary 6. For any countable structure A and computable ordinal α > 0,

A(α) ⇒1
α′ A

�.

More precisely, for any enumeration f of A�, f−1(A(α)) ≤T Δ0
α′(f

−1(A�)).

Proof. By Lemma 8, KA
α is relatively intrinsically Δ0

α′ on A�. Then for any
enumeration f of A�, f−1(KA

α ) is Δ
0
α′(f

−1(A�)). Thus, f−1(A(α)) is Δ0
α′(f

−1(A�))
and hence A(α) ⇒1

α′ A
�. �

Proposition 7. For any computable ordinal α ≥ 1, KA
α and A� \ KA

α are
definable by Σc

1 formulae without parameters in A(α+1). Therefore, if a relation R
is Σc

1 definable without parameters in A(α), given an index for this formula, we can
effectively find a Σc

1 formula without parameters which defines R in A(α+1).

Proof. Here h and h′ are the computable functions from Proposition 1. For
α = β + 1, the proposition follows from the equivalence

u ∈ KA
α ↔

∨
(e,n)∈Graph(h)

[L(u) = e� & Π3(n
�, L(R(u)), R2(u)) ∈ KA

α+1].

For α = limα(p), we can define KA
α in a similar way, but now we use that

Π4(e
�, x�, p�, τ�) ∈ KA

α ↔ Π3((h
′(e, p))�, x�, τ�) ∈ KA

α+1.

�

Proposition 7 can be extended and it can be shown that if R is relatively
intrinsically c.e. on A(α), then R is relatively intrinsically c.e. on A(γ), for any
γ ≥ α.

Lemma 9. Fix a countable structure A. For every computable ordinal α >
0, and natural numbers e, x, we have that Xα

e,x ∈ Σc
1(A

(α)). Moreover, we can
effectively find Σc

1 indices for these formulae uniformly in e, x and α.
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Proof. The proof is by transfinite induction on α. The base case is for α = 1.
By Lemma 7, the sets X1

e,x are in Σc
1(A

�) and thus they are definable in A′ by the
same formulae. Now consider the ordinal α+ 1 < ω.

τ �α+1 Fe(x)↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[(δ(z) = 1 & τ� ∈ Xα

z,z)

∨ (δ(z) = 0 & Π3(z
�, z�, τ�) ∈ KA

α )]].

By the induction hypothesis, Xα
e,x is definable in A(α) by a Σc

1 formula, denoted χα
e,x,

without parameters and we can effectively find an index for this formula uniformly
in e, x and α. Let us define the Σc

1 formula without parameters:

χ̆α+1
e,x (X) ≡

∨
δ∈We,x

[
∧

δ(z)=0

χα
e,x(X) ∧

∧
δ(z)=1

K(Π3(z
�, z�, X))],

where We,x = {δ ∈ P2 | x ∈ W δ
e }. By K we denote the relation symbol which is

interpreted as KA
α in A(α). Therefore, τ �α+1 Fe(x) ↔ A(α) |= χ̆α+1

e,x (τ�). Hence

Xα+1
e,x ∈ Σc

1(A
(α)) and we can find an index for χ̆α+1

e,x effectively in e, x and our
notation for α+ 1. By Proposition 7, we can effectively transform χ̆α+1

e,x to the Σc
1

formula χα+1
e,x without parameters such that τ �α+1 Fe(x) ↔ A(α+1) |= χα+1

e,x (τ�).
For the case of α+ 1 > ω, we have:

τ �α+1 Fe(x) ↔ (∃δ ∈ P2)[x ∈W δ
e & (∀z ∈ Dom(δ))[(δ(z) = 1 & τ� ∈ Xα

z,z)

∨ (δ(z) = 0 & Π3(z
�, z�, τ�) ∈ KA

α+1)]].

By the induction hypothesis, we effectively produce the Σc
1 formulae χα

e,x for the sets

Xα
e,x such that t ∈ Xα

e,x ↔ A(α) |= χα
e,x(t). Again by Proposition 7, we effectively

transform them into the Σc
1 formulae χ̆α

e,x which define the sets Xα
e,x in A(α+1)

without parameters. We define the Σc
1 formula

χα+1
e,x (X) ≡

∨
δ∈We,x

[
∧

δ(z)=0

χ̆α
z,z(X) ∧

∧
δ(z)=1

K(Π3(z
�, z�, X))],

for which we have τ �α+1 Fe(x) ↔ A(α+1) |= χα+1
e,x (τ�). Clearly, χα+1

e,x defines the

set Xα+1
e,x in A(α+1) without parameters.

Let us consider the computable limit ordinal α = limα(p). By induction

hypothesis, given e, x and α(p), we can effectively produce the Σc
1 formula χ

α(p)
e,x

which define the set X
α(p)
e,x in A(α(p)) without parameters. Since Π3(e

�, x�, τ�) ∈
KA

α(p) if and only if Π4(e
�, x�, p�, τ�) ∈ KA

α , we effectively transform each χ
α(p)
e,x

into the Σc
1 formula χ̆

α(p)
e,x which define X

α(p)
e,x in A(α) without parameters. Now we

define the Σc
1 formula for Xα

e,x as follows:

χα
e,x(X) ≡

∨
δ∈We,x

[
∧

δ(〈z,p〉)=0

χ̆α(p)
z,z (X) ∧

∧
δ(〈z,p〉)=1

K(Π4(z
�, z�, p�, X))].
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Since τ �α Fe(x) ↔ A(α) |= χα
e,x(τ

�), the formula χα
e,x defines the set Xα

e,x in A(α)

without parameters. �

We did all the hard work. Now we are ready to show that A(α) is (α′, 1)-
conservative extension of A.

Corollary 7. For any countable structure A and computable ordinal α > 0,

A⇒α′
1 A(α).

Moreover, for any α′-generic enumeration g of A,

Δ0
α′(g

−1(A)) ≡T g−1(A)(α) ≡T g−1
� (A�)(α) ≡T g−1

� (A(α)),

where g� is defined as in Proposition 3.

Proof. First we note that, having Lemma 9, we can prove analogues to Corol-
lary 2 and Corollary 3, that is, we can show that for any computable ordinal α,
Xα ∈ Σc

1(A
(α)), Zα ∈ Σc

1(A
(α)), and X̂α ∈ Σc

1(A
(α)), Ẑα ∈ Σc

1(A
(α)). Now all we

need to do is check the premises of Corollary 4 for β = 1 and B = A(α), where we
have a few cases for α to consider:

- α < ω, α′ = α + 1. As noted above, we have that Xα ∈ Σc
1(A

(α)), Zα ∈
Σc

1(A
(α)). Since Y α = KA

α , we also have Y α ∈ Σc
1(A

(α)).

- α = γ + 1 > ω, α′ = α. We have that Xγ ∈ Σc
1(A

(γ)), Zγ ∈ Σc
1(A

(γ)). Then
by Proposition 7, Xγ ∈ Σc

1(A
(α)) and Zγ ∈ Σc

1(A
(α)). We also have Y γ = KA

α

and hence Y γ ∈ Σc
1(A

(α)).

- α = limα(p), α′ = α. Here we have that X̂α ∈ Σc
1(A

(α)), Ẑα ∈ Σc
1(A

(α)). By
definition, Ŷ α = KA

α . Thus, Ŷ
α ∈ Σc

1(A
(α)).

By Corollary 4, we conclude that A⇒α′
1 A(α).

Now we will prove the second part. By Corollary 4, since g is α′-generic,

Δ0
α′(g

−1(A)) ≤T g−1
� (A(α))⊕ Z,

where Z is such that E(g, g�) is c.e. in Z. By Proposition 3, we have that E(g, g�)
is computable. Thus, we obtain Δ0

α′(g
−1(A)) ≤T g−1

� (A(α)). By Corollary 6,
A(α) ⇒1

α′ A� and hence g−1
� (A(α)) ≤T Δ0

α′(g
−1
� (A�)). Again by Proposition 3,

g−1(A) ≡T g−1
� (A�). Combining all of the above, we conclude

Δ0
α′(g

−1(A)) ≡T g−1(A)(α) ≡T g−1
� (A�)(α) ≡T g−1

� (A(α)).

�

Theorem 7. For every countable structure A and computable ordinal α > 0,
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1) A⇔α′
1 A(α), or in other words, A(α) is a (α′, 1)-conservative extension A;

2) A� ⇔α′
1 A(α), i.e. A(α) is also a (α′, 1)-conservative extension A�;

3) A(α) ⇒1
1 A(α+1), but A(α) �⇐1

1 A(α+1).

Proof. One direction of 1) is Corollary 7. For the other direction, let us take
an enumeration f of A. By Proposition 3, f� is an enumeration of A� and hence it
is an enumeration of A(α). Moreover, by Corollary 6, f−1

� (A(α)) ≤T Δ0
α′(f

−1
� (A�)).

Since f−1
� (A�) ≡T f−1(A) and E(f�, f) is computable, we get A⇐1

α′ A
(α).

2) We take any enumeration f of A(α) and since by 1) A⇒α′
1 A(α), we choose

h of A such that h ≤α′
1 f . h� is an enumeration of A�, E(h�, h) is computable and

h−1
� (A�) ≡T h−1(A). Thus, h� ≤α′

1 f and hence A� ⇒α′
1 A(α). The other direction

is exactly Corollary 6, because A� and A(α) are structures with equal domains and
in this case A(α) ⇒1

α′ A
� is equivalent to A� ⇐α′

1 A(α). Therefore, A� ⇐α′
1 A(α).

3) By Proposition 7, KA
α ∈ Σc

1(A
(α+1)). Then by Corollary 4, we obtain

A(α) ⇒1
1 A(α+1). Assume A(α) ⇐1

1 A(α+1) and let g be an (α′ + 1)-generic enumer-
ation of A. Since g� is an enumeration of A(α), there exists an enumeration f of
A(α+1) such that f ≤1

1 g� and hence f−1(A(α+1)) ≤T g�(A
(α)). By Corollary 6 we

have g�(A
(α)) ≤T Δ0

α′(g
−1
� (A�)) and by Proposition 3, g−1

� (A�) ≡T g−1(A). We
conclude that f−1(A(α+1)) ≤T Δ0

α′(g
−1
� (A�)) ≡T g(A)(α).

We apply Corollary 4 for β = 1, B = A(α+1), and obtain that for the given
enumeration f of A(α+1) and (α′+1)-generic g enumeration of A, Δ0

α′+1(g
−1(A)) ≤T

f−1(A(α+1))⊕Z, where Z is such that E(f, g) is c.e. in Z. Since (x, y) ∈ E(f, g) if
and only if (2x+ 1, y) ∈ E(f, g�) and E(f, g�) is c.e. in g−1

� (A(α)), we can replace
Z by g−1

� (A(α)). Therefore,

g−1(A)(α+1) ≡T Δ0
α′+1(g

−1(A)) ≤T f−1(A(α+1))⊕ g−1
� (A(α)) ≤T g−1(A)(α).

We reach a contradiction. �

Corollary 8. For a countable structure A and computable ordinal α > 0,

1) (∀X ⊆ A)[X ∈ Σc
α′(AA)↔ X ∈ Σc

1(A
(α)
A� )];

2) DS(A(α)) = DSα(A).

Proof. Direct application of 1) of Theorem 7, Theorem 4 and Theorem 5. �

Theorem 8. For all countable structures A, B with A ⊆ B and computable
ordinals α, β > 0, A⇔α′

β′ B if and only if A(α) ⇔1
1 B(β).

Proof. By Lemma 6, for any α, β > 0, A⇔α
β B if and only if A� ⇔α

β B�. We

explain only why A� ⇒α′
β′ B

� implies A(α) ⇒1
1 B(β). The other directions make use

of similar ideas.
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By 2) of Theorem 7, B� ⇒β′
1 B(β). Take any enumeration f of B(β) and

let h be an enumeration of B� for which h ≤β′
1 f . Since A� ⇒α′

β′ B�, there

exists an enumeration g of A� such that g ≤α′
β′ h. By Corollary 6, g−1(A(α)) ≤T

Δ0
α′(g

−1(A�)). We clearly have g−1(A(α)) ≤T Δ0
α′(g

−1(A�)) ≤T Δ0
β′(h

−1(B�)) ≤T

f−1(B(β)). Since 〈x, y〉 ∈ E(g, f) if and only if there is a number z such that
〈x, z〉 ∈ E(g, h) and 〈z, y〉 ∈ E(h, f), the set E(g, f) is c.e. in f−1(B(β)). Therefore,
g ≤α′

1 f . We conclude that A⇒α′
β′ B implies A(α) ⇒1

1 B(β). �
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DEFINABILITY OF JUMP CLASSES IN THE LOCAL THEORY
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In the present paper we continue the study of the definability in the local substructure
Gω of the ω-enumeration degrees, which was started in the work of Ganchev and Soskova
[3]. We show that the class I of the intermediate degrees is definable in Gω . As a
consequence of our observations, we show that the first jump of the least ω-enumeration
degree is also definable.
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1. INTRODUCTION

A major focus of research in Computability theory involves definability issues
in degree structures. Considering a degree structure, natural questions arise about
the definability of classes of degrees determined by the structure’s jump operation.
The same questions can be transferred to its local substructures as well. As an
interesting special case one can ask for which natural numbers n the jump classes
Hn and Ln, consisting of the highn and the lown degrees respectively, are first
order definable in a degree structure.

As it has been shown by Shore and Slaman in [9], the Turing jump is first order
definable in the structure of the Turing degrees, DT , so for all natural numbers n
the classes Hn and Ln are first order definable in DT . For the local substructure
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GT consisting of all Turing degrees less than or equal to the first jump of the least
element in DT , and for the substructure R consisting of all computably enumerable
Turing degrees, Nies, Shore and Slaman [7] showed that for each natural number n
the jump classes Hn and Ln+1 are first order definable. The question whether the
class L1 is first order definable is still open.

In the case of the structure of the enumeration degrees, De, Kalimullin [5]
proved that the enumeration jump is first order definable, so all of the classes Hn

and Ln are first order definable as well. In the local structure Ge consisting of all
enumeration degrees below the first jump of the least element in De, we know by
a recent result of Ganchev and M. Soskova [4] that the class L1 is definable. The
problems concerning the definability of H1 and of the classes of the highn and lown

degrees for n ≥ 2 still resist all attempts to be solved.

Further one can consider the questions about the first order definability of the
jump classes H =

⋃
Hn of the degrees which are highn for some n < ω, L =

⋃
Ln

of the degrees which are lown for some n < ω and of the class of the intermediate
degrees I. It is known that the classes H,L and I are definable in DT . This follows
from the fact that each relation on DT is definable in DT if and only if it is invariant
under the automorphisms and it is induced by a degree invariant relation on 2ω

definable in Second-Order Arithmetic, see [10]. An analogous reasoning is valid for
the structure De, [11].

What is the situation in the local substructures? In the case of the structure
of the c.e. degrees, R, the classes H,L and I are not definable. Indeed, by Solovay
(see for instance [12]), the set of the indices of the c.e. sets which are intermediate
is Π0

ω+1-complete, and the sets of the indices of the c.e. sets which are in H and
L respectively are both Σ0

ω+1-complete and hence are not definable in First-Order
Arithmetic. On the other hand, by Nies, Shore and Slaman [7], a relation on
c.e. degrees invariant under the double jump1 is definable in R if and only if it
is definable in First-Order Arithmetic. Therefore I,H and L are not definable
in R. From this point one may conclude that I,H and L are not definable in
GT . Indeed, following Nies, Shore and Slaman [7], a relation on degrees below 0′T
invariant under the double jump is definable in GT if and only if it is definable in
First-Order Arithmetic. But the classes of the indeces of the Δ0

2-sets having Turing
degrees in I,H or L respectively are not definable in First-Order Arithmetic, since
otherwise adding to their definitions the condition of being c.e. (which is definable
in First-Order Arithmetic) would result into definitions of the indices of the c.e.
sets in I,H and L. So again I,H and L are not definable in GT . Finally, let us
consider Ge. Here one can argue in a manner similar to the above by noting that
R is isomorphic to the structure of the Π0

1 enumeration degrees [8], and that the
latter are definable in First-Order Arithmetic. Now assuming that one of the classes
H,L and I is definable in Ge, one can easily show the definability of the respective
class of indeces of Σ0

2-sets in First-Order Arithmetic. So a definition in First-Order

1A n-ary relation R on degrees is invariant under the double jump if and only if whenever
R(x1, . . . ,xn) and x′′1 = y′′1 , . . . ,x

′′
n = y′′n, it is also true that R(y1, . . . ,yn).
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Arithmetic of the corresponding class of c.e. sets is obtained, once again leading to
a contradiction.

In this paper we investigate the question about the definability of the classes
I, H and L in the local theory of the structure of the ω-enumeration degrees, Dω,
which is a proper extension of De.

The structure of the ω-enumeration degrees was introduced by Soskov [14] and
further studied in a sequence of works by Soskov, M. Soskova and Ganchev [15,17,3].
Unlike the structures of the Turing degrees and of the enumeration degrees, Dω is
based on a reducibility relation between sequences of sets of natural numbers. To
be more precise, a sequence A = {Ak}k<ω is said to be ω-enumeration reducible
to a sequence B = {Bk}k<ω if and only if JB ⊆ JA, where for any sequence
X = {Xk}k<ω, JX denotes the jump class

JX = {dT (Y )| Xk is c.e. in Y (k) uniformly in k}.

The jump A′ of a sequence A is defined [15] so that the class JA′ consists
exactly of the jumps of the Turing degrees in JA, i.e. so that JA′ = J ′A. The jump
operator on sequences is monotone and thus induces a jump operation ′ in Dω.
Like the jump operation in DT , the range of the jump operation in Dω is exactly
the cone above the first jump of the least element 0ω. In other words, a general
jump inversion theorem is valid for Dω. Moreover, even a stronger statement turns
out to be true, namely, for every ω-enumeration degree a above 0′ω there is a least
degree with jump equals to a. This property is neither true for DT nor for De.

The strong jump inversion theorem makes the structure Dω worth studying,
since using it one may consider a natural copy of the structure De definable in Dω

augmented by the jump operation. Moreover, the automorphism groups of De and
Dω

′ (i.e. the structure of ω-enumeration degrees augmented with jump operation)
are isomorphic.

The jump operation gives rise to the local substructure Gω consisting of all ω-
enumeration degrees below 0′ω. Thanks to the strong jump inversion, Gω contains
a class of remarkable degrees having no analogue in either R, GT or Ge. These
degrees are denoted by on, n < ω, and are defined so that on is the least degree
whose n-th jump is equal to the (n + 1)-th jump of 0ω. In other words, on is the
least highn degree. The degrees on turn out be also connected to lown degrees.
Indeed, a degree in Gω is lown if and only if it forms a minimal pair with on.

Each one of the degrees on turns out to be definable in Gω, [3], and hence so
are the classes Hn and Ln, for n ∈ ω. The definition in Gω of on given by Ganchev
and M. Soskova [3] is based on the notion of Kalimullin pairs, or more simply K-
pairs — a notion first introduced and studied by Kalimullin in the context of the
enumeration degrees. For an arbitrary partial order D = (D,≤) a pair {a,b} is
called a K-pair if and only if

x = (x ∨ a) ∧ (x ∨ b)
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holds for every x ∈ D.
The K-pairs in Gω can be separated into two disjoint classes. The first class

consists of the K-pairs formed by two almost zero degrees (a degree in Gω is called
almost zero if and only if it is bellow each on). The other class contains the K-pairs
inherited from De[0

(n)
e ,0

(n+1)
e ] for some natural number n. The degrees on are

strongly connected with the inherited K-pairs. In fact the degree on is the greatest
degree which is the least upper bound of an inherited K-pair, which cannot be
cupped above on−1 by a degree less then on−1. On the other hand if a K-pair is
not inherited, then it is bounded by every on−1 so that we can relax the condition
on the K-pairs to be inherited in the above characterisation. Since o0 is the top
element in Gω, we can define each of the degrees on inductively in Gω.

In this paper we continue the study of the connections between the degrees on

and the K-pairs. Our aim is to prove the following theorem.

Theorem 1. The classes H,L and I are first order definable in the local
substructure Gω of the ω-enumeration degrees.

To obtain the above mentioned definability result it suffices to prove that the
set O = {on|n < ω} is definable in Gω. Indeed, we obviously have that

x ∈ H ⇐⇒ (∃n)[x ∈ Hn] ⇐⇒ (∃n)[on ≤ω x] ⇐⇒ (∃o ∈ O)[o ≤ω x].

Similarly

x ∈ L ⇐⇒ (∃n)[x ∈ Ln] ⇐⇒ (∃n)[on ∧ x = 0ω] ⇐⇒ (∃o ∈ O)[o ∧ x = 0ω].

So how do we define O? As we stated above, each on is the least upper bound
of an inherited K-pair. Then our first goal is to define the set of the inherited K-
pairs in Gω. We achieve this using a result by Kent and Sorbi [6]. Namely, we show
that a K-pair is inherited if and only if each of its elements bounds a non-splittable
degree. So we concentrate only on least upper bounds of inherited K-pairs. First
we show that for each on and for each inherited K-pair, the elements of the K-pair
are either bellow on or are incomparable with on. Then a result by Ganchev and
M. Soskova [3] allows us to show that this necessary condition is also sufficient, so
that we obtain the desired definition of O.

Moreover, we shall extend our observations for the K-pairs in Gω and charac-
terise the K-pairs in Dω. We shall see that the K-pairs in Dω either consists only of
a.z. degrees, or are inherited just like in the case of Gω. But the inherited K-pairs
are always below 0′ω. So, knowing how to distinguish (in Dω) the inherited K-pairs
from the others and using the fact that 0′ω can be represented as a least upper
bound of an inherited K-pair, we conclude that 0′ω is the greatest degree which is
least upper bound of an inherited K-pair. Thus we have

Theorem 2. The first jump of the least element 0ω is first order definable in
Dω.
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2. PRELIMINARIES

We denote the set of natural numbers by ω. If not stated otherwise, a, b,
c, . . . stand for natural numbers, A, B, C, . . . for sets of natural numbers, a, b,
c, . . . for degrees and A, B, C, . . . for sequences of sets of natural numbers. We
shall further follow the following convention: whenever a sequence is denoted by a
calligraphic Latin letter, then we shall use the roman style of the same Latin letter,
indexed with a natural number, say k, to denote the k-th element of the sequence
(we always start counting from 0). Thus, if not stated otherwise, A = {Ak}k<ω,
B = {Bk}k<ω, C = {Ck}k<ω, etc. We shall denote the set of all sequences (of length
ω) of sets of natural numbers by Sω.

The notation A⊕B stands for the set {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.
We assume that the reader is familiar with the notion of enumeration reducibil-

ity, ≤e, and with the structure of the enumeration degrees (for an introduction
on the enumeration reducibilities and the respective degree structure we refer the
reader to [1, 13]).

For a natural number e and a set A ⊆ ω, we denote by WA
e the domain of the

partial function computed by the oracle Turing machine with index e and using A
as an oracle.

Intuitively, a set A is enumeration reducible (e-reducible) to a set B, if there
is an effective algorithm transforming each enumeration of B into an enumeration
of A. More formally, A ≤e B if and only if there is a natural number i, such that
for every enumeration f of B, the function {i}f is an enumeration of A. It turns
out that A ≤e B if and only if there is a c.e. set W , such that

x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈W & Du ⊆ B], (2.1)

where 〈x, u〉 denotes the code of the pair of natural numbers (x, u) under some fixed
encoding, and Du is the finite set with canonical index u. Usually this is taken as
the formal definition of the enumeration reducibility. If the set W in (2.1) has index
i, we say that A is e-reducible to B via Wi, and we shall write A = Wi(B).

The relation ≤e is a preorder on the powerset P(ω) of the natural numbers
and induces a nontrivial equivalence relation ≡e. The equivalence classes under ≡e

are called enumeration degrees. The enumeration degree which contains the set A
is denoted by de(A). The set of all enumeration degrees is denoted by De. The
enumeration reducibility between sets induces a partial order ≤e on De by

de(A) ≤e de(B) ⇐⇒ A ≤e B.

We denote by De the partially ordered set (De,≤e). The least element of De

is the enumeration degree 0e of ∅. Also, the enumeration degree of A⊕B is the
least upper bound of the degrees of A and B. Therefore De is an upper semilattice
with least element.

By A+ we shall denote the set A⊕ (ω \A).
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The enumeration jump A′e of A is defined by A′e = {x | x ∈ Wx(A)}+.
The jump operation preserves the enumeration reducibility, hence we can define
de(A)

′ = de(A
′). Since A <e A′, then we have a <e a′ for every enumeration

degree a. The jump operator is uniform, i.e. there exists a recursive function j
such that for every sets A and B, if A = We(B) then A′ = Wj(e)(B

′).
The jump operation gives rise to the local substructure Ge, consisting of all

degrees bellow 0′e – the jump of the least enumeration degree. Cooper [1] has
proved that Ge is exactly the collection of all Σ0

2 enumeration degrees.

Finally we need the following definition, which we shall use in order to char-
acterise ω-enumeration reducibility. Given a sequence A ∈ Sω we define the jump
sequence P(A) of A as the sequence {Pk(A)}k<ω such that:

1. P0(A) = A0;

2. Pk+1(A) = Pk(A)′⊕Ak+1.

3. THE ω-ENUMERATION DEGREES

Soskov [14] introduced the structure of the ω-enumeration degrees Dω in the
following way. For every sequence A ∈ Sω, we define its jump class JA to be the
set:

JA = {dT (X) | Ak is c.e. in X(k) uniformly in k}. (3.1)

We set
A ≤ω B ⇐⇒ JB ⊆ JA.

Clearly ≤ω is a reflexive and transitive relation, and the relation ≡ω defined by

A ≡ω B ⇐⇒ A ≤ω B & B ≤ω A

is an equivalence relation. The equivalence classes under this relation are called
ω-enumeration degrees. In particular, the equivalence class dω(A) = {B | A ≡ω B}
is called the ω-enumeration degree of A. The relation ≤ω defined by

a ≤ω b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤ω B)

is a partial order on the set of all ω-enumeration degrees Dω. By Dω we shall
denote the structure (Dω,≤ω). The ω-enumeration degree 0ω of the sequence
∅ω = {∅}k<ω is the least element in Dω. Further, the ω-enumeration degree of the
sequence A ⊕ B = {Ak ⊕ Bk}k<ω is the least upper bound a ∨ b of the pair of
degrees a = dω(A) and b = dω(B). Thus Dω is an upper semi-lattice with least
element.

An explicit characterisation of the ω-enumeration reducibility is derived in
[16]. According to it, A ≤ω B ⇐⇒ An ≤e Pn(B) uniformly in n. More formally,

212 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 207–224.



A ≤ω B if and only if there is a computable function f , such that for every natural
number k, Ak = Wf(k)(Pk(B)). From here, one can show that each sequence is
ω-enumeration equivalent with its jump sequence, i.e. for all A ∈ Sω,

A ≡ω P(A). (3.2)

Further, for the sake of convenience, for sequences A,B ∈ Sω we shall write A ≤e B
if and only if for each k < ω,Ak ≤e Bk uniformly in k. So A ≤ω B ⇐⇒ A ≤e

P(B). Note that there exist only countably many computable functions, so that
there could be only countably many sequences ω-enumeration reducible to a given
sequence. In particular every ω-enumeration degree cannot contain more than
countably many sequences and hence there are continuum many ω-enumeration
degrees.

Given a set A ⊆ ω, denote by A ↑ ω the sequence (A, ∅, ∅, . . . , ∅, . . .). From the
definition of ≤ω and the uniformity of the jump operation, we have that for every
sets A and B,

A ↑ ω ≤ω B ↑ ω ⇐⇒ A ≤e B. (3.3)

The last equivalence means, that the mapping κ : De → Dω, defined by, κ(x) =
dω(X ↑ ω), where X is an arbitrary set in x, is an embedding of De into Dω.
Further, the so defined embedding κ preserves the least element and the binary
least upper bound operation. We shall denote the range of κ with D1.

4. THE JUMP OPERATOR

Following the lines of Soskov and Ganchev [15], the ω-enumeration jump A′ of
A ∈ Sω is defined as the sequence

A′ = (P1(A), A2, A3, . . . , Ak, . . .).

This operator is defined so that if A′ is the jump of A, then the jump class JA′
of A′ contains exactly the jumps of the degrees in the jump class JA of A. Note
also, that for each k, Pk(A′) = P1+k(A), so A′ ≡ω {Pk+1(A)}.

The jump operator is strictly monotone, i.e. A �ω A′ and A ≤ω B ⇒ A′ ≤ω

B′. This allows to define a jump operation on the ω-enumeration degrees by setting

a′ = dω(A′),

where A is an arbitrary sequence in a. Clearly, a <ω a′ and a ≤ω b⇒ a′ ≤ω b′.
Also the jump operation on ω-enumeration degrees agrees with the jump op-

eration on the enumeration degrees, i.e. we have

κ(x′) = κ(x)′, for all x ∈ De.
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We shall denote by A(n) the n-the iteration of the jump operator on A. Let
us note that

A(n) = (Pn(A), An+1, An+2, . . .) ≡ω {Pn+k(A)}k<ω. (4.1)

It is clear that if A ∈ a, then A(n) ∈ a(n), where a(n) denotes the n-th iteration of
the jump operation on the ω-enumeration degree a.

The jump operator on Dω preserves the greatest lower bound, i.e. for each
x,y, z ∈ Dω,

x ∧ y = c⇒ x′ ∧ y′ = c′.[2] (4.2)

Further, Soskov and Ganchev [15] showed that for every natural number n if b is
above a(n), then there is a least ω-enumeration degree x above a with x(n) = b.
We denote this degree by Ina(b). An explicit representative of Ina(b) can be given
by setting

InA(B) = (A0, A1, . . . , An−1, B0, B1, . . . , Bk, . . .), (4.3)

where each A ∈ a and B ∈ b are arbitrary.

From here it follows that for every given a ∈ Dω and n < ω, the operation Ina is
monotone. Further, its range is a downwards closed subset of the upper cone with
least element a. In fact, even a stronger property holds: if x,a,b ∈ Dω are such
that a ≤ω x, a(n) ≤ω b and x ≤ω Ina(b), then x is equal to Ina(x

(n)). The above
property can be easily verified by simple relativisation of claim (I2) of Lemma 1 in
[3].

It what follows, when a = 0ω, we shall write In instead of In0ω
. Finally, we

provide a property of the jump inversion operation, a proof of which can be found
in [3].

(x ∨ In(a))(n) = x(n) ∨ a. (4.4)

5. THE LOCAL THEORY AND THE on DEGREES

The structure of the degrees lying beneath the first jump of the least element
is usually referred to as the local structure of a degree structure. In the case of the
ω-enumeration degrees we shall denote this structure by Gω. When considering a
local structure, one is usually concerned with questions about the definability of
some classes of degrees, which have a natural definition either in the context of the
global structure (for example the classes of the high and the low degrees) or in the
context of the basic objects from which the degrees are built (for example the class
of the Turing degrees containing a c.e. set).

Recall that a degree in the local structure is said to be highn for some n if
and only if its n-th jump is as high as possible. Similarly, a degree in the local
structure is said to be lown for some n if and only if its n-th jump is as low as
possible. More formally, in the case of Gω, a degree a ∈ Gω is highn if and only if

a(n) = (0′ω)
(n) = 0

(n+1)
ω , and is lown if and only if a(n) = (0′ω)

(n).
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As usual, we denote by Hn the collection of all highn degrees, and by Ln the
collection of all lown degrees. Also H stands for the union of all the classes Hn

and analogously, L is the union of all of the classes Ln. Finally, I will stay for the
collection of the degrees that are neither highn nor lown for any n. The degrees in
I shall be referred to as intermediate degrees.

Using the corresponding results for the structure of the enumeration degrees,
it is easy to see that there exist intermediate degrees and for every natural number
n, there are degrees in the local structure of the ω-enumeration degrees, that are
high(n+1) (respectively low(n+1)) but are not highn (respectively lown).

Soskov and Ganchev [15] gave a characterisation of the classes Hn and Ln that
does not involve directly the jump operation. Let us set on to be the least n-th

jump invert of 0
(n+1)
ω , i.e., on = In(0(n+1)). Note that on is the least element of

the class Hn. Thus for arbitrary x ∈ Gω,

x ∈ Hn ⇐⇒ on ≤ω x. (5.1)

In particular, since every highn degree is also high(n+1), on+1 ≤ω on. On the
other hand, since Hn+1 \Hn �= ∅, the equality on+1 = on is impossible, so that

0′ω = o0 >ω o1 >ω o2 >ω · · · >ω on >ω . . . .

Recall that if a degree is beneath a least n-th jump invert above a, then it itself
is a least n-th jump invert above a. In particular, if y ≤ω on, then y = In(z) for

some degree 0
(n)
ω ≤ω z ≤ω 0

(n+1)
ω or more concretely y = In(y(n)). On the other

hand if y ∈ Gω is a least n-th jump invert, then from the monotonicity of In we
have y ≤ω on. Thus

{y ∈ Gω | y ≤ω on} = {In(z) | 0(n)
ω ≤ω z ≤ω 0(n+1)

ω }.

In particular, since In is injective,

[0ω,on]  [0(n)
ω ,0(n+1)

ω ].

Ganchev and M. Soskova [3] showed that for arbitrary x ∈ Gω,

In(x(n)) = x ∧ on. (5.2)

Indeed, let us take an arbitrary x ∈ Gω. Clearly In(x(n)) ≤ω x and In(x(n)) ≤ω

on. On the other hand if y is such that y ≤ω x and y ≤ω on, then from the second
inequality we have y = In(z) for some z. This together with the first inequality
gives us z = (In(z))(n) = y(n) ≤ω x(n). Thus y = In(z) ≤ω In(x(n)).

This gives us a characterisation of the lown degrees in terms of the partial
order ≤ω and the degrees on, namely

x ∈ Ln ⇐⇒ x ∧ on = 0ω. (5.3)
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They also show that for arbitrary a ∈ Gω, a is a degree in D1 iff

∀x ∈ Gω(x ∨ o1 = a ∨ o1 → x ≥ω a). (5.4)

The formula (5.4) characterises the degrees in D1∩Gω in terms of the ordering
≤ω and the degree o1.

Soskov and Ganchev [15] introduced the almost zero (a.z.) degrees. Following
their lines, the degree x is a.z. if and only if there is a representative X ∈ x such
that

(∀k)[Pk(X ) ≡e ∅(k)]. (5.5)

It is clear that the class of the a.z. degrees is downward closed. Further, one can
easily show that the only a.z. degree a for which there is a natural number n such

that a(n) = 0
(n)
ω is the least element 0ω. Note also that there are continuum many

a.z. degrees and hence not all a.z. degrees are in Gω.
The a.z. degrees in Gω are exactly the degrees bounded by every degree on,

i.e.
x ∈ Ge is a.z. ⇐⇒ (∀n < ω)[x ≤ω on]. (5.6)

Further, the classes H and L can be characterised in terms of the ordering ≤ω and
the a.z. degrees [15], namely

a ∈ H ⇐⇒ (∀x− a.z.)[x ≤ω a], (5.7)

and
a ∈ L ⇐⇒ (∀x− a.z.)[x ≤ω a→ x = 0ω], (5.8)

where all quantifiers are restricted to degrees in Gω.
From the second equivalence it follows that the only lown a.z. degree is 0ω.

Further, according to (5.1) no a.z. degree is highn for any n. Thus all a.z. degrees
are intermediate degrees.

6. DEFINABILITY IN Gω

We prove in this section that the set O = {on|n < ω} is first order definable
in Gω. Thus, by (5.1) and (5.3), we may conclude the proof of the Theorem 1. For
this purpose we shall need the notion of a Kalimullin pair (or K-pair).

Definition 3. Let D = (D,≤) be a partial order. The pair {a,b} is said to
be K-pair (strictly) over u for D, if a,b,u ∈ D,u ≤ a,b (u � a,b) and for all
x ∈ D such that u ≤ x, the least upper bounds x∨a,x∨b and greatest lower bound
(x ∨ a) ∧ (x ∨ b) exist, and the following holds:

x = (x ∨ a) ∧ (x ∨ b). (6.1)
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Further, if D = (D,≤) is a partially ordered set and u,v ∈ D, we shall use
the notation D[u,v] for the set {x ∈ D|u ≤ x ≤ v} together with the partial order
inherited from D.

Clearly, there exists a first order formula K of two free variables such that if
D has a least element 0D, then

D |= K(a,b) ⇐⇒ {a,b} is a K-pair strictly over 0D for D.

Also, we shall use the fact that for each a ∈ D, the set

I = {b | {a,b} is a K-pair strictly over 0D for D}

is either empty or ideal, see for example [5].

The starting step of the first order definition in Gω of the set O is the char-
acterisation of the K-pairs in Gω, due to Ganchev and M. Soskova [3]. According
to it, whenever {a,b} is a K-pair in Gω strictly over 0ω, then either a and b are
both a.z. or the K-pair {a,b} is inherited from the structure De, i.e. there exist
sets A,B and a natural number n such that:

1. ∅(n) <e A,B ≤e ∅(n+1) and A′ = B′ = ∅(n+1);

2. {de(A),de(B)} is a K-pair in De[0
(n)
e ,0

(n+1)
e ] strictly over 0

(n)
e ;

3. a = In(κ(de(A))) and b = In(κ(de(B))).

It is known [3] that every two degrees a,b ∈ Gω, which are inherited from De

in the above sense, form a K-pair in Gω strictly over 0ω.

Note that by definitions of the embedding κ and the least jump inversion
operation (4.3) the last condition of the above characterisation of the K-pairs in the
local theory is equivalent to the fact that the degrees a and b contain respectively
the sequences (∅, ∅, . . . , ∅︸ ︷︷ ︸

n

, A, ∅, . . . , ∅, . . .) and (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . . , ∅, . . .).

Using the above characterisation, one can prove that for each n ≥ 0, on+1 is
the greatest degree (in Gω) which is the least upper bound of a K-pair {a,b} strictly
above 0ω such that (∀x �ω on)[a∨x �ω on]. Since o0 is the greatest degree in Gω,
it follows that for each natural number n, on is first order definable in Gω.

Note that the a.z. degrees are closed under the least upper bound operation
and no on is a.z., thus if {a,b} is a K-pair {a,b} strictly over 0ω with a∨b = on,
then {a,b} is an inherited K-pair.

Now we shall show how to separate in Gω the inherited K-pairs from those
formed by a.z. degrees. Suppose that {a,b} is an inherited K-pair and let A,B ⊆ ω
and n < ω be the corresponding witnesses for this. It is known by the a result of
Kent and Sorbi [6], that every nonzero enumeration degree x ∈ De[0e,0

′
e] bounds
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a nonzero nonsplittable2 degree y ∈ De[0e,0
′
e]. Relativising this result over 0

(n)
e

we conclude that there are sets A0, B0 ⊆ ω such that ∅(n) <e A0 ≤e A, ∅(n) <e

B0 ≤e B, such that both de(A0) and de(B0) are nonsplittable over 0
(n)
e . But then

the degrees a0 = In(κ(de(A0))) and b0 = In(κ(de(B0))) are nonsplittable. Indeed,
assume without loss of generality that a0 is splittable. Then a0 = c ∨ d for some
0ω <ω c,d <ω a0 and let C = {Cm}m<ω ∈ c,D = {Dm}m<ω ∈ d. According to
(4.3) and (3.2), (∅, ∅′, . . . , ∅(n−1)︸ ︷︷ ︸

n

, A0, ∅(n+1), . . .) ∈ a0, so that

P(C)⊕P(D) ≤e (∅, ∅′, . . . , ∅(n−1)︸ ︷︷ ︸
n

, A0, ∅(n+1), . . .),

From here Pn(C)⊕Pn(D) ≤e A0,

P(C) ≡e (∅, ∅′, . . . , ∅(n−1), Pn(C), ∅(n+1), . . .)

and
P(D) ≡e (∅, ∅′, . . . , ∅(n−1), Pn(D), ∅(n+1), . . .).

Since a0 ≤ω c∨d, then (∅, ∅′, . . . , ∅(n−1), A0, ∅(n+1), . . .) ≤e P(P(C)⊕P(D)). Then
we have that A0 ≤e Pn(P(C)⊕P(D)) ≡e Pn(C)⊕Pn(D), 3, so finally A0 ≡e

Pn(C)⊕Pn(D). Since de(A0) is a nonsplittable degree over 0
(n)
e , either Pn(C) ≡e A0

or Pn(D) ≡e A0. In the first case we have that a0 = c, and in the second – a0 = d,
i.e., we reach a contradiction.

Thus, if {a,b} is an inherited K-pair strictly over 0ω, then both a and b bound
nonzero nonsplitting degrees. Next we shall see that if {a,b} is a a.z. K-pair strictly
over 0ω then neither a nor b bounds a nonzero nonsplitting degree. Moreover, the
following property holds for every a.z. degree in Dω.

Lemma 4. Every nonzero a.z. degree in Dω is splittable.

Proof. Let a be a nonzero a.z. degree and let A ∈ a satisfy (5.5). We shall
construct sequences B and C such that ∅ω �ω B, C �ω A and B⊕C ≡ω A. We shall
construct B = {Bk}k<ω and C = {Ck}k<ω using induction on k. For every k we
shall set either Bk = ∅ and Ck = Ak or Bk = Ak and Ck = ∅. This condition will
ensure that B⊕C = A. So, in order to build B and C as desired, it suffices that
B, C ≤ω A and that the following requirements are satisfied:

R2e : ∃k
(
ϕe(k) ↑ ∨ Ak �= Wϕe(k)(Pk(B))

)
,

2Let D = (D,0,≤,∨) be an upper semilattice with a least element. Let a,b ∈ D be such that
b ≤ a. We shall say that a is splittable over b if and only if there are x,y ∈ D such that

b ≤ x,y < a = x ∨ y.

When there are not such x and y we shall say that a is nonsplittable over b. In the case when b
is the least element we shall say only that a is splittable or nonsplittable.

3the last equivalence can be easily verified using induction on n < ω.
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R2e+1 : ∃k (ϕe(k) ↑ ∨ Ak �= Wϕe(k)(Pk(C))
)
.

Note that B, C ≤ω A gives us automatically, that B and C satisfy (5.5). The
requirement R2e ensures that A can not be uniformly reduced to P(B) using the
e-th computable function. Similarly, R2e+1 expresses that A can not be uniformly
reduced to P(C) using the e-th computable function.

The construction: During the construction we shall use a global variable r
which shall show us the least requirement that is (possibly) not yet satisfied. We
start by setting r = 0. Also we set B0 = B1 = ∅, C0 = A0 and C1 = A1. Let
us suppose that k ≥ 2 and that Bs and Cs are defined for s ≤ k. Note that our
assumption yields that for s ≤ k, Ps(B) and Ps(C) are defined as well.

Case 1: r = 2e. If ϕe(k−2)↑ or Ak−2 �=Wϕe(k−2)(Pk−2(B)), set Bk=Ak, Ck=∅
and augment r by 1. Otherwise set Bk = ∅, Ck = Ak and keep r the same.

Case 2: r = 2e+1. If ϕe(k − 2) ↑ or Ak−2 �= Wϕe(k−2)(Pk−2(C)), set Bk = ∅,
Ck = Ak and augment r by 1. Otherwise set Bk = Ak, Ck = ∅ and keep r the
same.

End of construction.

First of all let us note that, according to the definition of the jump sequence P(A),
∅′′ ≤e Pk(A) for k ≥ 2 uniformly in k. Hence for k ≥ 2, given any enumeration of
Pk(A) we can uniformly decide if ϕe(k − 2) ↑. Further, for k ≥ 2, Pk−2(A)′′ ≤e

Pk(A) uniformly in k. These properties of Pk(A) and a simple induction on k ≥
2 yield that given any enumeration of Pk(A), we can uniformly answer to the
questions

ϕe(k − 2) ↑ ∨ Ak−2 �= Wϕe(k−2)(Pk−2(B))
and

ϕe(k − 2) ↑ ∨ Ak−2 �= Wϕe(k−2)(Pk−2(C)).
In particular, any enumeration of Pk(A) can compute uniformly the value of r at
stage k and hence it can compute uniformly Bk and Ck. Therefore B, C ≤ω A.

It remains to prove that all the requirements are satisfied. Towards a contra-
diction assume that some requirement is not fulfilled and let n be the least index
of such a requirement. Note that the construction yields that at some stage m,
the global variable r has been set to be equal to n, and from then on r has never
changed its value. First let us suppose that n = 2e for some natural number e.
Then for every k > m, Ak−2 = Wϕe(k−2)(Pk−2(B)), so that Bk = ∅ for k > m and
Ak ≤e Pk(B) uniformly in k > m. On the other hand for 0 ≤ k ≤ m,

Bk ≤e Pk(A) ≤e ∅(k),

which together with our previous observation yields B ≤ω ∅ω and A ≤ω B. Thus
A ≤ω ∅ω, contradicting the choice of A.
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If n = 2e + 1, we obtain in a quite similar way A ≤ω ∅ω, contradicting once
again the choice of A. Therefore our assumption that some of the requirements is
not satisfied is incorrect, and hence ∅ω �ω B, C �ω A. �

Thus, we have obtained that every inherited K-pair bounds a nonsplitting
degree, whereas every a.z. is splittable. Therefore we may define a first order
formula Kinh separating the inherited K-pairs from the ones formed by a.z. degree
by setting

Kinh(a,b) = K(a,b) & (∃x)[x ≤ω a & (∀u,v)[u,v <ω x→ u ∨ v <ω x]].

Now we have the instrument needed for the definition of the set O. Recall that
every degree on is the least upper bound of an inherited K-pair, so that we need
just to focus on the properties of the least upper bounds of such K-pairs.

Suppose that {a,b} is an inherited K-pair and let A,B ⊆ ω and n < ω be
witnesses for this. Since

(∅, ∅′ . . . , ∅(m−1)︸ ︷︷ ︸
m

, ∅(m+1), ∅(m+2), . . .) ∈ om,

(∅, ∅′, . . . , ∅(n−1)︸ ︷︷ ︸
n

, A, ∅(n+1), . . .) ∈ a,

(∅, ∅′, . . . , ∅(n−1)︸ ︷︷ ︸
n

, B, ∅(n+1), . . .) ∈ b,

∅(n) <e A,B ≤e ∅(n+1) and A′ = B′ = ∅(n+1), we have a,b <ω om for m ≤ n. On
the other hand, m > n implies that a,b �≤ω om and om �≤ω a,b, for otherwise we
would have A ≤e ∅(n) and ∅(m+1) ≤e ∅(m), respectively.

Hence, for every m < ω and every inherited K-pair {a,b}, either a,b <ω om

or a,b|ωom.

Now we claim that whenever x is the least upper bound of an inherited K-
pair and x is not om for any natural number m, there exists an inherited K-pair
{a,b} such that a|ωx and b ≤ω x. Indeed, suppose that x = c ∨ d for some
inherited K-pair {c,d} and for all m < ω, x �= om. Let the sets C,D and the
natural number n be witnessing that the K-pair is inherited. Then the sequence
(∅, . . . , ∅︸ ︷︷ ︸

n

, C ⊕D, ∅, . . .) is an element of the degree x. Note that C,D ≤e ∅(n+1)

and x = c ∨ d �= on, so C ⊕D �e ∅(n+1). Since c and d are not a.z., we have
that C and D are low over ∅(n) and hence C,D ∈ Δ0

2(∅(n)). But then we have
also C ⊕D ∈ Δ0

2(∅(n)). In what follows we shall need the following result due to
Ganchev and M. Soskova [3].
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Theorem 5. For every total 4 enumeration degree g and every degree e, such
that g ≤e e and e contains a set Δ0

2 relative to g, there is a K-pair {ã, b̃} in
De[g,g

′] strictly over g, such that ã ∨ e = g′. In the case when e �e g′ we
additionally have that ã|ee and b̃ ≤e e (since e = (ã∨e)∧(b̃∨e) and ã∨e = g′).

Now let {ã, b̃} be the corresponding K-pair for g = 0
(n)
e and e = de(C ⊕D).

Let A and B be sets having enumeration degrees ã and b̃ respectively. Then the ω-
enumeration degrees a = dω(∅, . . . , ∅︸ ︷︷ ︸

n

, A, ∅, . . .) and b = dω(∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . .) form

an inherited K-pair for Gω such that a|ωx and b ≤ω x.

Thus we have proven that a degree x ≤ω 0′ω is on for some natural number n if
and only if x is the least upper bound of an inherited K-pair and for each inherited
K-pair {a,b} either a,b <ω x or a,b|ωx. Namely,

x ∈ O ⇐⇒ (∃a,b)[Kinh(a,b) & x = a ∨ b]&

(∀a,b)[Kinh(a,b)→ a,b ≤ω x ∨ a,b|ωx].
This gives us a first order definability in Gω of the set O as well as of the classes

H and L. A direct consequence of the latter and (5.6) is the following corollary.

Corollary 6. The set of all a.z. degrees is first order definable in Gω.

7. DEFINABILITY OF 0′ω

In this section we characterise the class of the K-pairs strictly over 0ω for Dω.
Namely, we shall show that either such a K-pair consists of a.z. degrees, or it is
inherited. As a consequence of this characterisation and the fact that 0′ω bounds
the elements of all inherited K-pairs we shall find a first order definition of the first
jump of the least element in the structure Dω.

First, let {a,b} be a K-pair strictly over 0ω for Dω. Let A ∈ a and B ∈ b
respectively. Using the connections between the K-pairs in De and Gω derived in
[3], we are able to conclude that for each n < ω, {de(Pn(A)),de(Pn(B))} is a K-pair
over 0

(n)
e for De[≥ 0

(n)
e ]. Hence by [5] each of de(Pn(A)) and de(Pn(B)) is quasi-

minimal over 0
(n)
e (the enumeration degree a is quasiminimal over the enumeration

degree b <e a if and only if there is no total b �e c ≤e a). Since for each n,

0
(n+1)
e ≤e de(Pn(A))′ ≤e de(Pn+1(A)) and de(Pn(A))′ is total (since every jump

is total), then for each n, Pn(A)′ ≡e ∅(n+1). The same equivalence obviously holds
also for Pn(B)′.

4An enumeration degree is said to be total if and only if there exists a set A such that the
degree contains the set A+. With other words a degree is total if and only if it is an image of a
Turing degree under the Rogers’ embedding ι : DT → De. For example, for each n, the degree

0
(n)
e is total.
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Having in mind the last observation, consider a K-pair {a,b} strictly over 0ω

for Dω and suppose that at least one of the degrees a or b is not a.z.. Without
loss of generality, suppose that a is not a.z. degree and let A ∈ a. Therefore there
is n < ω such that Pn(A) �≡e ∅(n). Let a− be the ω-enumeration degree which
contains the sequence (∅, . . . , ∅︸ ︷︷ ︸

n

, Pn(A), ∅, . . .). Note that a− is bellow 0′ω and that

{a−,b} is a K-pair strictly over 0ω for Dω. Since 0
(n)
e ≤e de(Pn(A)) ≤e 0

(n+1)
e ,

then the equality de(Pn(A))′ = 0
(n+1)
e , together with Theorem 5, yields

de(Pn(A)) ∨ x = x′ = 0(n+1)
e

for some 0
(n)
e �e x ≤e 0

(n+1)
e . So for the ω-enumeration degree κ(x), we have

that 0
(n)
ω ≤ω κ(x) ≤ω 0

(n+1)
ω and since the jump inversion operation is monotone,

In(κ(x)) ≤ω 0′ω. Therefore,

In(κ(x)) = (In(κ(x)) ∨ a−) ∧ (In(κ(x)) ∨ b).

Hence, using (4.4) and (4.2), we obtain

κ(x) = (κ(x) ∨ (a−)(n)) ∧ (κ(x) ∨ b(n)).

By the choice of the degree x, we have that κ(x) ∨ (a−)(n) = 0
(n+1)
ω . Therefore

b(n) ≤ω κ(x). But κ(x)′ = 0
(n+1)
ω , so we may conclude that b(n+1) = 0

(n+1)
ω . From

here, noting that b �= 0ω and recalling that for each nonzero a.z. degree p and each

n < ω, p(n) �ω 0
(n)
ω , we conclude that b is also not a.z. degree.

Therefore, there is m < ω such that Pm(B) �≡e ∅(m). Let b− be the degree
containing the sequence (∅, . . . , ∅︸ ︷︷ ︸

m

, Pm(B), ∅, . . .). Then a−,b− ≤ω 0′ω and {a−,b−}

is a K-pair strictly over 0ω for Dω. Note that {a−,b−} is a K-pair strictly over 0ω

also for Gω, whose elements are not a.z.. From the characterisation of the K-pairs
for Gω noted in the previous section, we conclude that m = n. Because of the
choice of n and m, we have that for all k �= n, Pk(A) ≡e Pk(B) ≡e ∅(k). Therefore
a = a− ∨p and b = b− ∨q where p and q are both a.z.. But p ≤ω a, so if p �= 0ω

then {p,b} is a K-pair strictly over 0ω for Dω. Now since b is not a.z. we conclude
that p is not a.z.. A contradiction. So p must be equal to 0ω. Analogously, q = 0ω

and hence a = a−,b = b−. So we have the following characterisation of the K-pairs
{a,b} strictly over 0ω for Dω.

Theorem 7. Let {a,b} be a K-pair strictly over 0ω for Dω. Then exactly one
of the following assertions holds:

1. Both a and b are a.z..

2. There is a natural number n < ω and sets A,B ⊆ ω such that

• ∅(n) <e A,B ≤e ∅(n+1) and A′ = B′ = ∅(n+1);
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• {de(A),de(B)} is K-pair strictly over 0
(n)
e for De[≥ 0

(n)
e ];

• (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, A, ∅, . . . , ∅, . . .) ∈ a and (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . . , ∅, . . .) ∈ b.

Note that each K-pair strictly over 0ω for Dω, whose elements are both not
a.z., is an inherited K-pair for Gω and hence its elements are bellow 0′ω. So, by
the observations in the previous section, each of its elements bounds a nonzero
nonsplitting degree. Now, recalling Lemma 4, we have that the K-pair {a,b}
strictly over 0ω for Dω consists of non a.z. elements iff,

Dω |= Kinh(a,b),

where Kinh is the corresponding formula from the previous section. Since the
elements of each inherited K-pair are both below 0′ω then their least upper bounds
are also below 0′ω.

Now note that, by Kalimullin [5], 0′e can be split by a K-pair {ã, b̃} strictly over

0e for De such that ã and b̃ are low. Then κ(ã) and κ(b̃) are not a.z. degrees and

{κ(ã), κ(b̃)} is a K-pair strictly over 0ω for Dω with κ(ã)∨κ(b̃) = 0′ω. Thus we may
define 0′ω as the greatest degree, which is a least upper bound of the elements of a
K-pair strictly over 0ω for Dω, whose elements are both not a.z.. Thus Theorem 2
is proved.
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1. INTRODUCTION

Let C be the complex plane and

G = {z = x+ iy | x ∈ (−∞,∞), y ∈ (0,∞)} ⊂ C

be the upper half plane of C. Throughout, v : G→ (0,∞) will be a function such
that v(z) = v(x+ iy) = v(iy) for every z = x+ iy ∈ G, and

inf
y∈[ 1c ,c]

v(i y) > 0 for every c > 1. (1.1)

We define
ϕv(y) = − ln v(iy), y ∈ (0,∞) ,
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and property (1.1) is reformulated as the following property of ϕv(y):

sup
y∈[ 1c ,c]

ϕv(y) <∞ for every c > 1. (1.1′)

The weighted Banach spaces of holomorphic functions Hv(G) and Hv0(G) are
defined as follows

• f ∈ Hv(G) if f is holomorphic on G and

‖ f ‖v= sup
z∈G

v(z)|f(z)| <∞ ;

• f ∈ Hv0(G) if f ∈ Hv(G) and f is such that for every ε > 0 there exists a
compact Kε ⊂ G for which

sup
z∈G\Kε

v(z)|f(z)| < ε.

Here, we use notations from [1, 2, 3, 4, 5].

In [1], [2] the authors find an isomorphic classification of the spaces Hv(G) and
Hv0(G) provided the weight function v satisfies some growth conditions.

In [3], [4] weighted composition operators between weighted spaces of holomor-
phic functions on the unit disk in the complex plane are studied and the associated
weights are used in order to estimate the norm of the weighted composition oper-
ators.

The associated weights are studied in [5].

This paper is about weights that have some of the properties of the associated
weights. We prove that Hv(G) and Hv0(G) are exactly the same spaces as Hw(G)
and Hw0(G), where w is the smallest log-concave majorant of v. Here, the smallest
log-concave majorant of v is exactly the associated weight, but in case of other
weighted spaces this coincidence might not take place. Our work is based on the
theory of convex functions and some specific properties of the weighted banach
spaces of holomorphic functions under consideration.

The results of this paper are communicated at the conferences [7] and [8].

2. DEFINITIONS AND NOTATIONS

Let Φ be the set of functions ϕ satisfying the following conditions:

• ϕ : (0,∞)→ R and

• there exists a ∈ R such that

inf
x∈(0,∞)

(
ϕ(x)− ax

)
> −∞.
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Note that if ϕ ∈ Φ, then −∞ < ϕ(x) <∞ for every x ∈ (0,∞).

We denote by âϕ the limit inferior

âϕ = lim inf
x→∞

ϕ(x)

x
, ϕ ∈ Φ.

If ϕ ∈ Φ, then

• âϕ ∈ R ∪ {∞}, âϕ > −∞ ;

• âϕ = sup
{
a | a ∈ R, inf

x∈(0,∞)
(ϕ(x)− ax) > −∞}

If ϕ ∈ Φ is convex in (0,∞), then

âϕ = lim
x→∞

ϕ(x)

x

By Φ1, Φ2, Φ3 we denote the following subsets of Φ:

Φ1 =
{
ϕ : ϕ ∈ Φ, âϕ =∞} ;

Φ2 =
{
ϕ : ϕ ∈ Φ, âϕ <∞, lim inf

x→∞ (ϕ(x)− âϕx) = −∞
}
;

Φ3 =
{
ϕ : ϕ ∈ Φ, âϕ <∞, lim inf

x→∞ (ϕ(x)− âϕx) > −∞
}
.

Note that Φ1, Φ2, Φ3 are mutually disjoint sets and Φ1 ∪ Φ2 ∪ Φ3 = Φ.

If ϕ ∈ Φ2 ∪ Φ3 is convex on (0,∞), then

lim inf
x→∞ (ϕ(x)− âϕx) = lim

x→∞(ϕ(x)− âϕx).

Note that a function ϕ ∈ Φ is not necessarily continuous. In fact, ϕ ∈ Φ is not
supposed to satisfy any conditions beside those of the definition of Φ, Φ1, Φ2, Φ3.
There are a number of simple functions that belong to Φ, Φ1, Φ2, Φ3, for instance,

• ϕ1(x) = x2 belongs to Φ1 ;

• ϕ2(x) = x−√x belongs to Φ2 ;

• ϕ3(x) = x−1 belongs to Φ3 ,

and ϕ1(x), ϕ2(x), ϕ3(x) are all convex on (0,∞).

For a ϕ ∈ Φ let

Mϕ =
{
(a, b)

∣∣ a, b ∈ R, inf
t∈(0,∞)

(ϕ(t)− at) > b
}
.

The function ϕ∗∗ : (0,∞)→ R is defined as

ϕ∗∗(x) = sup
(a,b)∈Mϕ

(ax+ b).

ϕ∗∗ is referred to as the second Young-Fenhel conjugate of ϕ and it is the largest
convex minorant of ϕ.
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3. MAIN RESULTS

Here we state our main results.

Theorem 3.1. Let ϕ, ψ ∈ Φ. If ψ is convex on (0,∞), then

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
.

Theorem 3.2. Let ϕ, ψ ∈ Φ. If ψ is convex on (0,∞) and, in addition,
lim

x→0+

(
ϕ(x)− ψ(x)

)
=∞, then

lim
x→0+

(
ϕ∗∗(x)− ψ(x)

)
=∞ .

Theorem 3.3. Let ϕ ∈ Φ and ψ ∈ Φ \ Φ3. If ψ is convex on (0,∞) and, in
addition, lim

x→∞
(
ϕ(x)− ψ(x)

)
=∞, then

lim
x→∞

(
ϕ∗∗(x)− ψ(x)

)
=∞ .

The next examples show that the assumption for convexity of ψ in Theorems
3.1–3.3 cannot be omitted.

Example 3.1. Theorem 3.1 does not hold with the functions

ϕ(x) = min{x, 1}+ 1, ψ(x) =
x

x+ 1
, x ∈ (0,∞) .

Note that ϕ ∈ Φ, and ψ ∈ Φ is not convex on (0,∞). We have ϕ∗∗(x) = 1,
x ∈ (0,∞), and

1 = inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

) �= inf
x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
= 0 .

Example 3.2. Theorem 3.2 does not hold with

ϕ(x) =
1

x2
+

1

x
sin

1

x
+

2

x
, ψ(x) = ϕ(x)− 2

x
, x ∈ (0,∞) .

Note that ϕ, ψ ∈ Φ, the function ψ is not convex on (0,∞) and

∞ = lim
x→0+

(
ϕ(x)− ψ(x)

)
> lim inf

x→0+

(
ϕ∗∗(x)− ψ(x)

)
This fact is proved in Proposition 4.1.

Example 3.3. Theorem 3.3 does not hold with

ϕ(x) = x2 + x sinx+ 2x, ψ(x) = ϕ(x)− 2x, x ∈ (0,∞).

Note that ϕ ∈ Φ, ψ ∈ Φ \ Φ3, ψ is not convex on (0,∞) and

∞ = lim
x→∞

(
ϕ(x)− ψ(x)

)
> lim inf

x→∞
(
ϕ∗∗(x)− ψ(x)

)
This fact is proved in Proposition 4.2.
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Corollary 3.1. If ϕ, ψ ∈ Φ are such that

lim
x→0+

(
ϕ(x)− ψ(x)

)
=∞ ,

then
lim

x→0+

(
ϕ∗∗(x)− ψ∗∗(x)

)
=∞ . (3.1)

Proof. Since ψ∗∗ ≤ ψ, we have

lim
x→0+

(
ϕ(x)− ψ∗∗(x)

) ≥ lim
x→0+

(
ϕ(x)− ψ(x)

)
=∞.

Now Theorem 3.2 applied to ϕ, ψ∗∗ proves (3.1). �

Corollary 3.2. Let ϕ ∈ Φ and ψ ∈ Φ \ Φ3. If ϕ and ψ satisfy

lim
x→∞

(
ϕ(x)− ψ(x)

)
=∞ ,

then
lim
x→∞

(
ϕ∗∗(x)− ψ∗∗(x)

)
=∞ . (3.2)

Proof. Note that

• ψ∗∗ ∈ Φ \ Φ3 by the Lemma 4.1;

• ψ∗∗ ≤ ψ.

Theorem 3.3 applied to ϕ, ψ∗∗ implies (3.2). �

Example 3.4. Let ϕ(x) = x2 + x and

ψ(x) =

⎧⎪⎨⎪⎩
3x− 1, x ∈ (0, 1]

5− 3x, x ∈ (1, 2]

x2 + x− 7, x ∈ (2,∞) .

We observe that ϕ, ψ ∈ Φ and

• ϕ is convex on (0,∞), and therefore ϕ∗∗ = ϕ,

• ψ is not convex on (0,∞) and

ψ∗∗(x) =

{
−1, x ∈ (0, 2]

x2 + x− 7, x ∈ (2,∞) .

A direct calculation shows that

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= 0 �= 1 = inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ∗∗(x)

)
.
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Thus, there is no analog of Theorem 3.1 involving ϕ∗∗ and ψ as in Corollar-
ies 3.1 and 3.2. �

4. AUXILIARY RESULTS

Proposition 4.1. Let

ϕ(x) =
1

x2
+

1

x
sin

1

x
+

2

x
and ψ(x) = ϕ(x)− 2

x
, x ∈ (0,∞).

Then ϕ, ψ ∈ Φ, the function ψ is not convex on (0,∞) and

∞ = lim
x→0+

(
ϕ(x)− ψ(x)

)
> lim inf

x→0+

(
ϕ∗∗(x)− ψ(x)

)
.

Proof. The function ψ satisfies

ψ(x) ≥
{

1
x2 − 1

x , x ∈ (0, 1) ,
1
x2 , x ∈ [1,∞) ,

hence, ψ(x) ≥ 0 for every x ∈ (0,∞), and this implies that ψ ∈ Φ.

Since ϕ ≥ ψ, we have also ϕ ∈ Φ .

Note that

lim
x→0+

(
ϕ(x)− ψ(x)

)
= lim

x→0+

2

x
=∞.

Let

xk =
1

3π
2 + 2kπ

, x̃k =
1

5π
2 + 2kπ

, k = 0, 1, 2, . . . .

We observe that xk > x̃k > xk+1 > 0, lim
k→∞

xk = 0, and the harmonic mean of xk,

xk+1 is equal to x̃k. A direct computation shows that ψ′′(x̃0) < 0, therefore ψ is
not convex on (0,∞).

Let

f(x) =
1

x2
+

1

x
, x ∈ (0,∞).

The function f is convex on (0,∞) and f(x) ≤ ϕ(x), x ∈ (0,∞). So, f is a convex
minorant of ϕ and thus f ≤ ϕ∗∗.

Therefore, f(xk) ≤ ϕ∗∗(xk) ≤ ϕ(xk) = f(xk) and this implies that

f(xk) = ϕ∗∗(xk), k = 1, 2, 3, . . . .

Furthermore,

ψ(x̃k) = f(x̃k) ≤ ϕ∗∗(x̃k) ≤ xk − x̃k

xk − xk+1
ϕ∗∗(xk+1) +

x̃k − xk+1

xk − xk+1
ϕ∗∗(xk) ,
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because of the convexity of ϕ∗∗. Thus,

0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤ xk − x̃k

xk − xk+1
f(xk+1) +

x̃k − xk+1

xk − xk+1
f(xk)− f(x̃k) .

After some simple calculations we obtain

xk − x̃k

xk − xk+1
f(xk+1) +

x̃k − xk+1

xk − xk+1
f(xk)− f(x̃k) = (3 + x̃k)π

2 .

Consequently, 0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤ (3 + x̃k)π
2, k = 1, 2, 3, . . . , and

lim inf
x→0+

(
ϕ∗∗(x)− ψ(x)

)
<∞. �

Proposition 4.2. Let

ϕ(x) = x2 + x sinx+ 2x and ψ(x) = ϕ(x)− 2x, x ∈ (0,∞) .

Then ϕ ∈ Φ, ψ ∈ Φ \ Φ3, the function ψ is not convex on (0,∞) and

∞ = lim
x→∞

(
ϕ(x)− ψ(x)

)
> lim inf

x→∞
(
ϕ∗∗(x)− ψ(x)

)
.

Proof. The function ψ satisfies the inequalities

ψ(x) ≥
⎧⎨⎩x2, x ∈ (0, π) ,

x2 − x, x ∈ [π ,∞) ,

therefore ψ(x) ≥ 0, x ∈ (0,∞), and thus ψ ∈ Φ. Moreover,

âψ = lim inf
x→∞

ψ(x)

x
≥ lim inf

x→∞
x2 − x

x
=∞ ,

therefore âψ =∞ and thus ψ ∈ Φ1 ⊂ Φ \ Φ3.

Now ϕ ∈ Φ since ϕ ≥ ψ and ψ ∈ Φ. Moreover,

lim
x→∞

(
ϕ(x)− ψ(x)

)
= lim

x→∞ 2x =∞ .

Let

xk =
3π

2
+ 2kπ, x̃k =

5π

2
+ 2kπ , k = 0, 1, 2, . . .

Note that, for k ∈ N, 0 < xk < x̃k < xk+1, xk + xk+1 = 2x̃k and lim
k→∞

xk =∞.

A direct computation shows that ψ′′(x̃0) < 0, hence ψ is not convex on (0,∞).

Let
f(x) = x2 + x, x ∈ (0,∞).

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 225–245. 231



The function f is convex on (0,∞) and f ≤ ϕ therein. So, f is a convex minorant
of ϕ and thus f ≤ ϕ∗∗. Therefore, f(xk) ≤ ϕ∗∗(xk) ≤ ϕ(xk) = f(xk), and this
implies

f(xk) = ϕ∗∗(xk), k ∈ N .

Furthermore, by the convexity of ϕ∗∗ , we have

ψ(x̃k) = f(x̃k) ≤ ϕ∗∗(x̃k) ≤ xk+1 − x̃k

xk+1 − xk
ϕ∗∗(xk) +

x̃k − xk

xk+1 − xk
ϕ∗∗(xk+1) .

Thus,

0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤ xk+1 − x̃k

xk+1 − xk
f(xk) +

x̃k − xk

xk+1 − xk
f(xk+1)− f(x̃k) .

After some simple calculations we obtain

xk+1 − x̃k

xk+1 − xk
f(xk) +

x̃k − xk

xk+1 − xk
f(xk+1)− f(x̃k) = π2, k ∈ N .

Consequently, 0 ≤ ϕ∗∗(x̃k)− ψ(x̃k) ≤ π2, k ∈ N, and

lim inf
x→∞

(
ϕ∗∗(x)− ψ(x)

)
<∞. �

Lemma 4.1. If ϕ ∈ Φ, then

(1) lim inf
x→0+

ϕ(x) = lim
x→0+

ϕ∗∗(x) ;

(2) lim inf
x→∞

ϕ(x)

x
= lim

x→∞
ϕ∗∗(x)

x
.

Proof. Let ϕ ∈ Φ. Then

lim inf
x→0+

ϕ(x) ≥ lim inf
x→0+

ϕ∗∗(x) = lim
x→0+

ϕ∗∗(x) ,

lim inf
x→∞

ϕ(x)

x
≥ lim inf

x→∞
ϕ∗∗(x)

x
= lim

x→∞
ϕ∗∗(x)

x
.

Let a0, b0 ∈ R be such that a0x+ b0 ≤ ϕ(x), x ∈ (0,∞). Then

lim inf
x→0+

ϕ(x) ≥ b0 > −∞ , (4.1)

lim inf
x→∞

ϕ(x)

x
≥ a0 > −∞ . (4.2)

Let b be such that lim inf
x→0+

ϕ(x) > b > −∞. We choose δ > 0 so that

inf
0<x<δ

ϕ(x) > b.
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Then

inf
x>0

ϕ(x)− b

x
≥ min

{
inf

0<x<δ

ϕ(x)− b

x
, inf

δ≤x

ϕ(x)− b

x

}
≥ min

{
0, inf

δ≤x

(
a0 +

b0 − b

x

)}
> −∞ .

Set a = min
{
0, inf

δ≤x

(
a0+

b0−b
x

)}
, then (a, b) ∈Mϕ and consequently ϕ∗∗(x) ≥ ax+b,

x ∈ (0,∞). Thus,
lim

x→0+
ϕ∗∗(x) ≥ b

and, by our choice of b,

lim
x→0+

ϕ∗∗(x) ≥ lim inf
x→0+

ϕ(x) .

Hence, assertion (1) of Lemma 4.1 is proved.

Let α be such that lim inf
x→∞

ϕ(x)
x > α > −∞. We choose Δ > 0 such that

inf
x>Δ

ϕ(x)

x
> α.

Then

inf
x>0

(
ϕ(x)− αx

) ≥ min
{

inf
0<x≤Δ

(ϕ(x)− αx), inf
x>Δ

(ϕ(x)− αx)
}

≥ min
{

inf
0<x≤Δ

(a0x+ b0 − αx), 0
}
> −∞

Let β = min
{

inf
0<x≤Δ

(a0x+ b0−αx), 0
}
. Then (α, β) ∈Mϕ and consequently,

ϕ∗∗(x) ≥ αx+ β for every x ∈ (0,∞). Therefore,

lim
x→∞

ϕ∗∗(x)
x

≥ α

and, by our choice of α,

lim
x→∞

ϕ∗∗(x)
x

≥ lim inf
x→∞

ϕ(x)

x

Thus, assertion (2) of Lemma 4.1 is proved. �

Lemma 4.2. ϕ ∈ Φi ⇐⇒ ϕ∗∗ ∈ Φi, i = 1, 2, 3.

Proof. The assertion ϕ ∈ Φ1 ⇐⇒ ϕ∗∗ ∈ Φ1 is proved as (1) of Lemma 4.1.

The proof of Lemma 4.2 will be completed once we prove that

ϕ ∈ Φ3 ⇐⇒ ϕ∗∗ ∈ Φ3.
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Let ϕ ∈ Φ2 ∪ Φ3 and

âϕ = lim inf
x→∞

ϕ(x)

x
= lim

x→∞
ϕ∗∗(x)

x
.

If ϕ∗∗ ∈ Φ3, then ϕ ≥ ϕ∗∗ implies ϕ ∈ Φ3.

Now let us suppose that ϕ ∈ Φ3. Let a0, b0 ∈ R be such that a0x+ b0 ≤ ϕ(x)
for every x ∈ (0,∞). Let b ∈ R be such that lim inf

x→∞
(
ϕ(x)− âϕx

)
> b > −∞.

Let Δ > 0 satisfy
inf
x>Δ

(
ϕ(x)− âϕx

)
> b.

Then,

inf
x>0

(
ϕ(x)− âϕx

) ≥ min
{

inf
0<x≤Δ

(ϕ(x)− âϕx), inf
x>Δ

(ϕ(x)− âϕx)
}

≥ min
{

inf
0<x≤Δ

(a0x+ b0 − âϕx), b
}
> −∞ .

Let b̂ = min
{

inf
0<x≤Δ

(a0x+b0− âϕx), b
}
. Then (âϕ, b̂) ∈Mϕ and consequently

ϕ∗∗(x) ≥ âϕx+ b̂ for every x ∈ (0,∞). Thus,

lim inf
x→∞

(
ϕ∗∗(x)− âϕx

) ≥ b̂ > −∞ ,

and ϕ∗∗ ∈ Φ3. �

Lemma 4.3. Let ϕ ∈ Φ. If a is such that a < âϕ, then

inf
x>0

(
ϕ(x)− ax

)
> −∞

and
lim
x→∞

(
ϕ(x)− ax

)
=∞ .

Proof. Let a0, b0 ∈ R be such that (a0, b0) ∈ Mϕ, let a and a1 satisfy the
inequalities −∞ < a < a1 < âϕ, and Δ > 0 be such that

inf
x>Δ

ϕ(x)

x
> a1.

So, ϕ(x)− ax > (a1 − a)x for x > Δ and lim
x→∞

(
ϕ(x)− ax

)
=∞. Therefore,

inf
x>0

(
ϕ(x)− ax

)
= min

{
inf

0<x≤Δ

(
ϕ(x)− ax

)
; inf

x>Δ

(
ϕ(x)− ax

)}
≥ min

{
inf

0<x≤Δ

(
a0x+ b0 − ax

)
; inf

x>Δ
(a1 − a)x

}
> −∞.

Lemma 4.3 is proved. �
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Lemma 4.4. Let ψ : (0,∞)→ R be convex on (0,∞) and

ψ̂(x) = ψ(x)− ψ′(x−)x, x ∈ (0,∞) ,

where ψ′(x−) = lim
t→x−

ψ(t)−ψ(x)
t−x . If 0 < x1 < x2, then

ψ̂(x1) ≥ ψ̂(x2).

Proof. Let x3 = x1+x2

2 . Note that

• 2ψ(x3) ≤ ψ(x1) + ψ(x2),

• f(u, v) = ψ(u)−ψ(v)
u−v is a monotone non-decreasing function of each variable

u, v > 0, u �= v, and

−∞< lim
t→x−

ψ(t)− ψ(x)

t− x
=ψ′(x−)≤ψ′(x+)= lim

v→x+

ψ(v)− ψ(x)

v − x
<∞ , x > 0 .

Now, ψ̂(x2) ≤ ψ̂(x1) follows from the inequalities

ψ̂(x2) = ψ(x2)− ψ′(x−2 )x2 ≤ ψ(x2)− ψ(x2)− ψ(x3)

x2 − x3
x2

=
(
ψ(x3)− ψ(x2)

) 2x2

x2 − x1
− ψ(x2) = ψ(x3)

2x2

x2 − x1
− ψ(x2)

x2 + x1

x2 − x1

≤ (ψ(x2) + ψ(x1)
) x2

x2 − x1
− ψ(x2)

x2 + x1

x2 − x1

= ψ(x1)
x2 + x1

x2 − x1
− (ψ(x1) + ψ(x2)

) x1

x2 − x1

≤ ψ(x1)
x2 + x1

x2 − x1
− ψ(x3)

2x1

x2 − x1
= ψ(x1)−

(
ψ(x3)− ψ(x1)

) 2x1

x2 − x1

= ψ(x1)− ψ(x3)− ψ(x1)

x3 − x1
x1 ≤ ψ(x1)− ψ′(x+

1 )x1 ≤ ψ(x1)− ψ′(x−1 )x1

= ψ̂(x1).

�

Lemma 4.5. Let ψ ∈ Φ2 ∪ Φ3. If ψ is convex on (0,∞) and

lim
x→∞

(
ψ(x)− ψ′(x−)x

)
> −∞ ,

then ψ ∈ Φ3.

Proof. Note that the limit value exists due to Lemma 4.4.

Let α ∈ R satisfy

lim
x→∞

(
ψ(x)− ψ′(x−)x

)
> α > −∞.
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Let Δ > 0 be such that inf
x>Δ

(
ψ(x)− ψ′(x−)x

)
> α. Then,

ψ(x)− ψ(t)− ψ(x)

t− x
x > α , Δ < t < x

and therefore
ψ(t)− α

t
≥ ψ(x)− α

x
, Δ < t < x .

Consequently,

ψ(x)− α

x
≥ lim

x→∞
ψ(x)− α

x
= lim

x→∞
ψ(x)

x
= âψ , x > Δ .

Thus, ψ(x)− âψx ≥ α for x > Δ, and

lim
x→∞

(
ψ(x)− âψx

) ≥ α > −∞ ,

i.e. ψ ∈ Φ3. �

As a direct consequence from Lemma 4.5 we obtain

Corollary 4.3. Let ψ ∈ Φ2. If ψ is convex on (0,∞), then

lim
x→∞

(
ψ(x)− ψ′(x−)x

)
= −∞ .

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3.1. Let ϕ ∈ Φ, ψ ∈ Φ and ψ be convex on (0,∞). Since
ϕ ≥ ϕ∗∗, we have

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

) ≥ inf
x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
. (5.1)

We consider separately two cases:

Case 1. inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= −∞. We have

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
= −∞ .

Case 2. c := inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
> −∞. In this case,

ϕ(x) ≥ ψ(x) + c, x ∈ (0,∞)

and ψ + c is a convex minorant of ϕ. Therefore, ϕ∗∗(x) ≥ ψ(x) + c, x ∈ (0,∞),
i.e. inf

x>0
(ϕ∗∗(x)− ψ(x)) ≥ c and

inf
x>0

(ϕ∗∗(x)− ψ(x)) ≥ inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
.
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It follows from here and inequality (5.1) that

inf
x∈(0,∞)

(
ϕ(x)− ψ(x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψ(x)

)
. �

Proof of Theorem 3.2. Recall that ϕ, ψ ∈ Φ, ψ is convex on (0,∞) and

lim
x→0+

(
ϕ(x)− ψ(x)

)
=∞ .

Note that lim
x→0+

ψ(x) =: ψ(0+) ∈ R ∪ {∞} and ψ(0+) > −∞, because ψ ∈ Φ

and ψ is convex on (0,∞). Therefore, ϕ(0+) =∞ and from Lemma 4.1 we obtain
that ϕ∗∗(0+) =∞.

If ψ(0+) <∞, then

lim
x→0+

(ϕ∗∗(x)− ψ(x)) = ϕ∗∗(0+)− ψ(0+) =∞.

In order to complete the proof, we have to examine the alternative when ψ satisfies
ψ(0+) =∞. We shall define a new function ψ̃ that is a convex minorant of ϕ.

Let a0, b0 ∈ R be such that (a0, b0) ∈ Mϕ and c ∈ R. We choose Δ1 > 0 such
that

inf
0<x<Δ1

(
ϕ(x)− ψ(x)

)
> c .

Next, we choose Δ2 such that Δ1 > Δ2 > 0 and

inf
0<x<Δ2

(
ψ(x) + c− (a0x+ b0)

)
> 0.

Now, we choose Δ3, Δ2 > Δ3 > 0, so that ψ(x) is monotone non-increasing on
(0,Δ3). For x ∈ (0,Δ3) we have the following inequalities for the convex function
ψ:

0 ≥ ψ(Δ3)− ψ(x)

Δ3
≥ ψ(Δ3)− ψ(x)

Δ3 − x
≥ lim sup

t→x+

ψ(t)− ψ(x)

t− x
=: ψ′(x+)

and from ψ(0+) =∞ it follows that

lim
x→0+

ψ′(x+) = −∞.

Further, we choose Δ4, Δ3 > Δ4 > 0, such that

sup
0<x<Δ4

ψ′(x+) < a0.

If x ∈ (0,Δ4), then

lim sup
x→0+

(
ψ′(x+)(Δ1 − x) + ψ(x) + c

)
= lim sup

x→0+

(
ψ′(x+)(Δ1/2− x) + ψ(x) + c+ ψ′(x+)Δ1/2

)
≤ lim sup

x→0+

(
ψ(Δ1/2) + c+ ψ′(x+)Δ1/2

)
= −∞ .
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Finally, we choose Δ5 so that Δ4 > Δ5 > 0 and

sup
0<x<Δ5

(
ψ′(x+)(Δ1 − x) + ψ(x) + c

)
< a0Δ1 + b0 .

Let x1 ∈ (0,Δ5). We set

a1 := ψ′(x+
1 ), b1 := −ψ′(x+

1 )x1 + ψ(x1) + c ,

hence,
ψ′(x+

1 )(x− x1) + ψ(x1) + c = a1x+ b1, x ∈ (0,∞).

From

a1x1 + b1 = ψ(x1) + c ≥ a0x1 + b0,

a1Δ1 + b1 < a0Δ1 + b0

we conclude that there exists x2 ∈ [x1,Δ1] such that a1x2 + b1 = a0x2 + b0.

We define a function ψ̃ as follows:

ψ̃(x) :=

⎧⎪⎨⎪⎩
ψ(x) + c, x ∈ (0, x1)

a1x+ b1, x ∈ [x1, x2]

a0x+ b0, x ∈ (x2,∞).

The function ψ̃ is convex on (0,∞) because it is continuous, ψ′(x−1 ) ≤ a1 ≤ a0
and ψ + c is convex on (0, x1).

Furthermore,

ψ̃(x) = ψ(x) + c ≤ ϕ(x), x ∈ (0, x1) ,

ψ̃(x) = a1x+ b1 ≤ ψ(x) + c ≤ ϕ(x), x ∈ [x1, x2] ,

ψ̃(x) = a0x+ b0 ≤ ϕ(x), x ∈ (x2,∞) .

Hence, ψ̃ is a convex minorant of ϕ, and ϕ∗∗(x) ≥ ψ̃(x), x ∈ (0,∞).

Thus ϕ∗∗(x) ≥ ψ(x) + c, x ∈ (0, x1), and

lim inf
x→0+

(
ϕ∗∗(x)− ψ(x)

) ≥ c ,

which, according to the choice of c, implies that

lim
x→0+

(
ϕ∗∗(x)− ψ(x)

)
=∞. �

Proof of Theorem 3.3. Recall that ϕ ∈ Φ, ψ ∈ Φ \ Φ3, ψ is convex on (0,∞)
and lim

x→∞
(
ϕ(x)− ψ(x)

)
=∞.
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By Lemma 4.1 we have

âϕ = lim inf
x→∞

ϕ(x)

x
= lim

x→∞
ϕ∗∗(x)

x
,

âψ = lim inf
x→∞

ψ(x)

x
= lim

x→∞
ψ∗∗(x)

x

Let Δ > 0 be such that

inf
x>Δ

(
ϕ(x)− ψ(x)

)
> 0,

then ϕ(x) ≥ ψ(x) for every x ∈ (Δ,∞) and

âϕ = lim inf
x→∞

ϕ(x)

x
≥ lim inf

x→∞
ψ(x)

x
= âψ.

The proof proceeds with separate consideration of several cases:

Case 1: âϕ > âψ.

Let a1, a2 ∈ R be such that

âϕ > a1 > a2 > âψ.

We choose Δ < Δ1 such that

ϕ∗∗(x)
x

> a1 > a2 >
ψ(x)

x
, x ∈ (Δ1,∞).

Hence, ϕ∗∗(x)− ψ(x) > (a1 − a2)x, x ∈ (Δ1,∞), and

lim
x→∞

(
ϕ∗∗(x)− ψ(x)

)
=∞ .

Thus Case 1 is settled.

Case 2: âϕ = âψ. This case is split into three subcases.

Case 2.1: ϕ ∈ Φ3. We make the following observations:

• Lemma 3.2 implies that ϕ∗∗ ∈ Φ3.

• ψ ∈ Φ2 and since ψ is convex, we have

lim inf
x→∞

(
ψ(x)− âψx

)
= lim

x→∞
(
ψ(x)− âψx

)
= −∞ .

We claim that
inf
x>0

(
ϕ∗∗(x)− âϕx

)
> −∞. (5.2)

Indeed, let us choose the real numbers b, Δ2, a0 and b0 in the following way:
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– b is such that
lim inf
x→∞

(
ϕ∗∗(x)− âϕx

)
> b ;

– Δ2 > 0 is such that
inf

x>Δ2

(
ϕ∗∗(x)− âϕx

)
> b ;

– a0 and b0 are such that (a0, b0) ∈Mϕ and therefore

a0x+ b0 ≤ ϕ∗∗(x) , x ∈ (0,∞).

We have

inf
x>0

(
ϕ∗∗(x)− âϕx

)
= min

{
inf

0<x≤Δ2

(
ϕ∗∗(x)− âϕx

)
; inf

x>Δ2

(
ϕ∗∗(x)− âϕx

)}
≥ min

{
inf

0<x≤Δ2

(
a0x+ b0 − âϕx

)
; b
}
> −∞

and claim (5.2) is proved. Now,

lim inf
x→∞

(
ϕ∗∗(x)− ψ(x)

)
= lim inf

x→∞

(
(ϕ∗∗(x)− âϕx) + (âψx− ψ(x))

)
≥ inf

x>0
(ϕ∗∗(x)− âϕx) + lim inf

x→∞ (âψx− ψ(x))

= inf
x>0

(ϕ∗∗(x)− âϕx) + lim
x→∞(âψx− ψ(x)) =∞

Case 2.1 is settled.

Case 2.2: ϕ ∈ Φ2 and Case 2.3: ϕ ∈ Φ1.

Let c ∈ R, Δ > 0 satisfy inf
x>Δ

(ϕ(x) − ψ(x)) > c, and a0, b0 be such that

(a0, b0) ∈ Mϕ. In the present cases, the assumptions imply that ϕ ∈ Φ2 (ϕ ∈ Φ1)
and âϕ > a0. So, âψ = âϕ > a0, ψ ∈ Φ2 (ψ ∈ Φ1), and by Lemma 4.3,

lim
x→∞(ψ(x)− a0x) =∞.

Let Δ1 > Δ be such that

inf
x>Δ1

(
ψ(x) + c− (a0x+ b0)

)
> 0.

Since ψ ∈ Φ2 (ψ ∈ Φ1) is a convex function, we have

ψ′(x−) ≤ ψ′(x+) < âψ, x > 0.

For a fixed x′ and ∞ > x > x′ > 0 we have

ψ(x′)− ψ(x)

x′ − x
≤ lim

t→x−

ψ(t)− ψ(x)

t− x
= ψ′(x−) < âψ

=⇒ lim
x→∞

ψ(x)
x − ψ(x′)

x

1− x′
x

= lim
x→∞

ψ(x′)− ψ(x)

x′ − x
≤ lim

x→∞ψ′(x−) ≤ âψ ,
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therefore
lim
x→∞ψ′(x−) = âψ . (5.3)

Let Δ2 > Δ1 be such that

inf
x>Δ2

ψ′(x−) > a0.

We claim that there exists Δ3 > Δ2 such that

ψ′(x−)(Δ− x) + ψ(x) + c < a0Δ+ b0, x > Δ3. (5.4)

The arguments for the proof of this claim in Case 2.2 and Case 2.3 are different.

In Case 2.2 we have âψ <∞, and Corollary 4.3 applied to ψ imply

lim
x→∞(ψ(x)− ψ′(x−)x) = −∞ .

Therefore by (5.3) we obtain

lim
x→∞

(
ψ′(x−)(Δ− x) + ψ(x) + c

)
= −∞

On the other hand, in Case 2.3 we have lim
x→∞ψ′(x−) = âψ =∞ and

ψ′(x−)(Δ− x) + ψ(x) + c ≤ ψ′(x−)(2Δ− x) + ψ(x) + c− ψ′(x−)Δ

≤ ψ(2Δ) + c− ψ′(x−)Δ ,

since ψ′(x−)(t− x) + ψ(x) ≤ ψ(t) for x, t > 0. Hence,

lim
x→∞(ψ′(x−)(Δ− x) + ψ(x) + c) = −∞ .

Thus (5.4) is proved and let Δ3 > Δ2 be such that (5.4) is fulfilled. For x1 > Δ3

we set
a1 = ψ′(x−1 ), b1 = −ψ′(x−1 )x1 + ψ(x1) + c.

Note that a1 > a0. Then

a1x+ b1 ≤ ψ(x) + c, ∀x ∈ (0,∞) ,

a1x1 + b1 = ψ(x1) + c ≥ a0x1 + b0 ,

a1Δ+ b1 < a0Δ+ b0 .

We choose x2 ∈ (Δ, x1] so that

a1x2 + b1 = a0x2 + b0,

and define a function ψ̃ : (0,∞)→ R as follows:

ψ̃(x) =

⎧⎪⎨⎪⎩
a0x+ b0, x ∈ (0, x2] ,

a1x+ b1, x ∈ (x2, x1] ,

ψ(x) + c, x ∈ (x1,∞) .
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Notice that ψ̃ is convex on (0,∞), because it is continuous, a0 ≤ a1 ≤ ψ′(x−1 )
and ψ + c is convex on (x1,∞). Moreover, ψ̃(x) ≤ ϕ(x) for every x ∈ (0,∞).

Therefore, ψ̃(x) ≤ ϕ∗∗(x), x ∈ (0,∞).

Thus for x > x1 we have ψ(x) + c ≤ ϕ∗∗(x) and

lim inf
x→∞

(
ϕ∗∗(x)− ψ(x)

) ≥ c .

It follows from our choice of c that

lim
x→∞

(
ϕ∗∗(x)− ψ(x)

)
=∞. �

6. APPLICATION

In this section we apply Theorems 3.1, 3.2 and 3.3 to the theory of spaces
Hv(G) and Hv0(G).

We make use of the following notation:

Mf(y) = sup
x∈(−∞,∞)

|f(x+ iy)|,

ψf (y) = lnMf(y), ∀y > 0, f ∈ Λ(p) ,

where f is a holomorphic function defined on the upper half plane G.

Note that
− ln ‖ f ‖v= inf

y>0

(
ϕv(y)− ψf (y)

)
Here we reformulate our results from [6].

Theorem A. [6, Th. 1.2] If ϕ satisfies condition (1.1′), then

Hv(G) �= {0} ⇐⇒ ϕ ∈ Φ ,

where v = e−ϕ.

Theorem B. [6, Th. 1.3] If ϕ satisfies condition (1.1′), then

Hv0(G) �= {0} ⇐⇒
∣∣∣∣ ϕ ∈ Φ,
ϕ(0+) =∞ ,

where v = e−ϕ.

Theorem C [6, Th. 1.4] If ϕ satisfies condition (1.1′) and Hv0(G) �= {0}, then
ψf ∈ Φ \ Φ3 for every f ∈ Hv0(G) \ {0},

where v = e−ϕ.

Note that ψf is convex on (0,∞) and ψf ∈ Φ, ∀f ∈ Hv(G) \ {0}.
In this section we prove two new theorems.
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Theorem 6.1. If ϕ satisfies condition (1.1′) and ϕ ∈ Φ, then(
Hv(G), ‖ · ‖v

) ≡ (Hw(G), ‖ · ‖w
)
,

where v = e−ϕ and w = e−ϕ∗∗ .

Proof. Let v = e−ϕ and w = e−ϕ∗∗ . The following implications hold:

• ϕ > ϕ∗∗ =⇒ ϕ∗∗ satisfies condition (1.1′) ;

• ϕ ∈ Φ =⇒ ϕ∗∗ ∈ Φ, because Mϕ∗∗ = Mϕ �= ∅.

Thus, Hv(G) �= {0} and Hw(G) �= {0}, by Theorem A. Moreover, Hv(G) ⊃ Hw(G),
because ‖ f ‖v≤‖ f ‖w<∞, ∀f ∈ Hw(G).

Note that for every f ∈ Hv(G) �= {0} the function ψf = lnMf is convex on
(0,∞) and ψf ∈ Φ. Therefore, by Theorem 3.1,

inf
x∈(0,∞)

(
ϕ(x)− ψf (x)

)
= inf

x∈(0,∞)

(
ϕ∗∗(x)− ψf (x)

)
Thus f ∈ Hw(G) �= {0} and ‖ f ‖v=‖ f ‖w. �

Theorem 6.2. If ϕ satisfies condition (1.1′), ϕ ∈ Φ and ϕ(0+) =∞, then(
Hv0(G), ‖ · ‖v

) ≡ (Hw0
(G), ‖ · ‖w

)
,

where v = e−ϕ and w = e−ϕ∗∗ .

Proof. Let v = e−ϕ and w = e−ϕ∗∗ . The following implications hold:

• ϕ > ϕ∗∗ =⇒ ϕ∗∗ satisfies condition (1.1′) ;

• ϕ ∈ Φ =⇒ ϕ∗∗ ∈ Φ, since Mϕ∗∗ = Mϕ �= ∅ ;
• ϕ∗∗(0+) = ϕ(0+) =∞, by Lemma 4.1 (1).

By Theorem B, Hv0(G) �= {0} and Hw0
(G) �= {0} . Moreover, Hv0(G) ⊃ Hw0

(G),
because of

0 ≤ v(iy)|f(x+ iy)| ≤ w(iy)|f(x+ iy)|
for every f ∈ Hw0

(G) and x ∈ (−∞,∞), y ∈ (0;∞).

By Theorem 6.1, ‖ f ‖v=‖ f ‖w for every f ∈ Hv0(G) �= {0}.
We have to prove that f ∈ Hw0(G) �= {0} for every f ∈ Hv0(G) �= {0}. Let

f ∈ Hv0(G) �= {0}. In view of the definition of Hv0(G),

lim
K↑G

sup
z∈G\K

v(z)|f(z)| = 0 ,
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where K ⊂ G and K is compact. So,

lim
y→0+

v(iy)Mf(y) = 0, lim
y→∞ v(iy)Mf(y) = 0 ,

and after reformulation,

lim
y→0+

(
ϕ(y)− ψf (y)

)
=∞, lim

y→∞
(
ϕ(y)− ψf (y)

)
=∞ .

By Theorem C, ψf ∈ Φ \ Φ3. By Theorem 3.2 and Theorem 3.3 we have

lim
y→0+

(
ϕ∗∗(y)− ψf (y)

)
=∞, lim

y→∞
(
ϕ∗∗(y)− ψf (y)

)
=∞ ,

i.e.
lim

y→0+
w(iy)Mf(y) = 0, lim

y→∞w(iy)Mf(y) = 0 .

For an arbitrary ε > 0 we choose c > 1 such that

sup
y< 1

c

w(iy)Mf(y) < ε, sup
y>c

w(iy)Mf(y) < ε .

The quantity

m =

sup
1
c≤y≤c

w(iy)

inf
1
c≤y≤c

v(iy)

satisfies m < ∞, since ϕ∗∗ ∈ Φ and therefore inf 1
c≤x≤c ϕ

∗∗(x) > −∞ for every
c > 1.

In view of the definition of Hv0(G) there exist x1 > 0, c1 > c and a compact

K1 = {x+ iy | − x1 ≤ x ≤ x1,
1

c1
≤ y ≤ c1}

satisfying

sup
x+iy∈G\K1

v(iy)|f(x+ iy)| ≤ ε

m
.

Let K = {x+ iy | − x1 ≤ x ≤ x1,
1
c ≤ y ≤ c}, then

sup
x+iy∈G\K

w(iy)|f(x+ iy)|

= max
{

sup
y< 1

c

w(iy)Mf(y), sup
|x|>x1,
1
c≤y≤c

w(iy)Mf(y), sup
y>c

w(iy)Mf(y)
}

≤ max
{
ε, sup
|x|>x1,
1
c≤y≤c

v(iy)m|f(x+ iy)|, ε
}
≤ ε

and therefore f ∈ Hw0(G). �
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In this communication it is proved a fluctuation limit theorem for controlled branching
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1. INTRODUCTION

Branching processes are regarded as appropriate probability models for the de-
scription of the extinction/growth of populations whose developments are subject
to the law of chance. In particular, controlled branching processes are useful to
model some situations which require control of the population size at each gener-
ation. This consists of determining the number of individuals with reproductive
capacity at each generation, mathematically through a control process.

Let us provide its formal definition: A controlled branching process (CBP) with
a random control function is a stochastic process, {Zn}n≥0, defined recursively as
follows:

Z0 = N ∈ N, Zn+1 =

φn(Zn)∑
j=1

Xnj , n ≥ 0, (1)
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where {Xnj : n = 0, 1, . . . ; j = 1, 2, . . .} and {φn(k) : n, k = 0, 1, . . .} are two
families of independent non–negative integer–valued random variables, with Xnj ,
n = 0, 1, . . .; j = 1, 2, . . . being independent and identically distributed (i.i.d.)
random variables having mean m and variance τ2 (both assumed finite), and for
each n = 0, 1, . . ., {φn(k)}k≥0 are independent stochastic processes with equal one–
dimensional probability distributions with E[φn(k)] = ε(k) and V ar[φn(k)] = σ2(k)
(both assumed finite for each k ≥ 0). The random variable Zn represents the total
number of individuals in generation n, starting with Z0 = N > 0 progenitors. Each
individual, independently of all others and all with identical probability distribu-
tions, gives rise to new individuals. The random variable Xnj is the number of
offspring originated by the j-th individual of generation n. If in a certain gener-
ation n there are k individuals, i.e., Zn = k, then, through the random variable
φn(k), identically distributed for each n, there is produced a control in the process
fixing the number of progenitors which generate Zn+1. Thus the variable φn(k)
determines the migration process in a generation of size k: for those values of the
variable φn(k) such that φn(k) < k, k − φn(k) individuals are removed from the
population, and therefore do not participate in the future evolution of the process;
if φn(k) > k, φn(k) − k new individuals (immigrants) of the same type are added
to the population participating as progenitors under the same conditions as the
others. No control is applied to the population when φn(k) = k. It is easy to see
that {Zn}n≥0 is a homogeneous Markov chain. This model was introduced in [10]
for degenerated control distributions (deterministic case) and in [11] for the random
case. The probabilistic theory on this model has been developed in [1], [6], [8] and
[11] (and references therein).

Let define τm(k) = k−1E[Zn+1 | Zn = k], k = 1, 2, . . . . Intuitively τm(k) is in-
terpreted as the expected growth rate per individual when, in a certain generation,
there are k individuals. The process can be classified depending on the limit be-
haviour of the sequence {τm(k)}k≥1. In a broad sense, the cases lim supk→∞ τm(k) <
1, lim infk→∞ τm(k) ≤ 1 ≤ lim supk→∞ τm(k), and lim infk→∞ τm(k) > 1 are re-
ferred to, respectively, as subcritical, critical, and supercritical situations for a
CBP. It is easy to obtain that τm(k) = mk−1ε(k), k ≥ 1. Hence the classification
of the process is determined essentially by the behaviour of the offspring and con-
trol means. Whenever exists the limit of the sequence {τm(k)}k≥1, as k → ∞, we
refer to it as the asymptotic mean growth rate.

In this paper we consider an array of CBPs {Z(n)
i }i≥0, n = 1, 2, . . ., defined

recursively by

Z
(n)
0 = N ∈ N, Z

(n)
i+1 =

φ
(n)
i (Z

(n)
i )∑

j=1

X
(n)
ij , i = 0, 1, . . . ; n = 1, 2, . . . (2)

For each n, {X(n)
ij : i = 0, 1, . . . ; j = 1, 2, . . .} is a sequence of i.i.d. non–negative

integer–valued random variables with meanmn and finite variance τ2n, and {φ(n)
i (k) :

i = 0, 1, . . . ; k = 0, 1, . . .} are independent non–negative integer–valued random
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variables with means εn(k) and finite variances σ2
n(k) for every k ≥ 0. Also, for

each n, we assume that {X(n)
ij } and {φ(n)

i (k)} are independent.

The main aim of this paper is to provide a Feller diffusion approximation for
an array of CBPs whose offspring and control means tend to be critical. Using
operator semigroup convergence theorems, it is proved that the fluctuation limit
is a diffusion process. From a practical viewpoint, the interest of developing this
result stems from the usefulness of it in determining the asymptotic distributions of
estimators of the main parameters of a controlled branching process. In particular,
we are interested in the weighted conditional least squares (WCLS) estimator of the
offspring mean. As an statistical application of the obtained fluctuation limit theo-
rem, it is determined, in a parametric framework, the bootstrapping distribution of
the WCLS estimator of the offspring mean in the critical case. From this, it is con-
cluded that the standard parametric bootstrap WCLS estimate is asymptotically
invalid in the critical case.

The communication is organized as follows. In Section 2 we prove that the
functional fluctuation limit of a sequence of CBPs is a diffusion process. We present
in Section 3 the WCLS estimator of the offspring mean of a CBP. We show its
limit distribution from a classical viewpoint and in a parametric framework, its
bootstrapping distribution by applying the obtained functional limit theorem. From
the last, it is concluded that the standard parametric bootstrap WCLS estimate is
asymptotically invalid in the critical case.

2. DIFFUSION APPROXIMATION THEOREM

Let consider an array of CBPs as given in (2). Let us introduce the sequence

of random functions {Wn}n≥1 as Wn(t) = n−1Z
(n)
[nt], t ≥ 0, n = 1, 2, . . . , with [·]

denoting the integer part. It is clear that {Wn}n≥0 is aD[0,∞)[0,∞)–valued random
variable, with D[0,∞)[0,∞) the space of non–negative functions on [0,∞) that are
right continuous and have left limits. Denote by C∞c [0,∞) the space of infinitely
differentiable functions on [0,∞) which have compact supports. Throughout the

paper “
D→” denotes the convergence of random functions in the Skorokhod topology,

“
d→” the convergence of random variables in distribution and N(·, ·) the normal

distribution.

Using operator semigroup convergence theorems, we prove a weak convergence
theorem for the sequence of random functions {Wn}n≥0.

Theorem 1. Assume that

(A1) mn = m+ αn−1 + o(n−1) as n→∞, 0 < m <∞, −∞ < α <∞ ;

(A2) τ2n → τ2 as n→∞, 0 < τ2 <∞;
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(A3) for any sequence {xn}n≥1 such that xn → x as n→∞, 0 < x <∞,
and for all ε > 0,

lim
n→∞ τ−2

n E

[
|X(n)

01 −mn|21{
|X(n)

01 −mn|≥ε
√

nxnτ2
n

}
]
= 0,

with 1A denoting the indicator function of a set A ;

(A4) εn(k) = ε(k) + fn(k), with limn→∞ fn(k) = 0 uniformly for k ;

(A5) mε(k)k−1 = 1 + γk−1 + o(k−1) as k →∞, −∞ < γ <∞ ;

(A6) σ2
n(k) = βnk + gn(k) , with limk→∞ gn(k)k

−1 = 0 uniformly for n,
βn → 0 as n→∞.

Then Wn
D→ Wα as n → ∞, weakly in the Skorohod space D[0,∞)[0,∞), where

Wα is the diffusion process with generator

Aαf(x) = (γ + αm−1x)f ′(x) +
1

2
τ2m−1xf ′′(x), f ∈ C∞c [0,∞). (3)

The proof of Theorem 1 can be found in [7].

The process Wα is the (unique) solution of the stochastic differential equation

dWα(t) = (γ + αm−1Wα(t))dt+ (τ2m−1Wα(t))
1/2dB(t), t ≥ 0,

where B is a standard Wiener process.

In next section it is necessary to consider a particular array version of CBPs

of the general situation considered in (2). Let {Z(n)
i }i≥0, n = 1, 2, . . ., be an array

of CBPs with the same hypotheses about the offspring and control variables as in
the definition in (2), but with the additional condition that for each k ≥ 0, the

variables {φ(n)
i (k)}, i ≥ 0; n ≥ 1, are identically distributed with E[φ

(n)
i (k)] = ε(k)

and V ar[φ
(n)
i (k)] = σ2(k). In respect to the offspring law we assume conditions

(A1)-(A3). Moreover, in relation to the control mean and variance we consider the
following assumptions:

(B1) mε(k)k−1 = 1 + γk−1 + o(k−1) as k →∞, −∞ < γ <∞ ;

(B2) limk→∞ σ2(k)k−1 = 0,

which are the simplified version of (A4)-(A6) in this particular case. Then, applying
Theorem 1 one obtains

Wn
D→Wα as n→∞,

where Wα is the diffusion process with generator given in (3).
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3. WEIGHTED CONDITIONAL LEAST SQUARES ESTIMATION AND
ASYMPTOTIC RESULTS

Let consider a CBP given in (1) and let Fn be the σ−algebra generated by the
random variables Z0, Z1, · · · , Zn. From the fact that E[Zn|Fn−1] = mε(Zn−1) a.s.,
we can represent Zn as

Zn = mε(Zn−1) + δ̃n, n = 1, 2, . . . , (4)

where the error term δ̃n has E
[
δ̃n|Fn−1

]
= 0. In order to obtain an efficient

estimator of the offspring mean, we divide both sides of (4) by (ε(Zn−1) + 1)
1/2

and rewrite the model as

Zn

(ε(Zn−1) + 1)
1/2

=
mε(Zn−1)

(ε(Zn−1) + 1)
1/2

+ δn, n = 1, 2, . . . ,

with δn = δ̃n/ (ε(Zn−1) + 1)
1/2

.

The WCLS estimator of m is obtained by minimizing the expression
∑n

i=1 δ
2
i .

It is easy to check that the value of m that minimizes it is

m̂n =

(
n∑

i=1

Ziε(Zi−1)

ε(Zi−1) + 1

)(
n∑

i=1

ε2(Zi−1)

ε(Zi−1) + 1

)−1

. (5)

We are interested in the study of the limit distribution of the pivot

Vn =

(
n∑

i=1

ε2(Zi−1)

ε(Zi−1) + 1

)1/2

(m̂n −m). (6)

This presents different kinds of behaviour depending on the classification of the pro-
cess. In [5] it was established that a CBP {Zn}n≥0 with P (X01 = 0) > 0, P (X01 ≤
1) < 1 and P (φ0(i) > i) > 0, i = 0, 1, . . ., converges in distribution to a positive,
finite and non-degenerate random variable Z.

Theorem 2. Assume that

i) lim supk→∞ τm(k) < 1 ;

ii) P (X01 = 0) > 0, P (X01 ≤ 1) < 1 ;

iii) P (φ0(i) > i) > 0, i = 0, 1, . . . ;

iv) E[μ2+δ(Z)] <∞, with μk(z) = E[|φ0(z)− ε(z)|k], k ≥ 1.

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 247–256. 251



Then
Vn

d→ N(0, V ) as n→∞ ,

where

V =

m2E

[(
ε(Z)

ε(Z)+1

)2
σ2(Z)

]
+ σ2E

[
ε3(Z)

(ε(Z) + 1)2

]
E

[
ε2(Z)

ε(Z) + 1

] .

The proof can be seen in [9].

In the supercritical case, we consider that

lim
n→∞ τm(k) = m lim

n→∞ k−1ε(k) = ηm > 1.

Then the following result holds

P (Zn →∞) > 0 and lim
n→∞Ln = L a.s., (7)

with Ln = (ηm)−nZn and P (L > 0) > 0. Indeed, conditions that guarantee (7)
can be found in the papers [3, 4].

Theorem 3. Assume that

i) lim supk→∞ τm(k) > 1 and (7) hold ;

ii) limk→∞ k−1σ2(k) = 0.

Then
Vn

d→ N
(
0, σ2

)
, as n→∞.

The details of the proof can be seen in [9].

Regarding the critical case, we obtained:

Theorem 4. Assume that

i) τm(k) = 1 + k−1γ + o(k−1) as k →∞, where γ is a real number ;

ii) limk→∞ k−1σ2(k) = 0.

Then

Vn
d→ W (1)−W (0)− γ(

1
m

∫ 1

0
W (t)dt

)1/2 as n→∞,

where W is a diffusion process with generator (3) with α = 0.
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The reader can find the proof in [9].

This result can be generalized to the particular array version of CBPs consid-
ered in the previous section (2). We provide the behaviour of the array version of
the estimator m̂n and the pivot quantity Vn, which is the interest for the study of
the behaviour of the bootstrap estimator of m. Let

m̄n =

(
n∑

i=1

Z
(n)
i ε(Z

(n)
i−1)

ε(Z
(n)
i−1) + 1

)(
n∑

i=1

ε2(Z
(n)
i−1)

ε(Z
(n)
i−1) + 1

)−1

and

V̄n =

(
n∑

i=1

ε2(Z
(n)
i−1)

ε(Z
(n)
i−1) + 1

)1/2

(m̄n −mn).

Theorem 5. Assume that assumptions (A1)–(A3) and (B1)–(B2) are satis-
fied. Then, as n→∞,

V̄n
d→ Wα(1)−Wα(0)− γ(

1
m

∫ 1

0
Wα(t)dt

)1/2 − α

(
1

m

∫ 1

0

Wα(t)dt

)1/2

,

with Wα as in Theorem 1.

Briefly, three different limit distributions for Vn were obtained for three differ-
ent cases, as n→∞, namely

Vn
d→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N(0, V ), if lim supk→∞ τm(k) < 1 (subcritical),

W (1)−W (0)−γ

( 1
m

∫ 1
0
W (t)dt)

1/2 , if τm(k) = 1 + k−1γ + o(k−1), γ ∈ R (critical)

N(0, σ2), if lim infk→∞ τm(k) > 1 (supercritical),

with V andW as previously defined. Hence the classical asymptotic theory does not
provide a unified estimation theory for the offspring mean. Thus it is of interest to
approximate the sampling distribution of Vn by alternative methods. In particular,
we are keen on the bootstrap procedure. We apply the fluctuation limit theorem
previously established to determine the asymptotic distribution of the bootstrap
WCLS estimator in the critical case. We consider a parametric framework and
obtain as a consequence of this last limit result that the standard bootstrap version
of the pivot quantity does not have the same limit distribution as Vn in such a
case. Although the behaviour of the parametric bootstrap for the subcritical and
supercritical cases is of interest as well, due to this fails in the critical case it will be
most interesting for the future to make efforts in developing a modified bootstrap
procedure to be valid in all the three cases. Let us introduce a parametric bootstrap
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for CBPs following analogous steps to those given in [2] for branching processes with
immigration. We assume that the offspring law, pθ, has probability mass function

pθ(k) = Pθ(X01 = k), k = 0, 1, . . .,

depending on a parameter θ where θ ∈ Θ ⊆ R.

Consider m = Eθ[X01] = f(θ) for some function f , which we will assume to be
a one-to-one mapping of Θ to [0,∞). Moreover, f is assumed to be homeomorphism
between its domain and range. For instance, the power series family of distributions
satisfies the conditions imposed above.

The bootstrap procedure can be defined as follows: given the sample Mn =
{Z1, ..., Zn}, estimate the offspring mean by the estimator m̂n given in (5), and

therefore let θ̂n = f−1(m̂n). Conditional onMn, define a sequence of i.i.d. random
variables X∗

nj having distribution given by pθ̂n . The bootstrap sample M∗
n =

{Z∗1 , . . . , Z∗n} is obtained by

Z∗n+1 =

φn(Z
∗
n)∑

j=1

X∗
nj , n = 0, 1, . . . , with Z∗0 = N.

We define the bootstrap estimator of m as m̂∗n given by

m̂∗n =

(
n∑

i=1

Z∗i ε(Z
∗
i−1)

ε(Z∗i−1) + 1

)(
n∑

i=1

ε2(Z∗i−1)

ε(Z∗i−1) + 1

)−1

,

and the parametric bootstrap analogue, V ∗n , of the pivot quantity Vn, given in (6),
as

V ∗n =

(
n∑

i=1

ε2(Z∗i−1)

ε(Z∗i−1) + 1

)1/2

(m̂∗n − m̂n) .

Note ε(·) is assumed to be known and φn(·) are observable. In this context,
let denote the distribution function of Vn by Fn(m,x) = P (Vn ≤ x), x ∈ R. Then,
notice that

P (V ∗n ≤ x|Mn) = Fn(m̂n, x), x ∈ R.

Our interest is to determine the limit behaviour of Fn(m̂n, x), x ∈ R, assuming
that the true model is a critical CBP. We check that for every x ∈ R the random
variables Fn(m̂n, x) converge in distribution to a non degenerate random limit, and
consequently one has that it is not verified that

sup
−∞<x<∞

|Fn(m,x)− Fn(m̂n, x)| → 0 a.s. as n→∞, (8)

obtaining the asymptotic invalidity of the bootstrap procedure in the critical case.
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Define

W(α,m, τ2, γ) =
Wα(1)−Wα(0)− γ(

1
m

∫ 1

0
Wα(t)dt

)1/2 − α

(
1

m

∫ 1

0

Wα(t)dt

)1/2

,

with Wα the diffusion process defined in Theorem 1, and

F (α,m, τ2, γ, x) = P (W(α,m, τ2, γ) ≤ x), x ∈ R.

As in [2], it is not hard to prove that, for each x ∈ R, F (V0,m, τ2, γ, x) is a random

variable, with V0 = (W (1)−W (0)−γ)
(

1
m

∫ 1

0
W (t)dt

)−1

. Now, we are in conditions

to state the result that establishes that (8) does not hold:

Theorem 6. Assume that

(C1) The variance of the offspring law, τ2, is a continuous function of θ.

(C2) The moment Eθ[|X01|2+δ], for some δ>0 is a continuous function of θ.

Then, it is verified that for every x ∈ R, as n→∞,

Fn(m̂n, x)
d→ F (V0,m, τ2, γ, x).

It is not hard to check that the power distribution family verifies (C1)-(C2).
The key of this proof is Theorem 5 and the details can be read in [7]. One of the
reasons for the standard parametric bootstrap does not work well in such a case is
the rate of convergence to the offspring mean parameter of its WCLS estimate.
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ON A GENERALIZATION OF CRITERIA A AND D

FOR CONGRUENCE OF TRIANGLES
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The conditions determining that two triangles are congruent play a basic role in
planimetry. By comparing not congruent triangles with respect to given sets of cor-
responding elements it is important to discover if they have any common geometric
properties characterizing them. The present paper is devoted to an answer of this
question. We give a generalization of criteria A and D for congruence of triangles and
apply it to prove some selected geometric problems.

Keywords: Congruence of triangles, comparison of triangles
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1. INTRODUCTION

There are six essential elements of every triangle - three angles and three sides.
The method of constructing a triangle varies according to the facts which are known
about its sides and angles.

It is important to know what is the minimum knowledge about the sides and
angles which is necessary to construct a particular triangle.

Clearly all triangles constructed in the same way with the same data must be
identically equal, i. e. they must be of exactly the same size and shape and their
areas must be the same.

Triangles which are equal in all respects are called congruent triangles.

The four sets of minimal conditions for two triangles to be congruent are set
out in the following geometric criteria.
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Criterion A. Two triangles are congruent if two sides and the included angle
of one triangle are respectively equal to two sides and the included angle of
the other.

Criterion B. Two triangles are congruent if two angles and a side of one
triangle are respectively equal to two angles and a side of the other.

Criterion C. Two triangles are congruent if the three sides of one triangle
are respectively equal to the three sides of the other.

Criterion D. Two triangles are congruent if two sides and the angle opposite
the greater side of one triangle are respectively equal to two sides and the angle
opposite the greater side of the other.

We notice that in criteria A and D the sets of corresponding equal elements
are two sides and an angle. The given angle may be any one of the three angles
of the triangle. The problem “Construct a triangle with two of its sides a and b,
a < b, and angle α opposite the smaller side” has not a unique solution. There
are two triangles each of which satisfies the given conditions.

In the present paper we compare not congruent triangles with respect to given
sets of corresponding elements and answer the question what are the geometric
properties characterizing such couples of triangles.

2. THEORETICAL BASIS OF THE PROPOSED METHOD FOR
COMPARING TRIANGLES

Throughout, for the elements of two triangles -ABC and -A1B1C1 we
shall use the notations AB = c, BC = a, CA = b; A1B1 = c1, B1C1 = a1,
C1A1 = b1. Moreover, θ and θ1 will stand for two corresponding angles of -ABC
and -A1B1C1 , respectively.

Suppose that in -ABC and -A1B1C1 the relations a = a1, b = b1 and
θ = θ1 hold. We consider four possible cases.

• The angle θ is included between the sides a and b, i.e., θ = �ACB and
θ1 = �A1C1B1. The triangles are congruent by Criterion A.

• Let a = b , i.e., -ABC and -A1B1C1 are isosceles. Since θ = θ1, the
triangles are congruent as a consequence of Criterion A.

• Let a > b and the angle θ be opposite the greater side a. In this case the
triangles are congruent in view of Criterion D.

• Let a > b and the angle θ is opposite the smaller side b. In this case the
triangles are either congruent or not.
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- If the triangles are congruent, then the angles opposite the greater sides
are necessarily equal. It could happen that the sum of the equal angles
opposite the greater sides equals 1800, then obviously the triangles are
right-angled.

- If the triangles are not congruent, then we show that the sum of the
angles opposite the greater sides is always equal to 1800.

Lemma 2.1. Let -ABC and -ABD be not congruent triangles, and let
AC = AD. If �ABC = �ABD, then �ACB + �ADB = 1800.

Proof. Since -ABC and -ABD are not congruent, then AC < AB (and
hence AD < AB). Let us denote �ACB = α and �ADB = β.

Fig. 1.

There are two possible locations of the points C and D with respect to the
straight line AB.

(i) The points C and D lie on opposite sides of AB.

The symmetry with respect to the straight line AB transforms -ABD into a
congruent -ABG which lies on the same side of AB as -ABC (see Fig. 1). Since
-ABC � -ABD, then -ABC � -ABG. The condition �ABC = �ABD
implies that the straight line AB is the bisector of �DBC. From the symmetry
with respect to AB it follows that G ∈ BC and BG �= BC. Let, e.g., G/BC (the
case C/BG is analogous). Clearly, if the assumptions of Lemma 2.1 are fulfilled
for -ABC and -ABD, then they are also valid for -ABC and -ABG and vice
versa.

Let us consider -ABC and -ABG. The side AB and �ABC are common
for both triangles. In view of the symmetry with respect to AB and AC = AD, we
get AD = AG = AC. Hence, -ACG is isosceles and �ACG = α = �AGC. The
angles �AGC and �AGB = �ADB = β are adjacent and hence �AGC+�AGB =
�ACB + �ADB = α+ β = 1800.

Remark 2.2. The quadrilateral ACBD can be inscribed in a circle.
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(ii) The points C and D lie on one and the same side of AB.

This case was already considered in (i), with D ≡ G. �

Remark 2.3. In the case when -ABC and -A1B1C1 are not congruent, the
relations AB = A1B1, AC = A1C1 and �ABC = �A1B1C1 are fulfilled and the
triangles have no common side, we can choose a suitable congruence and transform
-A1B1C1 into a congruent -ABD so that -ABC and -ABD satisfy the
assumptions of Lemma 2.1.

Based on the above arguments we formulate a theorem, which is a generaliza-
tion of criteria A and D for congruence of triangles (see also [6], p. 12).

Theorem 2.4. Assume that -ABC and -A1B1C1 have two pairs of equal
sides, a = a1, b = b1, and equal corresponding angles, θ = θ1. Then -ABC and
-A1B1C1 are either congruent, or not congruent, in which case the sum of the
other two angles, not included between the given sides, is equal to 1800.

Lemma 2.1 and Theorem 2.4 can be used as alternative methods of comparing
different triangles.

3. APPLICATION OF THEOREM 2.4 TO TWO GEOMETRIC PROBLEMS

The solutions of next selected problems are based on Theorem 2.4.

Problem 3.1 ([4, Problems 4.20 and 4.23]; [5]). Let the middle points of the
sides BC, CA and AB of -ABC be F , D, and E, respectively. If the center G
of the circumscribed circle k of -FDE lies on the bisector of �ACB, prove that
-ABC is either isosceles (CA=CB), or not isosceles, in which case �ACB=600.

Fig. 2.

Proof. Let the center G of the circumscribed circle k of -FDE lie on the
bisector of �ACB (Fig. 2). Since -CGD and -CGF have a common side
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CG, equal corresponding angles �DCG = �FCG and equal corresponding sides
DG = FG (as radii of k), the assumptions of Theorem 2.4 are satisfied.

(i) If-CGD and-CGF are congruent, then CD = CF and hence CA = CB,
i.e., -ABC is isosceles.

Remark 3.2. There are two possibilities for �ACB: either �ACB = 600, in
which case -ABC is equilateral, or �ACB �= 600, and then -ABC is isosceles.

(ii) If -CGD and -CGF are not congruent, then in view of Lemma 2.1
�CDG+ �CFG = 1800 and the quadrilateral CDGF can be inscribed in a circle
k′ (Fig. 2).

It is easily seen that -EFD ∼= -CDF and their circumscribed circles k and
k′ have equal radii. The circles k and k′ are symmetrically located with respect
to their common chord FD. Since the center G of k lies on k′, then the center
G′ of k′ lies on k. Hence, -DGG′ ∼= -FGG′, both triangles are equilateral,
�DGF = 1200 and �ACB = 600. �

Problem 3.3 ([3, Problem 8]; [4, Problem 4.12]). Let in -ABC the straight
lines AA1, A1 ∈ BC, and BB1, B1 ∈ AC, be the bisectors of �CAB and �CBA,
respectively. Let also AA1 ∩BB1 = J . If JA1 = JB1, prove that -ABC is either
isosceles (CA = CB), or not isosceles, in which case �ACB = 600.

Proof. Let �BAC = 2α, �ABC = 2β, �ACB = 2γ. Since J is the cut point
of the angle bisectors AA1 and BB1 of -ABC, then the straight line CJ is the
bisector of �ACB and α+ β + γ = 900 (Fig. 3).

Fig. 3.

Since �CB1J is an exterior angle of -ABB1, then �CB1J = 2α + β. Since
�CA1J is an exterior angle of -ABA1, then �CA1J = 2β + α.

Let us compare -CA1J and -CB1J . They have a common side CJ , corre-
sponding equal sides JA1 = JB1 and angles �A1CJ = �B1CJ . We observe that
-CA1J and -CB1J satisfy the assumptions of Theorem 2.4.

(i) If -CA1J and -CB1J are congruent, then their corresponding elements
are equal, in particular,

�CB1J = �CA1J ⇔ 2α+ β = 2β + α ⇔ α = β.
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Hence, -ABC is isosceles with CA = CB.

Remark 3.4. There are two possibilities for �ACB: either �ACB = 600, and
then -ABC is equilateral, or �ACB �= 600, in which case -ABC is isosceles.

(ii) If -CA1J and -CB1J are not congruent, then by Theorem 2.4,

�CB1J + �CA1J = 1800 ⇔ (2α+ β) + (2β + α) = 1800 ⇔ α+ β = 600.

Hence, �ACB = 1800 − 2(α+ β) = 600. �

4. GROUPS OF PROBLEMS

In this section we illustrate the composing technology of new problems as an
interpretation of specific logical models.

Our aim is the basic problem in each of the groups under consideration to be
with (exclusive or not exclusive) disjunction as a logical structure in the conclusion
and its proof to be based on Lemma 2.1 or Theorem 2.4.

4.1. PROBLEMS OF GROUP I

Suitable logical models for formulation of equivalent problems and generating
problems from a given problem are described in detail in [3, 4]. The basic statements
we need in this group of problems are:

t := { A square with center O is inscribed in ΔABC so that the vertices of
the square lie on the sides of ΔABC and two of them are on the side AB.}
p := {�ACB = 900}
q := {CA = CB}
r := {�ACO = �BCO}

We describe the logical scheme for the composition of Basic problem 4.4, which
has not exclusive disjunction as a logical structure in the conclusion:

- First we formulate (and prove) the generating problems - Problem 4.1 with a
logical structure t∧ p→ r and Problem 4.3 with a logical structure t∧ q → r.

- To generate problems with logical structure (∗) t ∧ (p ∨ q)→ r we use the
logical equivalence

(t ∧ p→ r) ∧ (t ∧ q → r) ⇔ t ∧ (p ∨ q)→ r.
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- Finally, the formulated inverse problem - Basic problem 4.4 - to the problem
with structure (∗) has the logical structure t ∧ r → p ∨ q.

Problem 4.1. A square with center O is inscribed in -ABC so that the
vertices of the square lie on the sides of -ABC and two of them are on the side
AB. If �ACB = 900, prove that �ACO = �BCO.

Proof. Let the quadrilateral MNPQ, M ∈ AB, N ∈ AB, P ∈ BC, Q ∈ AC,
be the inscribed in -ABC square (Fig. 4). Since the diagonals of a square are

Fig. 4.

equal, intersect at right angles, bisect each other and bisect the opposite angles,
then OP = OQ and �POQ = 900. The quadrilateral OPCQ can be inscribed in a
circle k with diameter PQ. To the equal chords OQ and OP of k correspond equal
angles, hence �ACO = �BCO. �

Fig. 5.

Problem 4.2. A rectangle with center O is inscribed in -ABC so that the
vertices of the rectangle lie on the sides of -ABC and two of them are on the side
AB. If CA = CB, prove that �ACO = �BCO.
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Proof. Let the quadrilateral MNPQ, M ∈ AB, N ∈ AB, P ∈ BC, Q ∈ AC,
be the inscribed in -ABC rectangle (Fig. 5). Since the diagonals of a rectangle
are equal and bisect each other, then OM = ON = OP = OQ.

Let CH ⊥ AB, H ∈ AB. Since -ABC is isosceles with CA = CB, H is the
middle point of AB and CH is the bisector of �ACB.

Since MQ ‖ NP, NP ‖ CH and MQ = NP , it follows that -AMQ ∼=
-BNP (by Criterion B) and AM = BN . Hence, H is also the middle point
of MN . Since -MON is isosceles, then its median OH is also an altitude, i.e.,
OH ⊥MN . This means that O ∈ CH and �ACO = �BCO. �

A special case of Problem 4.2 is Problem 4.3 with a logical structure t∧q → r.

Problem 4.3. A square with center O is inscribed in -ABC so that the
vertices of the square lie on the sides of the triangle and two of them are on the
side AB. If CA = CB, prove that �ACO = �BCO.

Now we formulate and prove the Basic problem in this group.

Basic problem 4.4. A square with center O is inscribed in -ABC so that
the vertices of the square lie on the sides of the triangle and two of them are on the
side AB. If �ACO = �BCO, prove that CA = CB or �ACB = 900.

Proof. Let the quadrilateral MNPQ, M ∈ AB, N ∈ AB, P ∈ BC, Q ∈ AC,
be the inscribed in -ABC square (Fig. 6). Since the diagonals of any square are

Fig. 6.

equal, intersect at right angles, bisect each other and bisect the opposite angles,
then OP = OQ and �OPQ = �OQP = 450.

We compare -CQO and -CPO. They have a common side CO, respectively
equal sides OQ = OP and angles �QCO = �PCO. We find �CQO = �CAB+450

and �CPO = �CBA+450 as exterior angles of -QAN and -PBM respectively.
Therefore, -CQO and -CPO satisfy the assumptions of Theorem 2.4. We
consider separately the two possibilities.
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(i) If -CQO and -CPO are congruent, then �CQO = �CPO and hence
�CAB = �CBA, i.e., CA = CB and -ABC is isosceles.

In this case �ACB is either a right angle and-ABC is isosceles right-angled,
or not a right angle and -ABC is only isosceles.

(ii) If -CQO and -CPO are not congruent, then, according to Lemma 2.1,
�CQO + �CPO = 1800 and hence �CAB + �CBA = 900, i.e., -ABC is
right-angled with �ACB = 900. �

Remark 4.5. A logically incorrect version of Basic problem 4.4 is Problem 1.54
in [1].

We reformulate Problem 4.4 by keeping the condition of homogeneity of the
conclusion.

Problem 4.6. A square with center O is inscribed in -ABC so that the
vertices of the square lie on the sides of the triangle and two of them are on the
side AB. If �ACO = �BCO, then -ABC is either isosceles with CA = CB or
not isosceles but right-angled with �ACB = 900.

4.2. PROBLEMS OF GROUP II

By formulating appropriate statements and giving suitable logical models we
get two generating problems that are needed for the construction of Basic prob-
lem 4.9. The basic statements we use are:

t := {In -ABC the straight lines AA1, A1 ∈ BC, and BB1, B1 ∈ AC, are
the bisectors of �CAB and �CBA, respectively.}
p := {�ACB = 600}
q := {�CAB = 1200}
r := {�BB1A1 = 300}

Since the sum of the angles of any triangle is equal to 1800, statements p and
q are mutually exclusive. Hence, if p is true, so is ¬q and vice versa.

We describe the logical scheme for the composition of Basic problem 4.9, which
has exclusive disjunction as a logical structure in the conclusion:

- First we formulate (and prove) two generating problems - Problem 4.7 with a
logical structure t∧ p→ r and Problem 4.8 with a logical structure t∧ q → r.
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- Since statements p and q are mutually exclusive, the equivalences p∧¬q ⇔
p and ¬p ∧ q ⇔ q are true. As a consequence of these facts problems with
logical structures t ∧ p → r and t ∧ (p ∧ ¬q) → r are equivalent. So are
the problems with logical structures t ∧ q → r and t ∧ (q ∧ ¬p) → r.

To generate problems with a logical structure (∗∗) t ∧ (p � q) → r we use
the logical equivalence

(t ∧ (p ∧ ¬q)→ r) ∧ (t ∧ (¬p ∧ q)→ r) ⇔ t ∧ (p � q)→ r.

- Finally, the formulated inverse problem - the Basic problem 4.9 - to the
problem with structure (∗∗) has the logical structure t ∧ r → p � q.

Problem 4.7. In-ABC the straight lines AA1, A1∈BC, and BB1, B1∈AC,
are the bisectors of �CAB and �CBA, respectively. If �ACB = 600, prove that
�BB1A1 = 300.

Fig. 7.

Proof. Let �BAA1 = �CAA1 = α, �ABB1 = �CBB1 = β, J = AA1 ∩BB1.
Since J is the intersection point of the angle bisectors of -ABC, we have that
�JCA = �JCB = γ = 300 (Fig. 7).

From α + β + γ = 900 we find that �AJB = 1200. Hence, the quadrilat-
eral CA1JB1 can be inscribed in a circle. Then �JA1B1 = �JCB1 = 300 and
�JB1A1 = �JCA1 = 300 as angles corresponding to the same segment of this
circle. �

Problem 4.8. In-ABC the straight lines AA1, A1∈BC, and BB1, B1∈AC,
are the bisectors of �CAB and �CBA respectively. If �BAC = 1200, prove that
�BB1A1 = 300.

Proof. Let J = AA1 ∩ BB1, E = A1B1 ∩ CJ , C1 = CJ ∩ AB. Since
�BAC = 1200, its adjacent angles have a measure of 600. It is easily seen that the
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Fig. 8.

point B1 is equidistant from the straight lines BA, BC, AA1 and that the straight
line A1B1 is the bisector of �CA1A (Fig. 8). The proof that the straight line A1C1

is the bisector of �BA1A is analogous. It follows that �B1A1C1 is a right angle
(the bisectors of any two adjacent angles are perpendicular to each other) (see also
[2], p. 194, Problem 156).

As a consequence we get that E is the intersection point of the angle bisectors
CJ and A1B1 of -AA1C and hence �JAE = �EAB1 = 300.

Let ϕ = �CA1B1 = �B1A1A and γ = �C1CA = �C1CB. Then �A1B1C =
600 + ϕ as an exterior angle of -A1B1A, the sum of the angles of -AA1C is
600 + 2ϕ+ 2γ = 1800, i. e. ϕ+ γ = 600 and hence �JEB1 = 1200.

Thus, the quadrilateral AJEB1 can be inscribed in a circle. We conclude
that �JAE = �JB1E = 300 as angles in the same segment of this circle. Hence,
�BB1A1 = 300. �

Now we formulate and prove the Basic problem in this group.

Basic problem 4.9. In -ABC the straight lines AA1, A1 ∈ BC, and BB1,
B1 ∈ AC, are the bisectors of �CAB and �CBA respectively. If �BB1A1 = 300,
prove that either �ACB = 600 or �BAC = 1200.

Proof. Let us denote �BAA1 = �CAA1 = α, �ABB1 = �CBB1 = β,
AA1 ∩BB1 = J . Since J is the intersection point of the angle bisectors of -ABC,
then the straight line CJ is the bisector of �ACB. Denoting γ = �JCA = �JCB
we get α + β + γ = 900 (Fig. 9). Let the point A′ be orthogonally symmetric to
the point A1 with respect to the axis BB1. It follows that A′ �= A. (If A′ ≡ A
then -ABC does not exist.) The straight line BB1 is the bisector of �ABC and
consequently A′ ∈ AB and B1A1 = B1A

′. On the other hand, �BB1A1 = 300 and
hence -A1B1A

′ is equilateral.
We find �AA′B1 = 300 + β (as an exterior angle of -A′BB1), �AA′A1 =

900+β (as an exterior angle of -A′BE), �AB1A
′ = 600+ γ−α and �AB1A1 =

1200 + γ − α.
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Fig. 9.

Let us compare-AA1B1 and-AA1A
′. They have a common side AA1, equal

corresponding sides A1B1 = A1A
′ and angles �B1AA1 = �A′AA1 = α. Hence

Theorem 2.4 is applicable to -AA1B1 and -AA1A
′. We have two possibilities:

(i) -AA1B1 and -AA1A
′ are congruent. Then �AB1A1 = �AA′A1, i. e.

1200 + γ − α = 900 + β. Hence, 2γ = �ACB = 600.

(ii) -AA1B1 and -AA1A
′ are not congruent. By Theorem 2.4 it follows that

�AB1A1 + �AA′A1 = 1800, i. e. (1200 + γ − α) + (900 + β) = 1800. Hence,
2α = �BAC = 1200. �

Remark 4.10. An alternative version of Problem 4.9 is Problem 6 in [6].

To formulate a special type equivalent problem (see also [4]) to this Basic
problem we need

Proposition 4.11. If the statements p and q are mutually exclusive, then the
following equivalences are true:

(¬(p � q)) ⇔ (p ∨ ¬q) ∧ (¬p ∨ q) ⇔ ¬p ∧ ¬q.
Proof. We have

(¬(p � q)) ⇔ ¬((p ∧ ¬q) ∨ (¬p ∧ q))

⇔ (p ∨ ¬q) ∧ (¬p ∨ q) ⇔ p ∧ (¬p ∨ q) ∨ ¬q ∧ (¬p ∨ q)

⇔ (p ∧ ¬p) ∨ (p ∧ q) ∨ (¬q ∧ ¬p) ∨ (q ∧ ¬q) ⇔ ¬p ∧ ¬q.
�

By Proposition 4.11, problems with logical structures t ∧ (¬(p � q)) → ¬r
and t ∧ (¬p ∧ ¬q) → ¬r are equivalent.

The following problem is equivalent to Basic problem 4.9.
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Problem 4.12. In -ABC the straight lines AA1, A1 ∈ BC, and BB1, B1 ∈
AC, are the bisectors of �CAB and �CBA, respectively. If �ACB �= 600 and
�CAB �= 1200, prove that �BB1A1 �= 300.

Proof. Assuming that the opposite statement is true, i.e., �BB1A1 = 300, we
would get a contradiction to Basic problem 4.9. �
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ACCURACY IMPROVEMENT BY NEW SENSOR SYSTEM
FOR AUTOMATIC BONE DRILLING
IN THE ORTHOPEDIC SURGERY

VL. KOTEV, G. BOIADJIEV, K. DELCHEV, T. BOIADJIEV, K. ZAGURSKI,

H. KAWASAKI, T. MOURI

Many orthopaedic operations involve drilling before the insertion of implants into the
bones. Usually drilling is executed manually, which may cause some problems. In free
hand performance of drilling some errors such as an inaccurate penetration and dilate
of bone hole, overheating, harm soft tissues could be occurring. Automatic drilling is
recommended to avoid such problems and reduce the subjective factor. The aim of this
paper is to select, develop and test a new sensor system for a bone drilling robotized
system. More in particular we utilize a sensor to measure thrust force during the
bone drilling manipulation execution. Therefore a force sensor is fixed to the drilling
robotized system. Moreover, an experimental identification of the drilling technical
parameters such as bone resistant force and feed rates are done. The resistant forces
are measured and plotted. The control algorithms and programs for drilling have done
based on the experiments.

Keywords: Automatic bone drilling, sensor system, experiments, orthopedic surgery

1. INTRODUCTION

In the orthopaedic surgery many interventions involved freehand bone drilling
procedures. Total knee (TKR) and hip (THR) replacement are ones of the most
frequent performed orthopaedic operations [1-5]. In the both operations surgeons
have to perform drilling manipulations in order to insert implant components into
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bones. Late detection of bone/soft tissue breakthroughs can cause unnecessary
damage to the patient [1-12]. In manual operations, breakthrough detection is based
on surgery’s skills and visual inspections of the drill tip using imagining devices
like x-rays [1-4, 6, 8-10, 12]. However, frequently exposes of x-rays is not useful
for both surgeon and patient [1-4, 6]. The breakthrough detection based on thrust
force measurement on the drill bit could be reduced or eliminated the need of x-ray
imaging [1, 3, 6, 8, 9]. The successful execution of bone drilling requires a high level
of precision, dexterity and experience [1-10, 12-15] because the drilling resistance
is large and sometimes vibrates violently to difficultly grasp the hand-piece or even
break the slender drill. Relatively large forces experienced during bone drilling
pose significant challenges to effective application of bone drilling [7-15]. Drill bit
breakage occurs frequently, and since the broken drill could obstruct placement
of other devices and cause adverse histological effects due to corrosive reactions
with the surrounding soft tissue, commonly necessitates follow-on procedures for
removal of the broken drill bit [6, 8-11]. Generally, the increased torque during
drilling induces shear stresses that exceed the strength of the drill bit, causing it to
fracture [8, 11]. Similarly, uncontrolled or unpredictable bone drilling forces may
result in drill breakthrough, causing considerable damage to surrounding tissue [4,
6-13]. Furthermore, drilling forces are the main source of heat generation during
bone drilling [3, 4, 11-13]. Increased temperatures on the bone could induce thermo
necrosis, and therefore, significant trauma to the bone tissue [2-4, 10-13].

The results show the automatized bone drilling manipulators or robots improve
the quality of the drilling procedures [1-6, 10, 12, 13]. Moreover, the utilizing of
the mechatronic drilling tools and robots will reduce/eliminate the need for X-rays
imaging used in traditional bone fixation [4-8, 10, 12, 13]. In addition, there are
several studies which refer to measurement of thrust force, feed rate, and detected
breakthrough [1, 4, 6-8, 11-15]. It is will know that computer assisted surgery (CAS)
and robots extremely decrease errors and time for orthopaedic surgery operations
[1-5]. Usually, orthopaedic robot-assisted drilling systems consist of two modules
first-one is executive drilling module and second one is assistant robot (manipulator)
[1-3]. These days CAS robotized systems like Da Vinci and The RIO Robotic Arm
of MAKO have been installed in many hospitals and performed many operations
successfully [1, 2]. Unlike of big and expensive robots with high degree of freedom
(DOF) and master slave systems [1-3], a small sizes, cost effective with special
purpose robots and intelligent tools have been developing most recently [1, 2, 5,
15]. A miniature orthopaedic robot MARS with parallel structure is developed [1, 2,
5]. Praxiteles is a bone mounted guide positioning robot for TKA operation [4]. In
order to remove the subjective factor and avoid the problems in hand bone drilling
manipulations, the robot DORO (Drilling Orthopaedic RObot) has been created
[11- 13]. Orthopaedic Drilling Robot (ODRO) has been developed latter [14-16].
This robot is intended to increase the patients safety in view point of it is accuracy,
performance and sterilization. At the same time it has to be affordable for hospitals
(low cost) and user friendly. ODRO can monitor time, linear velocity, angular
velocity, resistant force, depth of penetration and temperature during the drilling
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process as well as bone breakthrough [11-13]. ODRO has own control/power block
meets medical requirements. The aim of the present study is to select, develop and
test a new sensor system for a bone drilling robotized system in order to increase
accuracy and develop the control algorithms of it. First a small-sized compression
load cell is selected to measure the thrust force in bone drilling procedure. Second
we have designed a box to attach the load cell into a bone drilling robotized module.
Third experiments on a pork bones are made to measure thrust force.

2. AN AUTOMATIC BONE DRILLING SYSTEM

During orthopedic surgery, a primary concern is to penetrate the bone tis-
sue without causing mechanical and thermal damage. Therefore, without careful
attention to the thermal and mechanical issues, bone drilling could impart consid-
erable damage to the musculoskeletal system, reducing effectiveness of the surgical
operation and increasing the post-operation recovery time. We are working on
development of a hand-held robotized system for bone drilling procedures (Fig.1)
to avoid the mentioned above problems. It is intended to perform drilling with
preliminary setting of depth and stop automatically after the cutting process is
completed. Drilling conditions would be changed automatically in accordance with
bone density.

Fig. 1. A bone drilling experimental set up.

On the Fig. 2a are shown the executive drilling module and the control system
of the experimental set up. In order to decrease length and increase of working
zone of the executive drilling module we suggest the axis of motors to be parallel
[17], unlike of these of DORO [12, 13] and ODRO [14-16]. Regards to the parallel
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structure the working zone becomes 121 mm, the length becomes 220 mm and
height becomes 110 mm. The developed bone drilling experimental set up has the
following basic components:

- Brushless DC motor MAXON [18]. The motor is equipped by servo con-
troller/driver 1-Q-CE and amplifier DEC 50-5 [19].

- Linear motor 43000-17 [20]. It is a stepper motor with embedded screw for
linear motion.

- Small and lightweight LMB-A force sensor (Fig.2.b) to measure thrust force
[21].

- PCD-300 Series Sensor Interfaces [22].

Fig. 2. The experimental bone drilling set up (a). The Kyowa’s force sensor LMB-A (b).

In order to increase the accuracy of the bone drilling set up based on the
experiments, date of literature, and companies’ catalogues we have selected a force
sensor LMB-A made by Kyowa (Fig.2b) to measure thrust force. It is a compact,
lightweight, and low price load cell [21]. Moreover, to measure the thrust force
more precisely during the drilling procedure execution the force sensor LMB-A is
connected to the Kyowa’s sensor interface PCD-300 series [22]. It is shown on
the Fig.1. on the middle. The sensor interface PCD-300 series is a measuring
instrument that can easily carry out measurements simply by connecting to a PC
using a USB interface. We have designed and manufactured a box (Fig.2.a red
arrow) for the LMB-A cell load in order to attach it to the moving part of the
experimental drilling set up.

Control system of the experimental set up gives information about the drilling
process execution in real time, for successful end of the task. The control block
has terminals for connection with PC. They give a possibility to re-program the
software, which is recorded in the controllers. Controllers can change and update
the programs and to transfer the information between the sensors and PC while
the drilling is executed in real time.
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3. EXPERIMENTS

Bone is an in homogenous and anisotropic material, consisting two different
types of bones: cortical and cancellous bone respectively. These two types of bone
tissue differ in density, or tightness of the packed tissue. In a long bone such as tibia
or femur, the outer shell is the cortical bone, and the inner layer is cancellous bone.
Cortical and cancellous bone comprise the diaphysis of long bones and the thin shell
that surrounds the metaphyses. In addition, cancellous bone is the metaphyses and
epiphyses. The outside of the bones consist of a layer of connective tissue called
the periosteum. The interior part of the long bone is the medullary cavity with
the inner core of the bone cavity being composed of yellow marrow in adults [1,
4, 11]. The inhomogeneous structure of human bone, including a cortical (dense)
portion at the outer part, followed by a cancellous (highly porous) portion and
bone marrow, brings considerable complexities to application of bone drilling. The
structure of bone varies between different bones (e g., femur vs. vertebra), between
person to person, and between different age groups [6, 8, 11].

3.1. BONE DRILLING EXPERIMENTS. DETERMINATION OF THRUST FORCE IN

DRILLING

The experiments were carried out under the following conditions: object of
drilling - a pork bone; diameter of the orthopaedic drill - 4 mm; depth in bone
drilling of tubular bones - 10 mm; depth of bone drilling in sponge-like bones -
20 mm; data reading - every 100 ms; velocity of drilling - 6 mm/s. Some of the
obtained results are illustrated on the charts in Fig. 3 and Fig. 4.

Fig. 3. Thrust force of drilling of cancellous bone.

It can be seen from the given results that in sponge-like bone drilling the
resistance force varies within 30-55 N, while in tubular bone drilling the resistance
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force reaches up to 90-100 N, i.e. for one and the same bone depending on its
structure the resistance force varies from 30 to 100 N. This means that during the
performance of the operation the force of pressure should be consistent with the
specific object and must be controlled accordingly.

Fig. 4. Thrust force of drilling of cortical bone.

3.2. RESULTS

Specific drilling effects are revealed during the experiments. The thrust force
is achieved by controlled automatic bone drilling regime in comparison with hand-
drilling one. Comparison of new sensor system, implemented in the robot, with the
old one is done and its better functional abilities are shown. Algorithms are created
and their software realization is made. Curves of resistant force with respect of the
time are presented.

4. CONCLUSIONS

Automatic bone drilling can solve the problems which arise during manual
drilling. An experimental setup is designed to identify some parameters of bone
drilling such as the resistant force due to variable bone density, the appropriate
mechanical torque of drilling, the linear speed of the drill, and the electromechanical
characteristics of motors, drives and corresponding controllers. The last leads to
main conclusion that the automatic drilling guarantees higher safety for the patient.
This will reduce/eliminate the need for X-rays imaging used in traditional bone
fixation. The result has shown that, the bone drilling operation can be handled
by a robot manipulator to improve the quality of the drilling operation. With this
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system, the bone breakthrough can be easily detected and further damage of the
healthy patient tissue would be avoided.
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The physicochemical parameters (refractive index, water content, β-carotene, color
parameters and content of glucose, fructose, sucrose and oligosaccharides for 14 types
of bee honey have been investigated. They are grouping according to the following
parameters:

1. Geographic region 1 – valley-mountain

2. Geographic region2 – North or South Bulgaria

3. Year of producing – 2008 or 2009

4. Botanical origin – honeydew, multiflorous, sunflower, lime.

Analysis of the data gives the opportunity for characterizing the samples of bee honey

by using discriminant analysis. The models correctly present geographic region, year of

producing, botanical origin and it can be used for determining the type of unidentified
samples.

Keywords: Bee honey, physicochemical properties, discriminant analysis, mathemat-
ical modeling

2000 Math. Subject Classification: 62P30

1. INTRODUCTION

Bee honey contains a variety of different sugars, more than 180 ingredients
such as enzymes, organic acids, vitamins, minerals, polyphenols, carotenoids, an-
tioxidants, flavonoids, etc [1, 2, 3]. As is well known, one of the parameters to
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estimate the quality of honey is the contents of sugars. The most common glucose,
fructose and saccharose are contained in honey in proportions as follows: 31.3%,
38% and 8% [4]. The variety of components of bee honey are an important criterion
for the quality and mark some particular features of the corresponding sample. A
number of authors have sought to identify the most significant parameters in order
to classify bee honey. Models to classify citrus and eucalyptus honey by studying
the water content, electric conductivity, pH factor, contents of glucose, saccharose
and fructose have been proposed [5]. Color coordinates x, y and lumineance L are
of essential significance for the classification of 15 types of Spanish honey – forest,
lavender, eucalyptus, rosemary, citrus etc. [6]. Data about step-by-step discrimi-
natory analysis, principal factor analysis for Spanish, Italian, Iranian and African
honeys have been reported [7, 8]. There is comparatively little data on Bulgarian
honeys such as multi-flower, acacia, lime, sunflower, forest honeydew.

The objective of this work is to test discriminatory models using the analyzed
indicators to discern the geographic origin (field, mountain or Northern–Southern
Bulgaria), year of production (2008–2009) and botanic origin (multiflorous or sun-
flower).

The objective defined requires the solution of the following problems:

• Creation of database, including types of bee honey of different botanic origin
and region of cultivation;

• Determination of physical-chemical parameters (color coordinates a∗ and b∗,
x and y in two colorimetric systems SIE Lab and XYZ, correspondingly,
luminance L∗, content of pigments such as β-carotene and chlorophyll, water
content, index of refraction, sugar content).

• Establishing of significant differences in the parameters under study.

• Modeling and analysis of the groups by types of honey, yield, and regional
origin.

• Test of the obtained model by using independent samples.

2. MATERIALS AND METHODS

2.1. SAMPLES

The basic data includes 14 types of bee honey of field and mountain regions
in Northern and Southern Bulgaria. The samples were purchased from producers
and suppliers, from two years – 2008 and 2009. Four samples of multi-floral honey
with commercially available sweeteners were used to test the models.
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2.2. METHODS

The color parameters of two different colorimetric systems – XYZ (aimed at
large color differences) and CIE Lab (aimed at small color differences) [9] are mea-
sured. A colorimeter Lovibond PFX 880 (UK) and a cuvette with a 10 mm thickness
are used. To determine the water content the refractive index is measured using
an Abbe refractometer (Carl Zeiss, Germany) at 20± 0.5 ◦C The equivalent water
content is determined from a table, given in Official Methods of Analysis [10]. After
the honey solution is filters, the sugar content is determined using liquid chromatog-
raphy with an IR detector (Waters). The parameters of the methods are: column
Aminex HPX-87H; detector Differential refractometer R401, (Waters); tempera-
ture of the column and the detector is 30◦C, the volume of the sample injected was
10 l, speed – 0.5ml/min. The software “Statistica” to process the data was used.
Their distribution is normal according to the Kolmogorov–Smirnov criterion [11,
12]. To establish the statistically significant differences between the indicators for
the different sorts Tukey criterion for multiple comparisons was applied [13].

Discriminatory analysis is used to model the group with a priori equal proba-
bilities to fall into the groups [14].

3. RESULTS AND DISCUSSION

The database includes 14 types of bee honey from different regions (valley-
mountain or southern-northern Bulgaria). For each of the samples studied, four
independent measurements have been performed. The Scheffe criterion shows sig-
nificant statistical differences in the studied types of honey. The presence of con-
siderable difference in the physicochemical characteristics of honey provides the
reason for a subsequent modeling of its origin. To model the honeys by region
valley-mountain a step-by-step linear discriminatory analysis was used.

A model with grouping parameter “extraction area” was obtained and it in-
cludes the following parameters by the order of introduction into the model: x,
oligosaccharides and refractive index. The classification of the different sorts ac-
cording to the extraction area is 100% (Table 1).

TABLE 1. Classification of the samples by the model Valley–Mountain

Group
Percent
correct

Mountain
p = 0.357

Valley
p = 0.643

Mountain 100 20 0
Valley 100 0 36
Total 100 20 36

It has been attempted to discern the samples by the geographical region with a
grouping variable Geographic area 2: Northern-Southern Bulgaria. With a classify-
ing parameter “Geographical area 2” (Northern or Southern Bulgaria) we observe a
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76.8% correct classification, with all samples from two types from southern Bulgaria
and one from Northern Bulgaria were incorrectly classified.

Except by region, the samples are subdivided by the year of extraction. More
parameters are included in the new model – the color coordinates, luminance and
beta carotene. The presence of more variables in the model is easy to explain
because the content of sugars is decisive for the crystallization of honey, while the
refractive index (water content) – for the development of microorganisms in the
product. The indicated parameters are related to the kinetics of the process in the
bee honey during storage. The classifying parameter (Year of production) (2008
and 2009) 94.64% of the samples are recognizable, of them only three fall into a
wrong group (Table 2).

TABLE 2. Classification of the samples by the year of production

Group
Percent
correct

2008
p = 0.286

2009
p = 0.714

2008 87.50 14 2
2009 97.50 1 39
Total 94.64 15 41

With a classifying parameter “Botanical origin” two models are possible: with
color parameters included and physicochemical indicators arranged as luminance,
parameter a, saccharose, or only with color parameters: y, L, a, b and refractive
index.

TABLE 3. Modeling of botanical origin by color and physicochemical indicators

Group
Percent
correct

Honeydew
p=0.273

Multi-floral
p=0.455

Sunflower
p=0.273

Honeydew 100.00 12 0 0
Multi-floral 80.00 0 16 4
Sunflower 100.00 0 0 12
Total 90.91 12 16 16

For the classifying parameter “Botanical origin” both model have the same
sample identification capability of 90.91%, with four samples in the first model move
from multi-floral group into the sunflower, while in the second model three multi-
floral samples (wrongly identified in the first model as well) go into the sunflower
group, while one sunflower sample was identified as multi-floral. The results are
presented in Tables 3 and 4.

TABLE 4. Modeling the botanical origin by color indicators

Group
Percent
correct

Honeydew
p=0.273

Multi-floral
p=0.455

Sunflower
p=0.273

Honeydew 100.00 12 0 0
Multi-floral 85.00 0 17 3
Sunflower 91.67 0 1 11
Total 90.91 12 18 14
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For a better visualization of the results a subsequent canonical analysis was
performed. On the basis of the first two canonical variables, the position of the
separate samples for the model with included color parameters and physicochemical
indicators is presented in Fig. 1, the four wrongly identified samples being marked.

Fig. 1. Disposition of the three sorts of honey in the plane of the first two canonical variables

The figure confirms the stated hypothesis for the presence if significant dif-
ferences between the separate types of honey. The analysis of the Mahalanobis
distances between the three basic groups shows that the sunflower and the multi-
floral honeys are close to each other and are relatively far from the honeydew. This
is clearly seen from the figure shown if we trace the projections of the clouds of
the various sorts upon the first canonical variable which plays an important role in
discrimination of the groups – the sunflower and multi-floral are projected on the
positive, while honeydew is projected on the negative direction.

The samples used are for the control of the adequacy of the created model for
the description of the botanical origin of honey. From the remaining three types
of honey with a known botanical origin, the samples which are insufficient to form
separate groups two-lime and acacia can be classified as multi-floral, while that of
thistle – as sunflower. This can be explained with the different seasons during which
they are collected – the former two in the spring while the third in the summer.
Honeydew is classified correctly, lime honey and acacia honey are in the group of
multi-floral honey. The results from the classification according to the obtained
models are presented in Table 5.

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 281–287. 285



TABLE 5. Verification of the model for botanical origin with independent samples

Sort Classified as
Lime Polyfloral
Acacia Polyfloral
Honeydew Honeydew
Thistle Sunflower
With sweetener Polyfloral, Honeydew

4. CONCLUSIONS

The analysis of the data base give the opportunity to characterize different
types of bee honey by using the discriminant analysis. It provides an efficient tool
for the qualitative distinction of natural bee honey and adulterated honey contain-
ing admixtures from sugar or glucose. The models and the associated Mahalanobis
distances enable the classification of unknown samples or samples with admixtures.
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