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The development of the research interests and topics in Stochastic education, its place in
the curriculum and the learning process are followed in parallel, from the founding of the
Higher School, the predecessor of Sofia University, up to the “century of stochasticity”.
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1. INTRODUCTION

“The theory of probabilities is at bottom only common sense reduced to
calculus; it make us appreciate with exactitude that which exact minds
feel by a sort of instinct without being able ofttimes to give a reason for
it.”

Pierre-Simon, Marquis de Laplace

Ifrom the sixth French edition of A Philosophical Essay on Probabilities by Pierre-Simon,
Marquis de Laplace translated by Frederick Wilson Truscott and Frederick Lincoln Emory, 1902,
N.Y., (http://books.google.com/laplace_A_philosophical_essay_on_probabilities.pdf
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1.1. FOR STOCHASTICS AND MATHEMATICS

This article is dedicated to the International year of Statistics (2013) and the
125-th anniversary of founding the Higher School, now Sofia University “St. Kli-
ment Ohridski” 2. Why exactly 2013, the thirteenth year of the “century of stochas-
ticity” (see [16]) is chosen for the celebration of Statistics around the world, and
is it chosen randomly? We can find explanation in some round and celebrated an-
niversaries. Undoubtedly, the most interesting anniversary, which can be regarded
as a reason for the choice of the year 2013 is, that 300 years ago the famous book
“Ars Conjectandi” [5] of Jacob Bernoulli some time after his death (August 1705)
was published by his nephew Nicolas. In Chapter 2 it is said:

“Regarding that which is certainly known and beyond doubt, we say
that we know or understand [it]; concerning all the rest,  we only
conjecture or opine.

To make conjectures about something is the same as to measure its
probability. Therefore, the art of conjecturing or stochastics {ars con-
jectandi sive stochastice} is defined as the art of measuring the proba-
bility of things as exactly as possible, to be able always to choose what
will be found the best, the more satisfactory, serene and reasonable for
our judgements and actions. This alone supports all the wisdom of the
philosopher and the prudence of the politician.” 3

In that book a proof of the theorem with great cognitive significance, now known
as the “Law of Large Numbers” is given. Its core is that the observations or data of
human experience can approximate (unobservable) model of the investigated object.
Particularly, it discovers that empirical distribution is a good approximation of a
theoretical model under consideration, and it is shown that the probability of that
increases if the number of observations increases and tends to certainty (probability
equals to 1). This is the reason that the work of J. Bernoulli launches a new area of
Mathematics — Probability theory and Mathematical Statistics or, with one word,
“Stochastics”.

It is worth noting that the year 2013 marks 250 years since the publication
of another remarkable issue for Probabilities, namely the famous essay of Thomas
Bayes [4], whose ideas are recently becoming more and more popular.

Let us recall that “mathematics” is a Greek word with meaning “learning,
knowledge, science”. The derivative word “polymath” is rarely used, but can be
found in dictionaries, it means “a person who has studied and knows very much,
with encyclopedic knowledge” (similar and with almost the same meaning is “poly-
histor”, also synonymous, but with some nuance, more widely used of the same type

2A variant of this text was published in Bulgarian in the on-line journal [32], http://
probablystatistics.net

3Translated into English by Oscar Sheynin, Berlin 2005, ISBN 3-938417-14-5 (http://wuw.
sheynin.de/download/bernoulli.pdf).
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is “polyglot”). The uneducated barbarians did not have this concept and adopted
the foreign word “mathematics” in their language. The only exception, according
to V. I. Arnold [2], is the Dutch scientist Stevin, who managed to keep the Flemish
word “wiskunde”. Currently, there is no universally accepted definition, but it can
be assumed that the science of abstract (imaginary or virtual) models including
variables, quantities, relationships, spatial forms is Mathematics.

In Bulgarian language until recently (50-60 years ago) “smyatane” (Bulgarian
“cmarane”), i.e. “calculus” was a subject in elementary school (along with Arith-
metics and Geometry), and the same, but further justified by adjectives such as
“differential”, “integral”, “variational” is studied in higher education. In the mean-
ing of this beautiful word in Bulgarian there is “thinking”, and “calculating” and
“guessing” and is much more suitable to the lessons in school related to quantities
and quantitative variables.

Going further back to Bulgarian tradition, the education starts with “germo”
and “nucmo”; i.e. numeracy and literacy (although nowadays “germo u nmcmo” is
translating as reading and writing). In fact, the word “cheta” (Bulg.“uera”), in
translation ‘“read”; in Bulgarian besides its commonly used meaning, makes sense
(now defined as outdated and even dialect form) of “count”, where its derived words

with the same root come from: “cheten” — “necheten” (Bulg. “aeren” — “neueren”),
in translation — “even” — “odd”, “cheta” — “chetnik” (Bulg. “wera” — “gerHuk”),
in translation — “band” and “member of the band”, “razchet” (Bulg. “pasger”), in
translation — “(cannon) estimate” and others.

Counting and data collection for population, soldiers and taxes are present
in the Bible (the second chapter “Numbers”) and in old Indian texts there are
instructions on how to count the population. Recently, it was announced a discovery
of a publication from IX'" century, the Cyril and Methodius’ time, as the first
publication considering frequencies in the data (see [1]). The author Al - Kindi (801
— 873) discussed the possibility of breaking the cryptic messages based on analysis
of the frequency distribution of the used symbols. He is an Arab philosopher to
whom European civilization owes the numbers and decimal notation, brought from
India [14].

The word “Statistics” is relatively new. This is the title of Gottfried Achen-
wall lectures (in 1749, Gottingen). The root of the word comes from the Latin
“stat” (country, state, position) and the suffix for scholarly subject is adopted from
“Mathematics”. Until recently, the mid twentieth century, Statistics was considered
as one of the social sciences, but now in all standards of international studies in
classifications of occupations (ISCO) and in classifications in the areas of education
(ISCED) we find the inseparable tandem “Mathematics and Statistics” (these were
harmonized by the National Statistical Institute, Bulgaria, in 2011 and 2008). The
word “Statistics” established itself, because it was widely used by English speakers
as a synonym for “Stochastics”, bearing at the same time ambiguity like in “record-
ing data” (keep statistics), “data collection” (accumulated statistics), properties of
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the data distribution (averages and other descriptive statistics). In any case, the
conclusions that follow are based on models of Probability theory or Stochastics.

From the very beginning of the founding of the Higher School, the predecessor
of Sofia University, Stochastics has had its own place in the curriculum and the
learning process. The “probabilistic revolution” observed in the beginning of the
twentieth century [16] has had its role in university life as well, dated from that
time up today’s “century of Stochastics” as called by David Mumford [20]. We will
follow in parallel the fields of research and the topics in Stochastic education as a
continuation of publications [30] and [31].

1.2. FOR STOCHASTICS AND THE SOFIA UNIVERSITY

We will follow the development of education and the research at Physico-
Mathematical Faculty (PhMF), now Faculty of Mathematics and Informatics at
Sofia University “St. Kliment Ohridski” (FMI at SU) in the field of Stochastics
structured in the following order:

e 1889 1945, The Beginning;

e 1945 1971, After the World War II;
e 1971 1988, Integration;

e 1988 2004, Disintegration;

e 2004 2013, Recent years.

Many available sources and articles like [10], [11] and [38], dedicated to anniver-
saries of the Sofia University, have been used. Of course, the task of presenting a
detailed history of Stochastics in Bulgaria can not be done comprehensively in a
single article. The solution is to create an accessible digital repository — a project,
whose implementation requires the efforts of the whole Stochastic guild. The au-
thors will be very grateful to everyone who can provide adequate information in
this direction.

2. THE BEGINNING (1889 1945)

2.1. THE FIRST ONES

Soon after the founding in 1888 of the Higher School in Sofia, with a single de-
partment “History and Philology”, in 1889 was formed the Department of “Physics
and Mathematics” with a meaning of “natural sciences”, which later becomes a fac-
ulty. The students who finished their education obtained qualification as “natural
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scientists”, “chemists”, “physicists” and “mathematicians”. The last two were actu-

ally combined in one. At that time (see [23]), Mathematics, “the science of quan-
tities” was divided into two parts: “complex” or “physical mathematics”’, where the
variables are related to experiments and observations, and “pure”, which includes
Arithmetics, Geometry, Algebra, where the variables are studied “abstracted from
the perceptions”. This duality is perhaps the reason for the confusion of the univer-
sity clerk in preparing the curriculum for the subjects Mathematics and Physics. In
any case, “Probability theory and the method of least squares” is one of the “main”
subjects in the curriculum (there were also “supporting” subjects).

Intuitively it is clear that “probability” is a concept of gambling and betting.
However, it is also included in the so-called “Political Arithmetics”; i.e. in the actu-
arial accounts in determining the value of the insurance, life annuities and similar
quantities related to life expectancy. On the other hand, closer to the physical na-
ture of things are the probabilities of errors in measurements and monitoring, the
probabilities in processing and analysis of data from experiments and astronomical
observations.

Information of the first university course in “Probability theory” can be found
in the “Schedules of lectures” in 1896 [29]. Lecturer was Prof. Atanas Tinterov.
We can judge about its contents by the textbook of the teacher Ch. D. Baltadziev
[3] prepared for his students in seventh grade of the State High School “Alexander
I” in the city of Plovdiv. In 59 pages handwritten calligraphic text 38 paragraphs
are presented. We will list a few of the nine paragraphs for dividing the content:

e “Probability of simple events”

e “Principle of the complex event”

e “Probability calculated from observations”
e “On the use of Probability”

e “On mathematical hope”

e “On the games in general”

e “On life insurance”

e “Income protection insurance”.

The questions in the last paragraph are solved using “The mortality tables”
from the “A. V. Shourekov’s logarithmic tables”. It becomes clear from the title on
the first page that “Probability theory” is a chapter of the subject “Algebra”. The
same is confirmed in first Bulgarian university textbook. It is actually volume two
of N. Obreshkov’s “Higher Algebra” [21] subtitled “A theory of algebraic numbers.
Combinatorics. Probability theory and applications in Statistics”, which lists the
four parts of the book. They are distributed approximately as follows: 100 pages
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for “Algebraic numbers”, 60 pages for “Combinatorics”, 240 pages for “Probability
theory” and 80 pages for “Applications of Probability theory in Statistics”. The last
three parts became the base of his textbook “Probability theory”, which has two
editions published after World War II and was the main textbook on Probability
for generations of Bulgarian mathematicians.

In the library of Mathematical Institute (sometimes also called “the office”)
many books, thoroughly described in a special catalog by A. Shourek (1911) [37],
were stored. Under the theme “Theory of Probability” he has classified 19 titles.
Among them are “Analytical probability theory” of Laplace (1820, 3rd edition),
the relatively modern textbook of Bertrand (1889), textbooks on Probabilities of
Borel (1909) and Markov (1908) and others in French, German, Russian and one
in Serbian.

Apart from them, five other titles on Mathematical Statistics, assurance and
insurance are included in section “Application of Probability Theory”. Statistics
during that time was only “the science of the state”. In Decree No. 712 from 1881
by Alexander I [25] is declared:

The statistical division of the Ministry of Education to be raised to a
separate “Bureau of Statistics”. Its purpose is “to collect, process and
publish annually statistics of all the branches of the state management
and all the phenomena related to the physical, economical, intellectual
and moral conditions of the country.

The first director of the Bureau is Mihail Sarafov [19]. He was born in Tarnovo
in 1854, worked as a teacher in Tarnovo and was a participant in the April Uprising
1878. He graduated from the Faculty of Mathematics of the Polytechnic in Munich
in 1880, and for the period from 1880 to 1881 he was a Minister of National Ed-
ucation in Karavelov’s Cabinet. He discussed with Prof. K. Irechek the founding
of a Higher School, but a priority became the first Census in the Principality of
Bulgaria in the same 1881. Another prominent director of the statistical institution
of Bulgaria (the first quarter of the twentieth century) is Kiril Georgiev Popov, who
sometimes is mistaken with the famous mathematician, professor at Sofia Univer-
sity, Acad. Kiril Atanasov Popov. There is not much biographical information
about him (K. G.P.), it is known that he was a member—founder of the Bulgarian
Physico-Mathematical Society in Sofia (1898) [15]. From a brief biographical re-
sume we learn that he was born on December 25, 1869 (old style) in the town of
Varna and graduated from the Higher School in Sofia in 1895.

The Faculty of Law of the Sofia University was the third one to open in 1892
with two departments — Juristic and Economic. It functioned similarly and cor-
responded to the current “business schools” at university level. Statistics was set
to be a “legal and public science”. In the curriculum we find the first lecturer of
Statistics — Assoc. Prof. Bonue Boneff. Later on he moved to the insurance busi-
ness as Head of Mathematics department in the insurance company “Balkan”. In
1920 he prepared and published the first issue of the “Mortality Table in Bulgaria”
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[6] subsidized by seven insurance companies of that time. It is worth noting that,
in addition to the table as a final result in the book, a fundamental information of
the Probability theory and the algorithm used for smoothing of the Curve of Mor-
tality were present. In modern terms, the parameters of the Gompertz — Makeham
distribution were estimated and as a local approximation for over 72 years of age a
cubic spline — regression was used.

The first textbook for the students of the Faculty of Juristic and Economic
Department of Sofia University, for their course in Statistics, “Theory of Statistics”
[8], was published in 1931 by Prof. G. Danailov. The textbook contains extensive
presentation of the history of discoveries and development of the theory of prob-
ability and statistics and the author repeatedly expresses his regrets for the gaps
in the explanations due to his lack of enough mathematical knowledge. The book
ends with a presentation of the data with descriptive statistics and charts. Ac-
cording to E. Shkodrov and St. Tzvetkov [36], the first textbook in Bulgarian is “A
Course of Theory of Statistics” issued in Varna in 1923 by the Russian immigrant
N. V. Dolinskiy.

At that time (in the twenties) three economics institutes  Free University
of Sofia, The Academy of Economics in the town of Svishtov and the Economics
Institute in the town of Varna were founded. So the places to study Business science
at university level become four, and Statistics took the place it deserves in each of
them.

2.2. 20TH CENTURY — THE UNIVERSITY

The Higher School was raised to a rank of Sofia University with a Royal Decree
in 1904. Shortly afterwards came the jeers on Ferdinand and “the university crisis”
in 1907. Then the two Balkan wars and the First World War happened. A change
of generations at the Mathematical Institute (the union of the four mathematical
departments) occurred. New lecturers — Kiril Popov, Ivan Tzenov and Lyubomir
Chakalov were recruited (in 1914). They were joined (in 1920) by Dimitar Tabakov,
an assistant of Prof. Shourek before the University crisis, and the speedy graduated
after the wars Nikola Obreshkov. In 1928 Obreshkov was already a full professor
and a head of a department, renamed the same year to “Higher Algebra and Theory
of Probabilities” [10].

In the beginning of 20-th century the challenges to Mathematics for the new
century were formulated by D. Hilbert, known now as “The 24 problems of Hilbert”.
The sixth of them is:

6. Mathematical treatment of the azioms of physics

The investigations on the foundations of geometry suggest the problem:
To treat in the same manner, by means of axioms, those physical sci-
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ences in which mathematics plays an important part; in the first rank
are the theory of probabilities and mechanics. *

Nowdays, A.N. Kolmogorov’s Axiomatics, first published in 1929 in the Re-
ports of the Academy of Sciences, is accepted as a standard. The Axiomatics earned
popularity after its extended version was published in German in 1933 and trans-
lated later (1936) in Russian. Thus, the Sixth Hilbert Problem has been partially
solved.

In the Jubilee book of Bulgarian Physico-Mathematical Society [15] two out
of about twenty mathematical articles are dedicated to Probabilities. They give
us an impression about the views and the atmosphere of the scientific research at
the climax of the “Probabilistic revolution”. The first one is entitled “Evolution
in Probability theory” (A. Ivanov). It lists the mathematicians, whose names are
“written” in “the development of the Theory of Probability”, starting from Pascal
and Fermat, Huygens, Jacob Bernoulli and later Laplace, Euler, Poisson, etc. But
“in the beginning of this (twentieth) century Mathematics has entered into a stage
in which dominates the randomness™ and thanks to the hard and successful work
of Poincare and others the Probability theory “was established as a separate sci-
ence and emerged to become a science of the sciences”. In the second article in [15]
entitled “On the development of the concept of probability”, the author R. Zaykov
identifies three trends in understanding the concept of probability as “statisticians”,
“collectivists” and “experimentalists”. Representatives of the first one are Karl Pear-
son, Ronald A. Fisher, Olaf Anderson; according to them, the probabilities are
determined by “the statistical distribution”. The “Collectivists” — from Richard von
Mises to Abraham Wald, define a distribution on unlimited sequences (collectives).
The “Experimentalists” (Jerzy Neyman) link the probability distribution to the set
of experiments. With the results of the school of “Axiomatists”, which replace the
“phenomenological” with the “formal mathematical concept” and the system of
axioms of A. N. Kolmogrov, which “fully meets all logical requirements” and its
axioms “could be proven by induction from the empirical reality” the Probability
theory becomes complete.

The Probabilistic revolution was in its full swing and everybody was hopeful for
a successful development of the theory and implementation of diverse and fruitful
applications.

During that time the University lecturers have had strong links with the re-
search centers in Europe. The generation of Lyubomir Chakalov, Kiril Popov,
Dimitar Tabakov and Ivan Tzenov obtained specialization in European research
centers such as Gottingen, Sorbonne, Nice. They maintained their contacts giving
talks and presenting reports on their visits to European universities and at inter-
national congresses. Following the advice “Our most important task - said to me
Einstein - is to find our successors” (from “The Autobiography of K. Popov” |26,

44wy .ams . org/journals/bull/2000-37-04/50273-0979-00-00881-8 /S0273-0979-00-00881
-8.pdf
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p. 127]), they paved the way for the next generation led by N. Obreshkov. These are
Arkady Stoyanov, Georgi Bradistilov, Blagovest Dolapchiev and Boyan Petkanchin
and the younger Lyubomir Iliev, Alipi Mateev and Jaroslaw Tagamlitzki, the new
generation at the Mathematical Institute of PhMF.

In 1942 the Higher Technical School in Sofia was founded. The professors of
PhMF became members of its Science executive board and lecturers. In addition,
G. Bradistilov and A. Stoyanov moved officially to the new academic body.

Below we list, with no claims for completeness, several publications from this
period associated with Probability and Statistics.

K. Popov (according to [26]) published series of articles on the generalization
of the concept of derivative in terms of Probability Theory. During his trip to
Harvard University for participating in the International Organizing Committee of
the Congress of Applied Mechanics, he presented a popular lecture on the principles
of insurance for a Bulgarian audience in New York.

N. Obreshkov published two articles in the Proceedings of the Seminar on
Mathematical Statistics at the Sorbonne. In the first one a two-dimensional dis-
tribution with Poisson marginal distributions was shown, later quoted in Alfred
Renyi’s book [28] as “Obreshkov Distribution”.

In two consecutive issues of the Journal of Physico-Mathematical Society
P. Shapkarev presented a research and modelling of time series under the head-
ing “Decomposition of business series in time” [35]. A. Stoyanov is the author of
one of publications for the role of Actuarial Mathematics in college education [33].

After breaking off his specialization in France because of the war, A. Mateev
was appointed temporarily at the Central Meteorological Institute and published
two articles in the collected volumes of the Institute. The first one is an overview
entitled “On some methods of Mathematical Statistics for processing results from
observations” [18]. In this article we see descriptive statistics, graphical representa-
tion, indicators for correlation. The second one [17] illustrates the approximation
of an empirical distribution with density of the class of “Pearson curves”. Data are
from the minimum monthly temperatures in January for the years from 1891 to
1920.

In that period we have to mention the work of the famous Russian German
mathematician at Sofia University Oscar Anderson. He emigrated from Moscow
in 1920 despite his leftist beliefs and the offer to work on the planning of Russian
economy. On one hand side, he did not feel ready for such a career, and on the
other side, he could not accept the attitude of the authorities towards his colleagues
at the University. He firstly worked as a teacher in Hungary. From 1924 to 1933 he
was a Professor at the Institute of Economics in the town of Varna. After a stay in
England and Germany as a Rockefeller Fellow, he returned to Bulgaria at the end
of 1934. He was appointed as Professor at the Sofia University and organized and
managed the “Statistical Institute for Economics Research” at the University. As it
is known, Anderson’s Institute developed strong research and publication activity.
In 1940 O. Anderson was seconded to Germany, where after two years of stay he
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accepted position Professor of Statistics at the University of Kiel, and later on in
Munich, where he stayed until his death in 1960. More biographical details and
information about his research interests and publications can be found in [27, 22].

3. AFTER THE WORLD WAR II (1945 1971)

The end of the war, the end of the bombing of Sofia and the evacuation brought
hope for development of mathematical science, in which probabilities undoubtedly
take prominent position with prospects for development and applications.

During 1945 the founding of a Mathematical Institute of Bulgarian Academy
of Sciences (BAS) has been discussed in the Executive board of the Bulgarian
Academy of Sciences. During 1946 and 1947 Academicians L. Chakalov, N. Obreshkov
and K. Popov organized two committees of Statistics and Demography at BAS. In
1947 their plan succeeded. The date 27" of October, 1947 was rightly named as
the birthday of the Mathematical Institute (MI), now Institute of Mathematics and
Informatics (IMI) [7]. On that day the Executive board of BAS approved a plan for
scientific research and development for the period 1947 — 1948. This plan included
work of three committees in the field of mathematical sciences:

1. Committee for demographic studies (chaired by Acad. K. Popov);

2. Committee for mathematical studies of the representative method in Statistics
(chaired by Acad. N. Obreshkov);

3. Committee for financial mathematical study of state and government bonds
(chaired by Acad. K. Popov),

as well as individual detailed plans of the Academicians—mathematicians I. Tzenov,
L. Chakalov, N. Obreshkov and K. Popov.

At that time, with the newly approved Law on Higher Education (1947)
the structure of the departments at Sofia University “St. Kliment Ohridski” was
changed. The abbreviation PhMF is translated into Bulgarian language as “Faculty
of Natural Sciences”. A new Department of “Mathematical Statistics and Insurance
Mathematics” for applications of the Probability theory was founded. Professor
Obreshkov was Head of both departments - the Department “Higher Algebra and
Probability Theory” and the new one.

At the same time, Faculty of Medicine was separated from Sofia University and
became Medical Academy. Moreover, Department of Economics of the Law Fac-
ulty and Institute of Statistics, together with the Free University form the Higher
Institute of Economics. The number of the faculties in the Higher Technical School
increased to eight and as a result HTS split into four engineering institutes  Civil-
Engineering, Mechanical-Electrical Engineering, Chemical Technology and Mining
— geological institutes.

14 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 5-29.



Let us recall that from PhMF as a Faculty of Natural Sciences first, in 1918,
Faculty of Medicine and later on, in 1921, the Agricultural and the Veterinary
Faculties were separated.

Later on, one by one, Faculty of Biology, Geology and Geography (1951) and
Faculty of Chemistry (1962) were separated from PhMF. It kept its original name
PhMF, but not for long - in 1963 it was split into Faculty of Physics and Faculty
of Mathematics.

In 1950, the “Scientific-production profile” was introduced in PhMF as a sepa-
rate course of study in Mathematics. It was aimed to counteract to some opinions
that the only courses at the University are pedagogically oriented, even with sug-
gestions to be renamed to Higher Pedagogical Institute . The outstanding students
from the new production profile graduated by defending Diploma Theses, a signif-
icant deal of which on topics from the field of Stochastics.

Meanwhile, on June 27, 1951, the Executive Board of BAS approved the
first Scientific Council of the of Mathematical Institute (MI) chaired by Acad.
Obreshkov, with secretary Prof. B. Petkanchin and members Acad. L. Chakalov,
Acad. K. Popov, Acad. I. Tzenov, Prof. Lyubomir Iliev, Prof. Yaroslav Tagaml-
itzki, Prof. Georgi Bradistilov, Prof. Arkady Stoyanov, Assoc. Prof. Alipi Mateev.

A section “Probability and Statistics” was founded at the MI in 1954. The
section was headed by Prof. N. Obreshkov, Bojan Penkov was appointed as a junior
researcher and Apostol Obretenov (a graduate of Acad. N. Obreshkov) was on PhD
studentship. Later on, mathematicians Emanuel Simeonov and Margarita Andreeva
were appointed in the section. In 1962 two more researchers were appointed
Liliana Boneva and Ivan Mirazchiyski.

In the early fifties professors D. Tabakov, K. Popov, I. Tzenov and L. Chakalov
retired . From the next generation the most significant steps to the prosperity of
the Mathematical society are due to Prof. L. Iliev, who foresaw the emerging of
Informatics as a branch of Mathematics. A specialization in “Computational Math-
ematics” was created on his initiative and organization in 1959 60, and the first
five specialists graduated in 1961. The enrollment of students for the “production
profile” also started. The first Computer center attached to the Mathematical In-
stitute of BAS and the Department of Higher analysis of PhMF were founded in
the same year (1961).

On June 6, 1960, in the Great Hall of the BAS “Extended meeting of the State
Council for Science with main topic on the agenda - the development of mathe-
matical sciences in the country” was held [12]. The main report was presented by
Lyubomir Iliev. Other speakers who took part in the discussions were the academi-
cians (K. Popov, L. Chakalov, N. Obreshkov), professors, associate professors, as
well as the assistant professors Bojan Penkov and Blagovest Sendov. The State
Council approved more than twenty specific proposals, including: the founding of

5From the speech of acad. Blagovest Sendov in the celebration of the International year of
Statistics in the Great Hall of Bulgarian Academy of Sciences on November 27, 2013.
6D. Tabakov in 1948, 1. Tzenov and K. Popov in 1951, L. Chakalov in 1952
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a Computing center; the need of support of the two sections of Mathematical Insti-
tute — “Mathematical Statistics” and “Computational Mathematics and computers”;
recommendations for the work of the Departments of Mathematics at Sofia Uni-
versity and the other universities; “creating new profiles of study — Mathematical
Statistics, Mechanics and others” at Sofia University.

In the academic year 1960-61 a specialization “Mathematical Statistics” was
introduced as a continuation of the tradition of education of actuaries. The lectures
were provided by Prof. N. Obreshkov, Prof. Al. Mateev, Assoc. Prof. Bl. Sendov,
Assoc. Prof. B. Penkov and Acad. Kiril Popov, and supported by the members
of the section of MI of BAS at that time: Apostol Obretenov, Emanuel Simeonov,
Margarita Andreeva, Lilyana Boneva, Ivan Mirazchiyski (see [38], [9] and [10]) in
collaboration with Ivan Katzarov. The latter was Chief Actuary and, later on,
Director of the National Social Assurance Institute until he had been attracted to
academic career at the Economics Academy “D. Tzenov” in the town of Svishtov.
He specialized in Actuarial Mathematics under the leadership of Prof. Tauber of
University of Vienna [24].

In close cooperation between PhMF and MI of BAS, in 1962 the prototype
of the first Bulgarian computer (on electronic lamps) “Vitosha” was invented and
in 1965 the Electronic calculator “Elka” was built. In 1966 on the basis of its
experience and staff the Central Institute of Computing Technology (CICT) be-
came independent and had served as foundation of the development of computer
technology production in Bulgaria until 1990.

The year 1963 is full of events for the Bulgarian Mathematical Society. After
numerous splits, the Physics Faculty was separated from the PhMF. So the “nature”
leaved the Faculty of Natural Sciences (Physics and Mathematics) and the “pure
science” remained alone as Mathematical Faculty (MF).

The sudden death of Prof. Nikola Obreshkov beheaded two departments. De-
partment “Algebra and Probability Theory” was renamed “Algebra” and leaded
by Assoc. Prof. Ivan Duychev. “Probability” was transferred to Department of
Mathematical Statistics and Insurance Mathematics” and renamed to “Probability
Theory and Mathematical Statistics”, with staff consisting of Assoc. Prof. Boyan
Penkov and Prof. Al. Mateev (Chair). The department remained unchanged until
1965, when it was transferred to “sector” of the Department of Higher analysis with
a single member  Assoc. Prof. Boyan Penkov. Specialization in Mathematical
Statistics existed thanks to the teaching (lectures, seminars and practical classes)
of the employees of section “Probability and Statistics” in the Mathematical Insti-
tute.

In the spring of 1964 the famous Ukrainian mathematician B. V. Gnedenko was
a guest—lecturer of the MF for nearly a whole term. He read courses on Mathemat-
ical Statistics and Queueing Theory and at the same time headed an international
seminar on “Reliability Theory” at the MI with participants from Bulgaria, Hun-
gary and Germany. This visit set the beginning of a long term fruitful cooperation,
which leaved significant mark in Stochastic guild in Bulgaria [13].
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In 1968 the section staff was expanded with Boyan Dimitrov, Petar Petrov,
Mikhail Uzunov, Maria Varbanova, Tzvetan Ignatov, Hristo Pavlov, Dimitar Van-
dev and Elisaveta Pancheva. Head of the section was Assoc. Prof. Boyan Penkov,
who was a member of the Department of Higher Analysis. The Section was placed
in one of the old buildings of the Institute of Biology at “Latinka” street (Fig-
ure 1). Next year four of the young fellows went for PhD studies - B. Dimitrov, P.
Petrov and H. Pavlov to Moscow, and D. Vandev to St. Petersburg (at that time,
Leningrad). Nikolay Yanev joined the section after his graduation, and Jordan
Stoyanov and Miroslav Tanushev were appointed in 1970.

Figure 1: Section “Probability and Statistics” in 1969 in front of the building on “Latinka”
street. Standing from left to right are: Ivan Mirazchiyski, Hristo Pavlov, Mihail Uzunov,
Tzvetan Ignatov, Dimitar Vandev, second row — Maria Krasteva, Liliana Boneva, Mar-
garita Andreeva, Elisaveta Pancheva, sitting Apostol Obretenov and Boyan Penkov.

4. INTEGRATION (1971 — 1988)

The spreading of computers in the country was extremely fast. Computers were
imported from all over the world, but also production of computers was organized
urgently in the country. The need for joint efforts for training people to work with
this new technology resulted in the union of the MF and the MI of BAS. The
Institute of Technical Mechanics of BAS also joined them. MI became Institute of
Mathematics and Mechanics (IMM), the Faculty adopted the name “Mathematics
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and Mechanics” (FMM) and all these institutions were united in the “United Center
for Science and Education in Mathematics and Mechanics” (UCSEMM), soon after
that renamed to the shorter UCMM.

This joint organization, in which the functions of the departments of the Fac-
ulty and the sections of the Institute were performed by grouping them into “sec-
tors”, lasted nearly twenty years. New sectors were founded in accordance with
L. Iliev’s classification of Mathematical Sciences, i.e. abstract, applied and IT
oriented structures. To each area of “pure” Mathematics (abstract structure) cor-
responded a field of applications of classical type and an area of applications us-
ing computer technology. “Probability and Statistics”, or in short “Stochastics”,
fell within the applied structures related to Calculus and Measure Theory. Later
on, an independent unit for “Stochastic Computing” specialized in applications of
Stochastics using computers was separated.

Stochastic computing encompassed development of numerical methods of
Stochastics, statistical databases, intelligent statistical software and expert systems
in Statistics, probabilistic and statistical simulation modelling of processes and sys-
tems with the aid of computers, computerization of Statistics education, analysis,
modelling and forecasting of time series, and all other computer implementations
of stochastic models and methods.

Each sector offered specialization in two—year course, the so—called block “B”,
which was preceded by three years of general education (block “A”). A one—year
additional course after the general education, aimed for preparation for teachers,
was called block “D”. This organization is identical to the modern structure of our
higher education with bachelor’s and master’s degrees. PhD degree was obtained af-
ter completion of block “C”. Graduates from the basic block “A” received a Diploma
of Higher education and the necessary mathematical culture and knowledge to use
computers. Those completing block “B” obtained Master’s degree (M.Sci.) diploma.

A separate building and premises in the building of Physics Faculty were pro-
vided to the “United center”. Construction works began for a new building in the
complex “IV*" kilometer” of BAS, which was built in less than two years. The
classes of block “A” took place in the current building of FMI in Lozenetz. The
time—table for mathematical disciplines was scheduled from 7 a.m. to 1 p.m. Spe-
cial notebooks were ordered and made for regular and compulsory homeworks and
tests. Intensive language training was provided during the summer months. Staff
bus service provided the transfer of lecturers between the two buildings every hour.
Master’s degree students (block “B”) had their lectures and training in both build-
ings, depending on the location of the sector they specialized in.

In the summer of 1972 sector “Probability and Statistics” was situated on the
fourth floor of the new building, the eastern half of the south part. In the same
year the sector employed as mathematicians Plamen Mateev and Georgi Yamukov.

In the next years the sector’s staff was further extended by appointing Ljuben
Mutafchiev, Georgi Chobanov, Rossitca Dodunekova, Svetlozar Rachev, Valeri Ste-
fanov, Dimitar Hadzhiev.
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The first head of sector “Probability and Statistics” was Senior Research Fellow
A. Obretenov. Boyan Penkov took over the management of the sector after 1979.

In 1978 a laboratory of “Computer Stochastics” was established as independent
unit. The first lab researchers were Senior Research Fellow D. Vandev (head) and
Junior Researcher P. Petrov. In the same year, Evgeni Dimitrov joined them. In
the beginning of next year P. Mateev, after completing his PhD in Moscow State
University, also became a member of the laboratory.

An unique software for statistical data analysis “Statlab” based on the platform
of the first 8-bit PCs (IMKO-2 and the widely used Pravetz 8) was developed in the
laboratory. Despite the memory limitations and the monochrome display with 24
lines of 40 characters, the functionality of the program includes preparation of data
with up to 18 variables, including possibilities of transformations, one-dimensional
descriptive statistics, single—factor dispersion analysis, original interactive step re-
gression procedure, linear discriminant analysis also with availability of interactive
selection of predictors, non—linear regression with availability for optimal choice of
additional data points, factor analysis with varymax procedure, cluster analysis and
multidimensional scaling. The entire system fitted on two 5 inch floppy disks of
360 kilobytes capacity. The software system “Statlab” was developed as an educa-
tional tool for students of FMM and was part of the main set of software programs
of Pravetz computers. Later on “Statlab” was adopted for the 16 bit IBM — XT
and IBM — AT (and Pravetz 16 version) under the name MSTAT and its exten-
sion TSTAT designed for spectral analysis of auto-regressive models for time series.
Unfortunately, the embargo on equipment with high graphical resolution (EGA,
VGA, SVGA) and the economic problems in the late 80’s detained the further
development of this project.

Laboratory efforts were redirected towards rebuilding the knowledge in the
field of Actuarial Mathematics. A joint contract of the Laboratory and FMM with
a financial support from the British “Know—How Fund” set up the beginning of pro-
fessional courses for actuaries to the newly established Bulgarian Actuarial Society.
The leader in the implementation of this project with the most—active participation
was Vladimir Kaishev until his transfer to a post at the City University, London.

The Stochastic guild of sector “Probability and Statistics” and the laboratory
“Computer Stochastic” counted more than twenty people over the years. They
taugh on average 10 to 12 Master’s degree students in Probability and Statistics
annually. In addition to the basic courses on Probability and Statistics at FMM,
they also provided services to other faculties of the University, e.g., in Physics,
Chemistry, Geology and Geography, Biology Departments.

The Sector was a center of the Stochastic guild for the country with many inter-
national contacts and collaborators. Since 1974 every two years the “International
Summer School on Probability Theory and Mathematical Statistics” gathered more
than a hundred participants. Since 1988, an annual Seminar on Statistical Data
Analysis (SDA) was in operation.
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Every Wednesday at 3 p.m. there were meetings of the “Common Seminar on
Stochastic”. It was place where reports on projects and research results were read
and discussed by the members of the guild, guests—readers from home and abroad
presented reports of their work, students defended their theses. In the official “Red
Book” for guests of the Sector and the Seminars handwritten dedications are kept.
There may be found the world famous names of statistical science — Kendall, Rao,
Bolshev, Vapnik, Shiryaev, Belyaev, Solovyov, Zolotarev, Barlow, Jacod, Reves,
Arato, Hawranek, Parzen, and many others.

Stochastic guild of the Unified Center initiated the founding of the “National
seminar on Stochastics” (NSS) within the Union of Mathematicians in Bulgaria,
aimed to focus on the problems of education in Stochastics. Director of the seminar
was B. Dimitrov, D. Vandev was Scientific Secretary and E. Pancheva was Technical
Secretary [9].

At the first meeting of NSS J. Stoyanov presented a report with a detailed
analysis of the publications in the field of Stochastics in Bulgaria [34]. An annex to
the report provided a detailed bibliography for that period awaiting its sequel. In
the next ten years regular sessions of the seminar were held during the traditional
Spring Conferences of the Union of Bulgarian Mathematicians (UBM). Special reg-
ular meetings of the seminar on problems of education in Stochastics were held
traditionally at the Scientific center “Gyulechitza” of Sofia University situated in
the Rila mountain.

An important direction in the work of the guild was the subject of statis-
tical quality control in collaboration with the State Committees on Quality and
Standards and other national institutions. An emanation of this activity was the
founding of a laboratory “Statistical quality control” at IMM and “Research Labo-
ratory on mathematical methods for quality management” at the Sofia University.
Head of both laboratories was B. Dimitrov.

The two laboratories worked successfully on contracts for implementation of
over ten national standards of statistical quality control, reliability, sampling con-
trol, terminological standards. They also took part in the development of three
international standards and organized four national meetings of quality control
professionals from the industry.

5. DISINTEGRATION (1988 — 2004)

The United Center did not fit in the standard hierarchical bureaucratic struc-
tures of both BAS and Sofia University. It survived 18 years, until 1988, when
its function was officially terminated and the structure of separated Faculty and
Institute with departments and sections, respectively, was restored. The Faculty en-
rolled students in Mathematics, Informatics, Mathematics and Informatics (teacher
training) and Mechanics and adopted its current name (FMI) which suits better
its educational profile. Also, the five-year course of study was restored.
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The Department “Probability and Statistics” was resumed in 1988 with head
Prof. B. Dimitrov and members Assoc. Prof. G. Tchobanov, Assoc. Prof. R.
Dodunekova, Ass. Prof. 1. Tzankova and Ass. Prof. B. Doychinov. About 40 peo-
ple were transferred from IMM to FMI. Only Tz. Ignatov moved to the University.
Many more were colleagues who sought for work abroad. Among those, Georgi
Yanev, Mariana Beleva, Daniela Nicheva, Miroslav Tanushev, Boris Kovatchev and
Rayna Robeva moved to the U.S.A.; Nikolay Kolev to Brazil; our colleagues Iva
Tzankova, George Boshnakov, Yordan Stoyanov, Sahib Esa, Nikolay Trendafilov,
Vladimir Kaishevin went to different European countries; Valeri Stefanov and Ev-
geni Dimitrov choose Australia and Maria Varbanova — South Africa.

In the mid 90’s the department “Probability and Statistics” had highly reduced
staff. During that period, due to the political changes, the economical problems and
opening the borders of the country, a significant part of the young professionals,
and not so young as well, sought for career abroad. Prof. B. Dimitrov, Assoc.
Prof. R. Dodunekova and Ass. Prof. N. Ilieva started work in foreign universities.
Assoc. Prof. G. Tchobanov moved to the newly established Faculty of Economics.
Prof. Tz. Ignatov was the only member of the Senior staff who remained in the
department.

Section “Probability and Statistics” at the Institute of BAS, which has been
always supporting the teaching of Stochastic subjects at Sofia University and mainly
the specialization “Probability and Statistics”, also reduced significantly its staff,
although it has merged with the laboratory “Computer Stochastics”.

At that time there was a real danger for Stochastic guild to stop reproducing
itself and for the education and training in Probability and Statistics at University
to drop below the admissible minimum.

Assoc. Prof. D. Vandev was the first who tried to stop this negative trend
by moving to FMI. In 1996, with his major participation, a new program — “Ap-
plied Mathematics” was opened, with specializations in Informatics, Mathematical
Economics, Mechanics, Applied Statistics.

In 1997 T. Ignatov moved to Faculty of Economics. D. Vandev was doing
his best to attract talented students for teaching, and also for recruiting part-time
lecturers. The graduates Stiliyan Stoev and Emil Kamenov were appointed as
permanent staff, but soon after St. Stoev moved to the United States.

In 2000 a new law on higher education was approved, in which the minimum
number of teaching staff at one department was set to 6 persons. As a result came
the merger of departments “Probability and Statistics” and “Operations Research”
and a new one was formed, the department “Probability, Operations Research and
Statistics”, which exists at present in this form.

In 2002 the first Master’s program in the Faculty, “Mathematical Modelling in
Economics”, which meets the new law regulations, was founded. D. Vandev actively
participated in building up its curriculum. This Master’s degree program was
considered by Vandev as a temporary solution to the task of rebuilding of another
specialization. His goal was finally realized in 2004, when an independent Master’s
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degree program “Probability and Statistics” was founded. Meanwhile, to meet
the law requirements for habilitated academic staff, Dimitar Vandev insured the
opening of new positions and opportunities for habilitation and attracting of new
lecturers: M. Bojkova (from IMI - BAS), L. Minkova (from Technical University of
Sofia), D. Donchev (from University of Food Technologies - Plovdiv) and Vandev’s
collaborator for many years from the laboratory “Computer Stochastics”, P. Mateev.

Unfortunately, Assoc. Prof. D. Vandev passed away on September 25, 2004.
He was not with us to see the realization of Master’s program “Probability and
Statistics” and his fulfilled dream for an undergraduate program “Statistics”.

We would like to express our deep appreciation for the efforts, enthusiasm and
professionalism to our unforgettable colleague Assoc. Prof. Dr. Dimitar Vandev,
the founder of the modern Master degree program “Probability and Statistics”. We
believe that all our colleagues will join our opinion, that we remain in debt to him
and his work for rebuilding and reproduction of the Stochastic guild in our country.

6. RECENT YEARS (2004 — 2013)

During that period, some of the old traditions revived and the modern trends in
Stochastic education managed to make their way through the recovery of specializa-
tion “Probability and Statistics” as Master degree program. A new undergraduate
program “Statistics” opened in the 2007/2008 academic year. The National Seminar
on problems in Education of Stochastics (NSPES) resumed his work.

6.1. MASTER’S PROGRAM “PROBABILITY AND STATISTICS”

The Master’s program is essential for the reproduction of stochastic profession-
als in the country. It prepares professionals able to work as independent researchers
at a high level in both pure and applied science. For the period of its existence
since 2004 until 2013 from the total of 70 enrolled in Master’s program, 32 have
completed the program and defended their theses, which is about 46% successfully
completed the program. A graphical representation of the distribution by years is
given in Figure 2, reflecting the data from Table 1.

Priority areas of the program are: Stochastic models and their applications,
Actuarial science and Biostatistics.

A benchmark for correctness of the chosen direction of development and as an
eloquent manifestation of the quality of education in “Probability and Statistics”
program is the professional realization of its graduates. They pursue successful
careers in the job market at home and abroad. For instance, in our country our
graduates work in “Musala Soft”, Insurance Company “Unica”, State Insurance In-
stitute, The Financial-analytical company “Finanalytica”, “Experian”, Ministry of
Education, banks as Unicredit, Bulbank, Postbank, marketing firms “Alpha Re-
search”, “Ipsos”, and others.
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Figure 2. Master’s degree students of the course “Probability and Statistics” in the period 2004 —
2013. A timeline of number of enrolments and number of graduates.
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Table 1. MSci degree program “Probability and Statistics”

Year of Enrolment | Enrolled in MSci program | Graduated with MSci degree
2004/2005 9 7
2005/2006 8 3
2006,/2007 6 3
2007/2008 6 4
2008,/2009 11 7
2009/2010 11 5
2010/2011 5 2
2011/2012 8 1
2012/2013 2 0
2013/2014 4 0

After completing MSci 7 degree program students, seeking realization abroad
continue successfully their academic development in world famous, high-profile uni-
versities such as Harvard University (USA), University of Reading and University

of Bristol (UK), Humboldt University, Berlin (Germany), and others.

6.2. BACHELOR’S DEGREE PROGRAM (BSCI) “STATISTICS”

The BSci “Statistics” was established with the joint efforts of the Stochastic
guild of FMI at SU and IMI - BAS on the explicit order of the Dean of the Faculty
in that time, Acad. B. Boyanov. The design of the whole program and curriculum

"Master’s degree program (MSci) is three or four semester graduate education after four years
(eight semesters) Bachelor’s degree program (BSci). BSci diploma is delivered after successful
state exam. MSci is accomplished with Diploma Thesis.
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we owe to the hard work of the guild with the most active participation of P. Mateev
and M. Bojkova. Programs for elective courses were also offered by Prof. Racho
Dentchev, Assoc. Prof. D. Donchev, Prof. Dimitar Christozov, Assist. Prof.
Vessela Stoimenova, Nina Daskalova and Dimitar Atanasov.

The program is our response to the pressing need for knowledge and expertise
in this field in the community and to the world’s trends. Its curriculum is based
on the curriculum of the BSci program “Applied mathematics”, with expanded
contents for some disciplines (“Theory of Probability and Mathematical Statistics”
split into two consecutive semesters, “Applied Statistics” is also divided into two
semesters and renamed — “Data analysis and regression” and “Multivariate statis-
tical models”), and adding new ones, such as “Introduction to Statistics” in the
second semester of the first year and “Statistical laboratory” in the semester before
the last one. Specific basic disciplines in Stochastics such as “Random processes”,
“Introduction to Actuarial science” are included in the curriculum with changed
status from optional to mandatory.

Finally, we show some quantitative comparative data for students of BSci
“Statistics” in comparison with the numbers of students of BSci “Mathematics”
and “Applied Mathematics” up to 2012/13 academic year.

Figure 3. BSci degree Education filed 4.5 Mathematics at FMI for the years 2007 — 2013 (end of
the first academic year)
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Enrollment of the students by years is presented on Figure 3, where the distri-
bution by years of enrolled and graduated students is given. Altogether, we enrolled
141 students and 31 of them graduated successfully, which represents 22% of the
enrolled ones. All graduates are employed in their speciality and some continued
their education in MSci programs in the Faculty, in other universities in Bulgaria,
or abroad.
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6.3. PHD IN THE FIELD OF PROBABILITY AND STATISTICS

Those who choose an academic career have to demonstrate their abilities by
defending a PhD Thesis. For the last five years in the Faculty there were 42 PhD
students in total trained in the field “4.5 Mathematics”, eight of them have chosen
Stochastics (Probability and Statistics). One of those eight successfully defended
a PhD Thesis, two have completed the course with a right of defence, and the
others are working on their regular plans. They have published 18 research re-
ports, participated in seven scientific forums abroad and in eleven in our country.
They present their results at the annual Spring Scientific Sessions of the FMI,
the European Meetings of Young Statisticians, International Conference on Prob-
ability Theory and Mathematical Statistics and the accompanying events such as
seminars on Statistical Data Analysis and Branching Processes and Applications,
National Seminar on Education in Stochastics and other scientific forums. Particu-
larly strong is the participation of the PhD students — “stochasticians” in scientific
schools and doctoral conferences organized within the project “Formation of a new
generation of researchers in the field of Mathematics, Informatics and Computer
science by supporting the creative and innovative potential of PhD students, and
young post—doctorate students and researchers in FMI at SU”, financed by the
European Union funds.

6.4. NATIONAL SEMINAR ON PROBLEMS IN EDUCATION OF STOCHASTICS (NSPES)

In this period the work of the NSPES was renewed. The first four editions
were conducted successively in 2007, 2009, 2011 and 2013 years.

The activities within NSPES will be mentioned separately below.

The first NSPES was organized in 2007. We have gathered 25 participants from
across the country Sofia University, Plovdiv University, Shoumen University,
Southwestern University Blagoevgad, Technical University Varna , IMI BAS,
as well as participants from Macedonia and the U.S.A., and representatives of the
publishing business. The seminar was dedicated to the 60-th anniversary of the
Department of Mathematical Statistics at Sofia University “St. Kliment Ohridski”
and 45 years of the first alumni of specialty “Mathematical Statistics”.

The second NSPES was held in 2009 and is remarkable with the strong presence
of students — six people from MSci program “Probability and Statistics”, who shared
their modest experience “on both sides of the bench” — as students—graduates and
students demonstrators. There were representatives from IMI  BAS, New Bulgar-
ian University and foreign participants from Macedonia and the U.S.A. The focus
of this seminar was on teaching probability and statistics at FMI. With the opening
of new undergraduate programs at the FMI - “Computer science”, “Information Sys-
tems”, “Software engineering” and “Statistics” the need to include the more talented
students in the Masters program of the education process extremely increased.
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The third edition of NSPES, held in 2011, proved that the seminar has es-
tablished itself as an useful event for discussions on mutual problems not only at
national level but also internationally. The third NSPES was attended by four
students from Masters program “Probability and Statistics” of FMI at SU. The
participation of scientists and professors from abroad, specialists in Probability
theory and Mathematical statistics, with positions in prestigious universities, is a
vivid testimonial to its attractiveness and significance. It is important to note that
the theme of the seminar is particularly timely and is one of the priorities for de-
velopment of scientific research at Sofia University. In this format, the seminar is
essential for maintaining of high level of teaching in the disciplines in the field of
Stochastics, updated with accordance to the international standards and tendencies
of development in recent years.

The fourth NSPES, held in 2013, was dedicated to the International Year of
Statistics. Among the participants were again one student from Masters program
and three PhD students and young scientists as well.

Information about the seminar and announcements of upcoming meetings is
published on the Internet-site probablystatistics.net. More information is
available at http://probablystatistics.net.

7. CONCLUSION

Last but not least we would like to mention that this paper is also dedicated
to the 125" anniversary of the FMI at SU, celebrated in 2014.

Tracing back the development of research and education in Stochastics, we
may conclude that currently the FMI at SU is an established center for training of
specialists in the field of Stochastics.

Near—field programs in Econometrics in higher education institutions for Eco-
nomics and Business Administration and a Master’s Program in Applied Statistics
at New Bulgarian University are opened. Unfortunately, the resources of profession-
als in this field and the total load in the Faculties of Mathematics and Informatics
at Plovdiv and Shoumen universities, and the Faculty of Applied mathematics and
informatics at the Technical University Sofia does not allow opening of a separate
specialty.

We have been in the “Age of Stochasticity” already for fourteen years and the
perspicacious business predicts that “Statistician” will be an appeal—-able profession
(“the sexy job”) in the coming years, as claimed by Hal Varian chief economist at
Google?:

“I keep saying the sexy job in the next ten years will be statisticians.
People think I'm joking, but who would’ve guessed that computer en-
gineers would’ve been the sexy job of the 1990s?”

8An  interview of Hal Varian in  McKinsey  Quarterly, January 2009
.flowingdata.com/2009/02/25/googles-chief-economist-hal-varian-on-statistics-and-data
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The stochastic knowledge is a must for the modern citizen — it is a prerequisite
for his informed choice. An argument supporting this statement is the positive
correlation between the economic prosperity of the state and the degree of presence
of Stochastic in all stages of education.

The godfathers of the discipline “Information technology” ? define it back in
1958 as the sum of three categories:

- processing techniques,

- application of statistical and mathematical methods in decision making and

- simulation of mental activity of a higher type using computer programs.

Ahead of their time, they were under a lot of criticism, even now, in the
modern definitions, the second category is neglected. Despite that, we can see an
increasingly closer integration of Mathematics and Statistics on one hand and the
power of computer equipment on the other, and Stochastics is taking an increasingly
important place.

We strongly believe that the training of qualified specialists in the field of
Stochastics, related to the scientific research and applications as well as the increase
of statistical literacy of the society, is a prerequisite for its prosperity. This is a
task that can be solved only by the joint efforts of the entire Mathematical guild.

In this work we tried to present a historical overview of the development of
scientific and educational activities of Stochastics within the Sofia University and
partially within the Bulgarian Academy of Sciences. We must confess that many
important details have been left without the attention they deserve, and in many
areas we remain in debt, which we hope to fix with the kind help of the reader.
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1. INTRODUCTION

This paper contains an extended version of the invited talk given by the au-
thors at the Mathematical Conference dedicated to Professor Ivan Prodanov on
the occasion of the 60" anniversary of his birth and the 10*” anniversary of his
death. The conference took place on May 16, 1995 at the Faculty of Mathematics
and Informatics of the Sofia University “St. Kliment Ohridski”. It was planned
the talks of the participants in this conference to be published in a special volume
of the Annuaire de I'Universite de Sofia “St. Kliment Ohridski, Faculte de Mathe-
matiques et Informatique, Livre 1 - Mathematiques, but this has never happened.
That is why we have decided to publish our work separately. Since our files were
lost and we had to write them once more, the paper appears only now.

In the academic year 1979/80 Professor Ivan Prodanov organized a seminar
on spectra at the Faculty of Mathematics of Sofia University. The participants in
this seminar, besides Iv. Prodanov, were G. Dimov, G. Gargov, Sv. Savchev, L.
Stoyanov, V. Tchoukanov, T. Tinchev, D. Vakarelov. The talks of Iv. Prodanov on
this seminar were on his own investigations in the theory of abstract spectra and the
uniqueness of Pontryagin-van Kampen duality. In the reviewing talks of the other
participants, Stone Duality Theorems for Boolean algebras and for distributive
lattices ([41], [42]), H. A. Priestley’s papers [27]-[30], M. Hochster papers [18] and
[19], the topological proof of Goedel Completeness Theorem given by Rasiowa and
Sikorski in [37] and many other interesting topics were discussed.

Iv. Prodanov raised a number of interesting open problems at his seminar
on spectra. Two of them were solved by some of the participants of the seminar
and these solutions caused, on their part, the appearance of other new papers.
One of these problems was whether the category L of locally compact topological
R-modules, where R is a locally compact commutative ring, admits precisely one
(up to natural equivalence) functorial duality. (Using the classical Pontryagin-
van Kampen duality, one easily obtains a functorial duality in Lg, called again
Pontryagin duality. Hence, there is always a functorial duality in £Lg.) L. Stoyanov
[43] showed that if R is a compact commutative ring, then the Pontryagin duality
is the unique functorial duality in £Lg. Later on, Gregorio [15] and Gregorio and
Orsatti [16] generalized that result of Stoyanov. The second problem was whether a
uniqueness theorem, like that for Pontryagin-van Kampen duality, can be proved in
the cases of Stone dualities for Boolean algebras and for distributive lattices. The
answers were given by G. Dimov in [8] and [9], where it was proved that the Stone
duality for Boolean algebras is unique and that there are only two (up to natural
equivalence) duality functors in the case of distributive lattices. Some very general
results about representable dualities and the group of dualities were obtained later
on by G. Dimov and W. Tholen in [11], [12]. It could be said that D. Vakarelov’s
paper [46] was also inspired by Prodanov’s seminar on spectra. This was certainly
so for the diploma thesis [39] of Sv. Savchev, written under the supervision of
Professor Iv. Prodanov, and for the paper [40].
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Iv. Prodanov presented his results on the uniqueness of Pontryagin-van Kam-
pen duality in the manuscripts [32] and [33]. The more than fifty-pages-long paper
[33] contains also an impressive list of open problems and conjectures. The pub-
lication of these manuscripts was postponed because Prodanov discovered that
analogous results were obtained earlier by D. Roeder [38]. Prodanov’s approach,
however, was different and even more general than that of D. Roeder. Only his un-
timely death withheld him from preparing these manuscripts for publication. The
task of doing that was carried out by D. Dikranjan and A. Orsatti. In their paper
[7], all results from [32] and [33] were included and some of Prodanov’s conjectures
were answered. In such a way the manuscripts [32] and [33] became known to the
mathematical community and stimulated the appearance of other papers (see [6],
[14]).

The results of Iv. Prodanov on abstract spectra and separative algebras were
announced in [31], but their proofs were never written by him in the form of a
manuscript, preprint or paper. The very incomplete notes which we have from the
Prodanov talks on the seminar on spectra seem to be the only trace of a small
part of these proofs. Since, in our opinion, the results, announced in [31], are
interesting and important, we decided to supply them with proofs. This is done
in the present paper, where we follow, in general, the exposition of [31], but some
of the announced there assertions are slightly generalized, some new statements
are added and some new applications are obtained. The main of the added results
is Theorem 2.39, which was formulated and proved by us as a generalization of
Prodanov’s assertions Corollary 2.40 and Corollary 2.41.

Section 1 of the paper is an introduction. Section 2, divided into four sub-
sections, is devoted to the abstract spectra. In Subsection 2.1 the category S of
abstract spectra and their morphisms is introduced and studied. Subsection 2.2
contains two general examples of abstract spectra (see 2.20 and 2.24). The classi-
cal spectra of rings endowed with Zariski topology appear as special cases of the
first of these examples (see 2.21), while the classical spectra of distributive lattices
with their Stone topology appear as special cases of both examples (see 2.22 and
2.25). In Subsection 2.3 the main theorem of Section 2 is proved (see 2.36). This
theorem asserts that the category S of abstract spectra and their morphisms is iso-
morphic to the category CohSp of coherent spaces and coherent maps and, hence,
by the Stone Duality Theorem for distributive lattices, the category S is dual to
the category D Lat of distributive lattices and lattice homomorphisms. It is well-
known that the category OStone of ordered Stone spaces and order-preserving
continuous maps is also dual to the category D Lat (see [27], [28] or [20]), and that
it is isomorphic to the category CohSp (see, for example, [20]). Therefore, the
category OStone is isomorphic to the category S. (The last fact could be also
proved directly, but we do not do this.) So, each one of the categories CohSp,
OStone and S is dual to the category DLat. In our opinion, the category S is
the most natural and symmetrical one amongst all three of them. Subsection 2.4
contains two applications (see Corollary 2.40 and Corollary 2.41) of the already
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obtained results. The one from Corollary 2.40 is important for Section 3. These
applications appear as special cases of a general theorem (see Theorem 2.39), which
we formulate and prove here as a generalization of Prodanov’s results Corollary 2.40
and Corollary 2.41. Theorem 2.39 was used later on by us in our paper [10].

At a first glance the advent of spectra in so general situations as in 2.20 is unex-
pected, since psychologically they usually are connected with separation. Actually,
in general one does not know whether there are non-trivial prime ideals, but it
turns out that if the operations x and + from 2.20 satisfy a few not very restrictive
natural conditions, then the prime ideals become as many as in the commutative
rings or in distributive lattices, for example. In this way one comes to the notion
of a separative algebra considered in Section 3.

Section 3 is divided into several subsections. In Subsection 3.1 the definition of
a preseparative algebra as an algebra with two multivalued binary operations x and
+ satisfying some natural axioms as commutativity and associativity is given, and
some calculus with these operations is developed. Subsection 3.2 is devoted to the
theory of filters and ideals in preseparative algebras. The main notion of a separative
algebra is given in Subsection 3.3. Here a far of being complete list of examples is
given: the commutative rings, the distributive lattices and also the convex spaces (=
separative algebras in which the two operations coincide) are separative algebras.
The main theorem for separative algebras - the Separation theorem, is proved
in Subsection 3.4. In Subsection 3.5 some natural new operations in separative
algebras are studied and in Subsection 3.6 a general representation theorem for
separative algebras is given. Roughly speaking, every separative algebra X =
(X, x,4) can be embedded into a distributive lattice L in such a way that the
operations in X are obtained easily from the operations in L. That is new even
for the plane: there exists a distributive lattice L O R? such that for each segment
ab C R? one has

ab={r e R?*:x<aVvb}={zc R*: z>aAb}.

The notion of separative algebra comes from an analysis of the separation
theorems connected with the convexity. The abstract study of convexity was started
by Prenovitz [25] and different versions of the notion of conver space appeared in
[34], [35], [44], [3], [4], [26]. All they are compared in [45]. The convexity was
examined from other aspects in [1], [5], [17], [22] and [24], a few applications are
considered in [47] and [2] contains a critique.

Y. Tagamlitzki [44] obtained a general Separation theorem for convex spaces.
It was improved (again for convex spaces) and applied to analytical separation
problems in [34] and [35] (cf. [1] and [4]). It seems however that the natural
region for that theorem are not the convex spaces but the separative algebras: the
presence of two operations makes the instrument more flexible, without additional
complications (see Subsection 3.4). This permits to obtain as special cases the
separation by prime ideals of an ideal and a multiplicative set in a commutative
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ring, or of an ideal and a filter in a distributive lattice, and also the separation of
two convex sets by a convex set with convex complement.

The paper ends with Subsection 3.8 devoted to a generalization of the Separa-
tion theorem for separative algebras supplied with a topology. Thus, even restricted
to convex spaces, one can find, as in [35], a few classical separation and representa-
tion theorems, but the presence of two operations enlarges the possibilities for new
applications.

Let us fix the notation. If C' denotes a category, we write X € |C] if X is an
object of C, and f € C(X,Y) if f is a C-morphism with domain X and codomain
Y. All lattices will be with top (=unit) and bottom (=zero) elements, denoted
respectively by 1 and 0. We don’t require the elements 0 and 1 to be distinct.
As usual, the lattice homomorphisms are assumed to preserve the distinguished
elements 0 and 1. DLat will stand for the category of distributive lattices and
lattice homomorphisms. If X is a set then we write Exp(X) for the set of all
subsets of X and denote by |X| the cardinality of X. If (X,7) is a topological
space and A is a subset of X then cl(x 7)A or, simply, clx A stands for the closure
of A in the space (X, T). We denote by D the two-point discrete topological space
and by Set the category of all sets and functions between them. As usual, we say
that a preordered set (X, <) (i.e. < is a reflexive and transitive binary relation on
X) is a directed set (resp. an ordered set) if for any z,y € X there exists a z € X
such that < z and y < z (resp. if the relation < is also antisymmetric).

Our main references are: [20] — for category theory and Stone dualities, [13] —
for general topology, and [23] — for algebra.

2. SPECTRA

2.1. THE CATEGORY OF ABSTRACT SPECTRA

Notation 2.1. Let (S,TT,T7) be a non-empty bitopological space. Then we
put L+ ={Ue€TT:S\UeT }and L~ ={UeT :S\UeTt}.

Proposition 2.2. Let (S,T7,T7) be a non-empty bitopological space. Then
the families L and L~ (see 2.1 for the notation) are closed under finite unions
and finite intersections.

Proof. Tt is obvious. O

Definition 2.3. A non-empty bitopological space (S,T+,T™) is called an ab-
stract spectrum, if it has the following properties:

(SP1) LT is a base for Tt and L~ is a base for T—;
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(SP2) if F C S and S\ F € T+ (resp. S\ F € T7), then F is a compact
subset of the topological space (S,T~) (resp. (S,TT));

(SP3) at least one of the topological spaces (S,TT) and (S,T~) is a Ty-space.

Proposition 2.4. If (S,T%,T7) is an abstract spectrum, then (S,T+) and
(S,T7) are compact Ty-spaces.

Proof. By (SP3), one of the spaces (S,T") and (S,7T7) is Typ-space. Let, for
example, (S, TT) be a Ty-space. Then we shall prove that (S, T7) is also a Ty-space.

Let z,y € S and  # y. Then there exists U € T such that |[U N {z,y}| = 1.
Let, for example, z € U. Then, using (SP1), we can find a V € £ such that
x €V CU. Putting W = S\ V, we obtain that W € 7=, y € W and = ¢ W.
Therefore, (S,T7) is a Ty-space.

Since S is a closed subset of (S, TT), the condition (SP2) implies that S is a
compact subset of (S, T7).

Analogously, we obtain that (S,TT) is a compact space. O

Proposition 2.5. Let (S,T",T7) be an abstract spectrum. Then L+ = {U €
T : U is a compact subset of (S,TT)} and L~ ={U € T~ : U is a compact subset
of (S,T7)} (see 2.1 for the notation,).

Proof. Let us prove first that Lt = {U € Tt : U is a compact subset of
(S, T}

If Ve Lt then S\ V € T7. Hence V is a closed subset of (S,77). This
implies, by (SP2), that V is a compact subset of (S,T1). Conversely, if U € T
and U is a compact subset of (S,T) then for every x € U there exists a U, € £
such that € U, C U. Choose a finite subcover {U,, : i = 1,...,n} of the cover
{U, : © € U} of the compact set U. Then U = | J{U,, : i =1,...,n} and hence, by
22, U € LT,

The proof of the equation L~ = {U € T~ : U is a compact subset of (S,77)}
is analogous. O

Proposition 2.6. Let (S, T, T7) be an abstract spectrum. Then L1 = {S\U :
Uel~}and L~ ={S\U:U € LT} (see 2.1 for the notation).
Proof. Let us prove that L= = {S\U:U € £LT}.

Take V € L~ and put U = S\ V. Then U € Tt and S\U € L~ C T
Hence, U € LT and V = S\ U. Conversely, if U € L1 then V = S\ U € T~ and
S\V €Lt CT*. Therefore, S\ U € L.

The proof of the equation LT = {S\ U : U € £~} is analogous. O

Corollary 2.7. Let (S,T+,T7) and (S,TT,T5) be abstract spectra. Then the
topologies T| and T5 coincide.
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Proof. Tt follows directly from 2.5, 2.6 and (SP1) (see 2.3). O

Definition 2.8. Let (S1,T],T,) and (So,T5,T5 ) be abstract spectra. Then a
function f € Set(Sy, Ss) is called an S-morphism if f: (S1,T) — (S92, TS) and
f:(51,77) — (52,75 ) are continuous maps. The class of all abstract spectra
together with the class of all S-morphisms and the natural composition between
them form, obviously, a category which will be denoted by S and will be called the
category of abstract spectra.

Definition 2.9. An abstract spectrum (S, T+, T7) is called a Stone spectrum
if the topologies T+ and T~ coincide.

Proposition 2.10. Let (S,T) be a topological space. Then the bitopological
space (S, T,T) is a Stone spectrum if and only if (S,T) is a Stone space.

Proof. (=) Let (5,7, 7T) be a Stone spectrum. Then, by 2.4, (S, T) is a compact
To-space. According to (SP1) (see 2.3), the family LT ={U € T: S\U € T} is a
base for T. Consequently (S, T) is a zero-dimensional space. We shall show that it is
also a Ty-space. Indeed, let z,y € S and x # y. Then there exists a U € T such that
|U N {z,y}| = 1. Let, for example, z € U. Since L7 is a base for T, we can find a
Ve Lt suchthatz € V CU. Thenz € V € Tandy € S\V € T. Therefore, (S, 7T)
is a Ty-space. So, we proved that (S,7) is a compact zero-dimensional Ts-space,
i.e. a Stone space.

(<) Let (S,7) be a Stone space. Put L ={U €T:S\U € T}and Tt =T =
T. Then LT = L = L~ (see 2.1 for the notation). We shall prove that (S, T+, T™)
is an abstract spectrum. Then it will be automatically a Stone spectrum. Since £ is
a base for (S, T), the axiom (SP1) (see 2.3) is fulfilled. The axioms (SP2) and (SP3)
are also fulfilled, since (S,7) is a compact Ty-space. Consequently (S,T+,T7) is
an abstract spectrum. O

Proposition 2.11. An abstract spectrum (S,TT,T7) is a Stone spectrum if
and only if (S,TT) and (S,T~) are Ty-spaces.

Proof. (=) Since (S,T1,77) is a Stone spectrum, we have that T* = J~.
Then 2.10 implies that (S,T") and (S,T~) are even Th-spaces.

(<) Let (S,T1) and (S,7T7) are Ty-spaces. We shall prove that T+ = T~.

Let U € T~. Then S\ U is closed in (S,7~) and hence, by 2.4, it is a compact
subset of (S,T7). Let z € U. Since (S,TT) is a Ty-space, for every y € S\ U
there exists a V,, € L1 such that z € V;, C S\ {y}. Hence y € S\ V, C S\ {z}
and S\V, € T7. Let {S\V,, : 4 =1,...,n} be a finite subcover of the cover
{S\V,:ye S\U}of S\U and let V, =({V,, :i=1,...,n}. Thenz €V, € T+
and V, C U. We obtain that U = (J{V, : # € U} € T*. Hence 7= C TT.
Analogously, using the fact that (S,77) is a Tj-space, we prove that T+ C T~.
Therefore T+ =T, i.e. (S,T7,T7T) is a Stone spectrum. O
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Remark 2.12. Let (S,TT,T7) be an abstract spectrum. Then, arguing as in
2.4, we obtain that (S,TT) and (S,T~) are Ty-spaces if and only if at least one of
them is a T} -space.

Proposition 2.13. Let (S,TT,T) be an abstract spectrum and let us put
T =sup{TT,T}. Then (S,7) is a Stone space and hence (see 2.10) (S,7T,7T) is a
Stone spectrum.

Proof. The topology T has as a subbase the family P = 7+ U J~. Hence the
family B = {UTNU~ : UT € T*, U~ € T~} is a base for T. Then, obviously,
the family Bo = {UtNU~ : Ut € LT, U~ € L™} is also a base for T. For every
U e L we have that U € Tt C Tand S\U € T~ C TJ. Consequently the elements
of LT are clopen subsets of (S, 7). Obviously, the same is true for the elements of
L~. Hence the elements of By are clopen in (S,7), which implies that (S,7) is a
zero-dimensional space. This fact, together with (SP3) (see 2.3), shows that (S, 7)
is a Hausdorff space.

Applying Alexander subbase theorem to the subbase P of (.5, T), we shall prove
that (S,7) is a compact space. Indeed, let S = (J{U, € Tt :a € A} U U{V; €
T-:pe€Bland F = S\ U{Uy : « € A}. Then FF C | J[{V3 : § € B} and F
is closed in (S,7%"). Consequently, by (SP2) (see 2.3), F is a compact subset of
(S,T7). This implies that there exist f1,..., 8, € B such that FF C [J{V3, : i =
1,...,n}. Then G = S\ U{Vs, : ¢ =1,...,n} C U{Us : @ € A}. Since G is
a closed subset of (S,T7), it is a compact subset of (S,T*) (by (SP2)). Hence,
there exist ay,...,a,, € A such that G C (J{Ua; : j = 1,...,m}. Therefore,
S=WUy, :j=1,....m} U H{Vp, : i =1,...,n}. This shows that (S,7) is
compact. Hence, (S,7) is a Stone space. O

Remark 2.14. Let (S,T7,T7) be an abstract spectrum and id : S — S,
x — x, be the identity function. Then, obviously, id € S((S,T,T),(S,T+,T7))
(see 2.13 for the notation).

Proposition 2.15. Let (S,TT,T7) be a bitopological space such that LT is
a base for T+ and L~ is a base for T~ (see 2.1 for the notation). Let T =
sup{T+, T}, (S,T) be a compact Ty-space, S; C S, T ={UNS, : U € T*}
and T, = {UNS, : U € T~}. Then the bitopological space (S, T, Ty) is an
abstract spectrum iff Sy is a closed subset of the topological space (S, 7).

Proof. (=) Let Ty = sup{7{", 77 }. Then, by 2.13, (S1,7T1) is a Stone space.
Hence it is a compact Hausdorff space. Since, obviously, 71 = T|S1, we obtain that
S is a compact subspace of the Hausdorff space (S, T). Consequently S; is a closed
subset of (5, 7).

(<) We shall show that (S;,T;",T;) is an abstract spectrum. Let £ =
{UnS1:Uelt} Ly ={UNS:Uel}, LE ={UeT{:5\UeT}and
Lg, ={U €Ty :S1\U € T{}. Then, obviously, £] C £ and L7 C L . Since
L] (resp. £7) is a base for (Sy,TY) (resp. (S1,77)), we obtain that £& (resp.
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L3,) is a base for (Sy,TT) (resp. (S1,77)). Hence the condition (SP1) (see 2.3) is
fulfilled.

In the part (=) of this proof, we noted that the topology T; = sup{J;",T; } on
S coincides with the topology T]S;. Hence, (S1,77) is a compact Hausdorff space
(since (S,7) is such and S; is a closed subset of (S,T)). Let now F be a closed
subset of (S1,T;) (resp. (51,77 )). Then F is a closed subset of (Sy,T;). Therefore
F is a compact subset of (S1,7T7). Since the identity maps id : (S1,T1) — (S1,77)
and id : (S1,T1) — (S1,77 ) are continuous, we obtain that F is a compact subset
of (S1,T7) (resp. (S1,7T7)). Hence, the condition (SP2) (see 2.3) is fulfilled.

For showing that the condition (SP3) (see 2.3) is fulfilled, it is enough to prove
that (Sy,T;) is a Tp-space. Let 2,y € Sy and = # y. Since (S1,T1) is a Ty-space,
there exist U € £ and V € £] such that z € UNV C S\ {y}. If y ¢ U then
the element U of T, separates z and y. If y € U then y ¢ V. Hence y € S; \ V
and x € S; \ V. Since S; \ V € T, we obtain that z and y are separated by an
element of T;". Consequently, (S, T;") is a Ty-space. O

Corollary 2.16. Let (S,T1,T7) be an abstract spectrum, T = sup{T*,T~},
S CS, T ={UNS :U €Tt} and Ty ={UNS; : U € T} Then the
bitopological space (S1, Ty, Ty ) is an abstract spectrum iff Sy is a closed subset of
the topological space (S, 7).

Proof. Tt follows immediately from 2.15, 2.3 and 2.13. 0
2.2. EXAMPLES OF ABSTRACT SPECTRA

Lemma 2.17. Let X be a set and Exp(X) be the family of all subsets of X.
Let us put, for every x € X, U*z{ACX r g A} andU’—{ACX x € A}.
Let Pt = {U} : z € X}, P~ = {U* cxe X}, TF (resp. T~ ) be the topology
on Exp(X) having Pt (resp. P~) as a subbase and T = sup{T+T,T~}. Let us
identify the set Exp(X) with the set D~ (where D is the two-point set {0,1}) by
means of the map e : Exp(X) — DX ACX — X4, where x4 : X — D is the
characteristic function of A, i.e. xa(x ) =1lifxe Aand xa(z)=0 z'fa: ¢ A. Then
the topology T on Exp(X) coincides with the Tychonoff topology on DX (where the
set D is endowed with the discrete topology).

Proof. Let P = P+ UP~. Then P is a subbase for the topology T on Exp(X).
For every = € X we have, identifying Fxp(X) and D* by means of the map e,
that U} = {f € D* : f(x) =0} and U; ={f e D*: f(z) = 1}. Now it becomes
clear that the family P is also a subbase for the Tychonoff topology on D* when
D is endowed with the discrete topology. Therefore the topology T on Exp(X)
coincides with the Tychonoff topology on D . 0
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Proposition 2.18. Let X be a set and S be family of subsets of X (i.e.
S C Exp(X)). Let us put, for everyx € X, Uf ={pe S:x&p} andU; ={p€
S:zep}t Lt Pt ={U} :x € X}, P~ ={U,; :x€ X}, T (resp. T~) be the
topology on S having Pt (resp. P~) as a subbase and T = sup{T+, T~ }.

Then the following conditions are equivalent:
(a) (S,TT,T7) is an abstract spectrum;
(b) (S,7) is a compact Ta-space;

(¢) S is a closed subset of the Cantor cube D~ (where D is the discrete two-
point space and S is identified with a subset of D~ as in 2.17).

Proof. (a) = (b). This follows from 2.13.

(b) = (a). Let x € X. Then S\ U} =U; and S\ U, = U;. Hence PT C LT
and P~ C L~ (see 2.1 for the notation). Consequently, using 2.2, we obtain that
LT (resp. £7)is a base for (S,TT) (resp. (S,T7)). This shows that putting S; = S
in 2.15, we get that (S,T*,T7) is an abstract spectrum.

(b) = (c). It is clear from the corresponding definitions that, using the notation
of 2.17, we have U} NS = U and U; NS = U, for every z € X. Hence, by
2.17, the topology T on S coincides with the subspace topology on S induced by
the Tychonoff topology on D*. Then the condition (b) and the fact that D~ is a
Hausdorff space imply that S is a closed subset of the Cantor cube D™

(¢) = (b). In the preceding paragraph we have already noted that the topology
T on S coincides with the subspace topology on S induced by the Tychonoff topol-
ogy on D~ . Therefore the condition (c) implies that (S, T) is a compact Hausdorff
space (since DY is such). 0

Definition 2.19. Let X be a set endowed with two arbitrary multivalued binary
operations ® and ®. Let us call a subset p of X a prime ideal in (X, ®,®) if the
following two conditions are fulfilled:

i) ifx,y €p thenx dy C p;
i) if (x@y)Np#D thenx €p ory € p.

Let us fix two different points 0 and 1 of X. We shall say that a prime ideal
p C X is proper (or, more precisely, proper with respect to the points 0 and 1), if
0€epandl ¢p.

A subset q of X is called a prime (proper) flter in (X, ®, ®) if the set X \ q is
a prime (proper) ideal.

Theorem 2.20. Let X be a set endowed with two arbitrary multivalued binary
operations & and ® and two fived different points &, and & . Denote by S(X) (resp.
S(X)pr) the set of all (resp. all proper) prime ideals in (X, &, ®) and define the
topologies T+ and T~ on S(X) (resp. T and T, on S(X),,) exactly as in 2.18.
Then the bitopological spaces (S(X),TT,T7) and (S(X)pr, TS, T,,) are abstract

pry Ypry Y pr
spectra.
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Proof. We first prove that the bitopological space (S(X), T, T7) is an abstract
spectrum. For doing this it is enough to show that S(X) is a closed subset of the
Cantor cube D~ (see 2.18).

Let {p, € S(X) : 0 € ¥} be a net in the Cantor cube D~ converging to a
point p € DX. We have to prove that p € S(X), i.e. that p is a prime ideal in
(X,®,®). Let fo = e(ps) and f = e(p) (see 2.17 for the notation). Then the net
{fs,o0 € X} in D converges to f, i.e., for every z € X, the net {f,(x),0 € £} in
the discrete space D converges to f(x).

Let a,b € p. Then f(a) = f(b) = 1. Therefore there exists a o9 € ¥ such that
fo(a) =1 = f5(b) for every o > 0. This means that for every o > oy we have that
a € p, and b € p,. Since p, is a prime ideal, we obtain that a ® b C p, for every
o > 0g. Then, for every x € a ® b and for every o > og, we have that f,(z) = 1.
This implies that f(x) =1 for every x € a @ b. Hence, if x € a ® b then x € p, i.e.
a®bCp.

Let a,b € X and (a ® b) Np # B. Then there exists a © € (a ® b) N p. Hence
f(z) = 1. This implies that there exists a o9 € ¥ such that f,(z) = 1 for every
o > og. Consequently x € p, for every o > op. Then (a ® b) N p, # O for every
o > 0. Hence, for every o > o¢, we have that a € p, or b € p,, i.e. f,(a) =1
or f,(b) = 1. Suppose that a € p and b ¢ p. Then f(a) = 0 = f(b). Therefore,
there exists a 01 € ¥ such that f,(a) = f,(b) = 0 for every ¢ > oy. Since for
every o > sup{og, 01} we have that f,(a) =1 or f,(b) = 1, we get a contradiction.
Hence we obtain that a € p or b € p. So, we proved that p is a prime ideal in
(X, ®,®). This shows that S(X) is a closed subset of the Cantor cube D. Hence,
the bitopological space (S(X), T+, T7) is an abstract spectrum.

If the prime ideals p, in the above proof were proper, then, obviously, p would
be also proper. This shows that the set S(X),, is also a closed subset of the Cantor
cube DX . So, the bitopological space (S(X)pr, T, T,,) is an abstract spectrum. O

Example 2.21. Let (A, +,.) be a commutative ring with unit (0 # 1), zPy be
the ideal in the ring (A4, +,.) generated by {x,y}, and 2®y = .y, for every z,y € A.
Then, applying the construction from 2.20 to the set A with the operations @ and
® and with fixed points 0 and 1, we get the topological space (S(A)pr,ﬂ’z‘,tn). We
assert that it coincides with the classical spectrum of the ring (A, +,.).

Proof. Recall that: a) a subgroup I of the additive group (A4, +) is called an
ideal in the commutative ring (A, +,.) with unit if A.J] = I; b) an ideal p # A in
the ring A is said to be a prime ideal if (z,y € A, v.y € p) = (x € p or y € p);
c) the set of all prime ideals in the commutative ring A is denoted by spec(A);
d) the family Z = {U; = {p € spec(A) : I € p} : I is an ideal in A} is a topology
on the set spec(A), called Zariski topology; e) the topological space (spec(A),Z) is
the classical spectrum of the commutative ring (A, +,.) with unit.

We shall denote by I(M) the ideal in A generated by a subset M of A.

We first prove that the sets spec(A) and S(A),, coincide.
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Let p € S(A)pr. Then 1 ¢ p and hence p # A. If a,b € p then a® b C p, ie.
I({a,b}) C p. Hence, a — b € p. This shows that p is an additive subgroup of A.
Let 2 € A and a € p. Since a ® a = I({a}) C p, we get that z.a € p. fx,y € A
and z.y € p, then (x ® y) Np # 0 and, hence, € p or y € p. Consequently, we
proved that p € spec(A).

Conversely, let p € spec(A) and a,b € p. Then, obviously, I({a,b}) C p and,
hence, a ®b C p. If (a ®b) Np # O then a.b € p. This implies that a € p or b € p.
Since 1 & p, we get that p € S(A),,. Therefore, S(A),, = spec(A).

Now we prove that T = Z.

Let a € A. Then, obviously, U = {p € S(A)pr : a & p} = {p € spec(A) :
I({a}) € p} € Z. Hence, Tf. C Z. Conversely, let U € Z. Then there exists an
ideal I in A such that U = U;. Let p € U. Then there exists an a = a(p) € I\ p.
Hence p € U}. We shall prove that U} C U. Indeed, if ¢ € U} then a &€ ¢
and, consequently, I ¢ g. This shows that ¢ € Uy = U. So, we obtained that
p € US CU. Therefore, Z C ‘J’;‘T. O

Example 2.22. Let (L,V,A) be a distributive lattice with 0 and 1 and let
uwsptzdy={z€l:z<zVytandzy={z¢€L:z>axAy} for
every x,y € L. Then, applying the construction from 2.20 to the set L with the
operations @& and ® and with fixed points 0 and 1, we get the topological space
(S(L)pr, T1). We assert that it coincides with the classical spectrum spec(L) of
the distributive lattice (L, V, A).

Proof. Recall that: a) a sub-join-semi-lattice I of the lattice L is said to be an
idealin Lif (a€ I, b€ Land b <a)= (beI);b)anideal pin L is called a prime
idealif 1 € p and (aAb € p) = (a € p or b € p); c) the set of all prime ideals in L is
denoted by spec(L); d) the family O = {U; = {p € spec(L) : I € p} : I is an ideal
in L} is a topology on the set spec(L), called Stone topology; e) the topological
space (spec(L), ) is the classical spectrum of the lattice (L, V, A, 0, 1).

We first prove that the sets spec(L) and S(L),, coincide.

Let p € S(L)pr. Then 0 € pand 1 ¢ p. If a,b € p then a ® b C p and, hence,
aVbep Letce L,a € pandc<a. Since a € p, we have that a ® a C p and,
consequently, ¢ € p. If ¢,d € L and ¢ Ad € p then (¢® d) Np # (. Therefore ¢ € p
or d € p. So, p € spec(L).

Let p € spec(L) and a,b € p. Then aV b € p and, for all ¢ € L such that
¢ < aVb, we have that ¢ € p. Hence a @b C p. Let 2,y € p and (z @ y) Np # 0.
Then there exists a z € p such that z > x A y. Hence x Ay € p. This implies that
x €pory€p. Since 1 &€ p, we obtain that p € S(L)pr. So, S(L)pr = spec(L).

Now we prove that T} = 0.

Let a € L and I(a) = {z € L : x < a}. Then I(a) is an ideal in L. Obviously,
Ub ={p e S(L)pr : a & p} = {p € spec(L) : I(a) € p} € O. Hence T, C 0.
Conversely, let U € O. Then there exists an ideal I in L such that U = U;. Let
p € U. Then there exists an a = a(p) € I \ p. Hence p € U and we need to prove
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only that U} C U. Let ¢ € U}. Then a ¢ q. Consequently I ¢ g, which means
that ¢ € Ur = U. So, p € U C U. We obtained that O C T.. O

Definition 2.23. Let X be a set endowed with two arbitrary single-valued
binary operations + and x. Let us call a subset p of X an l-prime ideal in (X, +, x)
if the following two conditions are fulfilled:

i) r+yepiffc €pandy € p;
i) tXxy€eEpifft €poryéep.

Let us fix two different points 0 and 1 of X. We shall say that an l-prime ideal
p C X is proper (or, more precisely, proper with respect to the points 0 and 1), if
0€epandl ¢p.

Theorem 2.24. Let X be a set endowed with two arbitrary single-valued binary
operations + and X and two fized different points £, € X and & € X. Denote by
S'(X) (resp. S'"(X)pr) the set of all (proper) l-prime ideals in (X, +, x) and define
the topologies T+ and T~ on S'(X) (resp. Tf. and T, on S'(X),.) exactly as
in 2.18. Then the bitopological spaces (S'(X),T+,T7) and (S"(X)p,, T, T,,.) are
abstract spectra.

Proof. We first prove that the bitopological space (S'(X),T*,T ™) is an abstract
spectrum. For doing this it is enough to show that S’(X) is a closed subset of the
Cantor cube D¥ (see 2.18).

Let {p, € S'(X) : 0 € £} be a net in the Cantor cube D¥ converging to a
point p € DX . We have to prove that p € §'(X), i.e. that p is an l-prime ideal in
(X, 4+, x).

Exactly as in the proof of 2.20, we show that a,b € p implies that a +b € p
and that if a x b € p then a € por b € p.

Let f, = e(ps) and f = e(p) (see 2.17 for the notation). Then the net {f,,o €
%} in D¥ converges to f, ie., for every z € X, the net {f,(z),0 € X} in the
discrete space D converges to f(x).

Let a,b € X and a +b € p. Then f(a +b) = 1. Hence there exists a g € &
such that f,(a +b) = 1 for every ¢ > 0g. Consequently, for every o > o9, we
have that a + b € p,. Then, for every o > oy, we get that a € p, and b € p,, i.e.
fo(a) =1 and f,(b) = 1. This implies that f(a) =1 and f(b) =1, i.e. a € p and
benp.

Let a,b € X be such that a € p or b € p. Suppose that a x b € p. Then
f(axb) =0. Hence there exists a o9 € X such that f,(a x b) = 0 for every o > oy.
This means that for every o > g9, we have that a x b & p,. Consequently, a & p,
and b € p, for every o > op. We obtain that f,(a) = 0 and f,(b) = 0 for every
o > o0g. This implies that f(a) = 0 and f(b) =0, i.e. a € p and b ¢ p, which is
a contradiction. Therefore, a x b € p. Hence, p is an l-prime ideal in (X, 4+, X).
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This shows that S’(X) is a closed subset of the Cantor cube D*. Hence, the
bitopological space (S’(X),TT,T7) is an abstract spectrum.

If the prime ideals p, in the above proof were proper, then, obviously, p would
be also proper. This shows that the set S’(X),, is also a closed subset of the Cantor
cube D™. So, the bitopological space (S"(X ), T4, T,,) is an abstract spectrum.C]

Example 2.25. Let (L,V,A) be a distributive lattice with 0 and 1 and let
us put x +y = xzVyand z Xy = x Ay, for every x,y € L. Then, applying
the construction from 2.24 to the set L with the operations + and x and with
fixed points 0 and 1, we get the topological space (S"(L)p., T,,.). We assert that it
coincides with the classical spectrum spec(L) of the distributive lattice (L, V, A).

Proof. We first prove that the sets spec(L) and S’(L),, coincide.

Let p € S'(L)pr. Then 0 € pand 1 ¢ p. If a,b € p then a + b € p and, hence,
aVbep LetceL,aepand c<a. ThencVa=a,ie c+a€p. Thuscenp.
If c,d € L and ¢ Ad € p then ¢ x d € p. Therefore ¢ € p or d € p. So, p € spec(L).

Let p € spec(L). If a,b € pthen aVb € p,ie. a+b € p. Further, if z,y € L
andx+y €p,thenzVvVyepandz <zVy,y<xVy. Hencex € pand y € p. So,
z+yepiffr €pandy € p. Now,letacporbep ThenaAb<aandaAb<b.
Therefore a Ab € p,i.e. a xb € p. Finally,if z,y € Landz xy € pthenx Ay € p
and, hence, x € pory ep. So,z xyepiff t Epory € p. Since 0 €pand 1 ¢ p,
we obtain that p € S’(L),,. Therefore, we proved that S’(L),, = spec(L).

The proof of the equality ‘.T;‘T = (O is analogous to the proof of the corresponding
statement about S(L),,, given in the proof of 2.22. O

2.3. THE MAIN THEOREM

The main theorem of Section 2, Theorem 2.36 below, will be proved here. For
doing this we need some preliminary definitions and results.

Definition 2.26. Let (S,T7,T7) be an abstract spectrum. For every two
points a,b € S we put a < b iff cligg-y{a} C clgg-){b} (i.e., a < b iff ais a
specialization of b in the topological space (S,T7)).

Remark 2.27. (a) The relation < defined in 2.26 is a partial order on S since
(S,T7) is a Typ-space (see 2.4) and, as it is well known, the specialization is a partial
order on every Tp-space.

(b) It is obvious that a < biff a € cl(g5-){b} iff b € cl(gg+){a} iff cl(g.5+){b} C
cl(s’r‘ﬁ){a}.

(c) It is easy to see that if a € S then cl(gg+y{a} = {b € S :b > a} and
csg-yla} ={be S:b<a}.

(d) If the elements of an abstract spectrum S are prime (or l-prime) ideals de-
fined as in Section 2.2 (i.e. S = S(X), where X is a set with two binary operations),
then a < biff a C b, for a,b e S.
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Lemma 2.28. Let (S,T1,T7) be an abstract spectrum. If the net {a,,o € ¥}
converges to a in (S,T7), the net {by,0 € X} converges to b in (S,TT) and a, < by
for every o € X, then a < b.

Proof. Let U € £ and b € U. Then there exists a o9 € ¥ such that b, € U for
every o > og. Suppose that a ¢ U. Then S\ U € T~ and a € S\ U. Hence there
exists a o1 € ¥ such that a, € S\ U for every ¢ > o1. Putting ¢’ = sup{og, 01},
we obtain that byr € U and a,r & U. Therefore b, & cl(sr+y{ao}, i.e. agr £ by,
a contradiction. Hence a € U. This shows that b € cl(g.5+){a}, i.e. a <b. O

Lemma 2.29. Let (S,TT,T7) be an abstract spectrum. If A C S and (4, <)
is a directed set (where < is the restriction to A of the partial order defined in
2.26), then the set A has supremum in the ordered set (S, <).

Proof. Since (A4, <) is a directed set and A C S, {a,a € A} is a net in the
compact Hausdorff space (S, T) (where T = sup{T+, T }) (see 2.13) and, hence, it
has a cluster point b € S. We shall prove that b = sup{a : a € A} in (5, <). Indeed,
let U € T+ and b € U. Then U € T and for every a € A there exists an a’ € A such
that @’ > a and @’ € U. Hence A C U. This shows that b € cl(g g+){a} for every
a€ A ie b>aforevery a € A. Let now b € S and & > a for every a € A. The
point b is a limit in (S,T) (and, hence, in (S,T7)) of a net {a,,0 € ¥} that is finer
than the net {a,a € A}. Put b, =V for every o € ¥. Then the net {b,,c € X}
converges to & in (S,TT). Since a, < b, for every o € X, we obtain, using 2.28,
that b < b'. Hence, b = sup A. O

Lemma 2.30. Let (S,T1,T7) be an abstract spectrum. If A C S and (A, <')
is a directed set, where <’ is the inverse to the restriction to A of the partial order
defined in 2.26 (i.e. a’ <" a" iff o’ > d”, fora',a” € A), then the set A has infimum
in the ordered set (S, <).

Proof. The proof is completely analogous to that of Lemma 2.29. O

Lemma 2.31. Let (S,T+,T7) be an abstract spectrum. Then for every s € S
there exists an m € S (resp. m' € S) such that s < m (resp. m' < s) and m is

a mazimal (resp. m' is a minimal) element of the ordered set (S, <) (where < is
from 2.26).

Proof. Tt follows from the Zorn lemma and 2.29 (resp. 2.30). O

Notation 2.32. Let (S,T1,77) be an abstract spectrum. We put Maz(S) =
{m € S : m is a maximal element of (S,<)} and Min(S) = {m € S:mis a
minimal element of (S, <)} (where < is from 2.26). We shall denote by T, (resp.
T) the induced by T* (resp. T7) topology on Maz(S), and by T}, (resp. T,)
the induced by Tt (resp. T7) topology on Min(S).
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Proposition 2.33. Let (S,T+,T7) be an abstract spectrum. Then:
(a) (Max(S),T5;) and (Min(S),T;,) are compact Ty-spaces;

(b) (Min(S),T;}) and (Max(S),T,;) are Ty-spaces;

(c) Min(S) is dense in (S,TT) and Max(S) is dense in (S,T7).

Proof. (a) We first prove that (Max(S),T;;) is a compact Tj-space. Since,
for every a € S, clggry{a} = {b € S : b > a} (see 2.27(c)), we obtain that
(Max(S),Ty;) is a Ty-space. Let {a,,0 € ¥} be a net in (Maxz(S),T4;). Then
{as,0 € ¥} is a net in the compact space (S,T1) (see 2.4) and, hence, it has
a cluster point @ € S in (9,7T). Now, we can find a net {a,,0/ € X'} in
(Max(S),T;;) which is finer than the net {a,, o € X} and converges to a in (S, T+).
By 2.31, there exists an o’ € Max(S) such that a < a'. Then o' € cl(gg+){a} and,
hence, the net {a,/,0’ € X'} converges to a’ in (Max(S),T};). This shows that
the net {a,,0 € X} has a cluster point in (Maz(S),T};). Therefore, the space
(Max(S),T3,) is compact.

The proof of the fact that (Min(S),T;) is a compact Ti-space is analogous.

(b) We first prove that (Min(S),T;) is a Hausdorff space. Indeed, let a,b €
Min(S) and a # b. Suppose that for any U,V € LT such that a € U and b € V,
we have that U NV # (. Then the family F = {W € LT :a € W or b € W} has
the finite intersection property (see 2.2) and its elements are closed subsets of the
compact space (S,T7). Consequently there exists a ¢ € (|F. Since LT is a base
for T*, we obtain that a € cl(g5+){c} and b € cl(g5+){c}. Hence ¢ < a and ¢ < b.
Having in mind that a,b € Min(S), we get that ¢ = a and ¢ = b, i.e. a = b, which
is a contradiction. Therefore, (Min(S),T;) is a Hausdorff space.

Analogously, one proves that (Max(S),T,,) is a Hausdorff space.

(c) We first prove that Min(S) is dense in (S,T"). Indeed, let z € U € Tt.
By 2.31, there exists an a € Min(S) such that @ < z. Then x € cl(g,5+){a}. Hence
a € UN Min(S). Therefore, Min(S) is dense in (S,T).

The proof of the fact that Max(S) is dense in (S, T7) is analogous. O

Let us recall the definitions of the coherent spaces and coherent maps:
Definition 2.34. (see, for example, [20]) Let (X, T) be a topological space.

(a) We shall denote by KO(X,T) (or, simply, by KO(X)) the family of all
compact open subsets of X.

(b) A closed subset F' of X is called irreducible if the equality F = Fy U Fs,
where Fy and Fy are closed subsets of X, implies that F' = F} or F = F5.

(c) We say that the space (X, T) is sober if it is a Ty-space and for every non-
void irreducible subset F of X there exists a x € X such that F = clx{x}.

46 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 31-70.



(d) The space (X,T) is called coherent if it is a compact sober space and the
family KO(X,T) is a closed under finite intersections base for the topology
T.

(e) A continuous map f : (X', T") — (X", T") is called coherent if U” €
KO(X") implies that f~(U") € KO(X').

Notation 2.35. We denote by CohSp the category of all coherent spaces
and all coherent maps between them.

Theorem 2.36. The categories S and CohSp are isomorphic.

Proof. We shall construct two covariant functors F' : S — CohSp and G :
CohSp — S such that F oG = IdCoh,Sp and Go F'=Idg.

For every (S,T71,77) € |S|, we put F(S,T77,T7) = (S,T"). We shall prove
that (S,T") € |CohSp|. Indeed, we have: a) the space (S, T1) is compact (by 2.4);
b) KO(S,Tt) = L1 (by 2.5) and hence the family KO(S,T) is a closed under
finite intersections base for the topology Tt (by 2.2 and (SP1) of 2.3). Therefore
we need only to show that (S,T1) is a sober space. We have that (S,T") is a
To-space (by 2.4). Let A be a non-empty irreducible subset of (S,T%). Then A
is a closed subset of (S,T), where T = sup{T+,T~}. Hence, by 2.16, (A, T}, T)
is an abstract spectrum (where T} (resp. T) is the induced by T* (resp. T7)
topology on the subset A of S). We shall prove that |[Min(A)| = 1. Suppose that
z,y € Min(A) and = # y. Let T’ be the induced by T} topology on Min(A).
Since (Min(A),T") is a Hausdorff space (by 2.33(b)), there exists an U € T such
that x € U and y & cl(arinca),7yU. Put B = cliarinca),7yU and C' = Min(A) \ U.
Then B and C are closed subsets of (Min(A),T"), Min(A) = BUC, B # Min(A)
and C # Min(A). Since Min(A) is dense in (A,T}) (by 2.33(c)), we obtain that
A = B'"UC(C’, where B’ = cl(A 7+)B and C' = CZ(A {I+)C’. The sets B’ and C’

A A
are closed in (S,T%) since they are closed in (A,T%) and A is closed in (S, T+).
Moreover, B’ # A and C’ # A, because B’ N Min(A) = B and C' N Min(A) = C.
Since A is irreducible, we get a contradiction. Therefore, |Min(A)| = 1. Let
Min(A) = {a}. Then 2.33(c) implies that A = cl(gq+){a}. So, (S,T%) is a sober
space. We proved that (S,T™T) is a coherent space.

Let f € S((S1,T7,77),(S2,75,75)). We denote by F(f) : S; — Sa the
function defined by F(f)(z) = f(z) for every z € S;. We shall show that F(f) :
(S1,T;) — (Sa,T5) is a coherent map. Indeed, since f is a S-morphism, we have
that F(f): (S1,T) — (S9,75) is a continuous map. Let K C Sy, K € T4 and
K be a compact subspace of (S9,T5). Then, by 2.5, K € £],ie. So\ K € T,.
Hence f~1(K) € T and f~1(Sy \ K) € T, . Since S; \ f~1(K) = f~1(S2 \ K), we
obtain that f~!(K) € £. Consequently, by 2.5, f~(K) is a compact subspace of
(S1,77). So, we proved that F(f) € CohSp(F(S1,T{,T7), F(S2,T4,75)). The
definition of F(f) implies immediately that F' preserves the identity maps and that
F(fog)=F(f)oF(g). Therefore, we constructed a functor F': S — CohSp.
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Let now (S,T1) € |CohSp|, BT = KO(S,T") and B~ = {S\U : U € BT }.
Since Bt is closed under finite intersections and finite unions, we obtain that B~
has the same properties. Obviously, | JB~ = S. Hence the family T of all subsets
of S that are unions of subfamilies of B~ is a topology on S and B~ is a base for the
topological space (S,T~). We shall show that the bitopological space (S, T*,T~)
is an abstract spectrum and we will put G(S,T*) = (S,T+,T7).

It is easy to see that BT C LT and B~ C £~ (see 2.1 for the notation). Since,
by the definition of a coherent space, the family B* is a base for the topological
space (S,TT) and since the family B~ is a base for the space (X,T7), we obtain
that L1 (resp. £7) is a base for (S,T) (resp. (S,T77)). Hence the condition
(SP1) of 2.3 is fulfilled. The condition (SP3) of 2.3 is also fulfilled since (S, T") is
a To-space. Let us put T = sup{JT",T~}. We shall prove that the space (S,7) is
compact. This will imply immediately that the condition (SP2) of 2.3 is fulfilled.

Obviously, for proving that (5,7 is compact, it is enough to show that every
cover of S of the type @ = QU Q~, where Q1 (resp. Q7) is a subfamily of
BT\ {S} (resp. B~ \ {S}), has a finite subcover. Let Q* be the family of all finite
unions of the elements of Q. Then Q* C B, JOQ~ = JQ* and (Q*,C) is a
directed set (i.e. for every U,V € Q* there exists a W € Q* such that UUV C W).
Put H = S\ UQ". Then H C [JO* and H is a closed and, hence, compact
subset of (S,TT). If we find a Uy € Q* such that H C Uy then we will have that
S\Upy C S\ H=OQ". From Uy € B~ we will get that S\ Uy € B* and, hence,
S\ Up will be a compact subset of (S,T") covered by Qt. Consequently there will
be a finite subfamily Q}' of Q1 covering S\ Up. Then Q}' U {Up} will cover S.
Therefore, we will find a finite subcover of . So, it is enough to prove that there
exists an Uy € Q* such that H C Uj.

Put H* = {VNH :V € B*}. Then H" is a base for the subspace H of (S,T),
JH* is closed under finite unions and finite intersections, H* is a distributive lattice
with respect to the operations U and N and, since H is closed in (S, T"), all elements
of HT are compact subsets of (S,TT). Furthermore, for every U € Q* we put
Ut =S8\U. Then Ut € BT for every U € Q*.

Suppose that for every U € Q* we have that H\ U # (). Then HNU™T #£ (
for every U € Q*. Since for every U,V € Q* there exists a W € Q* such that
W+ CUTNVT, the family {HNU™T : U € Q*} has the finite intersection property.
Hence it generates a filter ¢ in H'. Let ® be an ultrafilter in H{™ containing ¢
and let L = ({cl(gg+yW : W € ®}. Then L is a non-empty closed subset of
(S,T%) and L C H. Moreover, L N Wy # () for every Wy € ®. Indeed, let Wy € ®.
Then Wy € H* and, hence, Wy is a compact subset of (S,TT). It is easy to see
that the family {clw,(Wo N W) : W € ®} has the finite intersection property.
Consequently § # O{clw, WonNW): W € @} = WoN({cdg(WoNW) : W € &} C
Won({clgW : W € @} = WyNL. So, we proved that LNWy # 0 for every Wy € .
We shall prove now that L is an irreducible subset of (S, TT). Indeed, suppose that
L = AU B, where A and B are closed subsets of (S,T7%) and A # L, B # L. Then
(H\NA)NL#Qand (H\B)NL #0. Let x € (H\ A)N L. Then there exists a
W' € H* such that z € W/ C H \ A. Since z € L, we obtain that W/ N'W =
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for every W € ®. Consequently W’ € ®. Analogously, taking an y € (H\ B)N L,
we can find a W € ® such that y € W” C H \ B. Putting Wy = W/ NW", we
get that Wy € ®. Since Wy C (H\A)N(H\B) =H\(AUB) = H\ L, we
conclude that Wy N L = () — a contradiction. Therefore, L is an irreducible subset
of (S,T1). This implies, because of the fact that (S, TT) is sober, that there exists
a point [ € L such that L = cl(gq+){l}. We shall show that [ € ({UT : U € Q*}.
Indeed, let U € Q*. Then HNU'T € p C®. Hence UTNL # (. Let z € Ut N L.
Then € Ut € T% and x € L = cl(gg+){l}. Consequently I € U*. So, we proved
that I € ({U™ : U € Q*}. On the other hand we have that l € L C H C |Q* =
U{S\U" : U € Q*} = S\{U" : U € Q*},ie. 1 ¢ {U":U € Q*} — a
contradiction. It shows that there exists a Uy € Q* such that H C Uy. Therefore,
we proved that the space (S, T) is compact and, hence, that the condition (SP2) of
2.3 is fulfilled. So, the bitopological space (S,T+,T7) is an abstract spectrum.

Let f € CohSp((S1,T7),(S2,T5)). We denote by G(f) : S; — So the
function defined by G(f)(z) = f(x) for every x € S;. We shall show that G(f) €
S((S1,71,77), (S2, 74,75 ), where (S;, T, T;7) = G(S;,T), i = 1,2. Indeed,
we have that f : (S1,7]) — (52,75 ) is a continuous map and hence G(f) :
(S1,TF) — (S2,T5) is a continuous map. For proving that G(f) : (S1,T;) —
(S2,75 ) is a continuous map it is enough to show that U € B, implies that
f~YU) € BT (because By (resp. By) is a base for J; (resp. T5)) (here we
use the notation introduced above in the process of the definition of G on the
objects of the category CohSp). So, let U € B, . Then Sy \ U € KO(S2,7T5).
Since f is a coherent map, we obtain that V = f~1(Sy \ U) € KO(S;,T) =
BY. Obviously, V = S; \ f~1(U). Consequently f~1(U) = S; \V € B]. So,
G(f) € S(G(S1,T]),G(S2,T5)). The definition of G(f) implies immediately that
G preserves the identity maps and G(fog) = G(f)oG(g). Therefore, we constructed
a functor G : CohSp — S.

From 2.7 and the constructions of the functors F' and G we get that F o G =
IdCthp and Go F' = Idg. So, the categories § and CohSp are isomorphic. [J

Corollary 2.37. The categories DLat and S are dual.

Proof. Since the categories D Lat and CohSp are dual (see, for example, [20]),
our statement follows immediately from 2.36. g

2.38. Let us recall the descriptions of the duality functors
F':CohSp — DLat and G’ :DLat — CohSp
(see, for example, [20]): if (X, T ) is a coherent space then
F'(X,TT) = (KO(X,T%),u,n,0, X);

if f € CohSp((X1,7T7), (X2, T5)) then F'(f) : F'(Xo,T5) — F'(X1,7T]) is
defined by the formula
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for every U € KO (X2, T5); if (L,V,A,0,1) € |DLat| then
G'(L,V,A,0,1) = (spec(L), 0),

where O is the Stone topology on spec(L) (see the proof of 2.22 for the notation);
if f S DLat((Ll, V1, A1, 01, 11), (LQ, Vo, Ag, 0g, 12)) then

G/(f) : G/(L27 \/Za /\27 027 12) — GI(le \/17 /\17 01; ]-1))
is defined by the formula
G'(f)p) = (p)
for every p € spec(Ls). The natural equivalence v : IdCthp — G’ o F' is given
by the formula (X, T%) = 4 x 5+ for every (X,T") € |[CohSp|, where
Yixgn (X, TT) — (G o F)(X,T1), o~ {UeF(X,T"):2¢U}.

In particular, ¥ x g+ is a CohSp-isomorphism for every coherent space (X, 7).
The natural equivalence ¢ : Idpy1,q¢ — F' oG’ is given by the formula ¢(L) = ¢,
for every L € |DLat|, where

¢ L— (F'oG") L), l—{peG(L):1¢p}.

In particular, ¢y, is a D Lat-isomorphism for every distributive lattice L.

2.4. SOME APPLICATIONS

Let us start with recalling that if L is a distributive lattice with 0 and 1 then
its classical spectrum spec(L) can be interpreted as an abstract spectrum (see 2.22,
2.6 and 2.7).

We will first prove a general theorem.

Theorem 2.39. Let X be a set, S be a family of subsets of X (i.e. S C
Exzp(X)), Tt and T~ be the topologies on S defined in 2.18, and let the bitopological
space (S,T+,T~) be an abstract spectrum. Then there exist a distributive lattice L
with 0 and 1, and a function ¢ : X — L such that:

(i) the set o(X) generates L;
(ii) ¢~1(q) € S for every q € spec(L) (see 2.22 for the notation);
(iii) @ : spec(L) — S, g — ¢~ 1(q), is an S-isomorphism;

(i) if L' is a distributive lattice with 0 and 1, and 6 : X — L' is a function
such that:
(1) 6=1(q) € S for every q € spec(L'), and
(2) © : spec(L') — S, g+ 071(q), is an S-morphism,

then there exists a unique lattice homomorphism | : L — L' with lop=0;
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(v) if p1: X — L1, where Ly is a distributive lattice with 0 and 1, is such
that:

(1) (p1)"(q) € S for every q € spec(Ly), and
(2') @1 : spec(L1) — S, ¢+ (1) 1(q), is an S-isomorphism,

then there exists a unique lattice isomorphisml : L — L1 with lop = @1,

(vi) ¢ :X — L is an injection iff for any two different points x and y of X
there exists a p € S containing exactly one of them.

Proof. We shall use the notation of 2.18, 2.20 and 2.22.

By (the proof of ) 2.36, we have that (S,T) € |CohSp|. We put L = F'(S,T™)
(see 2.38),i.e. L ={U € Tt :U is compact} and, hence, by 2.5, L = £LT. Then L is
a distributive lattice with 0 and 1. Define the function ¢ : X — L by the formula
o(x) = U} for every z € X (recall that U = {p€ S:z & p} and U} € LT (see
2.18 and the part (b) = (a) of its proof)). Hence p(X) (={US :2€ X} =P*")is
a subbase for TT (see 2.18). In what follows, the topological space (S, TT) will be
denoted, briefly, by S.

The proof of (i): Let L* be the set of all finite unions of the elements of the
set BT of all finite intersections of the elements of PT = (X). Then L* coincides
with the subset of L generated by ¢(X) and BT is a base for T+. If U € L then
U is a compact open subset of S and, hence, it is a finite union of elements of BT.
Thus U € L*. Therefore, the set ¢(X) generates L.

The proof of (ii) and (iii): By 2.38, we have that spec(L) = G’'(L). Since the
map ¢g : S — (G'o F')(S),p — {U € L: p ¢ U} is a CohSp-isomorphism (see
2.38), we get that spec(L) = ¢g(95).

Let g € spec(L). Then there exists a unique p € S such that ¢ = ¢s(p). So,
we have that ¢~ '(q) = ¢~ (Ys(p)) = {z € X : p(2) € ¥s(p)} = {z € X : U €
vs(p)} ={re X :pgUf}={z e X:zep}=p ic ¢ '(q) =15 (q) for every
q € spec(L). Since the function ¢§1 is a CohSp-isomorphism, we conclude that
the function ® : spec(L) — S, ¢ — ¢~ '(q), is a CohSp-isomorphism. Now,
(the proof of) 2.36 implies, that ® is an S-isomorphism.

The proof of (iv): Put 7 =g 0 ©. Then, by 2.36 and 2.38,
O : spec(L’) — (S,TT) and 7 : spec(L’) — (G’ o F')(S,TT)

are CohSp-morphisms. Since G'(L') = spec(L’') and F’'(S,T%) = L, we obtain
that F'(1) = F'(©) o F'(¢g) : (F' o G')(L) — (F' o G')(L) (see 2.38). Put
l = ¢} o F'(1) o ¢, (using the notation from 2.38). Then I : L — L' is a lattice
homomorphism. We shall prove that F'(0) o F'(1g) o ¢, o ¢ = ¢ o 6. This
will imply that ¢! o F'(©) o F'(1s) o ¢1, o ¢ = 6 and, hence, we wll have that
0 = 6710 (F/(0)0 F'(1hs)) 0 b0 = (67 0 F/(7)odp)op = Lo, ice. that 0 = log.

Let + € X. Then (¢ 00)(x) = ¢ (0(x)) = {¢ € spec(L’) : 6(z) & ¢'}.
On the other hand, (¢1 o ¢)(z) = ¢r(p(x)) = {q € spec(L) : p(z) & q}. Put

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 31-70. 51



U = (F'(¢s) o ¢r, o )(x). Since ¢g' = & (see the proof of (ii) and (iii)
we get (F'(s))™" = F'(g') = F'(®). Hence (F'(@))(U) = (F'(vs)

(¢1, o p)(x). Now, the definition of F'(®) (see 2.38) implies (F'(®))(U) = &~ H(U).
Hence @~ 1(U) = (¢r o ¢)(x). Since ® is an isomorphism (see (iii)),

v

==
2
3

\/Oq
@
o+
d
Il

P((¢r o p)(w)) = ®({q € spec(L) : p(z) & q}) = {P(q) : g € speC(L o(x) & q} =
{Wl(q) q € spec(L),o(x) & q} = {¢ ' (q) : q € spec(L),x oy =1pe
cx & py = U, i.e U = Uf. Therefore, (F'(¢s) o ¢ o p)(x) = U;. Then

( "(©) o F'(vs) 0 pp o ¢)(x) = (F’(@))((F/(d)s) o gL op)(z)) = (F'(©)(UF) =

O~ US) ={q' € spec(L’) : ©(q') € U } = {q' € spec(L’) : 07 (¢') e U} = {q' €
spec(L’) : 2 ¢ 071(q')} = (¢’ € spec(L’) : 6(x) & ¢'} = (61 © B)(x). So, we proved
that 8 = lo . This, combined with the fact that ¢(X) generates L (see (i)), proves
the uniqueness of .

The proof of (v): Let 1 : X — L has the properties (1) and (2). Then,
using (iv), we obtain a lattice homomorphism [ : L — L; such that { o ¢ = ¢.
From the construction of [, given in (iv), we have that [ = gbgll o F'(3pg 0 ®1) 0 ¢r.
Since ®; is an CohSp-isomorphism (by (2’) and 2.36), we get that [ is a DLat-
isomorphism (because all other components of the composition defining [ are also
D Lat-isomorphisms (see 2.38)).

The proof of (vi): Let z,y € X and « # y. Then p(z) = {p € S : = & p} and
oy) ={p €S :y ¢&p}. Hence, p(z) # p(y) if and only if there exists a p € S
containing exactly one of the points z and y. O

Corollary 2.40. Let X be a set endowed with two arbitrary multivalued binary
operations & and @ and with two fized different points §g € X and & € X. Then
there exist a distributive lattice (L,V,\) with 0 and 1, and a function ¢ : X — L
such that:

(i) the set o(X) generates L;

(ii) ¢~ 1(q) € S(X)p for every q € spec(L) (resp. ¢~ 1(q) € S(X) for every
q € spec(L)) (see 2.20 and 2.22 for the notation);

(iii) ® : spec(L) — S(X)pr, ¢ = ¢ (q) (resp. ® : spec(L) — S(X),
q — ¢ (q)) is an S-isomorphism;

(i) if L' is a distributive lattice with 0 and 1, and 0 : X — L’ is a function
such that:

(1) 6-1(q) € S(X)pr (resp. 0-1(q) € S(X)) for cvery q € spec(L’),
and

(2) © : spec(L') — S(X)pr, g — 071(q), (resp. © : spec(L') —»
S(X), ¢ 07'(q),) is an S-morphism,

then there exists a unique lattice homomorphism | : L — L' with lop=0;
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(v) if v1: X — L1, where Ly is a distributive lattice with 0 and 1, is such
that:

(1) (p1)7'(q) € S(X)pr for every q € spec(L1) (resp. (p1)~'(q) €
S(X) for every q € spec(L1)), and

(2) @1 : spec(Ly) — S(X)pr, ¢ = (91) " (q) (resp. @1 : spec(Ly) —
S(X), g (v1)~q)) is an S-isomorphism,

then there exists a unique lattice isomorphisml : L — Ly with lop = ¢1;

(i) a®bC{zxe X : ¢ <pVed}anda®bC {zre X : ox) >
ola) A p(b)} for any a,b e X.

Proof. Denote by S the set S(X),, (resp. S(X)) (see 2.20 for the notation)
and define the topologies T/}, (resp. T%) and T, (resp. T7) on S as in 2.18. Then,
by 2.20, the bitopological space (S,7.,T,,) (resp. (S,TF,T7)) is an abstract
spectrum. Hence, applying Theorem 2.39, we obtain a distributive lattice

(L,V,A,0,1)

and a function ¢ : X — L satisfying conditions (i)-(v) of 2.39 and, hence, our
conditions (i)-(v) as well. Consequently, we need only to check that condition (vi) is
also satisfied. In what follows, the notation of the proof of 2.39 and the construction
of the function ¢ given there are used.

Let a,b € X and © € a ®b. Then p(a) V ¢(b) = pa) Upb) = {p € S :
agporb¢p}t Hence S\ (pla)Upb) ={peS:acpandbd e p} Let
pep@)=Uf ={peS:z¢gp}and suppose that p’/ ¢g0( )U(b). Then a Ep'
and b € p/. This implies that a @b C p’. Then x € p’ and, hence, p’ & p(x) —
contradiction. Therefore, p’ € p(a)Up(b). This shows that ¢(z) C p(a)Up(b), i
p(x) < @(a) V o(b), for every x € a @ b. Consequently, a b C {x € X : p(z) §
w(a) V @(b)} for any a,b € X.

Let x € a ® b. We have that ¢(a) A ¢(b) = p(a) Np(b) ={p € S :a ¢ p and
b ¢ p}. Let p' € p(a)N(b). Thena & p’ and b & p’. Suppose that p’ & p(z). Then
z € p’ and, hence, (a ® b) N p’ # (. This implies that a € p’ or b € P/, i.e. we get a
contradiction. Therefore, p’ € p(x). So, p(a)Np(b) C p(z), i.e. wla)Ap(b) < p(x)
for every x € a ® b. O

Corollary 2.41. Let X be a set endowed with two arbitrary single-valued
binary operations + and X and with two fized different points &, € X and & € X.
Then there exist a distributive lattice (L,V,\) with 0 and 1, and a function ¢ :
X — L such that:

(i) the set o(X) generates L;
(ii) ©7(q) € S'(X) for every q € spec(L) (resp. ¢~ (q) € S'(X)pr for every
q € spec(L)) (see 2.24, 2.22 and 2.20 for the notation);
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(iii) ® : spec(L) — S'(X), ¢ — ¢ ' (q), (resp. ® : spec(L) — S'(X)pr,
q— v 1(q),) is an S-isomorphism;

() if L' is a distributive lattice with 0 and 1, and 6 : X — L' is a function
such that:
(1) 0=(q) € S"(X) (resp. 0=1(q) € S"(X)pr) for every q € spec(L'),
and
(2) © : spec(L)) — S'(X), q — 071(q) (resp. © : spec(L') —
S"(X)pr, g 071(q)) is an S-morphism,

then there exists a unique lattice homomorphism | : L — L' with lop=0;

(v) if o1 : X — Ly, where Ly is a distributive lattice with 0 and 1, is such
that:

(1) (p1)~'(q) € S'(X) for every q € spec(Ly) (resp. (1)~'(q) €
S'(X)pr for every q € spec(L1)), and

(2') @1 : spec(Ly) — S'(X), g+ (1)~ (q) (resp. @1 : spec(Ly) —
S"(X)pr, g+ (p1)7(q)) is an S-isomorphism,

then there exists a unique lattice isomorphism 1l : L — Ly with lop = @1,
(vi) @(a+b) =¢(a)V p(b) and p(a x b) = p(a) A @(b) for every a,b € X.

Proof. Denote by S the set S’(X) (resp. S'(X),r) (see 2.24 for the notation)
and introduce the topologies T+ (resp. T..) and T~ (resp. T,.) on S as in 2.18.
Then, by 2.24, the bitopological space (S,T+,T7) (resp. (S,7,.,7,,) ) is an ab-
stract spectrum. Hence, applying Theorem 2.39, we obtain a distributive lattice

(L’ \/7 /\7 07 1)

and a function ¢ : X — L satisfying conditions (i)-(v) of 2.39 and, hence, our
conditions (i)-(v) as well. Consequently, we need only to check that condition (vi)
is also satisfied. This can be done easily (see the proof of 2.40). O

3. SEPARATIVE ALGEBRAS

The main aim of this section is to give a detailed exposition of the theory of
separative algebras, introduced and announced by Prodanov in [31]. This theory is
a straight generalization of the theory of convex spaces in the sense of Tagamlitzki
[44], which have been also a subject of Prodanov’s Ph.D. dissertation [36]. We will
follow very closely the style of Prodanov’s proofs from [35] and [36].
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3.1. PRESEPARATIVE ALGEBRAS

Let X # () be a set with two binary multivalued operations denoted by “ x ”
and “+ 7. This means that for any z,y € X, z x y C X and x +y C X. Later on,
instead of “ x” and “+ 7, we shall use “.” and “+ 7, and following the common
mathematical practice, sometimes we shall omit the sign “.”.

We extend the operations “.” and “+ 7 for arbitrary subsets A and B of X
putting

AB= |J abandA+B= |[]J a+b
acAbeB acAbeB

The one element subset {2} C X will be denoted simply by . Then for instance
z(yz) will mean {z}.(y.2).

Definition 3.1. The system X = (X, .,+) is called a preseparative algebra if
X #£0, “ and “+7 are binary multivalued operations in X satisfying the following
axioms: for arbitrary a,b,c,x € X,

(i) ab=ba; (i') a+b=b+a;
(i1) a(bc) = (ab)c; (i) a+ (b+c)=(a+b)+c;
(i1i) from a € b+ z, and c € dx, it follows that (ad) N (b+c) # 0.

By means of the operations “.” and “+ 7, we introduce two new operations as
follows:

division: a/b={r € X :a € b.x} and
difference: a —b={r € X : a € b+ z}.
We extend the operations division and difference for arbitrary subsets putting
A/B= |J ap, A-B= |J a-b
a€A,beB a€A,beB
A

Sometimes instead of A/B we will write A : B or 4.
The following lemma follows immediately from the relevant definitions.

Lemma 3.2. Let “o” be any of the operations “.”, “4+7, “/” and “—". Then
the following conditions are true:

(i) Aell=0eA=0;

(i) IfAC A" and BC B' then Ae BC A' o B';
(ii)) (Uier A1) (Ujey Bi) = Uicr ey Ai @ Bj and, in particular,
(ii'’) Ae(BUC)=(AeB)U(AeC);

() (Mics 4i) o (mjeJ Bj) C ﬂie[,je] A e B;.
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Proposition 3.3. The following is true for arbitrary A, B,C C X:
(i) (A/B)NC #0 if and only if AN (B.C) # 0;
(ii) (A—B)NC #0 if and only if AN (B+C) # 0.

Proof. (i) (A/B)NC #0) = Iz € X: v € (A/B)NC & Jr € X: v € A/B
and x € C & Jr,a,be X ac€ A,be Br €a/band z € C < FJr,a,b € X:
a€ A, beB acbrandzrz e C & dae X: a€ Aanda € B.C & da € X:
a€AN(B.C)& AN (B.C) # 0.

The proof of (ii) is similar. O

Proposition 3.4. The following conditions are true for arbitrary subsets A, B
and C of X:

(i) AB=BA; (i') A+B=B+A;
(ii) A(BC)=(AB)C, (ii') A+(B+C)=(A+B)+C.

Proof. As an example we shall verify (i). The proof of the remaining conditions
is similar.

x € AB & Ja € A € B: x € ab & (by commutativity of “.”) Ja € A
dbe B: x €ba & x € BA. O

Associativity enables us to write A;.As.... A, and Ay + Ay +-- -+ A, without
parentheses.

We denote A = A.A... A (n-times) and nA = A+ A+ --- + A (n-times),
putting A! = 14 = A.

Lemma 3.5. The following conditions are true:
(i) A'AT = AT ;
(i') tA+jA=(i+j)A;

(i) (AUB)? = A2UABU B?;

" (AUBUC)? = A2UABUAC U BC U C?;
. 2(AUuB)=2AU(A+ B)U2B;

(ii’)

20AUBUC)=2AU(A+B)U(A+C)U(B+C)u2C.
Proof. (i) and (i’) follow immediately from the definition, and (ii) and (ii’) fol-

low from Lemma 3.2(iii’) and commutativity. O

Proposition 3.6. The following conditions are equivalent to the Aziom (iii)
from the definition of preseparative algebras (see Definition 3.1):

(Z) a+%gm;

C
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(i) a(b—c) Cab—c.

Proof. As an example we show the equivalence of the Axiom (iii) with (i).

((Axiom (iii))—> (i)). Let # € a + 2. Then there exists y € X such that
zr€a+y y€ Land b€ c+y By Axiom (iii), (zc) N (a+b) # 0. Then, by
Proposition 3.3(i), we obtain that z N “TH’ # () and hence z € ‘ITH’. Since z is an
arbitrary element of X, this shows that a + % - “TH’.

((i)— (Axiom (iii))). Let a € b+ x and ¢ € dz. Then 2 € § and c € b+ 5.
Then, by (i), ¢ € b;C, so that ¢N b%c # (). Applying Proposition 3.3(i), we obtain

that (cd) N (b+ c) # 0, which shows that Axiom (iii) holds.

The equivalence of Axiom (iii) with (ii) can be proved similarly by using
Proposition 3.3(ii). O

Proposition 3.7. For arbitrary subsets A, B, C, D of X, the following con-
ditions are true:

- B A+B .
(i) A+3 <55~

J

(i) A(B—C)C AB—C;

(iii) (A/B)/C = A/(BC);

(i) (A—B)—C=A—(B+O);
A C _A+C

) 5+*5SBD’

(vi) (A—B)(C —D)C AC — (B + D).
Proof. (i) and (ii) are extensions of Proposition 3.6, (i) and (ii), for arbitrary
sets and follow directly from Proposition 3.6.
(iii) Let = be an arbitrary element of X. Then, applying Proposition 3.3(i), we
obtain that
x€(A/B)/C = (A/B)/CNz#£B(A/B)NCx £ 0 < AN (BCz) #0
S AN(BCO)r £0 < (A/(BO) Nz #0 < xe A/(BC).

Hence, (A/B)/C = A/(BC).
(iv) The proof can be done similarly by applying Proposition 3.3(ii).
A C - A/B+C c (A+C)/B  A+C

(v) 5 + D < D C ) = 35D We have applied two times
(i) and then (iii).
(vi) The proof goes similarly by applying two times (ii) and then (iv). O
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3.2. FILTERS AND IDEALS IN PRESEPARATIVE ALGEBRAS

Definition 3.8. Let X = (X, .,+) be a preseparative algebra. A subset FF C X
1s called a filter in X if F.F C F. A subset I C X 1is called anideal in X if [+1 C I.
A subset F' C X is called a prime filter in X if F is a filter and the complement
X\ F of F is an ideal in X. Dually, a subset I C X is called a prime ideal in X
if I is an ideal and X \ I is a filter in X.

Obviously the empty set () and the whole set X are examples of a filter, ideal,
prime filter and prime ideal. They are in some sense trivial examples. Nontrivial
examples of filters and ideals will be given by the constructions u(A) and a(A)
below. Constructions of prime filters and prime ideals will be given in Section 3.4
for separative algebras.

The following lemma follows immediately from the definitions of filter and
ideal.

Lemma 3.9. The intersection of any set of filters (ideals) is a filter (ideal).

Let A C X. We define pu(A) - the multiplicative closure of A, by putting p(A)
to be the intersection of all filters containing A. By Lemma 3.9, u(A) is the smallest
filter containing A. Analogously, the intersection of all ideals containing A, denoted
by a(A) and called the additive closure of A, is the smallest ideal containing A.

Lemma 3.10. The following claims are true:

(i) p(A)=UZ, A%

(i) a(A) =U7Z,iA;
(ii) a) If F is a filter, then F = p(F);

b) If AC B, then p(A) C j(B) ;

c) ACu(4);

d) p(u(A)) = n(A),

e) p(AUB) = pu(A)Upu(A)u(B) U u(B); if F and G are filters, then
w(FUG) = FUFGUG; if F is a filter and a € X, then u(FUa) =
FUPF.p(a)Up(a).

(ii')

a) If I is an ideal, then I = (1) ;

b) If AC B then a(A) C a(B);

¢) ACa(d);

1) ala(4)) = a(A)
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e) a(AUB) = a(A)U (a(A) + a(B)) Ua(B); if I and J are ideals,
then a(IUJ) =TU I+ J)UJ; if I is an ideal and a € X, then
a(IUa)=TUILa(a)Ua(a).

Proof. (i) To prove the equality (i) it suffices to show that |J;-, A is the
smallest filter containing A. By Lemma 3.2(iv), we have ([J;o; 4%).(Uj2; A7) C
Urgor ANA7 = U752, AT C (U2, AY), so Uz, A is a filter, which obviously
contains A. To prove that | J;=, A* is the smallest filter containing A, let a be a
filter and A C a. Applying Lemma 3.2(ii), we can show by induction on i that
A C o C o and consequently Ufil Al C a.

(i) can be shown similarly.

(ii) The proof of the conditions a), b), c) and d) follows directly from the
definition of p. To prove condition e), we shall show that the set F U FG UG,
where F' = u(A) and G = u(B), is the smallest filter containing A U B.

By Lemma 3.5(ii), we obtain

(FUFGUG)*=F?*UF?GUFGUF*G*UFG?*UG?* C FUFGUQG.

This shows that F'U FG UG is a filter containing F' and G and hence A and B. To
show that F'U FFG U G is the smallest filter containing A and B, let v be a filter
such that A C v and B C ~, so we have FF C v and G C . Then FUG C 7,
FG C vy C v and consequently FU FG UG C ~.
The proof of (ii’) can be obtained in a similar way. O
Proposition 3.11. Let F be a filter and I be an ideal. Then:
(i) F —1 is a filter;
(i') L is an ideal ;
(i) IfIN(F—1)#0, then FNT#0;
(iti) IfFNL#0, then FNI#0;
(w) If(F—1)N+% #0, then FNI # 0.

Proof. We prove only (iv); the proofs of the other conditions are similar. Ap-
plying Proposition 3.3, we obtain:

(F—DNL#0+— FN({I+ %) #0;since I + L € 5L C L we get that
Fn&#0. O

Lemma 3.12. If u(A) N«a(B) # 0, then there exist finite subsets A’ C A and
B’ C B such that u(A") Na(B') # 0.
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Proof. Let
w(A)Na(B) # 0. (3.1)

By Lemma 3.10(i),(i’), we have that

A =JA" and (3.2)
=1
«(B) = U jB. (3.3)

From (3.1), (3.2) and (3.3), we obtain that for some z € X, z € [J;=,; A* and
T € U;il jB. Then for some 7 and j we have that

re A and (3.4)
x € jB. (3.5)
It follows from (3.4) that there exist a set A’ = {a1,...,a;} C A such that
x €{a1,...,a;}. From here we obtain that {a;...a;} C u(A’) and consequently
x e u(A’) C (A). (3.6)

In an analogous way we obtain from (3.5) that there exists a finite subset
B’ ={b1,...,b;} C B such that

r € a(B’) C a(B). (3.7)
Then from (3.1) and (3.6) and (3.7) we obtain
W(A) N a(B) £ 0 (3.5)

Thus, for some finite subsets A’ C A and B’ C B, we have u(A')Na(B’) #0. O

3.3. SEPARATIVE ALGEBRAS

Let X = (X, .,+) be a preseparative algebra. For z,y € X define

v <y iff pl@)naly) #0.

Definition 3.13. A preseparative algebra X = (X, ., +) is called a separative
algebra if the following axiom is satisfied:

(Sepo) The relation < is transitive.

A separative algebra X is called a convex space if the operations “.” and “+7
coincide. In this case the filters and the ideals are called convex sets and the prime
filters correspond to the notion of half-space.
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Convex spaces have been studied by several authors: Tagamlitzki [44], Pro-
danov [34] and [35], Bair [1], Bryant [3], Bryant and Webster [4].
We will now give several examples of separative algebras.

Example 3.14. Let L = (L, V, A, 0, 1) be a distributive lattice and for z,y € X
defme x xy={z€L:z2>xAy}landx+y={z€ L:z<zxVy} (see Example
2.22). Then X is a separative algebra.

Example 3.15. Let X = (X, 1,+,.) be a commutative ring and for z,y € X
define x x y = z.y and x + y = A(z,y) , where A(x,y) is the ring-ideal generated
by the set {x,y} (see Example 2.21). Then X is a separative algebra.

Example 3.16. Let X be a real linear space. For arbitrary a,b € X, we set
axb=a+b={ta+(1—1t)b:0<t <1}. Then X is a convex space.

Apart from these starting examples, there is a number of other ones. It seems
that whenever we have a satisfactory theory of prime ideals, then there is also a
structure of separative algebra.

Example 3.17. Let X be an ordered linear topological space. Then X is a
separative algebra with respect to the operations
axb={xeX:3yecabwith z <y},
a+b={x € X : Iy € ab with z > y},
where ab = {ta+ (1 —t)b: 0 <t <1}.

Example 3.18. Let X = (X,.) be a commutative semigroup. Then X is a
convex space.

The following lemma for filters and ideals is very important.

Lemma 3.19. Let X be a separative algebra. Then for any A,B C X and
x € X, we have that if p(A) Na(BUz) # 0 and p(z U A) N a(B) # 0, then
w(A)Na(B) # 0.

Proof. Suppose that the lemma does not hold and proceed to obtain a contra-
diction. Then for some A, B C X and x € X we have that

uw(A) Na(BUz) # 0, (3.9)
pwlzUA)Na(B) #0, and (3.10)
u(A)Na(B) = 0. (3.11)

By Lemma 3.10((ii)e),((ii")e), we obtain:

U A) = p(A) U p(A)p(z) Up(z) and (3.12)
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a(BUz) =a(B)U (a(B) + a(z)) U a(z). (3.13)

From (3.9), (3.11) and (3.13), we obtain that
cither (a) p(A) N (a(B) + a(z)) # 0,
or ) 1(A) Na(z) # 0.

10), (3.11) and (3.12), we obtain that

(b
From (3. 1
either (a’) (u(A)p(r)) Na(B) # 0,
or  (b') u(z) Na(B) # .

So, we have to consider and to obtain a contradiction in each of the following

)N
)N
3.
A

combinations of cases: (a,a’), (a,b’), (b,a’) and (b,b’). As an example we shall
treat of only the case (a,a’) - the remaining cases can be treated in a similar way.
For the sake of brevity, we put F' = u(A), I = a(B); note that F is a filter and T
is an ideal. Now (a) and (a’) become:

(a) FN (I + «a(z)) #0 and
(@) IN(F.u(z)) # 0.
Applying Proposition 3.3 to (a) and (a’), we obtain

wu(z) N % # () and (3.14)

alz)N(F —1)#0. (3.15)
By (3.14), we conclude that there exists y € X such that

y € p(z) and (3.16)
UAS % (3.17)

By (3.15), we obtain that for some z € X we have
z € ax) and (3.18)
zeF—1 (3.19)
Conditions (3.16) and (3.18) are equivalent respectively to

yNup(z) # 0 and (3.20)

zNa(z) #0. (3.21)
Since y C a(y), using (3.20), we get

u(x) Naly) # 0 (3.22)

and, consequently, z < y.

62
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Since z C u(z), using (3.21), we get

u(z) Na(z) #0 (3.23)

and, consequently, z < x.
Now, by the axiom (Sepy), we obtain that z < y and, consequently,

u(z) Naly) # 0. (3.24)

By Proposition 3.11(i), F'— I is a filter and since, by (3.19), z € F' — I, we get
that

p(z) CF -1 (3.25)
By Proposition 3.11(i’), £ is an ideal and since, by (3.17), y € &, we get that

I
aly) C ¥k (3.26)

From (3.25) and (3.26), we get that

p(z)Naly) € (F—1) 0+ (3.27)

By (3.24) and (3.27), we obtain that

I
(F-1)n 5 #0. (3.28)
Applying Proposition 3.11(iv), we obtain that FNI # 0, i.e. u(A)Na(B) # 0,
which contradicts (3.11). This completes the proof of the lemma. O

Corollary 3.20. If F is a filter, I is an ideal and F N1 = (), then, for any
z € X, either f(FUz)NI =0 or FNa(IUz)=0.

3.4. SEPARATION THEOREM

Definition 3.21. Let X = (X,.,+) be a preseparative algebra. The following
statement is called the Separation principle for X :

(Sep) If Fy is a filter, Iy is an ideal and Fo NIy = O then there exist a prime
filter F and a prime ideal I such that Fy CF, Io C T and FN1I = (.

The main aim of this section is the following:

Theorem 3.22. (Separation theorem for separative algebras) Let X = (X, ., +)
be a separative algebra. Then X satisfies the Separation principle (Sep).
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Proof. Let Fy be a filter in X, Iy be an ideal in X and Fy NIy = 0.

Let M = {F : Fis afilter in X, Fy C F and FNIy = 0}. It is easy to see that
M with the set-inclusion C is an inductive set and hence, by the Zorn lemma, M
has a maximal element, say F'.

Let N ={I: Iisanideal, Iy C I and FNI = (}. The set N supplied with
the set-inclusion is also an inductive set and hence, by the Zorn lemma, it has a
maximal element, say I. We shall show that F' is a prime filter and I is a prime
ideal.

Since F' is a filter, I is an ideal and FF NI = {), it is enough to show that
FUI = X. Let v € X. We shall show that either x € F or z € I. Since FNI =0,
Corollary 3.20 implies that either p(FUz)NI =0 or FNa(lUzx)=0.

Case 1: u(FUz)NI = (. Since Iy C I, we obtain that u(FUx)NIy = §. We also
have that Fy C F C u(F Uxz). From here we obtain that the filter u(F Ux) € M.
By the maximality of F' in M, we obtain that u(F Ux) = F, and hence x € F.

Case 2: FNa(IUz) = 0. Since Iy C I C a(IUx), we obtain that a(IUz) € N.
Then, by the maximality of I in N, we obtain that a(f Ux) = I, and hence z € I.
So we have found a prime filter F' O Fy and a prime ideal I D I such that
FNI=(, which proves the theorem. O

Let us note that Theorem 3.22 generalizes a few well known statements: the
Stone separation theorem for filters and ideals in distributive lattices [42] and in
Boolean algebras [41], as well as the separation theorem for convex sets in convex
spaces from [44].

Theorem 3.23. Let X = (X, .,+) be a preseparative algebra. Then the fol-
lowing conditions are equivalent:

(i) X is a separative algebra ;
(ii) X satisfies the Separation principle (Sep).

Proof. The implication (i)——(ii) is just Theorem 3.22. For the converse
implication (ii)—(i), we have to show that (Sep) implies (Sepg) (see Definition
3.13 for (Sepp)). So, let a,b,c € X,

a <b (ie., pla)Na(d) #0) and (3.29)
b<c(ie., ud) Nal)#0) (3.30)

and suppose that
ac(ie, pla)Nale) =0). (3.31)

Then (3.31) and (Sep) imply that there exist a prime filter F' and and a prime ideal
I such that
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FAI=0(ie. X\ F=1), (3.32)
p(a) C F and (3.33)

ale) C I (3.34)
From (3.29) and (3.33) we obtain

Fna(b) #0. (3.35)
From (3.30) and (3.34) we obtain

u(d)yNI#9. (3.36)
For the element b we have, by (3.32), that either b€ F or b € I.

Case 1: b € F. Then u(b) C F and, by (3.36), we obtain that FNI # () - a
contradiction with (3.32).

Case 2: b € I. Then «(b) C I and, by (3.35), we obtain that FN I # ) - again
a contradiction with (3.32).
This completes the proof of the theorem. O

We shall conclude this section by showing that the Separation theorem is
equivalent to the following statement, which is a generalization of the well known
Wallman’s lemma:

Theorem 3.24. Let X = (X,.,+) be a preseparative algebra. Then the fol-
lowing conditions are equivalent:

(i) X is a separative algebra;

(ii) (Wallman’s lemma) Let M be a filter in X and let, for any prime filter
F D M, an element xp € F be chosen. Then there exists a finite number
of prime filters F; 2 M,i=1,...,n, such that MNa({xp,,...,zr,}) #0D.

Proof. (i)—=(ii). Let X be a separative algebra and M be a filter in X. Denote
by N the set of all elements xp, chosen as in the condition of the Wallman’s
lemma. Then M N «(N) # (. To prove this suppose the contrary. Then there
exists a prime filter F' O M such that FNa(N) = (). But this is impossible because
zp € N C a(N). So, M Na(N) # 0. Now, by Lemma 3.12, there exists a finite
subset {zp,...,xp, } C N such that M Na({zp,...,zp,}) # 0.

(ii)—(i). Suppose the Wallman’s lemma. We shall prove the Separation
principle (Sep). Suppose, for the sake of contradiction, that (Sep) does not hold.
Then, for some filter Fy and some ideal Iy such that Fy N Iy = (), we have that
any prime filter F' extending Fj has a non-empty intersection with Iy, i.e, there
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exists zp € F N Iy. Then, by the Wallman lemma, there exists a finite set
{zp,...,xp,} such that Fy N a({zm,...,zr,}) # 0. But {zp,...,zr,} C I,
so that a({zp,,...,zr, }) C Iy, which implies Fy N Iy # (), a contradiction. O

3.5. STANDARDIZATION OF THE OPERATIONS

Here we shall consider two couples of natural operations in a given separative
algebra.

Let X = (X,®,®) be a separative algebra and, for any a,b € X, define the
following two new multivalued operations, called convex operations:

a.b = p({a,b}) and a + b = a({a, b})

Theorem 3.25. If X is a separative algebra then it remains separative algebra
with respect to its convexr operations.

Proof. The easy proof follows from the observation that the filters and ideals
with respect to convex operations remain the same. U

Let X = (X,®,®) be a separative algebra.For any A C X, let u,(A) be the
intersection of all prime filters containing A, and «,(A) be the intersections of all
prime ideals containing A. A subset A of X will be called a radical filter (resp., a
radical ideal) if p,(A) = A (resp., a,(A) = A).

It follows from the Separation theorem that if A is an ideal (resp. filter), then

a(A)={z e X: plx)NA#0D}, (resp., pp(A) ={z € X : alz)NA#0}).
The following two new operations in X are called radical operations:
a.b=p,({a,b}) and a + b = a,({a,b}),
where a,b € X.

Theorem 3.26. If X = (X, ®,®) is a separative algebra, then it is a separative
algebra with respect to its radical operations as well.

The proof follows from the observation that the filters and ideals with respect
to the radical operations are the radical filters and radical ideals with respect to
the initial operations, but the order < do not change. To show this, note that
to(a) = pp(p(a)) and a,(b) = ap(a(b)). Then, by the above observation, we have
that

tp(a) = pp(p(a)) ={z € X : a(z)Np(a) #0} ={zr € X: a <z} and
ap(b) =ap(ad) ={z e X: pz)na®d) #0}={zreX: z<b}
Then pi,(a) Nay,(b) # 0 iff 3z: a <z and x < b iff a < b. O
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3.6. CANONICAL REPRESENTATION

Let X be a separative algebra. Then X has a canonical representation ¢ :
X — L into a distributive lattice with the properties from Corollary 2.40. Now ¢
has some additional properties.

First of all, the inequality a < b takes place if and only if ¢(a) C ¢(b). There-
fore p(a) = p(b) if and only if the radical ideals containing a contain b. If we do
not distinguish such points (which is natural, if we are interested only in radical
ideals and filters), ¢ becomes an embedding.

Now the operations from Corollary 2.40(v) look in the following manner:

ab={zeX: px)<pla)Ved)}tand a+b={x € X : o(x) > p(a) A p(b)},

where a.b and a+b are the radical operations. In particular, if the initial operations
coincide with radical ones, as it is in Example 3.16, we can get the separative
structure of X from suitable embedding of X into a distributive lattice.

Now, let X be a ring with the separative structure from Example 3.15, and
let ¢ : X — L be the canonical representation. Then L can be identified with
the distributive lattice of all finitely generated radical ideals of X (the whole X
is included), and, for arbitrary a € X, the image ¢(a) is the radical ideal in X
generated by a.

3.7. TOPOLOGICAL VERSION OF THE SEPARATION THEOREM

Definition 3.27. We shall say that a preseparative algebra X = (X,.,+) is
topological, if X is endowed with a topology such that the mappings a.x and a + x
are lower semi-continuous, i.e., for every a € X, the multi-valued maps

Yo : X —X, z—=a+z, and Y,: X — X, z+—ax,

are lower semi-continuous. Recall that a multi-valued map f : X — Y between
two topological spaces X and Y is said to be lower semi-continuous if, for every
open subset U of Y, the set f=1(U) is open in X (here, as usual,

U ={z e X+ flz)NU #0});

equivalently, f is lower semi-continuous if, for every xo € X and every open subset
U of Y with UnN f(zg) # 0, there exists a neighborhood V' of xog in X such that
Un f(z) #0, for every x € V. For a+ x, for example, this means that if a,b € X
and U is an open set with (a +b) NU # 0, then there exists a neighborhood V' of b
such that (a +x)NU # 0, for each x € V.

A topological preseparative algebra will be called a separative space if, for each
open filter U in X, the conditions a(a) NU # 0 and b € u(a) imply a(b) NU # 0.

A separative space X = (X,.,+) is called a topological convex space if the
operations “” and “+7 in X coincide (see [34], [35]).
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Clearly, every separative algebra X endowed with the discrete topology is a
separative space, but there are also analytical examples. Now we shall only note
that if X is a topological preseparative algebra such that the topology of X has a
basis from open filters, then X is a separative space.

The next statement, which we include here without proof, is a topological
version of the Separation theorem.

Theorem 3.28. Let X be a separative space, Iy be an ideal in X and Fy be
an open filter in X such that Fo NIy = 0. Then there exist a closed prime ideal T
and an open prime filter F in X such that Fy CF, Ig C T and FNI = .

For a proof of Theorem 3.28 for topological convex spaces see [44]. We shall
notice only one application of the theorem which uses the separative (not convex)
structure: Example 3.17 and Theorem 3.28 give the classical separation theorem
in ordered linear spaces, and, in particular, the general representation theorem of
Kadison [21].
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We show that for B > 1 and for some constants \;, ¢ = 1,2,3 subject to certain
assumptions, there are infinitely many prime triples p1, p2, p3 satisfying the inequality
[A1p1 + A2p2 + Asps + 1| < [log(maxp;)] P and such that p1 + 2, p2 + 2 and p3 + 2
have no more than 8 prime factors. The proof uses Davenport - Heilbronn adaption of
the circle method together with a vector sieve method.
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1. INTRODUCTION

The famous prime twins conjecture states that there exist infinitely many
primes p such that p + 2 is a prime too. This hypothesis is still not proved but
there are established many approximations to this result.

Throughout, P, will stand for an integer with no more than r prime factors,
counted with their multiplicities. In 1973 Chen [2] showed that there are infinitely
many primes p with p + 2 = P5.

Here are some examples of problems, concerning primes p with p 4+ 2 = P, for
some r > 2.

In 1937, Vinogradov [16] proved that every sufficiently large odd n can be
represented as a sum

P1+p2t+p3=n (1.1)
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of primes py, p2, p3. In 2000 Peneva [10] and Tolev [14] looked for representations
(1.1) with primes p;, subject to p; + 2 = P,, for some r; > 2. It was established in
[14] that if n is sufficiently large and n = 3 (mod 6), then (1.1) has a solution in
primes p1, p2, ps with

pr+2=PFP, po+2=PF, p3+2=P;.

In 1947 Vinogradov [17] established that if 0 < § < 1/5, then there are infinitely
many primes p satisfying the inequality

llap+ ]| < p~°. (1.2)

In 2007 Todorova and Tolev [13] proved that if « € R\Q, 8 € Rand 0 < 6 < 1/100,
then there are infinitely many primes p with p 4+ 2 = Py, satisfying the inequality
(1.2). Latter Matomaéki [8] proved a Bombieri-Vinogradov type result for linear
exponential sums over primes and showed that this actually holds with p+2 = P»
and 6 = 1/1000.

The present paper is devoted to another popular problem for primes p;, which
is studied under the additional restrictions p; +2 = P,, for some r; > 2. According
to R. C. Vaughan'’s [18], there are infinitely many ordered triples of primes p;, pa, p3
with

|A1p1 + Aape + Agps + 1| < (maxp;) "¢

for £ = 1/10,6 > 0 and some constants A;, j = 1,2,3, n, subject to the following
restrictions:

NER, N #£0,i=1,23; (1.3)
A1, A2, A3 not all of the same sign; (1.4)
M/de € R\ Q; (15)
neR. (1.6)

Latter the upper bound for ¢ was improved and the strongest published result is
due to K. Matoméki with & = 2/9.

Here we prove the following result:

Theorem 1. Let B be an arbitrary large and fixed. Then under the condi-
tions (1.3), (1.4), (1.5), (1.6) there are infinitely many ordered triples of primes
P1, P2, p3 with

|A1p1 + A2pz + Asps + 1| < [log(max p;)] " (1.7)

and
p+2=P, p+2=P, p3+2=P.
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2. NOTATIONS

By p and ¢ we always denote primes. By o(n), u(n), A(n) we denote Euler’s
function, Mobius’ function and Mangoldt’s function, respectively. We denote by
7(n) the number of the natural divisors of n. The notations (my, ms) and [my, ms]
stand for the greatest common divisor and the least common multiple of my, ma,
respectively. Instead of m = n (mod k) we write for simplicity m = n(k). As
usual, [y] denotes the integer part of y, e(y) = €™,

0(x,q,0) = Y logp;

p<z
r=a (q)

x
E(x,q,a) = 9(x7qaa) - 7
e(q)
For positive A and B we write A < B instead of A < B < A.
Let go be an arbitrary positive integer and X be such that

X

2 _ >5- .
qO (lOgX)A’ A_5, (22)
1
€= Tog X)F 7T , B > 1 is arbitrary large; (2.3)
I — 1000iogX ; (2.4)
(IOgX)A-H
A = 2.
A (25)
X1/3
D=—"—; 2.6
Tog X7 (2.6)
z=X%, 0<a<l/4; (2.7)
P(z)= ][] »;
2<p<Lz
Si(a) = Z e(ap)logp, 0 < Ao < 1. (2.8)
Ao X <p<X
p+2=0 (k)

The restrictions on A, Ag and the value of a will be specified latter.

3. OUTLINE OF THE PROOF

We notice that if (p + 2, P(z)) = 1, then p + 2 = Pj; /). Our aim is to prove
that for a specific (as large as possible) value of « there exists a sequence X1, Xo, ...
— oo and primes p; € (AoXj, Xj], i = 1,2,3 with [A\1p1 +Xopa + Asps +1| < € and
pi+2= Py, i =1,2,3. In such a way, we get an infinite sequence of triples of
primes p1, po, p3 with the desired properties.
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Our method goes back to Vaughan [18], but we also use the Davenport -
Heilbronn adaptation of the circle method (see [19, ch. 11]) combined with a
vector sieve similar to that one from [15].

We choose a function v such that

v(z)=1 for |z| < e/2;
0<wv(z)<1 for /2 < |z| < ¢ (3.1)
’U((E):O for |.’L'| 25,

and v(z) has derivatives of sufficiently large order.
So if

> v(A1p1 + A2p2 + Asps + 1) log p1 log p2 log ps > 0, (32)

Ao X <py,p2,pP3<X
(p;+2,P(2))=1,i=1,2,3

then the number of the solutions of (1.7) in primes p; € (Mo X, X], pi +2 = P4,
¢t =1, 2, 3, is positive.
Let A (d) be the lower and upper bounds Rosser’s weights of level D, hence

MNE(@)| <1, M(d)=0 if d>D or u(d)=0. (3.3)

For further properties of Rosser’s weights we refer to [5], [6].

Let A; = > 1(d) be the characteristic function of primes p;, such that
d|(pi+2,P(2))
(pi+2, P(2)) =1for i =1, 2, 3. Then from (3.2) we obtain the condition

Z v(A1p1 + A2p2 4+ Asps + n)A1AsAzlogpy logpa logps > 0. (3.4)
Ao X <p1,p2,p3<X

To set up a vector sieve, we use the lower and the upper bounds

Af= > XHd), i=1,23.
d|(pi+2,P(2))

From the linear sieve we know that A; < A; < A (see [1, Lemma 10]). Moreover,
we have the simple inequality

AAsAs > ATAFAT + ATAS AT + AFATA; — 207 ASAT, (3.5)

analogous to the one in [1, Lemma 13]. Using (3.4) we get

> v(A1p1 + A2p2 + Asps + 1)

Ao X <p1,p2,p3<X
x (ATAFAT +ATAS AT + ATATA; —2ATATAT) logpilogpalogps > 0. (3.6)
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Let Y(z) = / v(t)e(—tx)dt be the Fourier transform of the function v defined

— 00

in (3.1). Then

3¢ 1 1 k k
<min (>, —, — [ —" .
(@) “““<2 ’m|’7r|x|(27r|xe/4> ) 3.7)

for all k € N - see [11].
We substitute the function v(A1p1 + Aepz + Asps + 1) in (3.6) with its Fourier
transform:

Y. logpilogpslogps
Ao X <p1,p2,p3<X
X / T(t)e((Ap1 + Aep2 + Asps +n)t) A1 AsAsdt > 0. (3.8)

Our next argument is based on the following consequence of (3.8).

Lemma 1. If the following integral is positive,
I'(X) = / Y)Y e((Aapr+ Xapa + Asps + n)t) log pr log py log ps
oo Ao X <p1,p2,p3<X (39)
X (ATAFAT + ATAS AT + ATATAS —2AFASAT) dt
= Fl(X) +F2(X) +F3(X) — 2F4(X) >0,

then the number of the solutions of (1.7) in primes p; € (MoX, X|, pi +2 = Py/q),
i =1, 2, 3, is positive. Here

o0

I (X) = / T(t) > log p1 log pz log p3
Ao X <p1,p2,p3<X

— 00

x e((Map1 + Aapa + Asps + n)t) AT AT AS dt;

[y (X) = /T(t) > log p1 log p2 log p3
Ao X <p1,p2,p3<X

x e((AM1p1 + Aopo + Asps 4+ n)t) AT A AT dt;

I3(X) = / T(t) > log p1 log pz log p3

Ao X <p1,p2,p3<X

X e((A1p1 + Aapa + Aaps +m)t) AT AT Ay dt ;
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oo

[y (X) = / T(t) > log p1 log p2 log p3

oo Ao X <p1,p2,p3<X

X 6(()\1])1 + Aopo + A3ps + n)t)A;rA;A;)r dt .

We shall estimate I'; (X)), the remaining integrals I'y(X), I's(X), I'4(X) can be
treated in a similar way. Changing the order of summation we obtain

o0

(X)) = / Y(t)e(nt) L™ (Mit, X)LT(Aot, X)L (Ast, X)dt, (3.10)
where
LE(t, X)= Y A%(d) > e(pt)logp. (3.11)
d|P(z) Apoé;g(ﬁd))f

Let us split I'1 (X) into three integrals,
I (X) =T x) + 1P (x) + 18 (X)), (3.12)
where

ri(x) = / Y(te(nt) L™ (Mt, X)L (Aat, X)LT(Ast, X)dt, (3.13)

[t|I<A

r®x) = / Y(t)e(nt) L™ (At, X)Lt (Aot, X)LT(Ast, X)dt, (3.14)

A<|t|<H

' (x) = / Y(He(nt) L™ (\t, X)L (Aot, X)L (Ast, X)dt. (3.15)
[t|>H
Here the functions A = A(X) and H = H(X) are defined in (2.5) and (2.4).

We estimate Ff’) (X), Fgl)(X), F§2)(X)7 respectively, in the sections 4, 5, 6. In
section 7 we complete the proof of the theorem.

4. UPPER BOUND FOR I'¥) (X).

Lemma 2. For the integral ng)(X), defined by (3.15), we have

r'¥x) <1
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Proof. From (2.8) and (3.11) it follows that
L5t X)) < Y0 INE@D)]ISat)] -
d|P(2)

For |S4(t)| we use the trivial estimate

X Xlog X
1Sa(t)) < > 10gX§10gX<d+1> <= +log X

n<X
n+2=0 (d)

Combining with (3.3) we obtain

LAt X) < Y logX<§ + 1> < X(log X)? (4.1)
d<D

k
Bearing in mind that|Y (¢)| < % (271_:5/4) (see (3.7)), from (4.1) and (3.15) one

concludes that

) fif k) _ X*(log X)° ( 2k \* .
r'¥(x) < x3(1 gX)GIZ< )dt ( ) (4.2)

t \ 2mte /4 k reH

The choice k = [log X|] provides log X — 1 < k < log X and by (2.4) it follows

2k \" log X\ 1
<’/T€H> < (6100010gx) < X log 1000 * (43)

Finally, (4.2) and (4.3) imply

r®x) <1 (4.4)

5. ASYMPTOTIC FORMULA FOR I'{" (X).

We will derive the main term of the integral I'; (X) from Fgl)(X). Making use
of (2.8), one expresses the sums (3.11) as

LE(t, X) = Y A5(d)Sa(t). (5.1)

d|lP(2)
We change the order of summation and integration in (3.13) to obtain
MPX) = 30 A (d)AT(d)A" (ds)

(5.2)
y / T (£)e(nt)Say (Mt)Say (Aot) Sy (Ngt)dt

/<A
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Let

S; = Sa,(A\it), (5.3)
) X
I =14,(\t) = / e(Aity)dy , 5.4
Ot = s [ ebty) (54)
)\oX
=Ry = (1+AX E i —2 .
Ri= Ry = (14 AX) max [B(y.d,,~2)]. (5.5

where E(z,q,a) is defined by (2.1). Using (2.6), it is not difficult to prove the

estimate
Xlog X

S; <K d;

. (5.6)

From the inequality % < e7loglogn (see [4, §XVIII, Theorem 328]) we get
the following estimate for |I;]:

| < X <<X10glogX Xlog X
" p(d) d; di

(5.7)

Our aim is to separate the main part of the sum (5.2).

As the first step, we replace the product 515253 by I1 1213, as far as the integral
over I11515 is easier to be estimated. We use the identity

515253 = I1I2I3 + (51 — 11)1213 + 51(52 — IQ)Ig + 5152(53 — .[3) . (58)

Let 2t k. Applying Abel’s transform to Sk(«), one gets

X
d
Sk(a) = — / Z log p.—e(at)dt + e(aX) Z logp.
Ao X <p<t dt Ao X <p<X
AoX Llo=0 (k) p+2=0 (k)

Using (2.1), we have

X
Sp(a) = — / {t;()]\:)X+E(t,k,—2)—E()\0X,k,—2)} %e(at)dt

Ao X

[X—%X + BE(X, k,—2) — E(\X, k, _2)} e(aX)
o(k)
1 T d
o | - — X X)— X — X X)e(aX
S| [ ) Getanan+ (X - xoX)e(e)|
AoX
X
o E(y, k,—2)||a|dt ) + O Elu k. —2
+ (/ye&lf)’?,xﬂ (v, k, =2)[|a| >+ (ye&lf)}c(,)q (v, k, )|>,
Ao X
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whence
X

1
Si(a) = go(k‘)/\,é e(at)dt + O<y€(r/r\1?)><(,x] |E(y, k,—2)|(1+ a|X)> .

Let |a] < A. Then from (5.3), (5.4) and (5.5) we obtain
Si=1I;+0(R;), i=1,2,3. (5.9)
From (5.5) - (5.9) it follows that
max _|E(y,d, —2)|

515585 — I I I3 < (X log X)2(1 + AX) (yE(A“X’X]dzdS
yelax B, do,=2)] - max By, ds, —2)|>
dids dyds
Using (5.2) and the above inequality one gets
r{x)=M" + ORM), (5.10)
where
M® = 37 AT (d)AT (d2) A (d3) / Y(t)e(nt) s (Mt) o (Mat) Is(Ast)dt, (5.11)
ey H1<a

max By, di, ~2)

RM =(Xlog X)*(1+AX) |A<d1>A+<d2)A+<d3><”e” S

2 3

ey
max |E(y,d2, —2 max |F(y,ds, —2

B e NI N
d1d3 d1d2 .

ltI<A

3
Let us estimate R, Since |T(t)| < ; (see (3.7)), we find / |T(t)|dt < eA.

[t]<A
Then using (3.3) we obtain

ye(Mo X, X

R <eA(Xlog X)*(1+AX) > o
203

< max ]IE(y,d17—2)|

ye(No X, X] + ye(No X, X
d1d3 d1d2

max |E(y,d2,—2)]  max ]IE(y7d37—2)|> (5.12)

< eA(1+ AX)X?(log X)* max |E(y,d,—2)|.
a<D yE(Mo X, X]
2td
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We shall use the following well-known result.

Theorem 2 (Bombieri - Vinogradov). For any A > 0 the following in-
equality is fulfilled (see [3, ch.28]):

X
(log X)©"

ma; ax |F
> max max |B(y, g, a)‘ <

1
g<X % /(log X)O+5

We apply the above theorem with C' = 4A + 5 to the last sum in (5.12). Using
(2.6) and (2.5) we obtain

X eA2X?
RW A 2 4 . .
< eA(l+AX)X*(log X) (log X )1A75 < (Tog X)iA+1 (5.13)
Then from (5.10) and (5.13) it follows
2 y4
(1) ) eA”X
I'i(X)—M _ .14
As a second step we represent M) in the form
A7 (d1) AT (do) AT (d3)
MO = B(X)+R, 5.15
2 et ") (515)
where
0o X X X
B(X) = / T@)d’?’«‘)( / / / e(t )\1y1+)\2y2+/\3y3))dy1dy2dy3>dt (5.16)
—0o0 20X Ao X Ao X
0o X X X
R ’/T(t)e(nt)( / e(Atyr)dys / e(Aatya)dys / e()\gtyg)dyg) dt’
A Ao X Ao X Ao X
A~ ( d2) A (d3)|
X .
d%(:z) ( ) (dS)
+=1,2,3
. X 1 3e .
On using | [ e(Aty:)dy;| < —— and |Y(¢)] < = (see (3.7)) we obtain
Ao X |>\i\ t 2

£ [A™ (d1)A" (d2)A " (ds)]
fi< 2(]1.‘;@ o(di)p(d2)p(ds)

i=1,2,3

From (2.6), (3.3) and the equality

1
> —— =Clogz+C'+ 0@z ')
¢(n)

n<z
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(see [9, ch. 4, §4.4, ex. 4.4.14]), we find

€ 1 elog® X
R< 55 Z};m <5 (5.17)

From (5.15) and (5.17) we obtain

A~ (d) AT (do) AT (d3) clog® X
savsasea o7 a)

MY =B(X) >

and from (5.14) we have

r(x) =Bx) 3 /\_Eidl)) 3 A*(do) > At (ds)
d2|P(z)

sy P Plda) iy #lds) (5.18)
elog® X eA2X4
~o(%5) o)
log” X A2x1
The function A defined by (2.5) is such that < (EQ = (102; XA Therefore,
using (2.3), (2.5) and (5.18), we find
- + +
r(x) = B(X) 3 A~ (dy) 3 AT (do) 3 AT (ds)
¢(d1) o(d2) o(ds)
d1|P(2) dz| P(z) ds|P(z) (5.19)
X2 '
+ 0| —57 |-
(log X )2A+B
Let A (d)
GE= Y : (5.20)
d
iy P
Then from (5.19) and (5.20) it follows
X2
1 _
r'(x) = B(X)G~(G")* + O<W> . (5.21)

We conclude this section with the following lemma:

Lemma 3. If (1.3), (1.4) hold and

. /\1 /\2 1
>\ < ) Yy T )
0 mm@usaaw>

then B(X) defined by (5.16) satisfies

B(X) > eX?,

and the constant in “>7 depends only on A1, A2 and As.
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Proof. Let us consider B(X). We change the order of integration and use that
Y (t) is Fourier’s transform of v(t) to obtain

X X X

B(X) = / / / v(My1 + Aoy2 + Asys + n)dy1dyzdys .
MoX Ao X Ao X

From the definition (3.1) of v follows the inequality
B(X) = // dyrdyadys = B1(X), (5.22)
%

where
V= {|>\1y1 + >\2y2 +)\3y3 +T]‘ < 5/27>\0X S Y; S X7] = 17273} .

Since A1, A2, A3 are not all of the same sign, we may assume that Ay > 0,y > 0
and A3 < 0. We substitute A\1y1 = 21, Aoy2 = 29, A3y3 = —=z3, then

1
X)= —— dz1dzod 2
By (X) mug/// 21dzadzs (5.23)
V/

with V' = {(2172’2,23) : |21+22—23+’r]| < 6/2, )\0|)\le < Zj < ‘)\le, j= 1,2,3}.
Set

Sl L 2l
gl - )\1 ) 52 - )\2 ;

gi = 2617 gé = 252 ’

. A1 Ao 1
Ao < min <4|A3 IR 16) '

Then \g < & <& <1, <& <<,
Ao X < §1>\1X <z1 < fi)\lX < )\1X,
AoA2 X < €A X <29 < fé)\gX < A X, (524)
)\0|)\3|X < z1+ 22 75/2+T] <z3 < 21 +22+€/2+?’] < |>\3|X,
and from (5.22), (5.23) and (5.24) there follows
X XX zitaate/24
1M X S22 X zitzo—e/247n
= (& — &)NX (& — &M X = 403N X
>eX?.
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6. UPPER BOUND FOR I'\?(X).

We shall use (2.6) and the following lemma:

Lemma 4 ([13, Lemma 1], [15, Lemma 12]). Suppose a € R\Q with a
1

< —, where (a,q) =1, > 1, a # 0.
q

Let D be defined by (2.6), £(d) be complex numbers defined for d < D and {(d) < 1.
If

. . . a L a
rational approximation — satisfying | — —

) =Y e 3 elop)logp, (6.1)
d<D X/2<p<X
p+2=0 (d)

then we have

37 X X
8(X log X ST —C VeV
(X) < (log X) <q1/4 + (log X)A72 + q

Let us consider any sum L¥(a, X) denoted by (3.11). We represent it as sum
of finite number of sums of the type

L, V)= Y €@ 3 elap)logp.

d<D Y/2<psY
p+2=0(d)
where @), i dP()
;i P(z),
§(d) = { 0, otherwise.
We have
L*¥(a, X) < max L(a,Y).
A X <Y <X
It X
log X)*, ——— 2
0 |toe X, s (6.2
then from the above lemma for the sums L(a, Y') we get
L(a, Y Y 6.3
(Oé, )<< W ( . )
Therefore
Y X
+
L (Oé, X) < )\())?%a};(SX (lOgY)A/4—37 < (1OgX)A/4_37 .
Let
V(t, X) = min {|L*(\it, X)|,|L*(\at, X)|}. (6.4)

We shall need the following result:
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Lemma 5. Lett, X, A\, A2 € R,
tl € (A, H), (6.5)

where A and H are defined by (2.5) and (2.4), let A1, A2 satisfy (1.5) and V(t, X)
be defined by (6.4). Then there exists a sequence of real numbers X1, Xo, ... with
lim X,, = oo such that

X

M =12, (6.6)
(log X,) 47157

V(t, X)) <

Proof. Our goal is to prove that there exists a sequence X1, Xo, ... — oo such
that for every j € N at least one of the numbers A1t and A\ot, with ¢ fulfilling (6.5),
can be approximated by rational numbers with denominators satisfying (6.2). Then
the proof follows from (6.3) and (6.4).

A
Since )\—1 € R/Q then, by [12, Corollary 1B], there exist infinitely many frac-

2
a . .
tions — with arbitrary large denominators such that

q0
/\1 ap 1
———|< 5 =1. 6.7
)\2 @ qg ) (a07 qO) ( )
Let qo be sufficiently large and X be such that ¢ = LA see (2.2)). Let us
(log X)
notice that there exist a1, ¢1 € Z such that
ay 1 2
Mt — — <—3, (al,ql)zl, 1<q <qp, a1 #0. (68)
Q1 q14q

The Dirichlet theorem (see [7, ch.10, §1]) implies the existence of integers a; and
1

q1 satisfying the first three conditions in (6.8). If a; = 0, then |\t| < — and
q14,

0
from (6.5) it follows

1 1
MA < Mt < =, 2o — .
1 /] e G < 3
From the last inequality, (2.2) and (2.5), one obtains

X X
(log X)4 = Ai(log X)A+1”

which is impossible for large qg, respectively, for a large X. So a1 # 0. By analogy
there exist as, g2 € Z, such that

< —, (a2, q2) = 1, 1<q2<qp, as #0. (6.9)
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X
If ¢; € |(log X)4, W for i =1 or ¢ = 2, then the proof is completed.

From (2.2), (6.8) and (6.9) we have

X 9 .
Qifmz%v i=1,2.

Thus it remains to prove that the case
¢ < (logX)*, i=1,2 (6.10)

is impossible. Let ¢; < (log X)#, i = 1,2. From (6.8), (6.9) and (6.10) it follows
that

1 1
1 <|ag] < 5 +q\ilt] < 5 + Nl
q0 qp

6.11)
1 1000(log X )41\, (
1< Jai| < — 000(log X) L i=1,2.
q0 €
We have
al a1
— 4+ (Mt ——
ﬁzﬁqu (1 Q1):a1q2.1+‘31 (612)
A2 Aot az + (Azt - a?) asqn 1+%7 '
a2 q2
where T, = £ (/\it - a> ,i=1, 2. From (6.8), (6.9) and (6.12) we obtain
i 1 1 1
|T7|<q 5 = 2§727 1=1,2,
il qiqg  lailag ~ 4
1
1y o(z)
A1 a1qo %) _ 92 1
Ao axq 1\ aq * @
o o1 ;
90
Thus %2 — O(1) and
az2q1 N )
1:‘“qz+0<2). (6.13)
A2 a2qu 9
. ag aigo . A1 .
Therefore, both fractions — and —— approximate —. Using (6.9), (6.10) and
q0 azsqq A2
inequality (6.11) with ¢ = 2 we obtain
1000(log X)?4+1 )
laslqr < 1+ (log X) 2 < (log X)2A+B+2 o D (6.14)
€ log X
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0 |as|q1 # qo and the fractions 90 and X% are different. On using (6.14) we
do a2q1
obtain ) low X
apg a apasqi — a o
Qo Mq2| _ lapazqa 14290 > > g2 ) (6.15)
go G201 |laz|q1q0 laz|q190 40
On the other hand, from (6.7) and (6.13) we have
W _ @) o M| A a1
Q@ axqi|” |q A2 A2 avq @’

which contradicts (6.15). Therefore (6.10) can not happen. Let qél), q((f), ... be
an infinite sequence of values of qg, satisfying (6.7). Then using (2.2) one gets an
infinite sequence X1, Xs, ... of values of X, such that at least one of the numbers
A1t and Aot can be approximated by rational numbers with denominators, satisfying
(6.2). The proof of Lemma 5 is completed.

Let us estimate the integral F?) (X;), defined by (3.14). Using |Y(¢)| < %

(see (3.7)), (6.4) and estimate (6.6), we find

I (x;)<e / V(t, X;)[|L™ (Mat, X;) L (Ast, X5) |+ L (Aat, X5)LF (Ast, X;)[]dt

A<|t|<H

<<€/ V(t,Xj)<|L—(/\1t, X2+ Lot X))+ LT (st Xj)|2> dt
A<|t|<H
EXj

< (log X;)A/4-37 1211?%(3

/ ILE(\t, X;)|% dt.
A<|t|<H
Since the above integral has the same value over the positive and the negative t,

one gets
€Xj

(2)
M) <« (log X ;)4/4=57 1253, Tk

(6.16)

H
1
where 7, = / \Li()\kt Xj)\2 dt. In order to estimate Ty, let y = | \g|t,dt = md:‘/'
k

A
Using |L* (y, X;)|? > 0 one obtains
[l)\le] +1

1
T < — / IL*(y, X;)*dy.
| Ak | )

From (3.11) it follows

ILE(y, X)1P = > A(d)AF(d) D el(pr—p2)y)logpilogps -

;1P (2) X0 X;<p1.pa< X
i=1,2 p1+2=0(dq)
po+2=0(ds)
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1
Te <t AE(d)AE (do)
| k| d;|P(z)
i=1,2
[Ixwla] +1 (6.17)
X § log p1 log ps / e((pr — p2)y)dy -
A0Xj<p1,p2<X; 0
p1+250(d1)
p2+250(d2)

Since e(my), m € Z is periodical with period 1, there holds

[Inla]+1 .
/ +e<<p1—p2>y>dy= ( ] +1) [ei=piniy. 619

From

1
]-7 lfpl =Dp2,
e((p1 —p2)y)dy = .
0/ (1 =p2)y) {07 if p1 # pa,
(6.18) and (6.17) one gets

zo< DHELEL S~ syt S (ogn)?.

| k| di|P(2) XX <p<X;
1=1,2 p+2=0(dy)
p+2=0(dg)

From the last inequality and using (3.3) we find

T < H(log X;)* ) > (6.19)

d; <D Ao X, <p<X;
w(d; )#0 i=1,2 pio= D([d1 d2])

di . .
Let d = (dl, dg), kz = E, [dl, d2] = dklkg. Since ,u(di) 75 O7 1 = 1, 2, then

(d, k;) =1,i=1,2. Now from (2.4), (2.6) and (6.19) we obtain

Ik<<10gX 3Oy

A<D ;<L AoX;<nsX;
i=1,2 n+2—0(dk1k2)

d<D k,<D
i=1,2
X;(log X;) 1 1\° (log X;)
N € Z d Z l €
d<D <D
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From the last inequality and using (6.16) we get

, , )6 2
r®(x,) < (1og)§j)(i/4—s7 . Xg(lofXJ) < (10ng()JA/4—43' (6.20)
Summarizing, from (3.12), (4.4), (5.21) and (6.20) we obtain
X2
I (X;) = B(X;)G(GT)* + O(W) . (6.21)

7. PROOF OF THEOREM 1.

Since the sums I'y(X), I's(X;) and I'4(X;) are estimated in the same fashion
as I'1(X;), we obtain from (3.9) and (6.21)

X2
I'(X;) = B(X;)W(X;) + O(W) ) (7.1)
where

W(X,) = 3(GT)? (G— - §0+) . (7.2)

Let f(s) and F(s) are the lower and the upper functions of the linear sieve. We
know that if

log D 1
= = — 2 .
s gz 3a’ <s<3 (7.3)
then
F(s)=2e"s"1, f(s) =2e"s tlog(s — 1) (7.4)

(see [1, Lemma 10]). Using (5.20) and [1, Lemma 10], we get

F) (6 + 0(os X)) ) < 6 < Fo) < 6
(7.5)
< F(z) (F(s) + (’)((logX)_l/?’)) .

Here,

Fiz)= ] (1 - pil) = @, (7.6)

2<p<Lz

see Mertens formula [9, ch.9, §9.1, Theorem 9.1.3] and (2.7). To estimate W (X})
from below, we shall use the inequalities (see (7.5))

G~ — §G+ > F(z) (f(s) - %F(s) + (’)((logX)_l/3)) ,
Gt > F(z2).

(7.7)
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Let X = X;. Then from (7.2) and (7.7) it follows

W) 2 37 (£9) - SF(9) + 0o ) )). (78)

We choose s = M = 2.994. Then
log 2

2
f(s) = 5F(s) > 0,0000001,

1
and from (7.3) we get — = 8.982. From (2.3), (7.1),(7.6), (7.8) and Lemma 3 we
!

obtain:
X2 X]2

r'x, 1 .
(X5) > (log X,)P+1 " (log X;) A7+

We choose A > 4B + 192. Then

(7.9)

X2
I'(X, —
) > Glog x5
Finally, we note that if I'y (X ) is the number of the triples p; € Ao X, X;], pi+
2 = Pg, i =1, 2, 3, satisfying (1.7), then there exists a positive constant ¢ such

that
1 CXJ2

N> o
X9) 2 fog X, B

Lo(X;) = WF( j

and for every prime factor ¢ of p; + 2,4 = 1,2,3 we have ¢ > X%!'13 That
completes the proof of Theorem 1.
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ON VECTOR-PARAMETER FORM OF THE SU(2) - SO(3,R) MAP

VELIKO D. DONCHEV, CLEMENTINA D. MLADENOVA, IVAILO M. MLADENOV

By making use of the Cayley maps for the isomorphic Lie algebras su(2) and so(3) we
have found the vector parameter form of the well-known Wigner group homomorphism
W : SU(2) — SO(3,R) and its sections. Based on it and pulling back the group
multiplication in SO(3,R) through the Cayley map su(2) — SU(2) to the covering
space, we present the derivation of the explicit formulas for compound rotations. It is
shown that both sections are compatible with the group multiplications in SO(3,R) up
to a sign and this allows uniform operations with half-turns in the three-dimensional
space. The vector parametrization of SU(2) is compared with that of SO(3,R) generated
by the Gibbs vectors in order to discuss their advantages and disadvantages.

Keywords: Lie groups and algebras, Cayley map, vector-parametrization of rotations
2000 Math. Subject Classification: 15A16, 15A23, 22E60, 22E70

1. INTRODUCTION

Parameterizations are used to describe Lie groups in an easier way. Let G be
a finite dimensional Lie group with Lie algebra g. A vector parametrization of G
is a map g — G, which is diffeomorphic onto its image. Before studying vector
parametrizations, let us compare them with the exponential map exp : g — G. It
is locally bijective and need not to be such globally. For example in the case of
G = GL,(C) and g = gl (n,C) for arbitrary integers k1, ..., k, the diagonal matrix
diag(27iky, ..., 2wik,) is transformed into the unit matrix J,. If G is connected
and compact as it is in cases under consideration the exponential map is surjective,
see [3]. Besides, the group multiplication p : G x G — G admits a local pull-back
on the Lie algebra level via the commutative diagram (see Fig. 1).

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 91-107. 91



expl expl

axqd—" s a

Figure 1: Local pullback of the multiplication law u for the Lie group G in the
corresponding Lie algebra g.

This pull-back is given by the Baker—Campbell-Hausdorff formula in commu-
tator-free form

BCH(X,Y) :X+Y+§: > guw, (1.1)

n=2 |w|:n

where the inner sum is over all the “words” w = wj . ..w, of length n in the alphabet
{X,Y}. Here, g, are the Goldberg’s rational coefficients [9, 15]. In general, it is
difficult to compute (1.1) and there is an ongoing research in this area (see [1, 4, 17]).
However, the first few terms of (1.1) in commutator form are given by the formula

BOH(X,Y) =X +Y + X, Y]+ o (IX, [V, X]] [V, [X, Y])
X (1.2)

The image of the parametrization need not be the whole group G. For SO(3,R),

the image of the Cayley map consists of all rotations with angles 6 # +m, i.e., the
matrices R € SO(3,R) with no eigenvalues of -1.
In Section 2 of the paper we derive a vector parametrization of SU(2) and make use
of it for expressing the composition law in this group. We show that the Cayley map
su(2) — SU(2) is bijective onto its image. Section 3 provides an explicit formula
for the double cover map SU(2) — SO(3,R) in terms of the vector parameters of
the source and the target manifold.

2. VECTOR PARAMETRIZATION OF SU(2) AND THE PULL-BACK OF
THE COMPOSITION LAW

2.1. THE CASE OF SO(3,R)

The Lie algebra so0(3) consists of the real anti-symmetric 3 x 3 matrices. The
Cayley map of s0(3) — SO(3,R) gives the so called Gibbs vector parametrization
of SO(3,R). The matrices

00 0 00 1 0-1 0
J=[0oo0o-1], JL=[0o00], J=[1 00 (2.1)
01 0 -1 0 0 0 0 0
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form a basis of s0(3) over the filed of the real numbers. For arbitrary i, j,k €
{1,2,3} let ;5 = 1 if 4, j, k is an even permutation of 1,2,3, ;5 = —1 for an odd
permutation of 1,2, 3 and €;5, = 0 otherwise. The following relations hold:

[Jivjj] = 6iijka iajvk € {17273} (22)

Any € € s0(3) has a unique representation

0 —C3 Co
c—C=c-J=c1J1 +cadys+ c3J3 = c3 0 —c R
—C2 C1 0
where
c=(c1, e, c3), E=d++ci=cc=|c = (2.3)

Hereafter we shall use ¢ and ¢ to denote respectively the vector ¢ and its norm c.
This convention applies to other vectors as well.
The Hamilton—Cayley theorem for € reads as @ = —c?@. That is why the
exponential map exp : s0(3) — SO(3,R) is given explicitly by the formula
sin ¢ 1—cosc

exp(C) =7 + ; C+ = ez (2.4)

In order to compare, let us recall that the Cayley map for so0(3) associates with
c-J € 50(3) the matrix

R(e) = Cayozy(c) = (I+C)IT-€)"'=(T-0C) "' (T+0C). (2.5)
One checks immediately that
1 1,

—e)y = 2.
(T-0) j+1+026+1+c2 (2.6)
and (2.5) can be expressed in the form
2 2
Caygo(3)(c) =T + T+ C+ T+ C (2.7)

for all ¢ € R3. Is is well known that in SO(3,R), the half-turns are described by
symmetric rotation matrices. Note that Cay,,g) is bijective onto its image (see

[14])
SCay,o( = {R € SOB,R); R # R} = SO(3,R)\S(3,R), (2.8)

where S(3,R) is the set of all symmetric 3 x 3 matrices with real entries. The image
R(c) of ¢ by Cay,,(s) is

1—|—c§ c1cy —C3 C1C3 + Co
cico +c3 1+c2 cacz—cr | 3. (2.9)
cic3 —Cy  CoC3 + C1 1+ c%

C*}:R(C):m
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The rotation R = R(n,) at angle § about the axis n is represented by Gibbs
parameter ¢ = tan g n, see [2]. In order to express the group law in SO(3,R) by the
means of the Cayley map let us denote by ¢ the vector parameter of the product
R(¢) = R(a)R(c) of the elements of SO(3,R), corresponding to a, c € R®. Then,
as pointed out in [7]

at+c+axc

R(e) =R(a)R(e), ¢ =¢(a,c)={(a,c) = I —ac

(2.10)

In the case of s0(3) it is shown in [6] that the Baker—Campbell-Hausdorff formula
takes the form

BCH(A,C) = BCH(a-J,¢-J) = aA + €+ 7|4, €], (2.11)
with
sin~! in~! !
o (@m 5 _sin (q)g . Sn (9) »
g ¢ (G q 0y

7)

m = sin () cos? (¢/2) — sin (¥) sin? (/2) cos(£(a, ¢)),

where ¢ = |a|, § = |¢|, Z(a, c) = cos™ (
(
n = sin (¢) cos? (A/2) — sin (#) sin® (1/2) cos(£(a, ¢)),

p= %sin (6) sin (1) — 2sin” (8/2) sin? (1/2) cos(£(a, ¢)),

q= \/m2 +n2 + 2mn cos(£(a, ¢)) + p? sin?(£(a, c)) .

Note that equation (2.10) is much simpler and more convenient when compared
with (2.11). The vector parameter form of SO(3,R) matrices and the corresponding
composition law (2.10) are exploited in the decomposition method of the three
dimensional rotations about three almost arbitrary axes, see [2]. In this vector
parameter form of SO(3,R), the half-turns, i.e., rotations at angles § = 4, can
not be described. Henceforth we denote the matrix of the half-turn about the axis
n, i.e.,, R(n, ), by O(n). The composition of the two rotations is not well defined
also when 1 — a.c = 0, which is exactly the condition that the compound rotation
¢ is a half-turn.

2.2. DESCRIPTION OF s1(2)

A coordinate free description [11] of su(2) can be given. Let i be the imaginary
unit and o1, 03, 03 be three elements which obey the rules

2 _ 2 _ 2 _
ol =05=o03=1 (2.12)
0109 =— —09201 =i0’3, 0‘20‘3:—0'30’2210'1, 0301 2—0’10'3:i0'2.
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If we define the spin vector o as
o = (01,02,03) (2.13)
and n and m are arbitrary unit vectors in R3, then the following properties hold:

(n-o)*=1, (m-o)n-o)=mn+ilmxn)- o,
o-(n-o)=n+inx o, (n-o)-oc=n—inxo, (2.14)

(m-o)o(n-o)=(m-o)n+(n-o)m—i(m xn)— (m.mn)-o.

A concrete matrix realization of 01, 09,03 in (2.12) are the Pauli’s matrices

01((1) (1)> 02(? _é>, 03<(1) _(1))- (2.15)

The matrices s1, so and s3 defined by

i i i
S| = —501, Sg = —502, 83 = —503 (2.16)

form a R—basis of su(2). Direct calculation shows that
[si,8j] = €ijkSk, i,j,k € {1,2,3}. (2.17)
Denoting s = (s1, s2, s3) we express the su(2) algebra in the following way:
su(2) = {c “8 =181 +Ca82 +¢383; ¢ = (¢1,¢2,c3) € R3} . (2.18)

The corresponding matrix realization of c - s is

.C3 C2 .C1
=2 L =
¢ 2o 2.Cj 2. (2.19)
2 2 2
Obviously, the map
C1S81 + C282 + €383 —> ¢1J1 + oo + c3J3 (2.20)

is a linear isomorphism between su(2) and so(3).

2.3. CAYLEY MAP FROM su(2) TO SU(2)

Till the end of this section J will stand for the unit matrix with dimension
consistent with the context. Let

A =a1s; + azsy + azsz = —%a -0 €su(2), (2.21)
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where
a = (aj,an, ag), a’=a? +a3+al=aa=|a]>=a’ (2.22)

Let us recall also that (see [8]) the exponential map for su(2) is globally defined
and surjective. It maps A € su(2) to

sina/2
a/2

exp(A) = cos (a/2)] — A. (2.23)

2
The Hamilton—Cayley theorem implies the identity A% = —azj. The image of A
under the Cayley map is

U(a) = Cay o) (4) = (I +A) (T —A) (2.24)

In general, the Cayley map Caygu(n) for the Lie algebra su(n) of skew-hermitian
matrices (AT = A= —A) with trace zero takes values in U(n). Indeed, let us

take any A € su(n) and its image Cayg,,)(A) = U. Taking into account that
(UH) =t = (U~1)T, we obtain

U = I+ AT -A)H(T+A)@T-A)YH
=[T+A)IT-A)HI-A)HI T+ AT (2.25)
=[T+A)IT-A)HT+A)THI - ) '

T+ AT -A)TT-A)T+A) =1
Lemma 1. For each element A € su(2) there holds
(J+A)(J—A):(J—A)(J+A):J—A2:(1+a£)3, (2.26)
(J-A)"=(1+ %2)71(3 +A), T+A) =1+ %2)71(3 — A (2.27)

Besides (2.27), from Lemma 1 we also infer

Ua)=T+A)IT-A = (1+ %)’1(3 + A)?
2 2 2

(1+ az)*l(ﬂ F2A+ A% = (1+ az)’l(fl +2A — azﬂ) (2.28)
2 2

(1+ az)il((l - az)ﬂ —ia- a’).
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The matrix form of U(a) is

a
11— — . .
1 _ a6 —
W)= — A gL i —m i) (2.20)
1 a 1 a a9 l1a1 1a3
troo T

The matrix U(a) defined in (2.29) is unitary due to (2.25). Direct calculation shows
that

det U(a) = det ((1 + %2)‘1(3 +A)2) =(1+ %)_Q(det T+ A)N2=1 (2.30)

i.e., U(a) € SU(2). Following Wigner [18] we can use the explicit homomorphism
map W: SU(2) — SO(3,R) given by

(a 5>_<Oél+i@2 51+152>
-6 @) \—Pi+ifs a1 —iw

(2.31)
W af —a3 — i+ 63 2(aaz + B1f2) 2(azfls — a1f1)
— 28182 —onaz)  af—a3+ 67— B3 2(af + aifs)
2(c1B1 + azf2) 2a2fr —a1fa) o +a3 —B7 -5
The comparison of (2.29) and (2.31) yields
@
: . —a . —a . —a
o= +liag = a42—|—1 22, B =p1+1Bs = 22 +1 ;2- (2.32)
14+ — 14+ — 14+ — 1+ —
+ 4 + 4 + 4 + 4

In the case of the SU(2) group manifold, which is diffeomorphic to the sphere
S3, there is a homotopy obstruction for the existence of a global diffeomorphism
R3 ~ su(2) — SU(2) ~ S3, so that no vector parametrization su(2) — SU(2)
exists onto the entire group SU(2). Actually, the Cayley map provides a vector
parametrization

Cay gy (2): 5u(2) — SU(2)\{-J}, (2.33)

whose inverse is

_ oy +ia +1i i
Cay5u1(2)< 1 2 B 52)——a~a,

—fB; +1 o — i 2
B1 +iB2 21 2 (2.34)
a=(aj,a9,a3) = *m(ﬂmﬁhaz)-

By means of (2.31) and (2.32) one calculates straightforwardly that the image
Ru(a) of U(a) under the Wigner map W is

(4—|—62)2 2 2 2 2
T —4a3—4aj3 4a1a22—a3(4—a) 43133—1—&2(4—&)
2
(| danetas (1-02) CFh -t} danag—ar (4-a2) | 0 (235)

4+a2 2
( 4) —4a? —4a3

4aja3—ag (4—a2) 4asasz+aq (4—a2)
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Let A = —%a o, C = —%c <o € su(2). The term of third degree in BCH (A, C)

1 ;
(cf. (1.2)) is i[ﬂ, Cl = f%(a x ¢) - o, and that one of degree four is

SOACA] - €A C) = 1ero,  Gi= (i),  (230)
with
Uy = ﬁ(alagcl + ajciCe + agascy + azcaCz — a%CQ — a%cz — agc% — agcg) ,
vy = %(alaQCQ + ajazcs + agcicy + ageics — ascy — asc; — ajcy — ajca), (2.37)
Wy = ﬁ(alclcg + ajagc; + agCacy + agazcy — ajcy — ascz — azCi — azcy).

Note that the coeflicients of the term of degree four are homogeneous polynomials
of a;,a9,a3,c1,Co,c3 of degree three. It is interesting to compare the composition
rule (2.10) of SO(3,R), expressed through the Gibbs vector parameter with the
following formula

i

2

axec
2

A+€+%[A,G}: (a+c+ )-o. (2.38)

2.4. COMPOSITION LAW IN SU(2)
Proposition 1. Let Ui(c),Uz(a) € SU(2) are the images of A1 = c-s and
Az = a-s under the map (2.24) of the vectors a,c € R3. Let
Us((a; c)su(z)) = Uz(a).Ui(c) (2.39)

denote the composition of Us(a) and Ui(c) in SU(2). The corresponding vector-
parameter & € R?, for which Cay g o) (Az) = U, Az = & -5 is

2 2
1- & a+ -2 c—|—43><E
~ 4 4 2 2
a= 55 . (2.40)
g2 c At
2 2 44
- . . 0 2 — 0
The vector a equals to 0 if only if c = —a or ¢ = 2tan1n and a = 2tan n,
0
where n € R3, n2 =1 and 6 €[0,27). In both cases, c = —a and c = 2tan - n,

—0 ) )
n, these vectors represent inverse rotations.

a = 2tan
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Proof. From (2.28) we obtain that

a?._1 a2 2. c2?
Us = (HI) ((1—Z)ina.a)(1+1) ((171)(},1(3.0)
a’ c? a2 c?
(2.14) (1*1)(1*1)5*1(1*Z)C ) U*i(lfz)a -o—a.cJ-i(axc) o
B a2 C2
(1+5)(+) (2.41)
a2 C2 ag C2 c
_ (1_1)(1—Z)—a.cj_l(l—Z)c—i—(1—Z)a+45 X3 .
8.2 02 a2 C2
(t+)0+7) 1+ +)

~2 52 2
1—— ——)(1——)—a.
L -)-9) e
~2 = a2 P J
4 ) ) (2.42)
a c a ¢
a _(1—*)C+(1—Z)a+45><§
~2 2 2
a a c
2 1+ ) (14—
L+ (+)0+7)
From (2.42) we get
) a2+02+2a c ) 1+a2+c2+322
a _ 4 4 2 2 a 4 4 4 4
= 5 5 1+ = 2 92 (243)
4 1_ 92 c+ac 4 1_ o2 c+ac
2 2 44 2 2 44
Taking into account that
a? 2  a?c? a’ c?
14—+ —+——=(1+—)(14+—
+4+4+44 (+4)(+4)
and multiplying the numerator and denominator of the second fraction in (2.41)
2 2
by 1 — 2% . g + azcz (when this expression is non-zero), we get the result in the

second case in (2.40), i.e., the composition law in vector-parameter form for SU(2).
To rigorously see when the composition is not well defined, we investigate the
case in which the denominator equals zero. According to the identity

[ V)
[ )

1-22 2+ 55 = (-2 2"+ (53, (2.44)

4

e

0 0
the denominator of (2.40) vanishes if only if a = 2tan Z2n, c = 2tanz1 n and
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0 0 0, +6
1 =tan Zz tan Zl This implies cos L0 =0, 61 +0; = 2m and allows to express
o —
c = 2tan Qn, a=2tan an (2.45)
4 4
Substituting the results from (2.45) in (2.42) gives a(a,c) = 0, which corresponds
to the identity element J. If ¢ = —a, then a = 0. O

In the particular case when one and the same rotation (a = c¢) is applied twice

the resulting vector is
2

a a
=57 -k
1 1

It is important to investigate when the composition a is such that |a| < 4.
Using (2.43) we obtain

) a +C +2a c
a _ 4 4 2 2 <1 (2.46)

4 a e A

2 2 44

and this is equivalent to the inequality

a? c?
c<(l——)(1——). 2.47
ac<(1-2)(1-5) (247

Similar conditions for |a| < 4,|a| =4 and |a| > 4 cases follow immediately.

3. THE COVERING MAP SU(2) — SO(3,R) AND ITS SECTIONS IN
VECTOR-PARAMETER FORM

Proposition 2. Let a be the vector-parameter of a generic SU(2) element
(i.e., it is not associated with some half-turn, a®> = 4). Then the Gibbs vector c,
which represents this rotation in SO(3,R), is given by

c(a) = Lag (3.1)
=7

On the other hand, if ¢ is the Gibbs vector, representing a rotation from SO(3,R),
then the preimages of this rotation in SU(2) correspond to the vector parameters
2(V14+ 2 —1) 2(V1+ 2 +1)

2

2 c, a_(c) = e (3.2)

ai(c) =
Moreover, they are connected by the formulas
4 4
a, =——a_, a_ =——ay, a?a? = 16. (3.3)
az aZ
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Proof. We have to find a Gibbs parameter ¢ such that

9 1+C% cicy —c3 ci1c3+ Co
cicy + c3 1+ c3 cacs —c1 | =3 =Ry(a) (3.4)
ci1c3 —Ccy Cac3+ 1 1+c§

:R(C) = m

and where Ry (a) is given by (2.35). Equating the corresponding matrix elements,

R(€)z2 — R(c)23 Ru(a)s2 — Ru(a)as
R(€)13 —R(e)z1 = Ru(a)iz — Ru(a)s: (3.5)
fR(C)21 - :R(C)12 = fRu(a)zl - fRu(a)lz .
trR(e) = trRy(a)
we end up with the following equalities
2 c—8<4_a2)a 2 c_8(4—a2)a
1+ ¢2 1_(4—1—&2)2 b 1+ ¢2 2_(4+a2)2 2
5 ) ) (3.6)
> sE-ah) 234 8(s) |
1+ ¢? 3_(4+a2)2 8 1+ (4+a2)?
From (3.6) we have
2 4 — a2
=8z, (3.7)

1+ c2 (4 + a2)2
and separating 1 + ¢® in (3.6) we obtain

2\2 2 _.2)2
2 :2(4-1-&) 16a :2(4 a)

1+ ¢ (4+a2)® (4+a2)%

Substituting this expression in (3.7), we obtain (3.1), which is the first statement
in the proposition. To invert (3.1), we firstly calculate ¢? and get

If a? # 4 (i.e., a does not represent a half-turn), this equality is equivalent to the
following quadratic equation for a2:

(a?)?c? — 8(2 + c*)a? 4 16¢% = 0. (3.8)
The solutions of (3.8) are

42+ ) F8V1 + ¢2

2

a3 =
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and hence

al 24 2F2/1+ 2 2F2V/1+ 2 al 201 F V1 + ¢2)
°E =1l+— 11— ——==-—"—— 2. (39
4 02 ? 4 I
Substituting this result in (3.1) we obtain (3.2). It follows from (3.2) that
a _2(\/1—1—02—1)6_ \/1+02—1a
" c2 Vit E+1 5.10)
242 —2V1+ 2 a2
- _ i a_=——"a_,
c 4
2 16 5 o5 o 4
therefore a_ = — 7 Ak From a2 = o781 atay = 16 we find ay = 7 an
+ + -
which completes the proof of Proposition 2. O

The relations obtained above are depicted in Fig. 2. Notice that ay and ¢
actually act between the algebras and also that the Cayley map is not surjective
onto the given groups, see equations (2.8) and (2.33).

ap =ay(c),(3.2)

c=c(a),(3.1)

SU(2) SO(3)
%‘;yglge)y a_ =a_(¢),(3.2) ngégy
1:1,(2.20
su(2) 220 50(3)

Figure 2: Informal depiction of the relations between the Lie algebras su(2) and
50(3) and the Lie groups SU(2) and SO(3,R).

Viewing ay and a_ as functions of ¢ (see Fig. 3) one concludes that

at(c) <2<a_(c), lim a;(¢) = lim a_(¢) = 2. (3.11)

c— 00 c— 00
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at

E'L) 16 1‘5 2‘0
Figure 3: Graphs of a_ and ay as functions of c.

In order to obtain the SU(2) elements U4 (¢) corresponding to the SO(3,R)
rotation with vector-parameter ¢, we substitute ai(¢) from (3.2) in U(a) from
(2.29) and get

- 1 1-— ng —Co — iCl
u:t(c) = iﬁ (CQ _ iCl 1 + iC3 . (312)

0
Let ¢ = tani n represent a SO(3,R) rotation at angle 6 about the axis n. The

corresponding SU(2) vectors at(¢) and a_(¢) are

27 — 6

0
a;(c) = 2tan1n, a_(c) = —2tan n. (3.13)
The matrix corresponding to ay is the familiar axis-angle representation of rotations
in SU(2), i.e.,

- - 0 . 0 —i’I’L3 —Nng — inl
U(at) = U(n, d) = cos 55 + sin 3 <n2 —iny ing . (3.14)

In SU(2) the half-turns about the axis n are represented by the matrices

Ultn,m) =+ ( —Ms  —nz—im (3.15)
’ ng — ing ins ’ ’

In the derived vector-parameter form the half-turns are represented by the vectors
+2n, which are well defined and are of length 2. This is an advantage, because
a half-turns O(n) in the Gibbs vector parameter form of SO(3,R) rotations are
represented by wvectors with infinitely large norm and direction +n. Such vectors
will be referred further on as “rays” and will be denoted by [n] (for more discussion,
see e.g. [2] and [12]). Let R = O(n) be a half-turn about the axis n, represented
by +n in SU(2). Applying the limit a — 2 in (3.1), we can informally write
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lim ¢(a) = [n]. Roughly speaking, the Gibbs parameter, associated with O(n) is

a—+2n
0
c = limy_,, tan Jn= [n]. Actually, we have

. 0 (312), . 1 1—icg —co —icp\(3.15)
(}E}I}r u:t (tan 511) =+ C;E}nooﬁ <C2 - iCl 1 + iCS = U(:I:n, 7T) (316)

0
We observe that if ¢ = tan Zn represents an infinitesimal SO(3,R) rotation R(n, ),

then as SU(2) element it is represented by two vectors, one with infinitesimal norm
a; and the other one a_ with infinite norm, i.e.,
lim aZ (¢) = 0 lim a? (¢) = oo. 3.17
lmad(c) =0, lima?(c) = o0 (3.17)
When storing infinitesimal rotations in applications, loss of information may occur
because of the operations performed with very small numbers. Equation (3.17)
offers an alternative way (by usage of a_) for computer storage of infinitesimal

rotations. This is so because in many of the commercial software systems there are
packages for dealing with large numbers.

3.1. COMPATIBILITY OF THE COMPOSITION LAWS IN SU(2) AND SO(3,R)

Recall that a map ¢ : G — G> of the groups G, Gs is a group homomorphism
if it is compatible with the group operations in G; and G2 by the rule ¢(ab) =
p(a)p(b) for all a,b € G1. For an arbitrary subset S; C G1, which is not necessarily
a subgroup of G1, we say that a map ¥ : S; — G is compatible with the group
operations in Gy and Gy if p(ab) = p(a)p(b) for all a,b € S;.

Proposition 3. Let a and ¢ are some mon-zero Gibbs parameters of two
SO(3,R) rotations and such that a.c # 1. Let

U (C)_ 1 1—i63 —Cg—iCl U ((J,>_ 1 1—ia3 —ag—ial

! _‘/14—62 co —icy 1+ic3 » 2 _,/1+a2 ax —iay 1+iag
be the respective images of a, ¢ under the “+7 sections of the maps (?7) and (3.12).
Then the equality

Uz(a)Us(c) = U(e) (3.18)

holds up to a sign, i.e., the “4+7 correspondences are compatible up to a sign with
the group operations in SO(3,R) and SU(2).

Proof. Let Uz = U2(a)U;(c). We will prove that

. T,
u3=(1 €3 T2 101). (3.19)

V1122 \Ga—idr  1+4iés
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Direct multiplication shows that

Uy = ————%C ( e 5) : (3.20)

Vit a@vVi+ 2 \-8 @
where
.a3 + ¢c3+ ajce — azcy .
a=1-i =1-ics
1—a.c
(3.21)
ag + c2 + agcy —ajc3 a1+ ¢+ axe3 — ages - .
g =- —i = —Cq —1iCy.
1—a.c 1—a.c
For ¢ we have that
22 a?+ 2+ (a x c)2+2a.c: (1+ ) (1 + a?) L (3.22)
(1-a.c)? (1-a.c)?
Thus
1 1—-a.
L—ac (3.23)

Vite? VitaviteE

Now from (3.19), (3.20) and (3.23) we get that Us(a)U;(c) = U(¢€) up to a sign.
The case a.c = 1 in Proposition 3, as well as the cases where half-turns are involved
in the composition will be treated elsewhere. O

Note that Proposition 3 holds also for the negative signs of the above sections.
If ¢1, co are represent two SO(3,R) rotations and the vectors aj,as are defined
by the section a; in (3.2) then the SO(3,R) vector parameter corresponding to
(a2, a1)su(2) is exactly (cz, €1)s0(3,R), 1-€., we have the commutative diagram below.
Therefore, the pull-back of the composition in SO(3,R) to the covering group SU(2)
allows to bypass the singularities in the vector-parameter description of the base
manifold.

(az2(e2),a1(c1))su(e), (2.40)

(az(cz),a1(c1)) az(cz,c1)
+,£((3.2) (3.1)
(c2,c1)s0(3,r)+ (2.10)
(Cz, Cl) C3

Figure 4: Composition of the three-dimensional rotations through
a pull-back to the covering group SU(2).
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Despite of the attractive simplicity of the composition law for SO(3,R) rota-
tions, neither the half-turns nor the composition of rotations whose Gibbs vector-
parameters have a scalar product equal to one are directly manageable. The de-
rived vector-parametrization of SU(2) has the advantage to represent all rotations
including the half-turns. Table 1 presents the numbers of operations needed for the

4. CONCLUDING REMARKS

composition of two rotations.

Table 1: The numbers of operations necessary to perform when composing two

rotations in various representations.

. e - Memory needed
Representations Multiplications | Additions for the result
matrix 27 18 9
SO(3.R) vector-parameter 12 12 3
matrix 16 16 4
SU@) vector-parameter 28 18 3
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A CLASSIFICATION OF CONFORMALLY FLAT RIEMANNIAN
MANIFOLDS LOCALLY ISOMETRIC TO HYPERSURFACES
IN EUCLIDEAN OR MINKOWSKI SPACE

GEORGI GANCHEV, VESSELKA MIHOVA

We prove that the local theory of conformally flat Riemannian manifolds, which can
be locally isometrically embedded as hypersurfaces in Euclidean or Minkowski space, is
equivalent to the local theory of Riemannian manifolds of quasi-constant sectional cur-
vatures (QC-manifolds). Riemannian QC-manifolds are divided into two basic classes:
with positive or negative horizontal sectional curvatures. We prove that the Rieman-
nian QC-manifolds with positive horizontal sectional curvatures are locally equivalent
to canal hypersurfaces in Euclidean space, while the Riemannian QC-manifolds with
negative horizontal sectional curvatures are locally equivalent to canal space-like hy-
persurfaces in Minkowski space. These results give a local geometric classification of
conformally flat hypersurfaces in Euclidean space and conformally flat space-like hy-
persurfaces in Minkowski space.

Keywords: Riemannian manifolds of quasi-constant sectional curvatures, canal space-
like hypersurfaces in Minkowski space, rotational space-like hypersurfaces in Minkowski
space, classification of conformally flat hypersurfaces in Euclidean or Minkowski space

2000 Math. Subject Classification: Primary 53A35, Secondary 53B20

1. INTRODUCTION

Conformally flat n-dimensional Riemannian manifolds appear as hypersurfaces
in two standard models of flat spaces: Euclidean or Minkowski space. Historically,
there were many attempts to describe conformally flat hypersurfaces, especially
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in Euclidean space. Essential steps in this direction were made by Cartan [3],
Schouten [18]. Kulkarni in [15] reached to a partial description of conformally flat
hypersurfaces in Euclideasn space dividing them into: hypersurfaces of constant
curvature; hypersurfaces of revolution; tubes. Yano and Chen proved in [4] that
canal hypersurfaces in Euclidean space, i.e. envelopes of one-parameter families of
hyperspheres, are special conformally flat hypersurfaces. Compact conformally flat
hypersurfaces in Euclidean space were studied in [15] and [6].

In this paper we study the close relation between the local theory of Rie-
mannian manifolds of quasi-constant sectional curvatures and the local theory of
conformally flat Riemannian hypersurfaces in the Euclidean space R™*! or in the
Minkowski space R?H. We give a local classification of Riemannian manifolds of
quasi-constant sectional curvatures proving that they can locally be embedded as
canal hypersurfaces in R"*! or R’f“. Thus we obtain a geometric description of
conformally flat hypersurfaces in Euclidean space and conformally flat space-like
hypersurfaces in Minkowski space.

Riemannian QC-manifolds are Riemannian manifolds (M, g,£) endowed with
a unit vector field £ besides the metric g, satisfying the curvature condition: the
sectional curvatures at any point of the manifold only depend on the point and the
angle between the section and the vector £ at that point. All tangent sections at a
given point, which are perpendicular to the vector £ at that point, have one and the
same sectional curvature. We call these sectional curvatures horizontal sectional
curvatures.

Everywhere in this paper we consider the case dim M =n > 4.

The structural group of Riemannian manifolds (M, g,€) is O(n — 1) x 1 and
two Riemannian manifolds (M, g,&) and (M’,¢’,¢’) are equivalent if there exists
a diffeomorphism f : M — M’ preserving both structures: the metric g and the
vector field £&. We call such a diffeomorphism a £-isometry.

In [11] we proved the following statements:

Any canal hypersurface M in the Euclidean space R"*! is a Riemannian QC-
manifold with positive horizontal sectional curvatures.

Any Riemannian QC-manifold with positive horizontal sectional curvatures is
locally &-isometric to a canal hypersurface in the Euclidean space R™H1.

The first problem we treat here is to give a local classification of Riemannian
@QC-manifolds with negative horizontal sectional curvatures.

In Section 3 we introduce canal space-like hypersurfaces in the Minkowski space
R?H and divide them into three types. In Subsections 3.1 - 3.3 we study these
three types of canal space-like hypersurfaces and show that:

Any canal space-like hypersurface in the Minkowski space R?H is a Rieman-
nian QC-manifold with negative horizontal sectional curvatures.

The basic results are proved in Section 4. The local classification of Rie-
mannian (QC-manifolds with negative horizontal sectional curvatures is given by
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Theorem 4.1:

Any Riemannian QC-manifold with negative horizontal sectional curvatures is
locally &-isometric to a canal space-like hypersurface in the Minkowski space R{‘H.

The second problem we deal with is to obtain a geometric description of con-
formally flat hypersurfaces in Euclidean space and conformally flat space-like hy-
persurfaces in Minkowski space. Using results of Cartan and Schouten, we are able
to bring the second fundamental form of the hypersurface into consideration. This
allows us to give a local geometric classification of conformally flat Riemannian
hypersurfaces in Euclidean or Minkowski space:

Any conformally flat hypersurface in Euclidean space, which is free of umbilical
points, locally is a part of a canal hypersurface.

Any conformally flat space-like hypersurface in Minkowski space, which is free
of umbilical points, locally is a part of a canal space-like hypersurface.

The picture of the local isometric embeddings of a conformally flat Riemannian
manifold into Euclidean or Minkowski space can be described briefly as follows.

Let (M, g) be a conformally flat Riemannian manifold, free of points in which all
sectional curvatures are constant. The manifold (M, g) can be locally isometrically
embedded into R™*! (R} ") if and only if its Ricci operator has two different from
zero eigenvalues at every point: one of them of multiplicity n — 1 and the other
of multiplicity 1. The latter eigenvalue generates a unit vector field &, such that
(M, g,€) is a Riemannian QC-manifold with positive (negative) horizontal sectional
curvatures. Any two isometrical realizations of (M, g) are locally congruent.

Generalizing, we obtain that a conformally flat Riemannian manifold is locally
isometric to a hypersurface into R**! (R?1) if and only if its Ricci operator at any
point has a root of multiplicity at least n— 1. This fact gives an approach to further
investigations of conformally flat Riemannian manifolds studying the spectrum of
their Ricci operator.

It is interesting to mention Riemannian subprojective manifolds forming a sub-
class of Riemannian QC-manifolds characterized by the condition: the structural
vector field £ is geodesic. If (M, g,€) is a Riemannian subprojective manifold with
scalar curvature 7 (d7 # 0), then the structural vector field € is collinear with grad 7.
Any Riemannian subprojective manifold is locally isometric (up to a motion) to a
rotational hypersurface in Euclidean space or in Minkowski space.

2. PRELIMINARIES

Let (M,g,¢) (dimM = n > 4) be a Riemannian manifold with metric g and
a unit vec-tor field £. The structural group of these manifolds is O(n — 1) x 1.
T,M and XM will stand for the tangent space to M at a point p and the algebra
of smooth vector fields on M, respectively. The 1-form corresponding to the unit
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vector £ is denoted by 7, i.e. n(X) = g(&, X), X € XM. The distribution of the
1-form 7 is denoted by A, i.e.

Ap) = {X € T,M : n(X) = 0}.

The orthogonal projection of a vector field X € XM onto the distribution A
is denoted by the corresponding small letter z, i.e.

X=z+nX)¢& (2.1)

Any section E in T, M determines an angle Z(E, £). Then the notion analogous
to the notion of a Riemannian manifold of constant sectional curvatures is described
as follows [11].

Definition 2.1. A Riemannian manifold (M, g, &) (dim M > 3) is said to be of
quasi-constant sectional curvatures (a Riemannian QC-manifold) if for an arbitrary
2-plane E in T,M, p € M, with Z(E,§) = ¢, the sectional curvature of E only
depends on the point p and the angle .

Let V be the Levi-Civita connection of the metric g and R be its Riemannian
curvature tensor. The structure (g, &) generates the following tensors = and ®:

T(X,Y,Z,U) = g(Y,2)9(X,U) - g(X, Z)g(Y,U),
(X,Y,Z,U) = g(Y,Z)n(X)nU) — g(X, Z)n(Y)n(U)
+g(X, Un(Y)n(Z) — g(Y,Um(X)n(Z); X,Y,Z,U € XM.

These tensors have the symmetries of the curvature tensor R and are invariant
under the action of the structural group of the manifold.

Riemannian manifolds of quasi-constant sectional curvatures are characterized
by the following statement [11]:

Proposition 2.2. A Riemannian manifold (M, g,€) is of quasi-constant sec-
tional curvatures if and only if its curvature tensor has the form

R=anm+b0d, (2.2)
where a and b are some functions on M.

Let (M, g,§) (dimM = n > 4) be a Riemannian manifold of quasi-constant
sectional curvatures. This means that the curvature tensor R of g has the form
(2.2). If b # 0 everywhere, then the manifold (M, g,&) has the properties [11]:

e The distribution of the function a is the structural distribution A:

da = £&(a)n. (2.3)
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The distribution A is involutive, i.e.
dn(z,y) =0, =,y €A. (2.4)

o If 0 is the 1-form defined by 6(X) = dn(¢, X), X € XM, then dn = 0 An and

O(x) =dn(& z) = %db(:p), x € A. (2.5)

The integral submanifolds of the distribution A are totally umbilical in M,

ie.
Vi€ =k, k:%z), T € A. (2.6)

The distribution of the function k is the structural distribution A:

dk = £(k) n. (2.7)

Let S, be the maximal integral submanifold of the distribution A, containing
a given point p € M, and K be the curvature tensor of the Riemannian manifold
(Sp,9). Then we have:

(i) All sections tangent to S, have one and the same sectional curvature a(p)
with respect to the tensor R. We say that the function a(p) is the horizontal
sectional curvature of the manifold.

(ii) All sections tangent to S, have one and the same sectional curvatures
a(p) + k%(p) with respect to the tensor K.

Proposition 2.2 implies the following statement.

Proposition 2.3. A Riemannian QC-manifold (M,g,£), free of points in
which the sectional curvatures are constant, i.e. b # 0, is characterized by the
following two conditions:

- (M, g) is conformally flat;

- the Ricci operator p of (M, g) at any point has two non-zero roots, namely:
(n—1)a+b, of multiplicity n—1, which generates the distribution A:

pl)=[n—-1Da+bdblz, ze€l;
(n—1)(a+b), of multiplicity 1, which generates the structural vector field &:
p(&) = (n—1)(a+b)¢.
Proposition 2.3 implies that the notion of a QC-manifold is a notion in Rie-

mannian geometry. The next statement is an immediate consequence from this
proposition.
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Theorem 2.4. Let (M, g,&) and (M, g,€) be two QC-manifolds free of points
in which the sectional curvatures are constant. If ¢ : M — M is an isometry,
then it is a £-isometry, t.e. & =E.

The above mentioned geometric functions a and a + k% on (M, g, &) generate
four basic classes of Riemannian manifolds of quasi-constant sectional curvatures
characterized by the conditions:

1) a>0;

3

)
2) a<0, a+k®>0;
) a+k? <0;

4) a+k*=0.

The class of Riemannian QC-manifolds contains the remarkable subclass of
Riemannian subprojective manifolds. V. Kagan [12, 13] called an n-dimensional
space A, with symmetric linear connection V a subprojective space if there ex-
ists locally a coordinate system with respect to which every geodesic of V can be
represented by n — 2 linear equations and another equation, that need not be lin-
ear (see also [19]). P. Rachevsky [17] proved necessary and sufficient conditions
characterizing Riemannian subprojective spaces. T. Adati [1] studied Riemannian
subprojective manifolds concerning concircular and torse-forming vector fields.

As Riemannian QQC-manifolds (M, g,£) the Riemannian subprojective mani-
folds are characterized by any of the following additional properties [11]:

i) db=¢(b)mn;
ii) the vector field ¢ is geodesic (on M);
ili) the 1-form 7 is closed.

Let 7 be the scalar curvature of a Riemannian subprojective manifold. If
dr # 0, then the structural distribution A is the distribution of the 1-form dr and
the vector field grad 7 is an eigenvector of the Ricci operator at every point.

3. CANAL SPACE-LIKE HYPERSURFACES IN MINKOWSKI SPACE

A hypersurface M (dim M = n) in the Minkowski space R?™" is said to be
space-like (or Riemannian) if the induced metric on M is positive definite. The
normal vector field to a space-like hypersurface M in the Minkowski space R’f“ is
necessarily time-like.

In this section we study the envelope of a one-parameter family of space-like
hyperspheres {S™(s)}, s € J C R in R, given as follows

S"(s): (Z—=2(s))* =—R*(s), R(s)>0,
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where z = z(s) is the center and R(s) is the radius of the corresponding hypersphere
S™(s).

Let the cross-section of a space-like hypersphere S™ with a hyperplane in the
Minkowski space Rf** be an (n — 1)-dimensional surface. We have:

1) The cross-section of a space-like hypersphere S™ with a space-like hyper-
plane R” is a Euclidean hypersphere S®~! in R”, and S™~! is of positive
constant sectional curvatures.

2) The cross-section of a space-like hypersphere S™ with a time-like hyper-
plane R? is a hyperbolic hypersphere H"~! in R}, and H" ! is of negative
constant sectional curvatures.

3) The cross-section of a space-like hypersphere S™ with a light-like hyper-
plane R} is a parabolic hypersphere P"~1 in RZ, and P"~! is of zero
sectional curvatures.

We shall describe in more details the cross-section P"~! of a space-like hy-
persphere S™(z, R) with a light-like hyperplane R{. It is clear that R{} can not
pass through the center z of S™. The pair (Rf}, g) is an n-dimensional affine space
with metric g, whose rank equals n — 1. This means that Rj contains a light-
like direction U, determined by a given light-like vector ¢. The light-like direction
U can also be considered as a point at infinity in the infinite hyperplane of Ry.
Any hyperplane E"~! of R{, which does not contain U, is a Euclidean hyper-
plane, i.e. it can be endowed with a basis e,...,e,_1, satisfying the property
glei,ej) =6;5,4,j=1,...,n—1, 0;; being the Kronecker’s deltas.

Let E"! be a Euclidean hyperplane in R} with a fixed point T € E"~!
and an orthonormal basis eq,...,e,_1. Adding the light-like vector ¢, we obtain
a coordinate system T, eq,...,e,—1,t in RY. If Z(z1,...,2,—1;2y) is the position
vector of any point Z in R}, then we consider the quadrics P"~!(q) in R}, given
by the equation

Pnil(@i Z%+"'+Zi_1—2qzn:0, q = const > 0.

The one-parameter family of quadrics P"~!(q) is characterized by the proper-
ties:

i) P"1(q) is a quadric, which is tangent to the infinite hyperplane of R? at
(i) q)isaq g yperp 0
U and to the hyperplane E"~! at T}

(ii) The cross-section of P"(q) with any Euclidean hyperplane z,, = const >0
(parallel to E™~1) is a Euclidean hypersphere in this hyperplane.

We call these quadrics parabolic hyperspheres of the light-like hyperplane (Rf, g).
The parabolic hyperspheres have the following remarkable property:
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Proposition 3.1. Any parabolic hypersphere in a light-like hyperplane Rf is
a flat (n — 1)-dimensional Riemannian manifold.

Proof: Since the only tangent hyperplane to the parabolic hypersphere P"~1(q),
which contains U, is the infinite hyperplane of R%, then (P"~1(q),g) is an (n — 1)-
dimensional Riemannian manifold.

We consider the projection
n: P"Yq) — E"!

of the parabolic hypersphere onto the Euclidean hyperplane E™~!, parallel to the
direction U. It is an easy verification that the projection 7 is an isometry between
the Riemannian manifolds (P"~!(q), g) and (E"~1, g), excluding the common point
T. This implies the assertion. O

Next, we call the (n —1)-dimensional cross-sections of a space-like hypersphere
with a hyperplane spheres of codimension two and use the common denotation
sn—t

Let M = {S"!(s)}, s € J C R be a space-like hypersurface in R}, which is
a one-parameter family of spheres S"~1(s) of codimension two. Any sphere S"~1(s)
is said to be a spherical generator of M.

At first canal surfaces in R? have been introduced and studied in the classical
works of Enneper [7, 8, 9, 10]. We use the following definition:

Definition 3.2. A space-like hypersurface M = {S""1(s)}, s € J C R in
R’f“ is said to be a canal space-like hypersurface if the normals to M at the points
of any fixed spherical generator pass through a fixed point.

Let now Z = Z(s;ul,u?,...,u" 1), s € J, (u',u?,...,u""t) € D be the
position vector field of a canal space-like hypersurface M. The partial derivatives
of Z are denoted as follows: Z; = %—f, Z; = guzi; it =1,...,n —1, and similar
denotations are used for other vector functions.

Denoting by z(s), s € J the common point of the normals to M at the points of
any spherical generator S™"~1(s), we consider the space-like hypersphere S™(s) with
center z(s) containing S"~!(s). If R(s) is the radius of S™(s), then the position
vector Z of M satisfies the equality

(Z — 2(s))> = —R%*(s), R(s)>0, s€JCR. (3.1)
Differentiating (3.1) with respect to the parameter s, we get
(Z — 2(5))Zs — (Z — 2(s))2'(s) = —R(s)R/(s). (3.2)

Under the condition that the normal to M at any point of a fixed generator S™~1(s)
is collinear with Z — z(s), the equalities (3.1) and (3.2) are equivalent to

(Z — 2(s))* = —R*(s),
(Z — 2(s))7'(s) = R(s)R/(s).

(3.3)
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A space-like hypersurface M in R?‘H is said to be the envelope of a one-
parameter family of space-like hyperspheres {S™(z(s), R(s))}, s € J if the position
vector Z(s;ul,...,u""1) of M satisfies the equations (3.3).

Let M be a space-like hypersurface, which is the envelope of a one-parameter
family of space-like hyperspheres {S™(z(s), R(s))}, s € J. It follows from (3.3) that
M is a one parameter family of spheres S"~1(s), s € J. Differentiating the first
equality of (3.3), we have

(Z—-2)Zs=0, (Z—-2)Z;=0, i=1,....,n—1,

which shows that the time-like vector field Z — z at the points of any generator
S"~1(s) of M is normal to both: the hypersurface M and the hypersphere S™(s).

Hence, as in the classical case [7, 8, 9, 10, 20], we have

Lemma 3.3. A space-like hypersurface M in R?H is canal if and only if it is
the envelope of a one-parameter family of space-like hyperspheres.

Let M be a space-like canal hypersurface, given by (3.3). We denote the
tangent vector to the curve of centers z(s) as usual by t(s) = 2/(s). The unit
normal vector field N to M is collinear with Z — z and we always choose

Z—z
N =— . 3.4
- (3.4)
In view of (3.3), the vector field N has the properties:
N?=-1, Nt=-R.
Differentiating (3.4), we have
1 .
Ni:—fZi, 2:17...,71—1,
R (3.5)

Zs+ RNs;=t—R'N.

The second equality in (3.5) means that the vector field ¢t — R’ N is tangent to
M. Since the normals to M at the points of a spherical generator cannot be parallel
to the vector ¢, then the vector field t — R'N is space-like and (¢t — R’ N)? > 0.
Furthermore, the second equality in (3.3) implies that t Z; =0, i = 1,...,n— 1, and
therefore t — R'N is perpendicular to all Z;.

We introduce the unit tangent vector field £ as follows:

1
=———— (t—R'N). 3.6
¢ = BN (35)
Then the distribution A := {x € T,M : x L £} isexactly A =span{Zi,...,Z,_1}.
For the purposes of our investigations we need to introduce three types of canal
space-like hypersurfaces.
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Definition 3.4. A canal space-like hypersurface M in R?™*, given by (3.3), is
said to be a canal space-like hypersurface of elliptic, hyperbolic or parabolic type if
the curve z = z(s), s € J of the centers of the hyperspheres is time-like, space-like
or light-like, respectively.

Rotational space-like hypersurfaces are introduced in a natural way:

Definition 3.5. A canal space-like hypersurface M in R?"!, given by (3.3),
is said to be a rotational space-like hypersurface if the curve z = z(s), s € J of the
centers of the hyperspheres lies on a straight line.

Any of the three types of canal space-like hypersurfaces generates the corre-
sponding subclass of rotational space-like hypersurfaces.

3.1. CANAL SPACE-LIKE HYPERSURFACES OF ELLIPTIC TYPE IN MINKOWSKI
SPACE

Let M be a canal space-like hypersurface in R?H of elliptic type, given by
(3.3). The curve of centers z = z(s), s € J, parameterized by its natural parameter,
satisfies the condition 22 =2 = —1.

Since (t — R’ N)? = R”? — 1 > 0, then the function R(s) in the case of a canal
space-like hypersurface of elliptic type satisfies the inequalities

R%*(s) >0, R?*is)—1>0; secl.

Next we find the second fundamental form of M.

Let V' be the standard flat Levi-Civita connection in R} and h be the second
fundamental tensor of M. The Levi-Civita connection of the induced metric on the
hypersurface M is denoted by V. Taking into account (3.5) and (3.6), we get

V7 N=N;= . Ziy, V3 €=&=— 1 N; = 1 Z;.
‘ R ‘ RZ -1 RVR? -1

These equalities can be written as follows:

1 R
VIN=——2 V=V, l=———=12=kx, z€A,
S A R RN
and the function k is
1 3.1.1)
k= —. 1.
RVR? -1 (
Hence, the shape operator A of M satisfies
Ax = 1 €A (3.1.2)
T=o% X . 1.
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Since g(N, N) = —1, then
1
h(z,y) = —g(Az,y) = — 5 9(z,y), @,y €A (3.1.3)
The equality (3.1.2) means that the tangent space A is invariant with respect

to the shape operator A. This implies that the vector field £ is also an eigenvector
field of A, i.e.

A =vE. (3.1.4)
Assuming the standard summation convention, we can put
E=¢'Z;+¢Zs, ¢#0 (3.1.5)
for some functions ¢!,...,¢" '; ¢ on M. Since ¢ is perpendicular to all Z;, we
have 1
§Zs = 3 (3.1.6)

Taking into account (3.1.5), we compute
ViN = ¢'N; 4+ ¢N,s = -5 ' Z; + ¢N,. (3.1.7)

On the other hand, because of (3.5) and (3.6), we have

Z,+ RN, =+/R? - 1¢. (3.1.8)

In view of (3.1.5) and (3.1.8) equality (3.1.7) implies that

VéN = —%(1 — oV R?-1)¢=—-v¢
and

v = g, (3.1.9)

Using (3.1.2), (3.1.3) and (3.1.4), we obtain the shape operator of M:

1 1
AX ==X - = X X e XM.
F X+ (v-g)n0e xe

The last equality and (3.1.9) imply that the second fundamental tensor of M
has the form

R?—1

7 1(Xn(Y), XY e XM (3.1.10)

1
Further we replace (3.1.10) into the Gauss equation for the hypersurface M,
and taking into account (3.1.6), we obtain the curvature tensor R of a canal space-
like hypersurface M of elliptic type:
R? -1

1
= _—— —— O = D. 111
R R2W+R2(§Zs) am+b (3 )
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Now (3.1.11) and (3.1.1) imply that
1

— 2 _
a/—_7<0, a+k‘—m>0

Thus we obtained the following

Proposition 3.6. Any canal space-like hypersurface of elliptic type in R?H is
a Riemannian manifold of quasi-constant sectional curvatures with functions a <0
and a + k% > 0.

Next we prove that the rotational space-like hypersurfaces of elliptic type are
Riemannian subprojective manifolds satisfying the conditions in Proposition 3.6.
Using (3.1.8), we have

£Zs+ R(EN,) = VR? — 1.

In order to compute the function £N,, we use the equality {Ng + N = 0.
Differentiating (3.6) by s, we find

t/N+ R//
gsN - R/2 —1 .
Therefore
7 _ RR"+ R? -1+ R(t'N)
¢z, = ——
and
b R? -1

 RZ{RR"+ R? -1+ R(t'N)}’

According to Proposition 3.6, the hypersurface M is a Riemannian QC-manifold.
Any Riemannian QC-manifold is subprojective if and only if the functions a and b
generate one and the same distribution. Therefore, M is subprojective if and only
if the function b does not depend on the parameters u’; i = 1,...,n—1,ie. ¢ = 0.
Since t' = 0 characterizes a straight line ¢, we obtain the following statement.

Proposition 3.7. A canal space-like hypersurface M of elliptic type in R’f“
is a Riemannian subprojective manifold if and only if M is a rotational space-like
hypersurface of elliptic type.

Combining with Proposition 3.6, we have

Proposition 3.8. Any rotational space-like hypersurface of elliptic type in
R?‘H is a subprojective Riemannian manifold with functions a < 0 and a+k? > 0.

The curvature tensor of a rotational space-like hypersurface of elliptic type has

the form .
1 R -1
R— -1 ®.
BT RER TR 1)

120 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 109-132.



3.2. CANAL SPACE-LIKE HYPERSURFACES OF HYPERBOLIC TYPE IN MINKOWSKI
SPACE

Let M be a canal space-like hypersurface of hyperbolic type, given by (3.3).
The curve of centers z = z(s), s € J, parameterized by its natural parameter,
satisfies the condition 22 =12 = 1.

In the case considered, the inequality (t — R’ N)? = R? + 1 > 0 is always
satisfied. Hence, R(s) satisfies the only condition R(s) > 0.

We compute

1 R
VIN=——uz V(=V,l=—+——ua=kx, x€A,
| = €= Vol = o a = ha
where the function k(s) is
Rl
k= ——m——. 3.2.1
RVR? +1 ( )
Therefore,
1
Az = R T €A (3.2.2)
and the vector field £ is an eigenvector for A:
AL =v§, (3.2.3)

Putting ¢ = ¢'Z; + ¢Z,, we compute
L
VN = _Ed) Zi + ¢Ns,
and taking into account that

Zs+ RN, =+ R?+ 1€,

we find )
VeN =—5(1—oVR? +1)¢ = —v¢,

and

- %(1 —oVRZ 1)

Using (3.2.2) and (3.2.3), we obtain the second fundamental form h of the

hypersurface M:
1 VR? +1
h = *E g+ d)T n ® Ui

Applying the Gauss equation and the equality ¢ (£Zs) = 1, we calculate the
curvature tensor of the hypersurface M.

1 VR? +1
= —— — P = D.
R R2W+R2(£Zs) ar +b

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 109-132. 121



Therefore, a = —1/R?. In view of (3.2.1), we find

-1
2 _
a+k _RQ(RQ—i—l) < 0.

Thus we obtained the following statement.

Proposition 3.9. Any canal space-like hypersurface of hyperbolic type in R?H
is a Riemannian manifold of quasi-constant sectional curvatures with function
a+k?<0.

Next we prove that the rotational space-like hypersurfaces of hyperbolic type
are Riemannian subprojective manifolds satisfying the condition in Proposition 3.9.

Differentiating (3.6) with respect to s, we compute

t/N + R//
N =——=. 3.2.4
TR (324)
Using the equality &N + N = 0, (3.2.4) and (3.5), we find
RR"+R?+ 1+ R(t'N)
VAT

§Zs =

and
R/2 + 1

T RYRR'+R?+1+R({A'N)}

b

Applying similar arguments as in Subsection 3.1, we conclude that M is sub-
projective if and only if # = 0, which characterizes a straight line c.

Thus we obtained the following statement.

Proposition 3.10. A canal space-like hypersurface M of hyperbolic type in
R?'H is a Riemannian subprojective manifold if and only if M is a rotational space-
like hypersurface of hyperbolic type.

Combining with Proposition 3.9, we have

Proposition 3.11. Any rotational space-like hypersurface of hyperbolic type
m R?'H is a subprojective Riemannian manifold with function a + k2 < 0.

The curvature tensor of a rotational space-like hypersurface of hyperbolic type

has the form
? 1 N R?+1
=——
R? R?2(RR" + R? +1)
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3.3. CANAL SPACE-LIKE HYPERSURFACES OF PARABOLIC TYPE IN MINKOWSKI

SPACE

Let M be a canal space-like hypersurface of parabolic type, given by (3.3). The

curve of centers z = 2(s), s € J, satisfies the condition 22 =¢? = 0.

In this case (t— R’ N)? = R”? > 0 and the function R(s) satisfies the conditions

R(s) > 0 and R'(s) # 0.
Next we find the second fundamental form of M.

We compute

1 1
V;N:—Ex, ViE=V,€= Eazzkx, z €A
and find 1
Azr = = T, T €A,
1
k=—
R
and
AE =rvE.
Further we again put 4
§=¢"Zi+ ¢Zs

and compute

. 1 .
VeN = ¢'Ni+¢No = —6'Zi + 9N, i=12,....n—1.

Using the equality
Z,=R ¢—RN,,

we obtain from (3.3.4) that
1
VN = (1 - 0R)E = vE,

and
1

Now equalities (3.3.1), (3.3.3) and (3.3.5) imply that

/

1 R
h=—— e
RITORNON

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

Finally, replacing h into the Gauss equation and using the equality ¢ (£Z5) = 1,

we find the curvature tensor of the hypersurface M in the form
R/

1
R R2W+R2(£Zs) am + b,
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which shows that M is a Riemannian QC-manifold with function a = —1/R?. In
view of (3.3.2) we find
a+k*=0.

Thus we obtained the following statement.

Proposition 3.12. Any canal space-like hypersurface of parabolic type in
R?‘H is a Riemannian manifold of quasi-constant sectional curvatures with function
a+k?=0.

Next we prove that the rotational space-like hypersurfaces of parabolic type are
Riemannian subprojective manifolds satisfying the condition in Proposition 3.12.

Differentiating (3.6) with respect to s, we get
t/N + R//
r '
Using the equality £,V + €N, = 0, (3.3.6) and (3.5), we find

&N = (3.3.6)

_ RR'"+R?+ R (t'N)

7 -

and
R/2

b= .
R*{RR" + R + R (‘' N)}

Applying similar arguments as in Subsection 3.1, we conclude that M is sub-
projective if and only if # = 0, which characterizes a straight line c.

Thus we obtained the following statement.

Proposition 3.13. A canal space-like hypersurface M of parabolic type in
R’f“ is a Riemannian subprojective manifold if and only if M is a rotational space-
like hypersurface of parabolic type.

Combining with Proposition 3.12, we have

Proposition 3.14. Any rotational space-like hypersurface of parabolic type in
R’f“ is a subprojective Riemannian manifold with function a + k? = 0.

The curvature tensor of a rotational space-like hypersurface of parabolic type
has the form
R/2

7, R e —
" RRR"+ R?)
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4. A LOCAL CLASSIFICATION OF RIEMANNIAN QC-MANIFOLDS

Let (M,g,¢) (dimM = n > 4) be a Riemannian QC-manifold. Then the
Riemannian curvature tensor R of M has the form

R = am + bd. (4.1)

We consider manifolds free of points in which the tensor R is of constant
sectional curvatures, i.e. b # 0 in all points of M.

We note that the condition a = 0 implies that b = 0.

In [11] we proved that a Riemannian QQC-manifold with positive horizontal
sectional curvatures, i.e. a > 0, can be locally embedded as a canal hypersurface
in Euclidean space R*+1.

In this section we study Riemannian QC-manifolds with negative horizontal
sectional curvatures, i.e. a < 0.

The basic step in our classification of Riemannian QC-manifolds is the following
theorem.

Theorem 4.1. Let (M, g,&) (dim M = n > 4) be a Riemannian QC-manifold
with curvature tensor (4.1) satisfying the conditions:

b#£0, a<O0.

. . . . . . 1
Then the manifold is locally &-isometric to a canal space-like hypersurface in R;H' .

Moreover, the manifold is locally £-isometric to a canal space-like hypersurface
of elliptic, hyperbolic or parabolic type, according to

a+k?>>0, a+k*<0 or a+k?>=0,
respectively.

Proof. Under the conditions of the theorem the curvature tensor of the manifold
M has the form (4.1) and all equalities (2.3) - (2.7) are valid. We put

and consider the symmetric tensor

b
h=vV—ag— ——=—n@n=ag+Bn21n (4.2)

—a

on M.

An immediate verification shows that the curvature tensor R of the manifold
(M, g, &) has the following construction

R(X,Y, Z,U) = —{n(Y, Z) (X, U) — h(X, Z) h(Y,U)}, (4.3)
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i.e.

R=—(a*7+aB®), a=—a? b= —ap.
We shall show that the tensor h satisfies the Codazzi equation
(Vxh)(Y,Z) — (Vyh)(X,Z2) =0, X,Y € XM. (4.4)
Taking into account (4.2), we calculate
(Vxh)(Y, Z) = (Vyh)(X, Z) = da(X)g(Y, Z) — da(Y) g(X, Z)

+(dBX)n(Y) — dB(Y)n(X))n(Z)
+Bdn(X,Y)n(Z)
+ 8 ) (Vxn)(Z) = n(X)(Vyn)(2)).

(4.5)

We prove that the right hand side of (4.5) is identically zero. Since any tangent
vector is decomposable as in (2.1), we divide the proof into four steps. Taking into
account that a = —a?, b = —af3, we apply equalities (2.3) - (2.7) and obtain
consequently:

NI X =z Y =y, Z =z then the right hand side of (4.5) reduces to

da(z) g(y, 2) — da(y) g(z, 2),

which is zero because of (2.3).
DU X =2zY =y, Z=E¢, then the right hand side of (4.5) reduces to

Bdn(z,y),

which is zero in view of (2.4).
U X =2, Y =¢ Z=¢, then the right hand side of (4.5) reduces to

dp(z) + Bdn(z,¢),

which is zero as a consequence of (2.5).
I X =¢ Y =y, Z =z then the right hand side of (4.5) reduces to

§(a) gy, z) = B(Vyn)(2),

which is zero because of (2.6).
Combining the above cases 1) - 4), we conclude that the right hand side of (4.5)
is equal to zero for all X|Y,Z € XM, i.e. the tensor h satisfies (4.4) identically.

Now we can apply the fundamental embedding theorem for hypersurfaces in
R?*! and obtain that the Riemannian QC-manifold (M, g,&) can be locally em-
bedded as a hypersurface in the Minkowski space R’f“.
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If N is the unit normal vector field to a hypersurface with second fundamental
form h, then the curvature tensor R of this hypersurface satisfies the identity

R(X,Y,Z,U) = g(N, N){h(Y, Z) h(X,U) — h(X, Z) h(Y, U)}.

Comparing with (4.3) we obtain that the Riemannian QC-manifold (M, g,§) is
embedded locally as a space-like hypersurface in R?H. Further, we denote this
hypersurface again with (M, g,&).

Now (M, g,¢) is a space-like hypersurface in R?"**, whose second fundamental
form h satisfies (4.2).

Next we prove that M is locally a part of a space-like canal hypersurface in
RyHL.

Let Z be the position vector field of M and p be a fixed point in M. Denote
by Sp the maximal integral submanifold of the distribution A containing p. Using
the property da = £(a) 1, we get o = const on S,. Then the equality

VIN =—az

implies that the vector function Z — (1/a) N is constant at the points of S,. We
set

1
z=2——N,
o'

and conclude that S}, lies on the time-like hypersphere S™ with center z and radius
R = (1/a), and both hypersurfaces, M and S™, have the same normals at the
points of S,,.

Since the distribution A determines a one-parameter family of submanifolds
Q" %(s), s € J in a neighborhood U of p, then U is a part of the envelope of this
family.

Finally we apply Propositions 3.6, 3.9, 3.12 and obtain the second part of the
theorem. g

Applying Theorem 4.1, we obtain immediately

Theorem 4.2. Let (M, g,¢) (dim M =n > 4) be a subprojective Riemannian
manifold with curvature tensor (4.1) satisfying the conditions:

b#0, a < 0.
Then the manifold is locally &-isometric to a rotational space-like hypersurface in
1
Ry
Moreover, the manifold is locally £-isometric to a rotational space-like hyper-
surface of elliptic, hyperbolic or parabolic type, according to

a+k*>0, a+k’<0 or a+k?*=0,

respectively.
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5. CONFORMALLY FLAT RIEMANNIAN HYPERSURFACES IN
EUCLIDEAN OR MINKOWSKI SPACE

5.1. CONFORMALLY FLAT HYPERSURFACES IN EUCLIDEAN SPACE

A hypersurface M in Euclidean space is said to be quasi-umbilical [5] if its
second fundamental form h satisfies the equality

h=ag+B8n®n (5.1)

for some functions a # 0, 8 # 0, and a unit 1-form n on M. The close relation
between conformally flat hypersurfaces in Euclidean space from one hand side,
and quasi-umbilical hypersurfaces in R"*! from another hand side, is the following
statement [3, 18] (see also [16]):

Lemma 5.1. (Cartan - Schouten) Let M be a conformally flat hypersurface
in Rt Then the shape operator of M at any point has a root of multiplicity at
least n — 1.

As a result of Lemma 5.1 we have

Lemma 5.2. Any conformally flat hypersurface M in FEuclidean space, which
18 free of umbilical points, is quasi-umbilical.

Proof. Let A be the shape operator of the hypersurface M. Since M is free
of umbilical points, then according to Lemma 5.1 the operator A has at any point
two different eigenvalues o and o + 8 of multiplicity n — 1 and 1, respectively. Let
& be the unit eigenvector field, corresponding to the function a + 8. Denoting by
n the 1-form, corresponding to £ with respect to the metric g, we obtain (5.1). O

Equality (5.1) implies that the curvature tensor R of M has the form
R=d’1m+aB®; a?>0, af#0,

ie. (M,g,€) is a Riemannian QC-manifold with positive horizontal sectional cur-
vatures.

Applying Proposition 3 [11], we obtain:

Theorem 5.3. Any conformally flat hypersurface M in R™ 1, which is free
of umbilical points, locally lies on a canal hypersurface.

If (M, g) is a conformally flat hypersurface in R"*!, then the manifold (M, g)
admits a unit vector field &, such that (M, g,§) is a Riemannian QC-manifold with
positive horizontal sectional curvatures a > 0. Any two locally isometric confor-
mally flat hypersurfaces are locally &-isometric, i.e. rigid. Taking into account
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Theorem 2.4, we obtain that any isometric embedding of a conformally flat Rie-
mannian manifold into R"** is locally determined up to a motion. We also recall
the results of R. Beez [2] and W. Killing [14]:

A hypersurface in the Euclidean space is rigid if at least three principal cur-
vatures are different from zero at each point of it, i.e. the hypersurface has type-
number > 3 at each point.

Thus, we obtained that
The local theory of conformally flat Riemannian manifolds, isometrically em-

bedded as hypersurfaces in FEuclidean space, is equivalent to the local theory of Rie-
mannian QC-manifolds with positive horizontal sectional curvatures.

Taking into account the local classification of hypersurfaces in Euclidean space
of constant sectional curvature and Theorem 5.3, we obtain a local geometric clas-
sification of conformally flat hypersurfaces in R**1:

Theorem 5.4. Any conformally flat hypersurface M in R*1 is locally a part
of one of the following hypersurfaces:

(i) hyperplane (o= =0);

(i) hypersphere (a#0, B =0);

(iii) developable hypersurface (=0, §#0);
(i) canal hypersurface (a #0, 8 #0).

5.2. CONFORMALLY FLAT SPACE-LIKE HYPERSURFACES IN MINKOWSKI SPACE

Let M be a space-like hypersurface in Minkowski space with second funda-
mental form h. Similarly to the Euclidean case, we call the hypersurface M quasi-
umbilical if

h=ag+pBn®n (5.2)

for some functions « # 0, 5 # 0, and a unit 1-form 1 on M.

The proof of Lemma 5.1 is also valid without any essential changes for confor-
mally flat hypersurfaces in Minkowski space.

Lemma 5.5. Let M be a conformally flat space-like hypersurface in R;H'l.
Then the shape operator of M at any point has a oot of multiplicity at least n — 1.

Analogously to Subsection 5.1., Lemma 5.5 implies the following statement.

Lemma 5.6. Any conformally flat space-like hypersurface M in Minkowski
space, which is free of umbilical points, locally is quasi-umbilical.

Equality (5.2) implies that the curvature tensor R of M has the form

R=-a’1—af®; a®>>0, aB#0,
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ie. (M,g,¢&) is a Riemannian QC-manifold with negative horizontal sectional cur-
vatures.

Applying Theorem 4.1, we obtain:

Theorem 5.7. Any conformally flat space-like hypersurface M in Minkowski
space, which is free of umbilical points, locally is a part of a canal space-like hyper-
surface.

If (M, g) is a conformally flat space-like hypersurface in R}, then the man-
ifold (M, g) admits a unit vector field £, such that (M, g,€) is a Riemannian QC-
manifold with negative horizontal sectional curvatures a < 0. Any two locally iso-
metric conformally flat space-like hypersurfaces are locally £-isometric, i.e. rigid.
All isometric realizations of a conformally flat Riemannian manifold into R?** are
locally congruent.

Thus we have:
The local theory of conformally flat Riemannian manifolds, isometrically im-

mersed as space-like hypersurfaces in Minkowski space, is equivalent to the local
theory of Riemannian QC-manifolds with negative horizontal sectional curvatures.

Taking into account the local classification of space-like hypersurfaces of con-
stant sectional curvatures in Minkowski space, and Theorem 5.7, we obtain the
following geometric classification of conformally flat space-like hypersurfaces in
Minkowski space:

Theorem 5.8. Any conformally flat space-like hypersurface M in Minkowski
space is locally a part of one of the following hypersurfaces:

(i) a space-like hyperplane (o= =0);

(i) a space-like hypersphere (a#0, 8 =0);

(iii) a space-like developable hypersurface (=0, §#0);
(i) a space-like canal hypersurface (o #0, 8 #0).
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The object of investigation are the almost contact manifolds with B-metric in the lowest
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1. INTRODUCTION

The differential geometry of the manifolds equipped with an almost contact
structure is well studied (see, e.g. [3]). The almost contact manifolds with B-
metric are introduced and classified in [6]. These manifolds are the odd-dimensional
counterpart of the almost complex manifolds with Norden metric [5, 7].

An object of special interest is the case of the lowest dimension of the considered
manifolds. We investigate the almost contact B-metric manifolds in dimension
three and get explicit results. Some curvature identities of the three-dimensional
manifolds of this type are studied in [11, 12].
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Almost contact manifolds with B-metric can be constructed on Lie algebras.
It is known that all three-dimensional real Lie algebras are classified in [1, 2].
The main goal of this paper is to find a relation between the classes in the Bianchi
classification and the classification of almost contact B-metric manifolds given in [6].
Moreover, the present work gives some geometrical characteristics of the considered
manifolds in certain special classes.

The paper is organized as follows. In Section 2 we recall some preliminary
facts about the almost contact B-metric manifolds. In Section 3 we equip each
Bianchi-type Lie algebra with an almost contact B-metric structure. In Section 4
we give the relation between the Bianchi classification and the classification given
in [6]. Section 5 is devoted to the curvature properties of some of the considered
manifolds.

2. PRELIMINARIES

Let (M, ¢,£,7n,9) be an almost contact manifold with B-metric or an almost
contact B-metric manifold, where M is a (2n + 1)-dimensional differentiable ma-
nifold, (¢, &, n) is an almost contact structure consisting of an endomorphism ¢ of
the tangent bundle, a Reeb vector field & and its dual contact 1-form 7. Moreover,
M is equipped with a pseudo-Riemannian metric g, called a B-metric, such that
the following algebraic relations are satisfied [6]:

eE=0, p*=-Id+n®E nop=0, &) =1,
9oz, py) = —g(z,y) +n(z)n(y),

where Id is the identity. In the latter equalities and further, z, y, z, w will stand
for arbitrary elements of the algebra of the smooth vector fields on M or vectors
in the tangent space T, M of M at an arbitrary point p in M.

The associated B-metric g of g is determined by g(z,y) = g(x, py) + n(x)n(y).
The manifold (M, p, &, n, §) is also an almost contact B-metric manifold. The sig-
nature of both metrics g and g is necessarily (n+ 1,n). We denote the Levi-Civita
connection of g and § by V and V, respectively.

A classification of almost contact B-metric manifolds, consisting of eleven basic

classes Fi, Fa, ..., Fi1, is given in [6]. This classification is made with respect to
the tensor F of type (0,3) defined by
F(a,y,2) = 9((Va9) y, 2) (2.1)

and having the following properties:
F(z,y,2) = F(z,2,y) = F(z,90y, p2) + n(y)F (2, &, 2) + n(z)F(2,y,§).

The special class determined by the condition F(z,y,z)=0 is denoted by Fy.
This class is the intersection of all the basic classes. Hence Fy is the class of almost
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contact B-metric manifolds with V-parallel structures, i.e. Vo = V¢ =Vn=Vg =
Vg = 0. Therefore Fy is the class of the cosymplectic manifolds with B-metric.

According to [10], the square norm of V¢ is defined by:
IVel* = g7 g™ g ((Ve,0) en, (Ve,0) €5). (2.2)

It is clear that |Vl = 0 is valid if (M, ¢,&,7,g) is a cosymplectic manifold with
B-metric, but the inverse implication is not always true. An almost contact B-
metric manifold having a zero square norm of V is called an isotropic-cosymplectic
B-metric manifold.

If {e;;€} (i=1,2,...,2n) is a basis of T,M and (g"/) is the inverse matrix of
(gi5), then the 1-forms 6, 8%, w, called Lee forms, are associated with F' and defined
by:

9(’2) - gijF(ehejv 2)7 9*(2) = gijF(eia ®ej, Z)a w(z) = F(gaga Z)

Let now consider the case of the lowest dimension of the almost contact B-
metric manifold M, i.e. dim M = 3.

We introduce an almost contact structure (¢, &, n) on M defined by

pe; = €2, ez = —€1, PYe3z = 0, 5 = €3, (2 3)
nler) =nle2) =0, nles) =1

and a B-metric g such that
gler,e1) = —g(ea, e2) = gles,e3) =1, glei,e;) =0, i#j€{1,2,3}. (2.4)

Let us denote the components Fj;;, = F(e;, ej, ex) of F' with respect to a @-basis
{61, €2, 63} of TpM.

According to [8], the components of the Lee forms are

01 = Fi11 — Foon, 0y = Fi12 — Foix, 03 = Fi13 — Faa3,
07 = Fii2 + Fonn, 05 = Fii1 + Faou, 05 = Fioz + Fais,
wy = Fi31, wy = F33, w3 = 0.

Then, if Fy (s = 1,2,...,11) are the components of F in the corresponding
basic classes Fs and = = z'e;, y = y’e;, z = zFe, for arbitrary vectors in T, M, we
have [8]:

Fl(x,y,z) = (xlel - .27292) (ylzl + 922’2) )
01 = Fi11 = Fiao, 0y = —F511 = —Fao;
Fg(l‘,jlj,Z) = F3(x’yvz) =0;

(2.5)
Fy(z,y,2) = %93{:51 (y2' +y'2%) — 2® (v + y*2°) },

1
593 = Fi31 = F113 = —Fbzp = —Faa3;
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1

Fs(z,y,2) = §0§{x1 (y°2* + y*2°) + 2 (v +y'2°) },

1

593 = Fi39 = Fio3 = F31 = Foy3;
F6(l’7y72’) = F7(x’y7z) = 0;
Fa(z,y,2) = Ma' (°2" +y'2%) + 2% (P2 +4%2°) },

A = Fi31 = Fi13 = Fhza = Faos; (2.6)
F9(£C7y72) = N{ml (1/322 + y2Z3) - ? (y321 + y123)}’

= I3 = Flo3 = —Fp31 = —Fy13;

Fio(,y,2) =va® (y'2' +y°2%), v = F311 = F323;
Fii(z,y,2) =2*{(y'2° + °2") w1 + (172° + 4°2%) wa },
wy = F313 = F331, wo = F393 = F339.

Obviously, the class of three-dimensional almost contact B-metric manifolds is
Fi1OFsDFs D Fs D Fg® Fio ® Fia.

Let R =[V,V] =V | be the curvature (1,3)-tensor of V. The corresponding
curvature (0,4)-tensor is denoted by the same letter: R(x,y,z,w) = g(R(x,y)z, w).
The following properties are valid:

R(‘T?yaZ?w) = _R(y7x7z7w) = _R(xayaw7z)a
R(z,y, z,w) + R(y, z,z,w) + R(z,z,y,w) = 0.

It is known from [11] that every 3-dimensional cosymplectic B-metric manifold
is flat, i.e. R=0.

The Ricci tensor p and the scalar curvature 7 for R as well as their associated
quantities are defined respectively by

p(yaz) :gij‘R(eivyazvej)a T :gijp(eiaej)a
p*(yaz) =g”R(ei,y,z7goej), T :g”p*(eivej)»
where {e1,e,...,€2,41} is an arbitrary basis of T, M.

Let a be a non-degenerate 2-plane (section) in T, M. It is known that the spe-
cial 2-planes with respect to (p,&, 7, g) are: a totally real section if « is orthogonal
to its ¢-image @a, a @-holomorphic section if a coincides with pa and a &-section
if £ lies on «.

The sectional curvature k(a; p)(R) of o with an arbitrary basis {z,y} at p is

R(z,y,y,x)

k(a;p)(R) = 9(z, 2)9(y,y) — g(z, )2

According to [9], a manifold M whose Ricci tensor satisfies
p=Ag+pg+rvn@mn

is said to be an n-complex-FEinstein manifold.
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3. EQUIPPING OF EACH BIANCHI-TYPE LIE ALGEBRA WITH ALMOST
CONTACT B-METRIC STRUCTURE

It is known that L. Bianchi has categorized all three-dimensional real (and
complex) Lie algebras. He proved that every three-dimensional Lie algebra is iso-
morphic to one, and only one, Lie algebra of his list (cf. [1, 2]). These isomorphism
classes form the so-called Bianchi classification and are noted by Bia(I), Bia(II),
Bia(IV), Bia(V), Bia(VI,) (h < 0), Bia(VIL,) (h > 0), Bia(VIII) and Bia(IX).
The class Bia(III) coincides with Bia(VI_1). The following theorem introduces the
Bianchi classification.

Theorem A. ([1, 2]) Let [ be a real three-dimensional Lie algebra. Then |

is isomorphic to exactly one of the following Lie algebras (R3,[-,]), where the Lie
bracket is given on the canonical basis {e1,ea,es} as follows:
Bia(I) : le1,ea] = o, [e2,e3] = o, [es, e1] = o;
Bia(II) : [e1,ea] = o, [e2, e3] = ey, [es, e1] = o;
Bia(IV) : [e1,ea] = o, [e2,e3] = €1 —ea, [es,e1] =eq;
Bia(V) : le1,e2] = o, [e2, €3] = eq, [es, e1] = eq;
Bia(VI,) (h <0) le1,e2] = o, [e2,e3] = e1 — hea, [e3,e1] = hey — ea;
Bia(VIIh) (h>0): [e1,e2] = o, [e2,e3] = e1 — hea, [es,e1] = hey + es;
Bia(VIII) : [e1,ea] = —es, [e2,e3] = ey, [es, e1] = ea;
Bia(IX) : [e1, ea] = es, [e2, e3] = ey, [es, e1] = ea.

Here, o is the zero vector in [.

The geometrization conjecture, associated with W. Thurston, states that ev-
ery closed manifold of dimension three could be decomposed in a canonical way
into pieces, connected to one of the eight types of Thurston’s geometric structures
([13]): Euclidean geometry E?, Spherical geometry S®, Hyperbolic geometry H?,
the geometry of 52 x R, the geometry of H? x R, the geometry of the universal
cover SL(2,R) of the special linear group SL(2,R), the Nil geometry, the Solv
geometry.

Seven of the eight Thurston geometries can be associated to a class of the
Bianchi classification as it is shown in the following table. The Thurston geometry
on S? x R has no such a realization (see, e.g., [4]).

TABLE 1. Relations between the Bianchi types and the Thurston geometries

Bia(l E®
IZEI%) Nil Bla(VI’KO) .
Bia(Ill) | HZ xR Bia(VIlo) E
a( ) a‘(VIIh>O)
Bia(V) 73 Bia(VIII) SL(2,R)
3
Bia(VIg) | Solv Bia(IX) S
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Let us consider each Lie algebra from the Bianchi classification, equipped with
an almost contact structure (¢, &,n) and a B-metric ¢ as in (2.3) and (2.4).

The presence of the structure (¢,&,m,9) gives us a reason to consider the
relation between the Bianchi types and the classification of almost contact B-metric
manifolds in [6].

We obtain immediately the following

Proposition 3.1. Some Bianchi types can be equipped with a structure (¢, &, n,
g) in several ways. In the cases Bia(I) and Bia(IX) there is only one variant. In
the remaining cases, there are three possible subtypes of each type, obtained from
each other by a cyclic change of the basic vectors ey, es and es. All subtypes are
given in Table 2:

TABLE 2. Equipping of the Bianchi types Lie algebras with a (p,&,m,g) structure

Bia(I)

(1) T [e1,e2] = o, [e2, e3] = o, les,e1] =0
Bia(II)

(1) | le1,e2] = o, [e2, e3] = e, les,er] =0

(2) | le1,e2] = o, le2,e3] = o, les,e1] = e2

(3) | le1,e2] =es, [e2, e3] = o, les,e1] =0
Bia(III) = Bia(VI_1)

(1) | [e1,e2] = o, le2,e3] = e1 +e2, le3,e1] = —e1 —e2
(2) | [e1,e2] = —e2 —e3, le2, e3] = o, le3,e1] = ez +e3
(3) | [e1,e2] =e1 +es, lea, e3] = —e1 —e3, les,e1] =0
Bia(IV)

(1) | [e1,e2] = o, le2,e3] = e1 — ez, le3,e1] = e1

(2) | [e1,e2] =ea, [e2,e3] = o, [es,e1] =e2 —e3
(3) | le1,e2] = —e1 +es, le2, e3] = es, les,e1] =o
Bia(V)

(1) | [e1,e2] = o, le2, e3] = ea, les,e1] =e1

(2) | [e1,e2] =ea, [e2,e3] = o, [es, e1] = e3

(3) | le1,e2] =ei, [e2,e3] = e3, [e3,e1] =0
Bia(VI,), h <0

(1) | le1,e2] = o, le2,e3] = e1 — hea, le3,e1] = her —e2
(2) | le1,e2] = hea —es, lea,e3] = o, les,e1] = e2 — hes
(3) | [er,e2] = —hei +e3, [ez,e3] = —e1 +hes, [es,er]=o0
Bia(VII,), h >0

(1) | le1,ez2] = o, le2, es] = e1 — hea, les,e1] = he1 + ez
(2) | [e1,e2] = hea +e3, [e2,e3] = o, les,e1] = ez — hes
(3) | [e1,e2] = —hei +e3, [e2,e3] = e1 + hes, [e3,e1] =0
Bia(VIII)

(1) | [e1,e2] = —es, le2,e3] = e1, [es, e1] = ez

(2) | [e1,e2] =es, le2; e3] = —e1, [es, e1] = ez

(8) | [e1,e2] =es, le2,e3] = e1, le3, e1] = —e2
Bia(IX)

(1) T [e1,e2] =es, le2,e3] =e1, [es,e1] = ea

138
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4. ALMOST CONTACT B-METRIC MANIFOLDS OF EACH BIANCHI TYPE

Let us consider the Lie group L corresponding to the given Lie algebra [. Each
definition of a Lie algebra for the different subtypes in Proposition 3.1 generates a
corresponding almost contact B-metric manifold denoted by (L, p,&,n,g). In this
section we characterize the obtained manifolds with respect to the classification in
[6].

Using (2.5)—(2.6), we obtain the corresponding components of F' in each sub-
types (1), (2), (3) in Proposition 3.1 and determine the corresponding class of
almost contact B-metric manifolds. The results are given in the following

Theorem 4.1. The manifold (L,¢,£,n,g), determined by each type of Lie
algebra given in Proposition 3.1, belongs to a class from the classification in [6] as
given in Table 3:

TABLE 3. Relations between the Bianchi types and the classes in [6]

Bia(I)

(1) ] Fo

Bia(II) Bia(VIy), h <0

(1) | F4® Fio (1) | F5® Fio

(2) | Fa® Fio (2) | Fi®Fa® Fs @ F11
(3) | Fs® Fio (3) | Fi®F4®Fg® F10 ® Fn1
Bia(II]) Bia(VIlo)

(1) | F5® Fio (1) | Fa

(2) | Fr®Fs® Fs® Fu1 (2) | Fa® Fs® Fuo

(8) | F1@® F1 @ Fg® Fio D F11 (3) | Fa® Fs

Bia(IV) Bia(VII,), h > 0

(1) | Fa @ Fs5 @ Fio (1) | Fa® Fs

(2) | F1 ® Fa® Fio ® F11 (2) | F1®Fs®Fs®Fio®Fuu
(8) | F1@ Fs @ Fio @ F11 (8) | Fr®F1 & Fs® Fi1
Bia(V) Bia(VIII)

(1) | Fo (1) | Fa® Fs @ Fio

(2) | F19Fu (2) | Fs@® Fio

(3) | F1®Fu1 (8) | Fs8® Fio

Bia(VIo) Bia(IX)

(1) | Fio (1) ] Fa® Fs® Fro

(2) | Fa® Fs

(3) Fu P Fs D Fio

Proof. We give our arguments for the case of Bia(II), the other cases are proven
in a similar way.

Using Theorem A, Eq. (2.4) and the Koszul equality

29 (Ve,ej,er) = g ([eisej],ex) + g ([er, il ej) + g ([ex, e5], €i)

we obtain the components of the Levi-Civita connection V of g. Then, by them,
(2.1) and (2.3), we get the following non-zero components F;;; and 6 for the

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 133-144. 139



different subtypes:

(1) Fus = Fiz31 = —Fp3 = —Fozp = *%7 F311 = F320 = -1, 03=-1;
(2) Fus=Fiz1 = —Fpz = —Fozp=—35, F311=1Fm=1 0;=-1;
(3) Fiis = Fiz1 = Foo3 = Fogo = 5, Fi11 = Fap = 1.

Bearing in mind (2.5)—(2.6), we conclude that the corresponding classes of each
subtype of Bia(Il) are as follows:

(1) (chp,gvnag)EF4@-F10;
(2) (L7907€77779)€F4EB—F10;
(3) (chp?gaTI?g)EJ:S@]:lO-

5. CURVATURE PROPERTIES OF THE CONSIDERED MANIFOLDS IN
SOME BIANCHI CLASSES

Now we focuss our considerations on the Bianchi classes depending on a real
parameter h. They are Bia(VI;,) and Bia(VII,). Actually, these two classes are
families of manifolds whose properties are functions of h. The classes regarding F
corresponding to Bia(VI,), h < 0 and Bia(VII), h > 0, according to Theorem 4.1,
can not be restricted for special values of h.

In this section our interest is in the curvature properties of these manifolds in
terms of h.

In view of Proposition 3.1, it is reasonable to investigate all three subtypes of
the Bianchi classes Bia(VI;), h < 0 and Bia(VII,), h > 0.

5.1. Bia(VI), h <0.

Let us consider subtype (1) of this Bianchi class as given in Proposition 3.1:
le1,e2] =0, [e2,e3] =e1 — hea, [e3,e1] = her — ea.
We calculate the non-zero components of V for Bia(VI}):

Ve, e1 = hes, Ve,e3 = —hey, Ve,e2 = —hes,

Ve,e3 = —hea, Ve,e1 = —e2, Ve,e2 = —ey. (5-1)
Using (2.2), (2.3), (2.4) and (5.1), we obtain for the square norm of V¢
IVel* = 4(2 — n%). (5.2)

Further, we calculate the basic components R;;i = R(e;, ej,ex,e;) of the cur-
vature tensor R, pji = p(ej,ex) of the Ricci tensor p, pj, = p*(ej,ex) of the
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associated Ricci tensor p*, the values of the scalar curvatures 7 and 7* and of the
sectional curvatures k;; = k(e;, e;). They are as follows:

_ _ _ 2.
Ri212 = —Ri313 = Razez = —h%;

_ — — 2 * ok _ p2.
P11 = —p22 Tpi3—6h22h ; ~ 21% P21 h=; (5.3)
k12 = kig = ko3 = —h?.

Using (5.3) we obtain the following

Proposition 5.1. In the case Bia(V1,), subtype (1), the following statements
are valid:

1). (L,p,&,n,9) is flat if and only if h = 0;

2). (L,p,&,m,9) is an isotropic-cosymplectic B-metric manifold if and only if
h=—V2;

3).  The scalar curvature and the sectional curvatures are constant and non-
positive;

4). (L,¢,&,m,9) is x-scalar flat, i.e. 75 =0;
5). (L,p,&,1n,9) is an Einstein manifold.

In the same fashion we obtain the analogues of (5.2) and (5.3) and derive the
corresponding propositions in the remaining cases. For subtype (2) we have:

IVl = 2(1 — 5h2);
Ri212 = —Ri313 = Roses = —h%;
p11 = —paz = p3z = —2h?, piy = p3 = —h?;
T = —6h2, T =0;
k1o = kig = ko3 = —h?,

whence we deduce the following

Proposition 5.2. In the case Bia(VI},), subtype (2), all the statements from
Proposition 5.1 hold true, with h = —/2 replaced by h = —% in statement 2).

In the case of subtype (3) we obtain:

IVel* = 10(h? + 1);
Ri212 = Rages = h? + 1, Rizi3 =1—h?, Ri203 = 2h;
p11 = ps3 = 2h?, p13 = p31 = —2h, p22 = —2(h* + 1);
Pia =Py = h* +1, P33 = P39 = —2h;
7 =2(3h? + 1), T =0;
k‘12=k‘23:h2—|—1, k13:h2—1.

The latter equalities imply
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Proposition 5.3. In the case Bia(VI}, ), subtype (3), the following statements
are valid:

1). The square norm of V¢ and the scalar curvature are positive;

2) (L7¢7§7nag) is x-scalar ﬂa,t;

3).  The sectional curvatures of the @-holomorphic sections are constant and
positive.

5.2. Bia(VII,), h > 0.

Here we focus on the three subtypes of Bia(VII). Firstly, let us consider the
subtype (1). As in the previous subsection, we find:

IVl = 4(1 — h?);
Rio1a = —(h? + 1), Riz13 = —Rases = h% — 1, Ri303 = —2h;
p11 = —paz = —2h?, p12 = p21 = 2h, ps3 = 2(1 — h?);
pia = py = —(h* + 1), piz = 4h;
T =2(1 - 3h?), T* = 4h;
]{512:7(}124*1), k13:k23:17h2.
Applying these results we obtain

Proposition 5.4. In the case Bia(VIL,), subtype (1), the following statements
are valid:

1). (L,p,&,1,9) is an isotropic-cosymplectic B-metric manifold if and only if

h=1;
2). (L,p,&,n,9) is scalar flat if and only if h = @;
3). (L,p,&,m,q) is *-scalar flat if and only if h = 0;

4). The sectional curvatures of the w-holomorphic sections are constant and
negative;

5). The sectional curvatures of the &-sections are constant;
6). (L,p,&,n,9) is an n-complex-Einstein manifold.
Analogously, we get the corresponding results for subtype (2):

[Vl = —10(h% — 1);
Ris12 = —Rizi3 = —(h? — 1), Rogos = —(h? + 1), Ri213 = 2h;
p11 = —2(h* — 1), paz = —paz = 2h?, p23 = p32 = —2h;
Pia = P31 = _(h2 -1), pis = P31 = 2h;
T=-2(3h% - 1), T =0;
k1g = kiz = —(h* — 1), kog = —(h? +1).

The latter equalities imply the following
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Proposition 5.5. In the case Bia(VII, ), subtype (2), the following statements
are valid:

1). (L,p,&,1,9) is an isotropic-cosymplectic B-metric manifold if and only if
h=1;

2). (L,p,&,n,9) is scalar flat if and only if h = @

3) (L7<Pa5777a9) is *-scalar ﬂat;

4). (L,¢,&,m,9) is horizontal flat, i.e. Rlg =0 for H = ker(n), if and only
ifh=1;

5). p* and g are proportional on H as p*|g = (h* — 1)§|u;
6). (L,p,&,n,q) is horizontal x-Ricci flat, i.e. p*|g =0, if and only if h = 1.
Finally, for the case of the subtype (3) we have:

IVl = 2(5h2 + 1);
Ri212 = —Ri313 = Rasasz = h¥%;
p11 = —p22 = p33 = 2h?;
Pla = P33 = h?;

T = 6h?, 7" = 0;
k12 = kig = ko3 = h?,

whence we deduce our last proposition:

Proposition 5.6. In the case Bia(VII}, ), subtype (3), the following statements
are valid:

1). (L,p,&,n,9) is flat if and only if h = 0;
2).  The square norm of Vi is positive;
3). (L,p,&,m,q) is x-scalar flat;

4). The scalar curvature and the sectional curvatures are constant and non-
negative;

5). (L,p,&,1n,9) is an Einstein manifold.
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1. INTRODUCTION

We study quadrature formulae of the type
QU= aif(z:)), 0<zi<ap<-<z,<1, (1.1)
i=1
that serve as an estimate for the definite integral
1
I[f] == /f(z) dzx. (1.2)
0

Throughout this paper 7 will stand for the set of algebraic polynomials of degree
not exceeding k.
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The classical approach for construction of quadrature formulae is based on the
concept of algebraic degree of precision. The quadrature formula (1.1) is said to
have algebraic degree of precision m (in short, ADP(Q) = m), if its remainder

RIQ; f:=1[f] = Q[f]

vanishes whenever [ € m,, and R[Q; f] # 0 when f is a polynomial of degree m+1.

The ADP-concept is justified by the Weierstrass theorem about the density of
algebraic polynomials in spaces of continuous functions on compacts. The pursuit
of quadrature formulae (1.1) with the highest possible ADP leads to the well-
known quadrature formulae of Gauss, Radau and Lobatto. The latter are uniquely
determined by having ADP equal to 2n — 1, 2n — 2 and 2n — 3, respectively, where,
in addition, the Radau quadrature formula has one fixed node being an end-point
of the integration interval, and the Lobatto quadrature formula has two fixed nodes
at the ends of the integration interval.

An alternative concept for evaluation of the quality of quadrature formulae
emerged in the forties of the 20-th century, namely, the concept of optimality in
a given class of functions. Its founders are A. Kolmogorov, A. N. Sard and S. M.
Nikolskii. Let us briefly describe the setting of optimal quadrature formulae in a
given class of functions.

Let X be a normed linear space of functions defined in [0, 1], with a norm || - || .
For a quadrature formula @ of the form (1.1), we denote by £(Q, X) the largest
possible error of @ for functions from the unit ball of X, i.e.

E(Q,X) = sup |R[Q;f]|.
Ifllx<1

We look for the best possible choice of the coefficients {a;}; and the nodes {z;}_,
of , and set
En(X) = ing(Q,X).

If the infimum is attained for a quadrature formula Q°P* of the form (1.1), then
Q°Pt is said to be an optimal quadrature formula of the type (1.1) in the space X.
Of particular interest is the case when X is some of the Sobolev classes of functions
W, and W, defined by

Wy ={f¢ C™10,1], f— l-periodic, fY abs. cont. I fllp < oo},
W, ={f¢€ C™40,1], fY abs. cont. , || £, < oo},

where

1 1/
= ([ 170rar) it 1< p <o, and 1)l = supvrai 0)]

t€(0,1)

In the periodic Sobolev classes W; there is an universal optimal quadrature for-
mula (i.e. optimal for all » € N and p > 1) of the form (1.1), namely, the n-point
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rectangles quadrature formula and its translates. This is a result due to Zhensyk-
baev [14], special cases have been obtained earlier by Motornii [10], and Ligun [9].
The existence and uniqueness of optimal quadrature formulae in the non-periodic
Sobolev spaces W is equivalent to the existence and uniqueness of specific monos-
plines of degree r with a minimal L,-deviation from zero, (1/p + 1/¢ = 1). This
was proved by Zhensykbaev [15], and Bojanov extended Zhensykbaev’s result to
more general classes of quadrature formulae involving derivatives of the integrand.
Obviously, &,(W;) < £,(W}), and it is known that (see Brass [6]) for 1 < p < oo,

(W
lim M =1.

A drawback of the optimality concept is that, in general, the explicit form of
the optimal quadrature formulae is unknown, a fact that vitiates their importance
from practical point of view. In particular, except for some special cases of r = 1
and r = 2, the optimal quadrature formulae in the non-periodic Sobolev spaces W
are unknown.

The way out of this situation is to step back from the requirement for opti-
mality, and to look for quadrature formulae which are nearly optimal. A sequence
{Qn} of quadrature formulae is said to be asymptotically optimal in the function
class X, if

E(Qn, X)

lim Sl g
e €, (X)

(here, @), is supposed to be a quadrature formula with n nodes).

It has been shown in [8] that the Gauss-type quadrature formulae associated
with the spaces of spline functions with equidistant knots are asymptotically opti-
mal in the non-periodic Sobolev classes W;. The existence and uniqueness of such
Gauss-type quadrature formulae is equivalent to the fundamental theorem of alge-
bra for monosplines satisfying zero boundary conditions, which was proved in [7].
This fact was a motivation for investigation of such quadratures. Algorithms for
the construction along with sharp error estimates of the Gauss-type quadrature for-
mulae associated with spaces of linear and parabolic spline functions were proposed
in [11] and [13] (see also [12] for the case of cubic splines with double equidistant
knots). Recently, an algorithm for the construction of Gaussian quadrature formu-
lae associated with spaces of cubic splines with equidistant knots was proposed in
[1].

It should be noted that the complexity of the algorithms for the construction
of Gauss-type quadrature formulae associated with spaces of spline functions with
equidistant knots increases with increasing of the degree (that is, of parameter r in
Wy ). For r > 3 such quadratures are constructed only numerically. This requires
high accuracy computations, especially when the number of the nodes is large. An
additional difficulty causes the fact that the mutual location of the spline knots
and the quadratures nodes is unknown.

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 145-169. 147



In [2] we proposed an alternative approach for generation of sequences of
asymptotically optimal quadrature formulae. There we constructed sequences of
asymptotically optimal quadrature formulae in the Sobolev classes W;, for p=2
and p = co. Our approach makes use of Euler-MacLaurin—type summation for-
mulae, in which the derivatives are replaced by suitable formulae for numerical
differentiation. An advantage of our quadrature formulae, besides their asymptot-
ical optimality, is the explicit form of their weights and nodes. In fact, most of the
nodes of our quadrature formulae are either those of the compound trapezium or
of the compound midpoint quadratures, to which we add a few more nodes.

Here we continue our study on this subject. The paper is organized as fol-
lows. In Section 2 we provide some well-known facts, including the Peano kernel
representation of linear functionals, the Bernoulli polynomials, monosplines and
numbers, the Euler—-MacLaurin—type expansion formulae, and the error representa-
tion of the compound trapezium and midpoint quadrature formulae in the periodic
Sobolev classes W. In Section 3 we construct some sequences of asymptotically
optimal quadrature formulae in the non-periodic Sobolev classes W3, 1 < p < oo,
and evaluate their sharp error constants in the cases p = 1, 2, co. In Section 4
we construct two sequences of asymptotically optimal quadrature formulae in the
Sobolev classes Wit. Section 5 contains some concluding remarks.

2. PRELIMINARIES

2.1. SPLINE FUNCTIONS AND PEANO KERNELS OF LINEAR FUNCTIONALS

A spline function of degree r — 1 (r € N) with knots 21 < 22 < -+ < x,, is a
function s(t) satisfying the requirements
1) S(t)|te(xi,m7¢+1) €Em—_1, 1=0,...,n,

2)  s(t) e CR),

where xg := —o0 and x,41 := 0o. The set S,_1(x1,...,2,) of spline functions of
degree r — 1 with knots z; < z2 < --- < x,, is a linear space of dimension n + r,
and a basis of S,_1(z1,...,x,) is given by the functions

(Lt =) (=)
where u (t) is defined by
uy(t) = max{t,0}, teR.

If £ is a linear functional defined on C[0, 1] which vanishes on 7y, then by a
classical result of Peano, for r € N, 1 < r < s+ 1 and f € W], £ admits the
integral representation

E[f]:/olKT(t)f(”(t)dt, where Kr(t)z,c[('(_t)rl}, tefo,1].

r—1)!
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In the case when £ is the remainder R[Q; ] of a quadrature formula @ with algebraic
degree of precision s, the function K,.(t) = K, (Q;t) is referred to as the r-th Peano
kernel of Q. For @ as in (1.1), explicit representations for K,.(Q;t), t € [0, 1], are

Ko@) = 0 o Y- )
K (Qit) = (1) [ = =gy Dt — . (2:2)
: Ti=1

If the integrand f belongs to the Sobolev class W, (1 <p < o), then from

1
RIQif) = [ K@ (0
0
and from Holder’s inequality one obtains the sharp error estimate

IRIQ; f1| < crp(@ Ty, where ¢p(Q) = [IKn(Q; )y p7'+4q ' =1. (2.3)

In other words, we have £(Q, W) = ¢, ,(Q). Throughout, ¢, ,(Q) will be referred
to as the error constant of @) in the Sobolev class W .

K, (Q;t) is also called a monospline of degree r with knots {z; : x; € (0,1)}.
From K,(Q;z) = R[Q; (- — )" '/(r —1)!] we deduce that K, (Q;z) = 0 for some
z € (0,1) if and only if @ evaluates to the exact value the integral of the spline
function f(t) = (t—z)""'. Thus, in order that a quadrature formula Q has mazimal
spline degree of precision, i.e., @ is exact for a space of spline functions of degree
r—1 with a maximal dimension, it is necessary and sufficient that the corresponding
monospline K,.(Q;-) has maximal number of zeros in (0,1). Quadrature formulae
of the form (1.1) with maximal spline degree of precision are called, analogously
to the classical algebraic case, as Gauss, Radau, and Lobatto quadrature formulae,
associated with the corresponding spaces of spline functions. Similarly to the clas-
sical Gauss—type quadrature formulae, all the nodes of the Gauss-type quadratures
associated with spaces of spline functions lie in the integration interval, and all
their weights are positive [7, Theorem 7.1].

2.2. BERNOULLI POLYNOMIALS AND MONOSPLINES. EULER-MACLAURIN TYPE
SUMMATION FORMULAE

Recall that the Bernoulli polynomials B, are defined recursively by

1
Bo(z) =1, B.(x)=B,_1(z), and B,(t)dt =0, veN.

0
1 2 1 3 2
In particular, By(z) =2 — =, Ba(z) = % — g + L Bs(z) = % _ % + 19527
2%(1 —2)? 1
Balw) = =5 730
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B,(0)
vl

The Bernoulli numbers B, are defined by B, =

The notation Ey(x) stands for the 1-periodic extension of the Bernoulli poly-
nomial B, (z) on R. The functions B, (x), v = 0,1,..., are called Bernoulli monos-
plines.

Throughout this paper, n € N will be fixed, and {zx,}7_, and {y¢,}}_, are
given by
k 20 —1

n= k=0,...,m = . l=1,....n. 2.4
T, ” n Y, ™ n (2.4)

The points {zx n}7_o and {ys..}}_, are the nodes of the n-th compound trapezium
and midpoint quadrature formulae Q17 Y1 and QMi given by

1

f(xk,n) ) (25)

1

n

L (Flrom) + Fann) +

fidf] = m

SN
i

1

S Wen) - (2.6)

1

n

SRS

QA=

b
I

Our asymptotically optimal quadrature formulae are obtained as appropriate mod-
ifications of QZ_’{_l and Qﬁ/”

The following summation formulae of Euler-MacLaurin type (adopted for the
interval [0,1]) are well-known, see, e.g., [6, Satz 98, 99]:

Lemma 1. Assume that f € W{. Then

[5]

1
(21/71) 1) — (2v-1) 0
[ royieatsin -5 & L
0

1”:1 (2.7)
(=1° [ (s)
+ e /Bg(nx)f (z)dx
0
and
1 [£]
Z 2 V B 5 (2v-1)(1 (2v-1) 0

0 (2.8)

1

a x_* f(s()x~

0

Here, [t] denotes the integer part of ¢.
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2.3. THE SHARP ERROR BOUNDS OF QI'7; AND Q) IN W

As was already mentioned, the midpoint quadrature formulae {Q?}%2 , and
their translates are the unique optimal quadrature formulae in the periodic Sobolev
classes W’“ The trapezium quadrature formulae {Q7%}22 also can be considered
as translates of {QMi1>0 | as the values of the integrand at the endpoints are
equal. For f € Wz‘f, 1 < p < o0, the sums in the right-hand sides of (2.7) and (2.8)
disappear, due to the periodicity of the integrand. Hence we obtain

RIQTT,: f | 1) da (2.9)
=5 e
and 1

nattn =S [ d) Ao, e

0

where d is an arbitrary constant. Applying Holder’s inequality to (2.9) and (2.10),

and taking into account that QX7 and QM? are optimal quadrature formulae in

W, we obtain

RIQT 3 f1 < EaW) £ DLy, |RIQY" FII < EaOW) 1F Dl

where
En(Wy) = — inf||Bs —dllg =2 [|Bs — dsplly T a L. (2.11)

Some known values of the constant d ) are (see, e.g., [14])

dep =0 forodd s€N and 1<p < o0, (2.12)
27°B,(0) foreven s€N and p=1,
dep =140 for all s €N and p=2, (2.13)
B(i) foreven s€ N and p=cc.
We shall need constants &, ( ») for s = 3,4 and p = 1,2 and oco. In the case

s = 3, these constants are

1

— 1
3 o _
EaWeo) = 5 1Bl = 1555 (2.14)
Ea(W3) = — || Bylla = — (2.15)
m 2l s s T Sy o0 n3 '
E.(W3) = L Byl = — (2.16)
L n3 173l 724/3n3 '
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In the case s = 4, the corresponding constants are

—~ 1 5
4 f— o) — = —
EnTL) = 1 1Ba() — B/ )l = o> (2.17)
£ = L Byfy= — (2.18)
A YA T '
Eu(WH) = L IBa() — 27 Ba(0)]|ow = mo— (2.19)
nAUtL) e P AW Moo = Zegpa '

3. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE IN W;’

Let us start with a brief outline of our method for the construction of asymp-
totically optimal quadrature formulae in the Sobolev classes WS.

The Euler-MacLaurin summation formulae in Lemma 1 in the case s = 3
reduce to

1 1
[ 1@ de=QI 1 - 5 [P - £ O] + o5 [ Bana) fOwds (3)
and
[ @ de =@M s+ 5 1) = FO] + o [ Ba(ne - 5) 0@ do. 32)
0 0

The derivatives f/(0) and f’(1) appearing in the right-hand side of (3.1) and
(3.2) will be replaced by suitable formulae for numerical differentiation. For the
sake of brevity, we give the following definition.

Definition 1. Given 0 < t; < t3 < t3 < 1, we denote by D;(t1,t2,t3)[f]
the interpolatory formula for numerical differentiation with nodes {t;}3_,, which
approximates f'(0), i.e.

3
D1[f] = D1(t1,t2,t3)[f] = Zcz'f(ti) ~ f'(0).

We shall use formulae for numerical differentiation with t3 = O(n~!). For
instance, such a formula is

D (0., 1.0 w2.0)lf] = & [ 15 (@0.0) +16f (91.0) = £ (@2,0)]
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For the sake of simplicity, f'(1) is approximated by a numerical differentiation
formula, obtained from D (t1,t2,t3)[f] by a reflection, i.e.,

F/(1) = Di[f] := Di(t1,ta, t3)[g], gt)=—f(1-1).

The linear functionals L[f] := f’(0) — Dy[f] and L[f] := f(1) — D;[f] vanish
on 7, and by Peano’s theorem, for f € W3 they are representable in the form

1 1
Ll = [ Ka(Lns e, Lif = [ Ko
0 0

with K3(L;t) = L[(- — t)2 /2] and K3(L;t) = L[(- — )2 /2]. This representation
also implies
Ks(L;t) =0
K3(~ ) = 0

for ¢t € (t3,1],
for t € [0,1 —t3).

Replacement in (3.1) of f(0) and f/(1) by Dy [f] and D1 [f], respectively, results
in a new quadrature formula (),

QU = Quialf] mQZCz i)+ (1= 1)] (33)

with at most n+ 7 nodes (including {zx.,}7_,), and a Peano kernel K3(Q;t) given
by

Kg(Q;t):%Eg(nt)wL [K3(L;t) — K3(L;t)], telo,1].

12n2

Analogously, replacement in (3.1) of f/(0) and /(1) by D;[f] and D, [f], re-
spectively, yields a quadrature formula @,

Qlf] = Qu"[f]

24n2 )+ fA—t)] (3.4)

with at most n + 6 nodes (including {y,.}}_,), and a Peano kernel K3(Q;t) given
by

1

2) 24n z[KS(L t) — K3(L;t)], te[0,1].

1
K;(Q;t) = — B3 (nw
An important observation for quadrature formulae (3.3) and (3.4) is that their
third Peano kernels coincide in the interval ¢ € (ts,1 — t3) with n~*Bs(nt) and
n~=3Bs(nt—1/2), respectively. That is to say, except for some small neighborhoods
of the endpoints, their third Peano kernels coincide with the third Peano kernels
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of Zfrl and QM? in the periodic case. Consequently, for the error constants of
quadrature formulae (3.3) and (3.4) we have

c3p(Q) = |K3(Q5)lg = Ea(WE)(1 +0(1)) s n— oo, (3.5)
which implies their asymptotical optimality in WS, 1<p<oo.

3.1. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON gj_l

Here, we present quadrature formulae of the form (3.3) generated by some
formulae for numerical differentiation.

1. A quadrature formula generated by D1(Xo,n,®1,n,T2,n)[f]-

Since
n
D1(Zom, Z1,n, T2,0)[f] = 2 (= 3f(zon) +4f(x1,n) — f(z20)),
the resulting quadrature formula (it is assumed that n > 6) is
n+1
Qni1lfl =D Apnir f(@e-1.n) (3.6)
k=1
with
3 7
Al,n+1 = An+1,n+1 = A2,n+1 = An,n+1 P
8n 6n
93 " (3.7)
Asni1 = Ap_ipny1 = an’ Appt1 = o 4<k<n-2.

4.x107°

2.x10°° -

-2.x1076 |-

—4.x107°

Figure. 1. The third Peano kernel K3(Qny1;t) of quadrature formula (3.6), n = 20.

The graph of the third Peano kernel of quadrature formula (3.6) for n = 20 is
shown on Figure 1. Since (3.6) is a symmetrical quadrature formula, K3(Qn11;t)
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is an odd function with respect to t = 1/2. We proceed with evaluating the error
constant ¢ ,(Qn+1), p = 00 and p = 2. By symmetry, we have

3,00(@Qn+1) = | K3(Qni1; )| =2 / |K3(Qni1;t)| dt + / | K3(Qn1:t)| dt.
0 T2 n

For t € (z2,n, Tn—2,,) We have K3(Qp+1;t) = n_3§3(n t), therefore for the second
summand we have

Tn-2,n

4 n—4
K3(Qnyr;t)| dt = Bs(nt)|dt = -
Ks(Quiri) /| 0 1) =10

Z2,n

Before evaluating the first summand, we show that K3(Qy+1;t) > 0fort € (0,z2 ).
Performing a change of the variable ¢ = u/n, u € (0,2), we obtain, for ¢ € (0,z2,),
t3 3 7 1 u? 3u? T(u—1)>2
Ko@urity= Lo By T o LW B T
(Quiit) = =5+, U - mai= 5 |- 5+ gt
The term in the brackets is positive for u € (0,2). Indeed, if 0 < u < 1, then

udb 3u? T(u—1)2  3u? 8u
T B oS LA
6 "6 T 12 16( 9)> )

while, if 1 < u < 2, then

b 3u? T(u—1)% wd 3T Tu 7 w2 Tu 7
L - v O v _n —) 0
6 16 12 6 T 6tz ! “)(6 6 24)°

Therefore

2 b
_2/[_U‘*+3u2 7<u—1>2+]du, !
n4 6 16 12 18n4 "’
0
Hence,
n—4 1 1 20
¢s.00(Qni1) = 501 T g7 = 020 ( * 3n>
In a similar manner we evaluate the error constant cz 2(Qn+1). We have
1 T2,n Tn—2,n
[c3,2(Qns1)] /Ks Qni1; 1] dt =2 /[K3(Qn+1;t)]2 dt+ / [K3(Qn1:t)]dt .
0 0 T2 n
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The second summand is

n—2
ZTn-2,n o

[ @it ar =

Z2,n

~ n—4
[Bs(nt)]* dt = o IBsl)3,

S

and for the first one after some algebra we find

Zon

2
2 w? 3u? T(u—1)212
2 K . 2 = — [ - 7+
0 0
2 ! 3 3 252 2 3 3 2 7( 1)2 2
u u u u u —
== L2 SRR LA k2
n7</{ 6+16} “+/{ 6 "6 T 12 }“>
0 1
13 39
= Tooson7 — n7 1Psll2

After summing the two expressions and taking square root we obtain

35\ 1 35\ "
N B 1+ =1+ -
22(Quin) = 75 | 3“?( ) 12,/210 13 ( n>

Comparison of the error constants ¢3 oo (@n+1) and ¢z 2(Qny1) of quadrature
formula (3.6) with the best possible constant (2.14) and (2.15) in the corresponding
1-periodic Sobolev classes shows the asymptotical optimality of {Q,+1}52 ¢ in the
Sobolev classes W3, and W3. Certainly, this sequence is not asymptotically optimal
in W3 ) as is seen also on Figure 1. In fact, ||K3(Qn+1;-)]|co is attained at the point

tr = 4n, and

. 9 81\f —
CB,l(QnH) = KS(QH+1;tn) = 25613 = 39 (W1) ~ 4.384 5n(W13)a

i.e., the error constant is more than four times greater than the best possible. We
shall however construct sequences of quadrature formulae, which are asymptotically
optimal in W3, too, see quadrature formulae (3.9) and (3.13) below.

The next quadrature formulae are obtained in the same way as quadrature
formula (3.6), and the evaluation of their coefficient and error constants follows the
same lines as above. That is why we only give the results.

2. A quadrature formula generated by D1 (on,Y1,ns Z1,n)[f]-

Here, Dl(xo,nayl,naxl,n)[f] = n( - 3f(x0,n) + 4f(y1,n) - f(xl,n)) y and the
resulting quadrature formula (3.3) involves n + 3 nodes,

n+3

Quyslf] = Z Agnts f(Thnts) - (3.8)

k=1
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Table 1. The coefficients, nodes and error constants of quadrature formula (3.8).

Al,n—i—?n An+3,n+3 A2,7H—37 A7L+2,7H—3 A3,n+3a An+1,n+3 Ak,n—&-?n 4<k<n

1 1 11

1
4n 3n 12n n

T1,n+3 T2,n+3 Tkn+3, 3<k<n+1 Tn+2,n+3 Tn+3,n+3
Zo,n Yi,n Tk—2,n Yn,n Tn,n
€3,00(@n+3) €3,2(@n+3)

/
oz (14 32 e (1 1m)

The coefficients, nodes and error constants of this quadrature formula are given in
Table 1.

3. A quadrature formula generated by D1 (%o n, €1,3n, T2,3n)[f]. Here,

D1(20,n, 71,30, T2,30) [f] = 3 (= 3f (@0,n) + 4f (21,30) — f(22,3,)), and by (3.3) we
obtain the (n + 5)-point quadrature formula

n+5

Qn—&-S[f] = Z Ak,,n+5f(7—k,n+5) (39)
k=1

with coefficients, nodes and error constants given in Table 2.

Table 2. The coefficients, nodes and error constants of quadrature formula (3.9).

Atnis, Anisngs | A2nis, Antants | A3 ngs s Anisints | Akngs, 5<k<n+1

1 1 1

1
8n 2n 8n n

Tits | 72046 | T35 | Thontbs 4<k<n+2 | Tpg3.ntds | TnHd,ntd | Tntd,ntd
T0,n X1,3n T2 3n Tr—3,n T3n-2,3n L3n—1,3n Tn,n

3,00 (Qn+5) 3,2(Qn+s) 3,1(Qn+s)

1 ( 22) 1 (1+ 8 )1/2 1
192 n3 27n 124/210 n3 81n 724/3n3

Here we would like to point out that, unlike the situation with quadrature
formulae (3.6) and (3.8), here the third Peano kernel of quadrature formula (3.9)
attains its C[0, 1]-norm away from the boundary intervals affected by the numerical
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differentiation formulae, and therefore we have

1
C = | K ;- = n73 B ———,
3,1(Qnts) = [1K3(Qnts; oo 183l 72v3 13

showing that {@Q,+s5} is a sequence of asymptotically optimal quadrature formulae
in the Sobolev class W3. Figure 2 depicts K3(Qpn5;t) for n = 20.

i

5.x107

-5.x107

I

Figure. 2. The third Peano kernel K3(Qn+5;t) of quadrature formula (3.9), n = 20.

3.2. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON QTAL/M

Here, we present quadrature formulae generated by various formulae for nu-
merical differentiation through (3.4). Again, we only present in a table form the
coefficients, nodes and error constants of these quadrature formulae, skipping the
straightforward but sometimes tedious calculations. Occasionally, we have used
WOLFRAM MATHEMATICA for the evaluation of the Li-norm of the third Peano
kernels; in such cases the corresponding error constants c3 o, are given with ap-
proximate numbers.

1. A quadrature formula generated by D1(y1,n,Y2,nsYs,n)[f]-

This choice is motivated by the aim of not introducing nodes other than
{yen}y_,- We have

Di(y1,n,Y2,n, Y3.0) [f] = n( = 2F (Y1) + 3F(Y2,n) — f(y3n)) »

and by (3.4) we obtain (assuming that n > 6) an n-point quadrature formula

Qnlf1 = Ak f(Uk.n) (3.10)

k=1

with weights {Ag ,,} and error constants c3 oo (Qr), ¢3,2(@r) as given in Table 3.
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Table 3. The coefficients and error constants of quadrature formula (3.10).

Al,’ru An,n AQ,na An—l,n A3,n7 An—?,n Ak,’ru 3<k<n-3
13 4 2 L
12n 8n 24n, n
CS,oo(Qn) C3.2 (Qn)
1 ( 10.83836617) 1 ( 4&) 1/2
192n3 n 124/210n3 dn

2. A quadrature formula generated by D1 (xo,n,Y1,ns Z1,n)[f]-

We already applied this formula for numerical differentiation in the preceding
section, this time we get through (3.4) an (n + 4)-point quadrature formula

n+4

Qnialf] =Y Akmia f(Tens1) (3.11)

k=1
with coefficients, nodes and error constants given in Table 4.

Table 4. The coefficients, nodes and error constants of quadrature formula (3.11).

Aty Anpana | Ao ngas Apsinia | Az, Angonpd | Ak, 4<k<n+1

1 ) 1

1
8n 6n 24n n

T1,nH4 T2, nt4 T3,n44 Tkntd, 4<k<n+1 Trd2,nt4 Trt3,n44 Tnd3,nt4

Zo,n Yi,n T1,n Yk—2,n Tn—1,n Yn—1,n Tn,n
€3,00(@n14) 3,2(Qnya)
1 ( 175 ) 1 ( + 25 )1/2
192n3 384n 12/210 n3 16n

3. A quadrature formula generated by D1(2o,n,Y1,ns Y2,n)[f]-

In this case, Dl(xo,na Yin, y?,“)[f] = % ( - 8f<x071’l) + 9f(yl7n) - f(y2,n)) ; and
by (3.4) we obtain an (n + 2)-point quadrature formula

n—+2

Qn+2lf] = Z Aknv2 [(Tknt2) (3.12)

k=1

with coefficients, nodes and error constants given in Table 5.
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Table 5. The coefficients, nodes and error constants of quadrature formula (3.12).

A1,7L+2; An+2,n+2 A2,TL+27ATL+17TL+2 A3,7H-27 An,n—i—? Ak,n—i—?a 4<k<n-1
1 7 73 1
In 8n 2n n
T1,n42 Tk,nd2, 2<k<n+1 Tnd2,ni2
Zo,n Yk—1,n Tn,n
€3,00(@n+2) c3,2(Qn+2)
1 ( 0.06659022) 1 19 )1/2
192 n3 n 124/210 n3 4n

obtain through (3.4) an (n + 6)-point quadrature formula

which generates a sequence of asymptotically optimal quadrature formulae in all
Sobolev classes W;’, 1 < p < oo. The coefficients, nodes and error constants of

n+6

Qntslf] = Z Ak nte [(Tknts)
k=1

(3.13) are given in Table 6.

160

4. A quadrature formula generated by D1 (Zo,n, Z1,6n, %1,3n)[f].

We showed that (3.10), (3.11) and (3.12) generate sequences of asymptotically
optimal quadrature formulae in the Sobolev classes W2 and W3, however, the
asymptotical optimality does not hold in W§. With Di(zo.n, %160, %1,30)[f] We

(3.13)

Table 6. The coefficients, nodes and error constants of quadrature formula (3.13).

Al,n+67 An+6,n+6

Az nte, Antsnts | Asn6 , Anta,nts

Ak,m@, 4<k<n+3

3 1 1 1
8n 2n 8n n
T1,n4+6 T2,n+6 T3,n4+6 Tk, nt65 4<k<n+3 Tn4d,nt+6 Tn45,n+6 Tn46,n+6
Zo,n X1,6n Z1,3n Yk-3,n T3n—2,3n | L6n-1,6n Tn,n
€3,00(@n+6) c3.2(Qne) 3.1 (Qne)
1 (1 4 ) 1 ( 841 )1/2 1
192 n3 27n 124/210n3 1296 n 724/3n3
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3.3. COMPARISON OF THE ERROR CONSTANTS

It is clear that quadrature formulae obtained in Sections 3.1 and 3.2 are of
nearly the same quality as being asymptotically optimal in the Sobolev classes
W;’, 1 < p < co. Nevertheless, it makes sense to compare their error constants
in W32 and in W3 under the assumption that they involve the same number of
nodes n, n > 7. Interestingly, we have a clear winner in both W3 and W3, namely,
quadrature formula (3.12). The ranking of quadrature formulae (3.6), (3.8), (3.9),
(3.10), (3.11), (3.12) and (3.13) according to the magnitude of their error constants
€3,00(@n) and cs2(Qy,) is given in Table 7 (the smaller error constant, the higher
ranking).

Table 7. The ranking of quadrature formulae according to their error constants.

quadrature formula | (3.6) | (3.8) | (3.9) | (3.10) | (3.11) | (3.12) | (3.13)

position according to
the size of ¢3,00(Qn)
position according to
the size of ¢32(Qr)

The ranking is made assuming that n is big enough, e.g., n > 59. For small n,
some small changes occur: in the ranking with respect to ¢3 oo (Qr), (3.10) overtakes
(3.8) (if n < 58) and even (3.6) (if 7 < n < 30) whilst in the ranking with respect
to ¢3.2(Qn), (3.6) overtakes (3.13) if 7<n <9.

4. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE IN Wi

In [2] the idea described in the beginning of the preceding section was exploited
for the construction of asymptotically optimal quadrature formulae in the Sobolev
classes W2 and W4. To this, we add here two sequences of quadrature formulae,
which are asymptotically optimal in the Sobolev class Wi.

The difference with the Sobolev classes W;’ is that, in the cases of VV;,l there is

a shift ds , (depending on p) of the 1-periodic Bernoulli monospline §4 so that the
shifted Bernoulli monospline has minimal L,-deviation from zero (1/p+1/¢ = 1),
see (2.13). In particular,

1

6 B4(0), (4.1)

dag =
and
1

1 — = — —4 = —
inf |84~ dllc = 1By — 27 Ba(O)lloo = =

(4.2)
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The Euler-MacLauren formulae (2.7) and (2.8) in the case s = 4 reduce to

1
+%/§4(nx—1/2) f(4)(l‘)dl‘7
0

and we rewrite these formulae in the form

1
/f(l‘) dx = 3;:—1[.]‘1] - ﬁ [f’(l) — f’(O)] + 7681n4 [f///(l) _ f///(o)]
0 . (4.3)
+ ﬁ/ [R;(nm) — 2*434(0)] f(4)(x) dx

[ 1@ de =@M 1+ 55 [0 = £(0] = g [7(0) = 17 0)]
0

) (4.4)
+ % / [Ba(naz —1/2) —274B4(0)] f*(z)dz.
0

Definition 2. Given 0 <t <ty < t3 < t4 < 1, we denote by D1 (1,12, 3)[f]
and Ds(t1,t2,t3)[f] the interpolatory formulae for numerical differentiation with
nodes {t;}?_,, which approximate f’(0) and f"(0), respectively, i.e.

4
Di[f] == Di(t1,ta, 13, ta)[f] = Zcm fti) = f(0),
i=1
4
D3 [f] == Ds(t1,t2,t3,t4)[f] = Zcm fta) =~ £(0).
i=1

We approximate derivatives f'(0) and f"’(0) appearing in (4.3)—(4.4) by D1 [f]
and Dj3[f], respectively. The derivatives f’(1) and f"/(1) are approximated by
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the formulae for numerical differentiation D1[f] and Ds]f], respectively, which are
obtained from D1[f] and Ds[f] by a reflection, i.e.,

Di[f]=Dilgl, Dslf]=Dslgl, g(x):=—f(1—2).

We observe that linear functionals Ly [f] := f'(0) — D1[f], Ls[f] := f"'(0) —
Ds(f], L1[f] := f'(0) — Dq[f] and Ls[f] := f""(0) — D3[f] vanish on w3, therefore,
by Peano’s theorem, for f € W they possess integral representations of the form

L[f] :/K4(L;a:)f(4)(x)dx, with Ky(L;t) = L[(-— )% /3!] .
0

Replacement of derivatives in (4.3) by the formulae for numerical differentiation
yields a new quadrature formula @,

1 1
/ f(x)de = QLf) + / Ku(Q:2) O (z) dr
0 0

where

Q[f]: n+1 12 chzl +f1_t)]
(4.5)

768n4213 )+ -t)],

and
1 1 ~
Ky(Q;2) = — [Ba(nz) — 27'B4(0)] + — [Ku(Ly; ) — Ky4(Ly; )]
n 12n " - (4.6)
Analogously, replacement of derivatives in (4.4) by the formulae for numerical
differentiation yields a new quadrature formula @,

QU =Q1f] QWZCH )+ (= t)]

(4.7)
768 4213 t)+f(1—t)],
and
K‘*(Q”):% [Ba(nz—1/2) - 27*B4(0)] — 241 5 [Ka(Lisz) — Ko(Ly; )] (4.8)
+76; (KiLaw) - Ka(@wo)] .
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Here, as in the preceding section, it is assumed that t; = O(n™!), and as a
result, for x € [t4, 1 —t4] the fourth Peano kernels of quadrature formulae (4.5) and
(4.7) coincide with n=* [By(nz) —274B4(0)] and n=* [Ba(nz —1/2) — 27 B4(0)],
respectively. Hence, for @) being either (4.5) or (4.7) we have
1
768 n*
Both (4.5) and (4.7) are symmetric quadrature formulae with at most n + 9 nodes.
In view of (2.19), (4.9) and the obvious inequality

1 _
1 K4(Q; M cfta,1—ta) = -y |Bs — 27" B4(0) || = (4.9)

1
T 768nt’

a sufficient condition for either of (4.5) and (4.7) to generate a sequence of asymp-
totically optimal quadrature formulae in W is

En(WH) > £, (W)

1

KA (O:- < - 4.1
IKA(@ eios) < 7 (1.10)
Indeed, in such a case (4.10) and (4.9) imply
1
c1,1(Q) = [K4(Qs )l e,y = 768 A

and since @) has at most n + 9 nodes, then for Q),,, the n-point quadrature formula
of the same kind, with n > 9, we have

1
< —m——
ca(Qn) < 7650 — gy
Consequently,
___ 1 ___ 1
1< lim c4,1(Qn) < iy TBOOF _ o TEO0T

n— 00 En(Wl) — n—oo gn(Wfl) n—00 ﬁ s

whence the asymptotical optimality holds.

4.1. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON 77;5_1

We make use of the following formulae for numerical differentiation:

n

D1(xo,n, 1,30, 2,30, T1,n) [ f] > [—11f(z0,n) +18f(21,30) — 9 (22,30) +2f (z1,n)]

D3(0,n, 1,305 ©2,3n, T1,0) [f] = 270 [— f(20.0) +3f(21,30) —3f (22,30) + f(21,0)]-
The resulting quadrature formula (4.5) involves n + 5 nodes,

n+5

Qnis = Y Aknts f(Tknss) - (4.11)

k=1
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Table 8. The weights and the nodes of quadrature formula (4.11).

Atnis, Anisnts | Azings, Anganis | A3 ntss Antsngs | Adnis, Ang2ngs | Akngs, 5<k<n+1

59 165 69 805 1
7681 256 n 256 n 768 n n

Tkn+5, 4<k<n+2 | Tn43n+5 | Tn+4,n+5 | Tn+5n+5

Ti;n+5 | 72,n+5 | T3,n+5
T3n—2,3n T3n—1,3n Tn,n

ZTo,n T1,3n T2 3n Tk—3n

The weights and the nodes of Q),,+5 are given in Table 8.
We shall show that the fourth Peano kernel of @) = Q5 satisfies condition
(4.10) with [0,¢4] = [0,21,,]. The latter Peano kernel is given by

4 17 59 165 1\3 69 2
)= e o) - 2)
1(@nt53) = 515 [768n © T 256m ¥ 30) 1 256m & 3n

3
], x € [0,21 ).
+

We perform change of the variable = u/n, with u € [0, 1], to obtain
69

1 59 5 165 1
K ) = {477 T ) < —233]::— :
(Qnesio) = o |[v ~1gg %~ eg T VAT (A = g o)

0.01[F /\
; ; i g

02 04 0.6 0.8

-0.01

-0.02

-0.03

Figure. 3. The graph of g(u), u € [0, 1].

A straightforward analysis shows that g attains its uniform norm in [0, 1] at
u =1 (this is seen also from the graph of g, depicted on Figure 3). Hence,

1 K4(Qn+5; )lcpo,er..] = [ Ka(Qns5T1,0)] -

Since

1 -~
K4(Qnys; ) = i [Bi(nz) —27%B4(0)], z € [T1,n,1—T1,n],
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we have

1, _
1 K4(Qnis; )lco,er.n) = 1K (Qnis; Tin)| = F|B4(nl‘1,n) -2 4B4(0)|

1—2-4 1
nA |4(0)’:768n4'

Thus, condition (4.10) is verified, and the asymptotical optimality in W of the
sequence of quadrature formulae {Q, 45} given by (4.11) is proved.

4.2. ASYMPTOTICALLY OPTIMAL QUADRATURE FORMULAE BASED ON QQ/IZ

Here we apply formulae for numerical differentiation with nodes z¢.n, ¥1,3n,
T1,3n and Yi,n, namely

D1 (%0,n, Y1,30, T1,30, L10) [f] = 1 [ 11 (20,0) +18F (Y1,30) =9 (¥1,30) +2f (y1,1) ]
Ds(20,n, Y130, 1,30, Y1,0) [f] = 2160° [— f(20,0) +3f (Y1,30) =3 (@1,30) + f (y1,0)] -

By (4.7) we obtain a quadrature formula with n + 6 nodes,

n+6

Qniye = Z Ak nt6 [(Tknte) - (4.12)
k=1

The weights and the nodes of Q,,4¢ are given in Table 9.

Table 9. The weights and the nodes of quadrature formula (4.12).

At ni6, Ante,nts | A2.n46, Anis,nts | Asnies Antants | Adnie; Antsnte | Aknie, 5<k<n+2

17 3 15 115

1
96n 32n - 32n 96 n n

Ti,n+6 | T2,n4+6 | T3 n+6 | Tknt6, 4<k<n+3 | Tn4an+6 | Tn+5n+6 | Tn+6,n+6
Zo,n Y1,3n X1,3n Yk—3,n L3n—1,3n Y3n,3n Tn,n

We proceed with showing that the sequence of quadrature formulae {Q,+6}nen
defined in (4.12) is asymptotically optimal in Wi. To this end, we need to show
that the fourth Peano kernel of Q = Q¢ satisfies condition (3.10), with [0, ¢4]
replaced by [0,y1,,]. We have

1717 3 1\3 15 13
e = 5 o ) o)) et
1(@nt6i0) = 51~ 51560 T 320 P n)y 320 T3 ) )0 T €0l

or, after change of the variable, © = u/n with v € [0,1/2],

1

1o, 17
{ oan M)

K4(Qn+6;$):m U —ru _§(U_1/6)i+%(“_1/3)i] =
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-0.0151

-0.020 -

-0.025

-0.030

Figure. 4. The graph of h(u), u € [0,1/2].

By a straightforward analysis we see that h is monotone decreasing in the
interval [0,1/2] (see Figure 4 with the graph of h), and therefore h attains its
uniform norm in [0,1/2] at w = 1/2. Consequently,

[ K4(Qnt6; -)llcom, ] = [Ka(Qnte; y1,n)] -

Since
1 -~ _
K4(QnisiT) = o [Ba(nz —1/2) —27*B4(0)], « € [y1,n,1 — Y1.nl,
we obtain

1, ~ _
| K4(Qnis6; )0,y = [ Ka(Qnis; y1,0)l = H|B4<nyl,n —1/2) -2 4B4<0)|

1—274 1

Y ’84(0)’:768n4'

The proof that {Qn+6}nen is a sequence of asymptotically optimal quadrature
formulae in Wt is accomplished.

As was seen, the fourth Peano kernels of (4.11) and (4.12) have the same Loo-
norm, namely, ﬁ, however, quadrature formula (4.11) can be viewed as slightly
better as it involves one node less than (4.12).

5. CONCLUSIONS

We have constructed certain sequences of quadrature formulae, which are
asymptotically optimal in the Sobolev classes Wg’, 1 < p < ooandin Wi Their
weights and nodes are explicitly given, and their sharp error constants for p = 1,2
and oo and are evaluated.

For the sake of simplicity, we have considered only symmetric quadrature for-
mulae, however, sequences of non-symmetric asymptotically optimal quadrature
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formulae can be generated as well by making use of different formulae for numerical
differentiation for approximation of the derivatives at the end points of integration
interval.

The same approach can be applied for the construction of sequences of asymp-

totically optimal quadrature formulae in the Sobolev classes Wﬁ, r > 4, though the
calculation of their sharp error constants ¢, ,, even for p = 1,2, oo, becomes rather
elaborate.
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ON THE NOTION OF JUMP STRUCTURE

STEFAN V. VATEV

For a given countable structure 2l and a computable ordinal «, we define its a-th jump
structure A(®. We study how the jump structure relates to the original structure.
We consider a relation between structures called conservative extension and show that
(%) conservatively extends the structure 2. It follows that the relations definable in
2 by computable infinitary ¥, formulae are exactly the relations definable in (e by
computable infinitary >; formulae. Moreover, the Turing degree spectrum of A g
equal to the a’-th jump Turing degree spectrum of A, where o/ = a+ 1, if a < w, and
o' = a, otherwise.

Keywords: Computability, structures, definability

2000 Math. Subject Classification: 03D45, 03D30

1. INTRODUCTION

The jump of an abstract structure is a notion that has gathered the attention
of many researchers for the past decade. Various versions were suggested and
studied independently. Montalban [6] uses predicates for computable infinitary
formulae; Baleva [3], I. Soskov and A. Soskova [10] use Moschovakis extensions;
Stukachev [12] uses hereditarily finite extensions. In [7] the reader can find very
good historical notes and bibliography on this topic.

Here we consider the notion of jump structure as suggested by A. Soskova and
I. Soskov [10], where the first jump of a structure is defined. Later, the author
[13] extended their definition to arbitrary finite jumps and studied its properties
in the context of a relation between structures called conservative extension. In
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this paper, which is based on a chapter of the author’s Ph.D. dissertation [14], we
offer a natural continuation of this line of research. We lift the results from [13] to
arbitrary computable ordinals.

We work with abstract structures of the form 21 = (A; Py, ..., Ps_1), where
A is countable and infinite, the predicates P; C A™ and the equality is among
Py, ..., Ps_1. We will use the letters 2, 8B to denote structures and the letters A,
B to denote their domains. We call f an enumeration of the set A if f is a total
one-to-one mapping of N onto A. We say that f is an enumeration of the structure
20 if f is an enumeration of its domain A. For every k € N, we will implicitly use
an effective encoding of N*¥ onto N. By (z1,..., ;) we denote the natural number
corresponding to the tuple (z1,...,zr). If R C A™, we denote the pullback of R as
the set f~Y(R) = {{x0,.. ., Zn-1) | (f(x0),-.., f(zn_1)) € R}.

Given a countable structure 2 = (A; Py, ..., Ps_1), we define the copy of A via
the enumeration f as the total function f~—!(2), where:

—1 -
fr ) = 0, fu=s-(x1,...,2n,) +i&i<s& (f(z1),..., f(zn,)) & P

{1, fu=s-(x1,...,2n,) +i & i<s & (f(x1),...,f(zn,)) € P

We can also look at f~1(2() as the structure with domain N obtained from 2
via the isomorphism f. Moreover, for a structure with domain N, let us denote by
D(2l) the set of all codes of formulae belonging to the atomic diagram of 2, given
by some Godel numbering of all formulae in the relevant language. This means
that f=1(21) gives us the set of codes of formulae belonging to the atomic diagram
of the structure obtained from 2l via the isomorphism f. When we say that the
structure 2 is computable, or belongs to the computability-theoretic class €, we
mean that its atomic diagram D(2l) is computable, or belongs to %

Definition 1 (Richter [9]). The degree spectrum of the structure 2 is the set
of Turing degrees

DS() = {a | a computes a copy of A}.
For a computable ordinal o, we define the a-th jump degree spectrum of 2 as
DS, (A) = {a® |ae DS(A)}.

A countable structure 2 is automorphically trivial if there is a finite subset F'
of its domain A such that every permutation of A whose restriction to F' is the
identity, is an automorphism of 2. A set of Turing degrees o is closed upwards if
for all Turing degreesaand b,ac & & a<b—+bec .

Theorem 1 (Knight [5]). Let 2 be a countable structure in a (possibly infinite)
language. Then exactly one of the following holds:

1) the spectrum of A is closed upwards with respect to Turing reducibility ;
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2) A is automorphically trivial.

Henceforth, we suppose that the structures we consider are automorphically
non-trivial, so their degree spectra are closed upwards. The notion of degree spectra
gives us one way to compare structures. That is, for structures 21 and B and
computable ordinals «, 3, we ask whether DS, (2) = DSg(°B).

Now we give an informal definition of the set of the computable infinitary X,
and II, formulae in the language of 2, denoted X¢, and II{. The X§ and IIj
formulae are the finitary quantifier free formulae. For a > 0, a ¢ formula ¢(Z) is
a disjunction of a c.e. set of formulae of the form Iy (z,y), where ¥(z,7) is a 11§
formula, for some 5 < a. The II¢, formulae are the negations of the ¥¢ formulae.
We list a few properties of the computable infinitary formulae, which will be used
throughout the paper:

- Given an index for a 3¢ (or II¢) formula ¢, we can effectively find an index
for a II¢, (or X&) formula neg(p) that is logically equivalent to —.

- Given indices for a pair of X (or a pair of II¢) formulae ¢ and v, we can
effectively find indices for two X¢, (or two IIS) formulae logically equivalent

to (¢ V¢) and (o A ).

We refer the reader to the book of Ash and Knight [1, Chapter 7] for details and
more background information on computable infinitary formulae.

For a set of natural numbers X and a computable ordinal a, we denote by
X (@) the a-th Turing jump of X. Moreover, we define

nX) = X if o < w,
a+1( ) X(aJrl)a ifa>w

= J{w.p) 1y € A1 (X)), if @ = lim a(p).
p

We write A2 for AY(f)). We remark that for technical reasons, we choose at limit
levels to work only with sequences of successors and if « is a computable limit
ordinal such that o = lim a(p), then «(0) > 1.

Theorem 2 (Ash [1]). Let A be an arbitrary structure with domain N. For a
formula o(Z), let us denote ™ = {a € A| A | p(a)}. Ifgo( ) is a X, formula, then
0% is L2(D(Q)), and if o(z) is a 1S formula, then p* is IS (D(A)). Moreover,
given an index for the 3¢ (or IIE ) formula ¢ and a notation for the ordinal «, we
can effectively find an index for ¢ as a set c.e. (or co-c.e.) relative to AS(D(2A)).
The index is independent of 2.

A relation R C A" is ¥, (or 1If,) definable in the structure 2 if there is a X,
(or II5) formula 9 (7,7) and a finite number of parameters @ in A such that b € R
if and only if 2 = ¢(b,a@). We denote by 3¢ (A4) (or IIS(2A4)) the family of all
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relations ¢ (or IS ) definable in 2 with parameters in A. We will write X¢ () (or
16, (2A)) for the family of relations definable in 2 by 3¢ (or II¢) formulae without
parameters.

The notion of definability gives us another way to compare structures. That is,
for structures 2, B such that A C B and computable ordinals «, 3, we ask whether
(Vr e N)(VR C A")[R € 3,(4) < R € X5(Bp)].

Definition 2. Let 2 be an arbitrary countable structure. We say that a relation
R on A is relatively intrinsically X0 (or I1%) on A if for every enumeration f of
2, f71(R) is c.e. (or co-c.e.) relative to AS(f~1(A)).
The relation R is uniformly relatively intrinsically $0 (or I1%) on 2 if there
0 -1
is an index e such that for every enumeration f of A, f~Y(R) = WeA“(f ) (or

N\ fYR) = Wﬁg(fil(m))). In this case we say that the number e is a % (or 119)
index for R.

The next theorem gives a very nice syntactical characterisation of relatively
intrinsically X9 sets.

Theorem 3 (Ash-Knight-Manasse-Slaman [2], Chisholm [4]). Let 2 be a
countable structure. For every relation R on A, R is relatively intrinsically %2
(or IS ) on A if and only if R is definable in 2 with a X¢ (or 11¢) formula with
parameters.

Moreover, R is uniformly relatively intrinsically X° on A if and only if R is
definable in A by a X¢ formula without parameters. Given a X2 index for R, we
can effectively find an index for the £, formula, and conversely, given an index for
the 3¢ formula, we can effectively find a X2 index for R.

Although the second part of Theorem 3 is not explicitly stated in [2], [4], it
follows in a straightforward manner from the proof of the first part of Theorem 3.

2. CONSERVATIVE EXTENSIONS

Before turning our attention to the notion of jump structure, we need to con-
sider how we will relate the original structure to its jump structure. I. Soskov ob-
served that many common features are shared between the structures constructed
by A. Soskova and I. Soskov [10], namely the Moschovakis’ extension, the jump
structure and the Marker’s extension of a structure, which is a construction for
obtaining jump-invert structures. It turns out that all these structures relate to
the initial structure in a similar way. In the terminology that we are going to in-
troduce, the Moschovakis’ extension of 2 is (1, 1)-conservative extension of . One
of our main results will be that the a-th jump structure of 2 is (¢, 1)-conservative
extension of 2, where o/ = a + 1, if & < w, and o’ = «, otherwise.

We begin by defining a relation between enumerations of structures.
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Definition 3 (Soskov). Let f and h be enumerations for the countable struc-
tures A and B respectively. We write f <g h if

1) AY(FQ)) <r AY(h1(B)) and

2) E(f,h)={{z,y) |2,y e N& f(x) = h(y)} is SZ(h~'(B)).

Definition 4 (Soskov). Let A and B be countable structures, possibly in dif-
ferent languages.

1) A =% B if for every enumeration h of B there exists an enumeration f of
A such that f <§ h.

2) A <5 B if for every enumeration f of A there exists an enumeration h of
B such that h <8 f.

3) ASFBifA=FB and A <3 B.
We say that B is an («, )-conservative extension of 2 if A C B and 2 <5 B.

The following theorem motivates the use of the term conservative extension, i.e.
if 9B is an («, B)-conservative extension of 2 then 3¢ definability in 2 is equivalent
to X definability in B for the subsets of A.

Theorem 4. Let A and B be countable structures with A C B. For all
a, B < wa,

1) if A =9 B, then (VX C A)[X € B,(As) — X € T5(Bp));
2) if A=Y B, then (VX C A)[X € X5(Bp) — X € TG(An);
3) if A5 B, then (VX C A)[X € B5(A4) > X € X5(B)].

Proof. 1) Let 2 =4 B. Then for every enumeration h of B, there exists an enu-
meration f of 2 such that f <§ h. Let X be a subset of A such that X € 3¢ ().
According to Theorem 3, for every enumeration f of 2, f~1(X) is X9 (f~1()).
We will show that for every enumeration h of B, h='(X) is X3 (h~"(B)).

Let us take an arbitrary enumeration h of 8. Since 2 =45 B, there is an enu-
meration f of 2 such that A9 (f~1(21)) <r A%(hil(%)) and E(f, h) is E%(h’l(‘B)).
Moreover, f~1(X) is c.e. relative to AY(f~1(A)) <r AZ(R~(B)). It follows from
the equivalence z € h™1(X) + (Jy € N)[(y,z) € E(f,h) & y € f~1(X)] that
h=(X) is ©%(h™"(B)), which is what we wanted to show.

The proof of 2) is similar to that of 1). O

As remarked in [13], we do not always have the other directions in Theorem 4.
We give a very simple counterexample. Let 2 = (A4; =) and take B = 2. Tt is easy to
see that for every computable ordinal o, (VX C A)[X € X5 (A4) = X € X§(Aa)].
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It we assume that we have the reverse directions in Theorem 4, then we would
have (Vo < w{)[R =¢ 2], which is evidently not true. To see this, it is enough
to take an enumeration f of 2 such that f~1(2) is computable. Then there is no
enumeration h of 2 such that h=1(2A) <p f~1(2A) =r 0.

For a computable ordinal o, we define the ordinal o’ as

, a+1l, fa<w
@ «, if > w.
The reason behind this notation is that a set X is X9, if and only if X is c.e.
in 0", when n < w, and X is 2, a > w if and only if X is c.e. in (@),
We also have that for a countable structure 2, DS, () = {dr(AY (f~1(2))) |
f is an enumeration of 2A}.

Theorem 5. Let A and B be countable structures with A C B.
1) IfA=% B then DSs(B) C DS, ().
2) IfA<=4 B then DSo(A) C DSs(B);
3) If2A % B then DS, (A) = DSs(B).

Proof. We prove only 1) since the others are similar.

Let 2 :>§,/ B and b € DSs(B). We show that b € DS, (). Since A is a
non-trivial structure, DS, (2) is closed upwards and it is enough to prove that there
exists a Turing degree a € DS, () such that a <p b. Let f be an enumeration
of B and dT(A%,(f*I(%))) = b. Since A :>g: B, there is an enumeration h of 2

such that h Sg: f. For a=dp (A% (h71(2))) we have a € DS, () and a <7 b. O

We note that we do not have the other directions in Theorem 5. For example,
let us consider the structures 9 = (N; =) and M = (N; Gsuce, =), where Ggyee is
the graph of the successor function on N. It is easy to see that DS(M) = DS(M) =
{a ]| 0 <r a}. If we assume that 9 <] N, then the X¢ definable sets in 9 with
parameters are also X definable in 9t with parameters. But the sets X € 3$(91y)
are just the finite and co-finite sets, whereas the sets X € 3$(My) are all c.e. sets.
This is a contradiction.

2.1. THE NOTION OF FORCING

We define a forcing relation with conditions all finite injective mappings from
N into the domain of the countable structure 2 = (A; Py, ..., Ps—1). We call them
finite parts and we use the letters 7,p,6 to denote them. Let P4 be the set of
all finite parts and let Py be the set of all finite functions on the natural numbers
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taking values in {0,1}. Given a finite part 7, we define the finite function 7—1(2A)
in the following way:

MM (u) l=14 (Fi < 8)(3x1,..., 20, € Dom(T))[u=5-(T1,...,2,,) +i &
(T<x1)> EERE T(mm)) € Pi];
TN (u) 1= 0+ (Fi < 8)(3x1,..., 20, € Dom(T))[u=5-(T1,...,2,,) +i &
(T(!L‘l), ey T(‘Tnl)) ¢ Pl],
771(A)(u) 1 in all other cases. We should note that in the definition of 7=(2l) we

make the same assumptions about the coding of tuples of natural numbers as in
the definition of f~!().

If ¢ is a partial function and e € N, then by W¢ we will denote the set of all
2 such that the computation {e}¥(x) halts successfully. We assume that if during
a computation the oracle ¢ is called with an argument outside of its domain, then
the computation halts unsuccessfully.

For every e,z € N, every finite part 7 and every computable ordinal o > 1, we
define the forcing relations 7 I+, F.(z) and 7 IF, —F.(x) in the following way:

() 7l Fu(z) o zewd &
(i) Let a« =+ 1. Then

Tlkgy1 Fo(z) < (36 € Po)[z € W2 & (Vz € Dom(9))]
(0(z) =1 & TlFg F.(2)) V
(0(z) =0 & 7lFg =F,(2))]]-
(i) Let o = lima(p). Then

T lko Fo(z) < (36 € Py)[z € W2 & (Vz € Dom(0))[z = (z.,p.) &
((6(2) =1 & TlFop.) Fu.(z2)) V
(0(2) = 0 & 7 lra(p.) ~Fo. (22)))]]:
(iv) 7lky =Fe(x) < (Vo6 €P2)[d D7 — 0 IFe Fe(x)].

The forcing relation depends also on the structure 2. To avoid ambiguity, we
will write 7 IF% F,.(z), when necessary.

Lemma 1. For every computable ordinal o > 1 and every e,x € N, we have
the following properties:

1) for any finite parts T C p, if T ko Fe(x), then p by, Fe(z);

2) for any finite parts T C p, if T ko Fe(x), then p Iy ~Fe(x);
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Proof. We prove 1) and 2) simultaneously by transfinite induction on «. The
case a = 1 for 1) follows directly from the fact that 7 C p — 77 1(A) C p=1 ().

For 2), let 7 IF; —F.(x) and assume that p € P4 is such that 7 C p, but
p 1 —Fe(z). It follows that there exists 6 O p D 7 such that § IF; F.(x). But then
(30 2 7)[0 IFy F.(z)] implies 7 Iff; =F.(x). We reach a contradiction. Therefore,

Tk = Fe(z) = plk = Fe(x).
Let @« = 8+ 1. By the induction hypothesis for 1) and 2),

Tlkgy1 Fo(x) (36 € Py)[z € W2 & (Vz € Dom(6))]
(6(2) =1 & 7lFg Fo(2)) V(6(2) =0 & 7 IFg ~F.(2))]]

— (36 € Py)[z € W2 & (Vz € Dom(9))[
(0(2) =1 & plrg Fi(z)) V(6(2) =0 & plrg ~F.(2))]]
< plbgr Fe(a).

For 2), we apply the same argument as in the case of a = 1. Let 7 Ik, = F,(z)
and assume that p € P4 is such that 7 C p, but p Iff, = Fe(x). Then (36 D 7)[d IFq
F,(z)], which implies 7 Iff, =F.(x). We reach a contradiction.

Let o = lim a(p). Then, again using the induction hypothesis for 1) and 2),

T lko Fo(z) < (30 € Py)[z € WO & (Vz € Dom(6))[z = (z2,p.) &
((0(2) =1 & T lrap.) Fu.(22)) V (0(2) = 0 & 7 lra(p.) ~Fe.(22)))]]
— (36 € Py)[z € W2 & (Vz € Dom(d))[z = (x.,p.) &

((0(2) =1 & plragp.) Fi.(22)) V (6(2) = 0 & plrag,) ~Fe. (22)))]]
& plhg Fu().

For 2), we again use the same argument. O

Proposition 1. There is a computable function h such that for any computable
ordinal o > 0, finite part T, and natural numbers e, x,

Tlho Fo(z) ¢ Tlhay1 Fie(@);
Tl =Fo(z) < TlFag1 —Fhe(2).

Moreover, there is a computable function h' such that for any computable limit
ordinal o = lim a(p), finite part T, and natural numbers e, x, p,

Tlrap) Fe(z) & Tlkq Frpe(2);
T“_a(p) ﬁFe(x) < T“—a ﬁFh/(p’e)(l').
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Proof. Firstly, it is easy to see by the relativised S]* theorem that there exists
a computable function g such that

(Vo e Po)lz e W — W[ NJ,

e,x)
(Vo ePy)z g WS — W;’(e,m) =0)].
Then we have for any o € P,

T € Wg < W;-(e)a:) = N s 9(6737) € _t;(e,w)7

and it follows that for any computable ordinal « > 0,
Tlro Fe(z) & 7lka Fyen(g(e,x)).
Now we take h to be a computable function such that for any e and =z,
(Vo € Po)lz € Wy, < olgle,x)) =1]. (2.1)

In other words, (Vo € P2)[z € Wy, <+ {{g(e,2),1)} € Graph(c)]. Our goal is to
prove that 7 Ik, F.(x) if and only if 7 IFq 1 Fy(e)(z). It is enough to prove that
T lFa Fg(e’x)(g(e,x)) if and only if 7 ko1 Fie) (x).

For the (—) part, we use that for the finite function o with Graph(o) =
{{g(e,xz),1)}, we have x € Wi Thus,

Tlra Fyen)(9(e,x)) = (Fo € Po)[Graph(o) = {{g(e,x), 1) }&T ko Fyezy(g(e, )]
< (Fo € P2)[x € Wy, & Graph(o) = {{g(e,z),1)} &

T ”_a Fg(e,:t) (9(67 (E))]
— (Jo € Py)[z € Wy, & (V2 € Dom(0))]

(0(2) =1 & 7 ko Fo(2)) V (0(2) = 0 & T o ~F.(2))]]
— T ”_a+1 Fh(e) (JU)

For the (<) part, let 7 I-oq1 F(e)(z) and consider one such o € Py for which we
have that x € W, e and

(Vz € Dom(0))[(c(2) =1 & 7lF4 Fo(2)) V(o(2) =0 & 7 Ik =F,(2))]].

By Equivalence (2.1), since z € ey 1t follows that the number g(e, z) is among
the numbers z € Dom(o) for which o(z) = 1. In this way, for z = g(e, =), we obtain
g(e,x) € Dom(c), o(g(e,x)) = 1 and hence 7 -y Fy(c 2)(g(e,z)). We conclude that

T ”_a+1 Fh(e) (1') — Tlko Fg(e,r) (g(e,x)).
It is easy to see that we also have the following:

Tlra ~Fe(z) < (Vp 2 7)[pFa Fe(@)] ¢ (Y 2 7)p Varts Fie) ()]
T H—a+1 ﬁFh(e)(SL’).
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For the second part, let a = lim a(p) and take k' to be a computable function
such that for any index e and natural numbers z, p,

(Vo € Py)lw € Wi,y < o{gle,2),p)) = 1]. (2.2)
In other words,
(Yo € Ba)lw € Wiy ¢ {{{g(e,2),0), 1)} € Graph(o)].

It suffices to prove that 7 I () Fye,z)(g(e, @) iff 7 Ik Firepy(2). For the (=)
part, we have the equivalences:

T Ika(p) Fg(e,m)(g(ea ‘T)) And (E'O' € PQ)[GTaph(G) = {<<g(6, I)7p>a 1>}
&r ”_a(p) Fg(e,a:) (g(ea Z‘))]
< (Fo €Py)lx € Wy (. ) & Graph(o) = {{{g(e,z),p), 1)}
& T H—a(p) Fg(e’z) (g(e, a:))]
— (Jo € Po)[x € W,y & (V2 € Dom(0))[z = (22, p)
& ((0(2) =1 & Tlkgp.) Fro.(22)) V
(0(2) =0 & 7 lbqp.) —Fe. (22)))]]
— 7k, Fh’(e7p) (I)
Now for the (+—) part, let 7 ko Fj/(cp)(2) and consider one such o € Py for which
we have
€ Wy & (V2 € Dom(0))[z = (2,p.) & ((0(2) =1 & T IFap.) Fo.(22))
(0(2) =0 & 7 lbqp.) ~Fu.(22)))]].
By Equivalence (2.2), since x € Wy, ., it follows that the number (g(e,z),p) is
among the numbers (z,,p,) € Dom(c) for which o((z,,p.)) = 1. In this way,
for ., = g(e,x) and p, = p, we obtain (g(e,z),p) € Dom(o), o({g(e,x),p)) = 1,
and hence 7 IFopy Fyeer)(g9(e, ). We conclude that if 7 IFy Fjr(cp)(2), then

T lFap) Fyeer)(g(e,x)). It is again easy to see that 7 I () —Fe(x) if and only if
T ”_a _'Fh’(e,p)(x)' D

Let f be an enumeration of 2. For every e,x € N and every computable
ordinal o > 1, we define the modelling relations f |, Fe(z) and f =, —Fe(z) in
the following way:

() fliFu(z) & zewd @
(ii) Let a =+ 1. Then

flEpi1 Fo(z) < (36 € Py)[x € WP & (V2 € Dom(d))]
(6(z) =1& f s F.(2) V
(6(z) =0 & f 5 ~12(2))]].

180 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 171-206.



(iii) Let o = lim a(p). Then
fEaF.(x) & (36 €Py)z e W & (V2 € Dom(8))[z = (2.,p.) &
((0(2) =1 & [ Fagp.) Fo.(22)) V
(0(z) =0& f ':a(;oz zz(xz»)”
(iv) fEFaFe(z) < fFa Fe(x).
Lemma 2. For any computable ordinal o > 1, and any enumeration f of A,
re WU o p e Fw),
rg WEUTE) o e (),

Proof. The proof is by induction on «. The case a = 1 follows from the
definition of |=1. Let a = 8+ 1. Recall that for any set of natural numbers X,
A (X) = (A%(X))". For any p € Py, we have:

p CAL(STHRA)) © (V2 € Dom(p))[(p(2) =1 & 2 € AL(f7H(R)))
Vo (p(2) =0 & 2 € AL(F7HRN))]
& (V2 € Dom(p))[(p() = 1 & z € w20
V() =0 & 5 g WEHTTOD)
© (Vz € Dom(p))[(p(z) =1 & f = F.(2))
Vo (p(z) =0 & f =g ~Fa(2)),]

where the last equivalence follows from the induction hypothesis for 5. Thus, we
have the equivalences:

e WEUT) 3, e Pz e WP & p C AL (FLAN)]

< (
< (3p ePy)[x € WP & (Vz € Dom(p))]
(p(z) =1 & f s Fa(2)) V
(p(z) =0 & f s ~F.(2))]]
< [ Fa Fe(x).

Let o = lim a(p). For any p € Po, we have:
p S ALFTHA) © (V2 € Dom(p))lz = (z,p:) &
(p(2) =1 & 22 € Ay, ) 1 (F7H(R)))
Vo (p(2) =0 &z & A, )1 (f7HR0))]
< (Vz € Dom(p))|z = (z.,p.) &

A? -1
(p(z)=1& x, € sza@z)(f <2t>>>

0 -1
V (p(z)=0& z, ¢ Wia(n)“ (91)))]
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< (Vz € Dom(p))[z = (z.,p.) &
(0(z) =1 & f Fa.) Fo.(2 ))
\ ( ( )_ 0& f ':a(pz (-rz))]

where we have used the induction hypothesis for ordinals a(p) < «a. Let us recall
that according to our definition for limit ordinals a = lim a(p),

9
<xap>€Ag(X) Ad xEAa(p)_H(X) PN eran(P)(X).

Thus, we have the equivalences:

FpePo)ze WP & pC AL(FH(R))]

re WA
<~ (FpePy)x e WP & (Vz € Dom(p))[z = (2,D2)
(p
(p

(37Z) =1&f ):a (p-) F,. (xz))\/
(z:)=0& f ’:a (p=) . (22))]]
< [ o Fe().

O

Definition 5. Let a > 1 be a computable ordinal and 2 a countable structure.
An enumeration f of 2 is called a-generic in the following two cases:

1) a=pB+1, and for every e,x € N

(FreP)[r Cf & (tlkg Fe(z) V 7lkg ~F.(x))].

2) « =lima(p), and for every e,x,p € N
(37‘ € PQ)[T Cf& (T ”_a(p) Fe(l') vV T ”_a(p) ﬁFe(.’B))].

Proposition 2. For every computable ordinal o > 1, if g is a not a-generic
enumeration of A, then there exist numbers e, x such that

(VT g g)[T Iyo/ Fe(z) & U’La _‘Fe(‘r)]'

Proof. Let « = 8+ 1. Since g is not a-generic, there exist numbers e, x such
that
(VT Cg)lr Vg Fe(x) & 7l —Fe()].

By Proposition 1, let ey = h(e) be such that for every finite part 7
T kg1 Fep(x) < 7lFg Fe(x),

TlFgt1 ~Fey(2) ¢ 7TlFg —Fe(z).
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Since a = B + 1, it follows that

(V7 C g)[m Vo Feo(z) & 7o ~Fey(2)].

Let o = lim cx(p). Since g is not a-generic, there exist numbers e, x, p for which

(VT - g)[T Iya(p) Fe(z) &t Iya(p) _'Fe(x)]'
Again by Proposition 1, let eg = h/(p, e) be such that for every finite part T
Tlra Feo(x) < Tlhgpy Fe(z) and 7lkq =Fe (7) < 7 lkgp) Fe(x).

It follows that
(V7 C 9)[T Vo Feo(x) & 7o = Fey ()]

O

Lemma 3. 1) Leta> 1. If g is a (o + 1)-generic enumeration of U, then g
is also a-generic.

2) Let a =lima(p). If g is a a-generic enumeration of 2, then g is also a(p)-
generic for any number p.

Proof. For the first part, suppose that ¢ is (a + 1)-generic, but g is not a-
generic. By Proposition 2, this means that there exist natural numbers e,z for
which

(V1 C g)[7 Wa Fe(z) & T o —Fe(2)].
This contradicts the fact that g is (a + 1)-generic.

For the second part, suppose that g is a-generic, but g is not a(p)-generic, for
some natural number p. Again by Proposition 2, there exist numbers e, z for which

(V1 C 9T Wap) Fe(x) & T o) ~Fe(z)].

This contradicts the fact that g is a-generic. g

Lemma 4. For every e,x € N, we have the following properties:
1) for any enumeration f of A, f =1 Fe(zx) iff 31 C f)[7 k1 Fe(z));

2) for « > 1 and every a-generic enumeration g of A, g Eo Fe(zx) iff
(37 C g)[T - Fe(x)];

3) for a>1 and every (a + 1)-generic enumeration g of A, g Eo —Fe(x) iff
(31 C g)[7 ko = Fe(2)].

Proof. Part 1) follows from the facts:
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-ifrC fandx € Wefl(m), then = € Wefil(gl);
-ifze Wefl(m), then there is 7 C f such that x € ngl(gl)_

We prove 2) and 3) by transfinite induction on o. We start with 3) for o = 1. Let
g be 2-generic. For the (—) part, let g =1 —Fe(z), but assume (At C g)[7 Ik
—F(x)]. Since g is 2-generic, 7 Ik Fe(x), for some 7 C g. But by 1),

Tk Fe(z) & 7C g — g1 Fe(x).

We reach a contradiction.

For the direction (+), let us fix a finite part 7 C g such that 7 -y = F,(z), but
assume g 1 —Fe(z), which, by definition, means g =1 Fe(z). Then by 1), there
is a finite part § C g such that 0 Ik F.(z). By 1) of Lemma 1, we can take § to be
such that 7 C §. But then again by Lemma 1,

Tl =F(x) & 7 C§ — 0l —Fo(x).

It follows that § Iff; F.(x), which is a contradiction with our choice of 4.

Let @« = 8+ 1 and let g be a-generic. We first consider the direction (—) of
2). Suppose we have g F=g41 Fe(z). Then

g Eps1 Fo(z) & (36 € Py)[x € W2 & (Vz € Dom(6))[
(0(z) =1& g |=p F.(2)) v
(6(z) =0 & g =5 ~F%(2))]]

Fix one such § € Py. Then by the induction hypothesis for 2) and 3),

(Vz € Dom(9))[(0(2) =1 & (37, C g)[72 IFg Fx(2)]) V
(6(2) =0 & (37, C g)[7: IFp ~Fo(2)])]]-
Choose appropriate finite parts 7. and let 7 = [J, Dom(s) T=- Then by Lemma 1,

since every 7, C T,
Tz kg Fo(2) — 7lkg Fy(2),

T, kg 2F,(2) — 7 lFg ~F,(2).
It follows that
gEps1 Fo(z) — (36 € Py)[x € W2 & (Vz € Dom(6))[
(6(z) =1 & 7 kg F.(2)) V
(0(z) =0 & 7 kg ~F.(2))]]
= Tlrgp1 Fe(x).

We conclude that g |=gy1 Fe(z) — (31 C g)[1 IFg11 Fe(x)].
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Now we consider part (+—) of 2). Suppose thereis 7 C g such that 7 IFg1q Fe(z).
Then, by definition and the induction hypothesis for 2) and 3),

7 lkgi1 Fo(z) ¢ (36 € Po)[z € W2 & (V2 € Dom(d))[
(0(z)=1& TlFg Fy(2)) V

(0(2) =0 & TlFg =F(2))]]

(36 € Po) [z € W2 & (V2 € Dom(9))]
(6(z) =1& g =p F.(2)) V

(6(2) =0 & g f=p ~F=(2))]]

< g Fpr1 Fe(o).

We conclude that (37 C g)[7 kg1 Fe(z)] = g F=pt1 Fe(x).
The proof of 3) is essentially the same as in the case o = 1.

—

Let o = lima(p) and let g be a-generic. For the (—) part of 2), suppose
g ':a FP(I)
g o Fo(z) < (36 € Py)[z € W2 & (V2 € Dom(0))[z = (x.,p.) &
(6(z) =1 & g Fap.) Fo.(22)) V
(5(2) =0&yg ):a(pz) —Fy, (‘TZ))H
Fix one such § € Py. Then, by 1) and the induction hypothesis for 2) and 3),

(Vz € Dom(9))[z = (z.,p.) & (0(2) =1 & (37> C 9)[7= Fap.) Fe.(22)]) V
(0(z)=0& GTZ c g)[Tz ”_a(pz) ~Fy, (xZ)])H
Again, choose appropriate 7, and let 7 = UzeDom(é) T.. Then by Lemma 1, since
every 7, C T,
T o) Fo, (22) = T o,y Fu, (22),
Tz |Fa(pz) —\sz (l‘z) — T |Fa(p2) —|sz(1’2).
It follows that
Po)[x € WP & (Vz € Dom(6))[z = (z.,p.) &

=1& 7lrop,) Fo.(z2)) V
=0& 7lkop,) 7Fe (22))]]

z

~ — M

z

We conclude that
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For part (+) of 2), suppose that there is 7 C g such that 7 IFg4q Fe(z). Then, by
definition and the induction hypothesis for 2) and 3),

T Euo Fo(z) < (36 € Py)[z € WP & (Vz € Dom(6))[z = (z.,p.) &
(0(2) =1 & T lkqp,y Fo.(22)) V
(0(2) = 0 & 7 lra(p.) ~Fo. (22))]]
— (36 € Py)[z € W2 & (Vz € Dom(5))[z = (z.,p.) &
(0(z) =1 & g Fap.) Fr.(z2)) V
(0(2) =0 & g Fap.) ~Fe.(22))]]
< g Fa Fe(2).

We conclude that
(37 C9)[7 IFa Fe(x)] = g Fa Fe().

The proof of 3) for a = lim a(p) is again very similar to the proof in the case
of a =1. 0

Let var be a computable mapping of the natural numbers onto the variables.
By X; we denote the variable var(i). For a finite set D = {dp < dy < -+ < di_1}
of natural numbers and a formula ® with free variables including {X; \ i€ D}, it
is convenient to denote

@p)® = (IXg,...3X,,_,)d.

Moreover, for any finite part p and any formula @, by ®(p) we denote the formula
obtained from ® by replacing each occurrence of the free variable X; in ® by the
constant p(i), for every i € Dom(p).

Lemma 5 (Definability of forcing). Let 2 be a structure in the language
& =A{Py,...,Ps_1}, which include equality. Then for every non-empty finite set
D of natural numbers, every natural numbers e, x and a computable ordinal o > 1,
we can effectively find a Xf, formula ®F, . and a II7, formula ©F, , . in the lan-
guage £ with free variables in {X; | i € D} such that for every ﬁmte part § with
Dom(d) = D, we have the following:

Sl Fe(z) & A= @3 . (),
(5“_04_‘Fe(1') — Q[':@De:v()

Proof. We will define the formulae ®7, . . by effective transfinite recursion on
the computable ordinals « following the definition of the forcing relation. For every
e,x, let We , = {k € Py | z € W/}, which is a c.e. set.

Let a = 1. Then, by definition,

Tl Fo(z) < xz € ngl(m) & (BreP)[r e WS & v C 1 1A

We define the atomic formulae \I/}j’mu in the following way:
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-ifu=s-(i1,...,0n, ) +rforr <sandiy,..., i, €D, then

1 _ P (X X, ), if k(u) =1,
P =) aPu(Xiyy o, Xa, ), if K(u) = 0.

- otherwise, we set \IllD’K’u = (X4 = X4), where d is some element of D.

We define the atomic formula W}, . with free variables in {X; | i € D} as

Upo= N\ Xa#Xae & N Vph,.
d#d! u€Dom(k)
d,d’eD

We have the property:
KC O RA) « (Yu€ Dom(k)[AE Uhns) 0]
and hence -
k< 6_1(91) < A ': \Ilbom(ﬁ),ka(d)'

In the end, we define
®pea= \V T

KEWe
which is a ¥ formula with free variables in {X; | i € D}.
Let us fix e, x and § € P4. Let D = Dom(d). We have the equivalences:

Sk Fo(z) & BrePy)z e WS & v €5 HA)]
AR\ U0

KEW, &

o AR, ,0),

d L} jIPE(‘Z') A (/Elp € PA)[p 26 & ): cI)lDom(p),e,z(ﬁ)]
& (BD' 2 D) Bpn\p)Ppy ¢ 4 (9)]

2 ): - \/ (EIDl\D)¢1D’,E,ZE<5)'
D'DD

We set

1 — 1
eD,e,w =" \/ (HD/\D)QD’,@’,J'
D'DOD

Let a = f+ 1. Let us consider x € W, ;. Then for every u € Dom(x), we define

Oy i R(u) =1
Duws 1 k(u)=0.
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By definition, ¥f,  is either a 3 or a II§ formula. We let

aD,n = /\ Xa 7é Xar & /\ aD7n7ua

d#d’, u€Dom(k)
ddeb

which is a finite conjunction of X% and II§ formulae with free variables in {X; | i €
D}. We can view V¢, = as a finite conjunction of X, formulae and hence it is
equivalent to a X% 4 formula. In the end, we define

=V
KEW, z

which is a X¢ formula with free variables in {X; | i € D}.

Now we are ready to show that the formula ®f, , . defines the forcing relation
0 Ik Fe(z), where D = Dom(5). We have the following equivalences:

0k Fe(z) < (3 € Py)[x € W & (Vu € Dom(k))|
(h(u) =1 & é kg F, ())V(():O&MFBﬁFu(U))]]

KEWe » u€ Dom(k)
A ': (I)D e, m(é)

Again, it is easy to see that the II¢ formula

«a _ o
D,ejx = ! \/ (HD’\D)(I)D’,e,x
D'DD

defines in A the relation § I, ~F(x).

Let o = lim a(p) and consider x € W, .. Then for every u € Dom(k) we define

the formula ¥ in the following way:

- if u = (Zy,pu), then

puPe) o gf k(u) =1

D,zy,zy
o
D,k,u

P if k(u) =0

D,xy,zy?
- otherwise, we set €%, ., = —(Xq4, = X4,), where dj is some element of D.

Again we set

E /\ Xd 75 Xd/ & /\ \I’aD’n,ua

d#d!, u€Dom(k)
d,d'eD
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which is a finite conjunction of X5 and 113 formulae, for various 8 < a, with free
variables in {X; | i € D}. Therefore, ¥,  is also a ¥, formula for some v < a.
In the end, we define the X¢, formula

.=\ U
KEWe o
By the induction hypothesis we obtain:
0lkg Fe(z) < (3r € Py)lx € WE & (Vu € Dom(k))[u = (@4, pu) &
(k(u) =1 & § IFagp,) Fr,(2u)) V
(r(u) = 0 & 0 IFaep,) ~F, (2u))]]
ek \/ A 5.0

KEWe o u€Dom(k)

SR ISIAVAR FMC)

KEWe 2
<2 >: (I)D e r(é)
where D = Dom(d). Moreover, § Ik ~Fe(z) < AEOF, 5 . (5), where

ﬁ[ \/ (HD’\D)(I)%’,e,:r] .
D'DOD

«
D,e,x

2.2. MOSCHOVAKIS’ EXTENSION

We proceed with the investigation of conditions under which we have the other
directions in Theorem 4. For this purpose we need firstly to introduce some coding
machinery and then the sets K2 which will serve as universal predicates for the ¥¢,
formulae.

Following Moschovakis [8], we define the least acceptable extension 2A* of 2,
which we call the Moschovakis’ extension of 2. Let 0 be an object which does
not belong to A and II be a pairing operation chosen so that neither 0 nor any
element of A is an ordered pair. Let A* be the least set containing all elements of
Ay = AU {0} and closed under II.

We associate an element n* of A* with each n € N by induction. Let
0* =0 and (n+ 1)* =II(0, n*).
We denote by N* the set of all elements n*. Let L and R be the functions on A*
satisfying the following conditions:
L(0) = R(0) =0;
(vt € A)L(L) = R(t) = 17
(Vs,t € AM[L(II(s,t)) = s & R(II(s,t)) =t].
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The pairing function allows us to code finite sequences of elements. Let

Hl(tl) = tl and Hn+1(t1, e ,tn+1) = H(tl,Hn(tg, . ,tn+1)),

for every ti,..., t,41 € A*. For each predicate P; of the structure 2 define the
respective predicate P} on A* by

Pr(t) < (3a1,...,an, € A)t =10,,(a1,...,an,) & Pi(a1,...,an,)]

K3

For an enumeration f of A*, we denote

FHI) (@0, 1) =y & (Fao,... a1 € A )\ flai) =a; &
i<n
In(ao, s an—1) = f(y)]
Definition 6. Moschovakis’ extension of 2 is the structure
A" = (A" Ao, Py, ..., PY,Gn,GL,GRr,=),
where G, G and Gg are the graphs of II, L and R respectively.

When we have two structures 2l and 8 with domains A C B, we assume that
their respective Moschovakis’ extensions 20* and 28* are defined so that A* C B*.
We proceed with a few technical results which will be used often when we want to
show that a property for 2 also holds for 2* or vice-versa.

Proposition 3. Let f be an enumeration of A. We define the enumeration
fx of A* such that

f*(O) = 0*7
[x(2n+1) = f(n),
@5 20 + 1)) = TL(f.(k), fo(n)).

Then f. <1 f, and f <i fu.

Proof. We follow Lemma 7 of [10] to show that f=1(A) =7 f-1(A*).

Let J(z,y) = 2°71(2y+1). Denote by induction for any x1, ..., z,, Ji (1) = 11
and Jp41(z1,. .., @ny1) = J(z1, Jn(z2, ..., 2ny1)). Let I and r be computable
functions satisfying the equalities:

1(0) = r(0) = 0;
2z +1)=r2zx+1)=2=J(0,0);
l(J(,T,y)) =&, T(J(:L',y)) =Y.

It is easy to see that
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fH(Ag) ={2n+1|n e N}U{0}

G = {2y, 2) [ T(fu(2), £ () = fx(2)} = {(z.9,2) | J(2,9) = 2}
FNGL) = {(z,y) | L(fu(2) = £u(w)} = {{z,9) [ U(z) = y};

fHGR) ={{z.) | R(fu(2) = £ ()} = {(z,9) | r(2) = y}.

Then for any relation P C A™,

(x1,...,20) € [THP) < (f(x1),..., f(zn)) €P
& (fe(2z1+1),..., 22, + 1)) € P
< I (fo (221 + 1), .., fu(22, + 1)) € P*
o T2 +1,..., 22, + 1) € f7HP).

Since f and f, are bijective, f~1(=4) = f,(=*) = {(z, 2) | z € N}, where =4 is the
equality on A and =* is the equality on A*. We conclude that f~1(A) =7 f1(A*).

To prove f, <} f and f <} f,, it is enough to check that E(f, f) is c.e. in
f~Y(1). By the definition of f,, we have

E(fe,f)={{2z+1,2) | z € N}.

Now it is clear that E(f, f) is c.e. and hence it is clearly c.e. in f=1(2l). O

Proposition 4. Let f be an enumeration of A*. There is an enumeration f;4
of 2 such that fia <1 f.

Proof. Since A is a relation in 2A*, f~1(A) is computable in f=1(2A*). Let us
fix a computable in f~1(2*) enumeration {x, }nen of the set f~1(A). Define the
enumeration fi4 of A as fra(n) = f(z,). Then E(fia, f) = {(n,z,) | n € N} is
clearly computable in f~1(21*). For any predicate P; in 2, the equivalences

Wi yns) € A (B) 0 (B2)z = F7H AL, ) (2, -y my,,) & 2 € FTHEY),

<y1a tee 7y7?1> g f[_Al(Pl) AN (32)[’2 = fﬁl(Hni)(l’yla tee 793yni) & z g fﬁl(Pi*)]a
show that fFAl(P,») <7 f71(A*). We conclude that f14 <i f. O

Proposition 5. For any countable structure 2 and computable ordinal o > 0,
we have A <% A*. In other words, A* is (a, a)-conservative extension of A.

Proof. Fix a > 0. Let f be an enumeration of 2* and let f;4 be defined as in
Proposition 4. Since fi4 <{ f, we have fi4 <% f. Thus, A =% A*.

For the other direction, let f be an enumeration of 2. Consider f,, defined as
in Proposition 3. Since f, <} f, we have f, <¢ f. Thus, A <% A*. d

= =«
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Fix an enumeration f of A*. We define a coding scheme for finite sequences of
natural numbers in the following way:

T (@,y) = fHI(f(2), f(9))):
J (@) =z, T (o, x0) = I (w0, JL(x1,...,2,)).

We assign a measure ||z||/ for every natural number z in the following way:

al)? = 1% if o€ /' (Ao);
T mtL e =y, 2) & m o= maa{|y), |12}

It is easy to see that J/ and ||.||/ are functions computable in f~1(2*).

Lemma 6. Let 2 and B be countable structures with domains A C B. Then
for any computable ordinals o, B > 0, 2A <5 B if and only if A* <7 B*.

Proof. We prove only the part A =% 9B if and only if A* =3 B*. Then it is easy
to see that we can apply a similar argument to prove that 2 <3 B «» 2A* <=3 B,

Let 20 =5 B. We prove 2A* =% B*. Let h be an enumeration of B*. By
Proposition 4, hp is an enumeration of B. Since 2 =3 B, there exists f of 2 such
that f <% h;p. We shall show that for the enumeration f, of A*, we have f. <3 h.
Since h;p §% h and f gg hiB, we have

AQUFHRM) <r AL(fTHR) <7 A (hi5(B)) <r AZ(h~1(B).

Thus, AJ(f1(2*)) < A%(h™(B*)), so we only need to prove that E(f,,h) is
2% (h1(B*)). We remark that if (z,y) € E(f.,h), then llz||7 = ||lyl|*. We define
the sets F; = {(z,5) | |l2]** = |yl|" < i & (z,5) € B(f.,h)}. Clearly, E(f,,h) =
Uien Bi- We define by recursion on i a computable function y such that for every

i, By = Wlﬁ%)(hil(%*)). We will use the fact that
(z,y) € Biy1 < (z,y) € By V Gu,v,¢,d)[z = J(u,0) & y=J"(c,d) &
(u,c) € E; & (v,d) € E].
Let i = 0. Fix g = f,1(0*) and yo = h~1(0*). Then
Ey = {{zo,y0)} U {(z,y) | & € f71(A) & (2,y) € B(fu, )}
and by the definitions of f, and h;pg, for u € f,1(A),
(u,v) € E(fs, h) if and only if (3n)[u =2n+1 & (n,z,) € E(f, hB)],

where {x,, }nen is a computable in A~ (B*) enumeration of h~1(B), which was used
in the definition of h;p in Proposition 4. We know that E(f, h;g) is E%(hil(%*)).

0 -1 *
Thus, Fy = Werﬁ(h (%) for some index eg. Let (0) = eq.
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Let i = j + 1. Since J/+ and J" are functions computable in AG(h1(BY)),
define p(j + 1) to be an index such that
(h=1(B")) B(R™H(B™)
@) e W,y 7 o ) e Wi v
Fu,v, ¢, d)[x = J* (u,v) & y = J"(c,d) &

Oll 1
(u, )eWAU (%))&< (h (B%))

d) € W -
Thus, E(f.,h) is X0 (h~1(8*)) and hence f, <§ h.

Let A* :>%‘ B*. We will prove 2 :>g B. Take an enumeration h of B and h,
as defined in Proposition 3. Fix the enumeration f of 2* such that f <3 h,. We

will show that fj4 <3 h. By the following chain,
AL (A () < AL(FTHAY)) <7 AR(hTH(B*)) <7 AR(RTH(B)),

we have Ag(fr;l(m)) < A(h~'(B). Moreover, (u,v) € E(fia,h) if and only if
ue f7YA) & 2v+1 € hyY(B) & (24,20 + 1) € E(f,hy), where {2, }nen is a
computable in f~'(A*) enumeration of f~(A), Thus, E(fa,h) is Z3(h~"(B))
and fia Sg h. O

2.3. CODING TUPLES IN A*

For each finite part 7 € P4, 7 # 0 with Dom( )={r1 <z2<--- <m,} and
7(x;) = a;, we associate the element of A*, 7* = II,, (II(«7, a1), . ,H(:cn, ay)). For
7 =0, let 7* = 0*. We denote P* = {7* | 7 € P4}.

Proposition 6. The sets N* and Py are uniformly relatively intrinsically com-
putable in A*. Thus, N* and P% are definable in A* by 3¢ and 11 formulae without
parameters.

Proof. We briefly describe why N* is uniformly relatively intrinsically com-
putable in 2*. The proof for P% is similar.

For an enumeration f of 2*, fix z such that f(z) = 0*. This is the unique
element z € f~!'(Ap) such that (z,z) € f~'(Ggr). Then z € f~'(N*) if and

only if z = z or * = Jf(z,...,2), where n > 2 is the least number such that
there are numbers ¥y, ..., y,_1, different from z, and (z,y1) € f~(GR), (y1,%2) €
fﬁl(GR)a”'v <ynflvz> Gfil(GR)' O

Corollary 1. The following relations are uniformly relatively intrinsically
computable in A*:

- Dm(z,y) if and only if (37 € Pa)ly = 7 & x € Dom(7)],
- Rn(z,y) if and only if (37 € P4)[ly = 7 & = € Ran(7)],
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- Sb(x,y) if and only if (Fr,p ePA) [z =7" & y=p* & 7 C pl.
Lemma 7. For a countable structure A = (A; Py, ..., Ps_1), computable ordi-

nal a > 1, and natural numbers e, x,

1) X, =A{m | 7 Ik} F.(2)} is definable in A* by a B¢ formula without
parameters;

2) Yo, = {rm" | 7 IF} —F.(x)} is definable in A* by a IIS, formula without
parameters;

3) Zo, ={m"| (3§ €Pa)[§ 27 & §IF* F.(x)} is definable in A* by a 3¢

fm"mula without parameters.

Given natural numbers e, x, and a computable ordinal o > 1, we can effectively
find these formulae.

Proof. Following the proof of Lemma 5 step by step, it is easy to see that for
every non-empty set D of natural numbers, every e, x, and computable ordinal

a > 1, we can effectively find a X¢ formula &%  and a II¢ formula 7 e,x i1 the

language of A* with free variables in {X; | i € D} such that for every 5 € P4 with
Dom(d) = D, we have

J |F§l Fe(l’) < A }: q)(XD,.e,ac(g) A ': (I)D e ’I‘(S)

d ”_il _'Fe(x) 2 ': 90(D,e,m(g) < Q[* ': 6D e:r( )
We will just show how to produce the 3¢ formulae (I)B,le,;c' We start by defining

the finitary ¥, formulae \I/D s

-ifu=s-(i1,... i)+ for r <sandiq,..., i, € D, then

gl ODZ=T0(Xiy, . X ) & PHZ), i a(u) =1,
Do =V (32)[Z2 = ,(X4,, ..., Xi, ) & =PX(Z)], if k(u) =0,

iny
. 1 .
- otherwise, we set U5 = —(Xq = X4), where d is some element of D.

We define the finitary ¥; formula \1'73’71% with free variables in {X; | i € D} as

= NAX) & N\ Xi#X; & N\ U3
i€D Ci#d u€Dom(k)
i,j€D
where A(X) = (3Y, Z2)[Ao(X) & Gr(Z,2) & Gu(Z,Z,Y) & Gr(X,Y)]. Here we
used the fact that A = {x | x € Ay & R(z) = 1*}. We have the property:

RCOTHA) & AT (D).
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In the end, we define

De;c: \/ WDM
KEW, &

which is a Xf formula with free variables in {X; | i € D}. Now, we have the
following equivalences:

ue X2, \ (3ay, ..., an) L, (I(dF, 1), ..., (d5, a,)) = u &
D={d1<---<d,}
A E <I)D ex(al,. cyap)]
z€Z, & \/ (Faq,...,an) [, (11(d7, 1), ..., II(d};,an)) = 2 &
D={d;1<--<dn}

W\ Gonp)®s . (a,. . an)]

D’'DD

Since @7 is a 3¢ formula, it should be clear that the right hand sides of the
equivalences can be expressed as Xf, formulae. Y2, = P% \ Z2, and by the fact
that P% € [I(A*), it follows that Y%, € II¢, (A*) O

Since we can produce the corresponding formulae uniformly in e and x, we
obtain the following corollary.

Corollary 2. The sets X*={Il5(e*, a* 7% |7ty Fe(2)} and Z*={113(e* z*, 7%)
[ (30 D 7)[d ko Fe(x)]} are definable in Ql* by X< formulae without parameters.
The set Y = {IIz(e*,z*,7*) | T IFoq —Fe(x)} is definable in A* by a IIE, formula

without parameters. We can find indices for these formulae effectively in o.

Proof. The sets X and Z% are definable by formulae, which are essentially
infinite disjunctions over e and z of all formulae 3¢ which define the sets X', and
7z, Let Y, be definable by the IIf, formula ©77 in 2*. Define the IIf, formula

€e,r

XY, Z)= N\ X =a &V =¢ - 052(2)].
e,zeN

Since y € Y if and only if A* ==%(L(y), L(R(y)), R*(y)) & L(y) eN* & L(R(y)) e N*
and N* € TI{(20*), we conclude that Y € IIS (2A*). O

Corollary 3. Since we have uniformity in e, x and «, for a computable limit
ordinal o = lim a(p), each of the following sets

- Xa = {H4(e*,x*,p*,7*) | T |Foz(p) Fe(’l})},
- Yo = {a(er, z*,p*, 7%) | T ko) ~Fe()},

- 20 = {Iy(er, @, pt, ) | (36 2 70 ragy Fel@)]}
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is definable in A* by a X formula and by a IIS, formula without parameters. We
can find indices for these formulae effectively in the notation of a.

Proof. The fact that X® € X¢(2A*) and Z* € 2¢(A*) follows directly from
Corollary 2, because we can find indices for the formulae defining X*®) and Z«(®)
uniformly in p. By the same argument Y € IT¢ ().

Since a = lim(a(p) + 1) and X*®) ¢ 1T, ()1 (25, 7o) ¢ 118, )41 (AF), as
in Corollary 2 we can show that X® e TIS(A*) and Z® e IIS(A*). Similarly,
Y e ne(Ar). O

2.4. CHARACTERISATION

Let us fix an enumeration f of 2A*. Following [10], we show how to associate
a finite mapping 7 € P4 with natural numbers relative to f. For every natural
number n, we denote nf = f~(n*) and N/ = f~}(N*). For finite parts 7 € P,
we associate with 7* the natural number 7/ = f~(7*). For example, if 7* =
1L, (I(2%, a1), . .., I(a%, ap)), then 77 = JL(JF (2], f~ (@), . ... T (2, f~(an))).

Sometimes we will look at 7/ as a finite mapping with Dom/(r/) = {z{,... 21}
and Tf(l‘{) = f~Y7(x;)). We assume that Dom(rf) = ) if 77 = 0. Notice that
f(r!(x))) = 7(x) for all x € Dom(7). By Corollary 1, there exists a computable
in f~(A*) predicate P such that for 7,0 € P4, P(7/,67) =1 if and only if 7 C 6.
We will slightly abuse our notation and write 7/ C 6/ instead of P(7/,§/) = 1.

The next results give conditions under which we have the other directions of
Theorem 4.

Theorem 6. Let 2 and B be countable structures with A* C B. Then for any
computable ordinals o, B > 0,

(VX C AM[X € B5(U4.) —» X € 25(Bp)] — A=5 B.

Proof. Let us fix an enumeration f of 9. We will show that there exists an
enumeration g of 2 such that g <g f.

Since A € X§(2%.), we have A € ¥5(Bp) and then by Theorem 3, f~'(A) is
E%(f’l(%)). Fix a bijection p : N — f~1(A), which is computable in A%(f’l(‘B)).
We have two cases to consider.

Let a« = 1. We take the enumeration g of A defined as g(n) = f(u(n)). Clearly
the set E(g, f) is X5(f~1(B)), because

(z,y) € E(g,[) < g(@) = [f(y) < y=np2).
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Let P; be any relation in 2. We have P; € ¥5(Bp) and A" \ P; € X5(Bp).
Thus, both f~}(P;) and f~1(A™ \ P;) are ¥4 a(f~ (%)) Moreover,

we g Y(P) & (Bay,....4n, <uu=(z1,...,20,) &
(u(@1), . p(en,)) € F7HP)],
weN\g YP) & —(Fxr,..., 20, <w)u=(x1,...,2,,)] V
(Fz1, .o xn, <u)u=(x1,...,20,) &
(u(@1), oy pln,)) € F7HA™ N\ B

Since g~1(P;) and N\ g~ !(P;) are both Z%(f_l(‘B)), g~ () is AG(f1(B)) and
hence g §}3 f.

Let a > 1. We build an a-generic enumeration g of 2 such that g <3 f. We
essentially use the sets defined in Lemma 7.

- Let a = v+ 1. By Corollary 2, Y7 € II5(2*) and hence Y7 € 3¢ (A*). It
follows that the sets X7, Y7 and Z7 are all in X5(Bp). Thus, fHX),
f7HY7) and f~H(Z7) are all £3(f~(B)).

- Let a =lima(p). By Corollary 3, for the fixed enumeration f of B, fHX),
YY) and f~1(Z%) are all E%(f_l(%)).

Recall that for any natural number z, we denote by zf = f~!(2*) and N7 is the
set of all these 27.

Claim 1. There exists an a-generic enumeration g of U such that g is

A%(ffl(‘B)), where g/ : NI — f=Y(A) is defined as g% (x7) = f~1(g(x)).

Proof. We describe a construction in which at each stage s we define a finite
part 7 C 7s11. In the end, the a-generic enumeration of 2 will be defined as
g = U, 7s. Let 79 = () and suppose we have already defined .

a) Case s = 2r. We make sure that g is one-to-one and onto A. Let x be the least
natural number not in Dom(7,). Find the least p such that u(p) ¢ Ran().
Set Ts+1(x) = f(u(p)) and 7s41(2) = 74(2) for every z # = and z € Dom(7s).
Leave TS+1( ) undefined for any other z. Since N/ and p are A%(f_l(%» we

can find 77 141 effectively relative to A%(f~1(%B)).

b) Case s = 2r + 1. We satisfy the requirement that g is a-generic.

Let « = v+ 1 and s = 2(e, z) + 1. Check whether there exists an extension § of
7, such that 6 I+, F.(x). This is equivalent to asking which one of the following
is true:

H el ol wfy e fHY ) or H (el 7y e fH(2).

We can answer this question effectively relative to the oracle A%(f~'(%B)).
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- If Jg(ef,xf,rg) € f~1(Y), then 75 IF, =F.(z) and we set 7511 = 7s.

- It Jg(ef,xf,Tsf) € f~Y(2"), we search for 6 € IF’Q such that 7/ C 67 and
Ji(ef xf 65y e f~1(X7). We can find such 8/ effectively in A%(f7H(B)).
Set 7,41 = 0, where 6/ is the first we find.

Let o = lima(p) and s = 2(e, x,p) + 1. This time we check whether there exists
an extension ¢ of 7y such that § -y () Fe(x). This is equivalent to asking:

Jf( f f,pf 7-f) f_l(Yo‘) or Jf( f f’pf Tf) f_l(Za).

Again we can answer this question effectively relative to the oracle A% (f71(8)).
If there is no such ¢, we set 75411 = 75. If such § does exists, then 7,41 = 6,
where 6/ is the first we find. Again, we can do all this effectively relative to the
oracle A%(f~1(DB)), because, as explained above, the sets frUX), fH Yo,

and f~1(Z2) are DY (f1(B)).

End of construction
It follows from the construction that the graph of g/ is Z%(f_l(%)). O

Claim 2. For the enumeration g of 2l we have the following:
i) the relation E(g, f) is 5(f~'(B));
ii) the relation 75 C g¥ is Z%(f_l(%)).

Proof. i) The equivalences g(z) = f(y) < f'(g)) =y « ¢/ @f) =y
and the fact that the graph of ¢f is EO( ~1(%8)) imply that the set E(g, f) is

SR(f7H(B)).
ii) Since f(gf(x7)) = g(x), f(r7 (7)) = 7(z), and equality is among the
relation symbols in the language of 2*, we have:

[(z,y) € E(g, f) & (T/(a7),y) € FH(=")].
Here we denote by =* the equality on A*. Since we have all of the following:

- the sets {2/ |z € N} and {7/ | 7 € P4} are S5(f71(B));

- given a number x € Dom(77), we can effectively relative to A%(f_l(%)) find

the value of 7/ (zf);
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- the sets E(g, f) and f~'(=*) are £3(f~(B)),
it follows that the relation 7/ C g/ is X%(f~1()). O

We note that if E(g, f) is c.e. in the set Z, then the relation 7/ C ¢/ is c.e. in
AR(f~H(B)) ® Z. Since g is a-generic, we obtain the following equivalences.
Let « =~ + 1. Then
v € A9 () ¢ gy Fu(w) & (37 S g)lr Iy Fu(@))
(HTf Cy )[J?{ fvxfan) € f_l(X’y)]'
v & Ao(g7 ' (A) € gy Fu(2) < (31 C g)[r Iy ~Fo(2)]
& (3 Cgh)H @2l 7Ty e Y]

Let o = lim a(p). Then

(w,p) € AL(gT' () < €A (7' R) © g Fap) Fel@)
& (O C 9 Fag) Fu(@)):
o @' Cgh @, 2! pf o) e fHX).
(@.p)  AS(g71(A) oz €AY, (9” 1(%)) © g Fap) Fu()
< (A1 C g)[1 ko) Fau()].
o @ oIl 2l pl ) e FH YO

It follows that A (g~'(A)) is A%(f~'(B)). We conclude that for the enumer-
ation g of 2, g <3 f and hence A =3 B. O

Examining closely the proof of Theorem 6, we obtain the following corollary by
isolating the requirements we need in the construction of the generic enumeration.

Corollary 4. Let 2 and B be countable structures with A* C B, and let

a >0, B >0 be computable ordinals. Suppose that for every relation P; in A*, P;
and (A*)" \ P; are in £5(Bp), and

-ifa>2and a=7v+1, then X7 € X§(Bp), Y € £5(Bp), 27 € X5(Bp);
- if a is a limit ordinal, then X € £4(Bp), Y* € B5(Bp), Z* € 24(Bp).

Then we have 2 ég B.

Moreover, for every enumeration f of B and every a-generic enumeration g
of A, if E(f,g) is c.e. in Z, then AY(g~"(A)) <r AZ(f~'(B)) @ Z.

Corollary 5. For any two countable structures 21, B with domains A C B
and computable ordinals o, 5 > 0,

A =9 B (VX C A)[X € T5(A4.) — X € T5(B%.)].
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In the special case when A = B,
A5 B (VX CAY[X € X5 (A%.) « X € X5(B5.)].

Proof. (—) Let 2 =% %B. By Lemma 6, we have 2* =5 B*. Then by
Theorem 4, (VX C A*)[X € X¢ (%4.) — X € 25(B%.)].

(=) We apply Theorem 6 for the structures 2 and B* and obtain 2 =§ B*.
Take any enumeration h of B8 and consider h, of 8*, defined as in Proposition 3.
There exists f of A such that f <§ h,. Since h;*(B*) =r h~'(B), and E(hy, h) is
computable, we obtain E(f,h) is B3(h~"(B)) and AL (f~' () <r Aj(h(B)).
It follows that f §g h and hence 2 :>§ B. O

3. JUMP STRUCTURES
For any countable structure 2, we will define its a-jump structure A(*), which
(a, 1)-conservatively extends the original structure 2.

Definition 7. Let 2l be a countable structure. We define, for every computable
ordinal o > 0, the set KX in the following way:

— dfa<w, K& = {Tz(e*,2*,7%) | T Ik ~F.(z) & e,7 € N & 7 € P4}.
- ifa>wanda=06+1,

K2 = {TIz(e*, 2, 7%) | 7 Ikg =Fo(z) & e,x €N & 7 € P4 ).

- if a =lima(p),

Kg:{ﬂ4(e*,:v*,p*,7'*) | 7 IF —Fo(z) & e,z e N& 7 €Py}.

a(p)

Definition 8. Let 2 be a countable structure. For every computable ordinal
a > 0, we define the a-th jump of A in the following way.

A = A and A = (A, K,

where A* is the Moschovakis’ extension of 2. The language of the jump structures
1s the language of the structure A* plus the predicate symbol K.

We remark that A. Soskova and I. Soskov [10] define the jump structure of A
as A = (A*, R), where R = A* \ K}'. Recall that we defined o/ = a + 1, if a < w,
and o/ = a, otherwise. The next lemma explains why the definition of K2 involves
so many cases for different «.

Lemma 8. For any countable structure 2 and computable ordinal a > 0, K2
is uniformly relatively intrinsically A%, on A*.
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Proof. Essentially the proof is an application of Corollary 2 and Corollary 3.

Let a < w. Here o/ = a + 1. In this case we have K2 = Y* and hence K2 is
definable by a I1¢ formula without parameters. Thus, K2 is uniformly relatively
intrinsically A%, on A*.

Let @ > wand a = B+ 1. Here K = Y” and hence K2 is 115 definable
without parameters in 2*. Thus, K2 is uniformly relatively intrinsically A% on
2A*.

Let a = lim a(p). We have that K2 = Y and by the fact that Y is defin-
able by both ¥¢ and II¢, formulae without parameters, K2 is uniformly relatively
intrinsically A% on A*. O

Corollary 6. For any countable structure A and computable ordinal o > 0,
A =1, 9,
More precisely, for any enumeration f of %*, f~H(A@) <p A%, (f~1(A*)).

Proof. By Lemma 8, K2 is relatively intrinsically AY, on 2*. Then for any
enumeration f of A*, f~H(K2) is A%, (f~1(A*)). Thus, f~HA@) is A, (F71(A%))
and hence 2A(®) =1, 9+, O

Proposition 7. For any computable ordinal o > 1, K2 and A* \ K2 are
definable by X5 formulae without parameters in A+ - Therefore, if a relation R
is ¥ definable without parameters in A, given an index for this formula, we can
effectively find a X$ formula without parameters which defines R in A+,

Proof. Here h and I’ are the computable functions from Proposition 1. For
a = 8+ 1, the proposition follows from the equivalence

ue K2 o \/ [L(u) = e* & I3(n*, L(R(u)), R*(u)) € K2, ,].
(e,n)€Graph(h)

For o = lim a(p), we can define K2 in a similar way, but now we use that
H4(e*7x*7p*a7-*) € K(il <~ H3((h/(e,p))*,l‘*,7'*) € K3l+1'
O

Proposition 7 can be extended and it can be shown that if R is relatively
intrinsically c.e. on A(®), then R is relatively intrinsically c.e. on ), for any
vz o

Lemma 9. Fiz a countable structure A. For every computable ordinal o >
0, and natural numbers e, x, we have that X&', € E‘{(Q((a)). Moreover, we can

e,r
effectively find 3 indices for these formulae uniformly in e, x and «.
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Proof. The proof is by transfinite induction on a. The base case is for a = 1.
By Lemma 7, the sets X!, are in X§(2*) and thus they are definable in 2’ by the
same formulae. Now consider the ordinal o + 1 < w.

Tlhas Fo() ¢ (36 € Py)[w € WP & (V2 € Dom(6))[(8(z) = 1 & 7% € X2)
V (8(2) = 0 & TI3(z*, 2%, 7%) € K¥)]).

By the induction hypothesis, X', is definable in A by a 3{ formula, denoted x¢ ,,
without parameters and we can effectively find an index for this formula uniformly
in e, x and a. Let us define the ¥¢ formula without parameters:

il = VLA xeL0 A N\ Kr 25 X)),

8EWe,z 6(2)=0 5(z)=1

where W, , = {0 € Py | z € W’}. By K we denote the relation symbol which is
interpreted as K2 in (). Therefore, 7 Iy 1 Fo(z) ¢ A = Xe+H(r*). Hence

XD‘Jr1 € Y5(A®) and we can find an index for XQH effectively in e,  and our
notation for a + 1. By Proposition 7, we can effectlvely transform XQH to the X

formula x&&! without parameters such that 7 lkqq1 Fo(z) > 2@ = yofl(r%).
For the case of « + 1 > w, we have:

Tlhat1 Fo(z) > (36 € Po)[w € W2 & (V2 € Dom(6))[(6(z) =1 & 7" € X2.)
Vo (8(z) =0 & I3(z*, 2%, 7) € K2y

By the induction hypothesis, we effectively produce the 3{ formulae x¢', for the sets
X¢, such that t € X2, A = X¢ (). Again by Proposition 7, we effectively

e, T
transform them into the Xf formulae x¢, which define the sets X¢', in e+1)

€e,r
without parameters. We define the 3¢ formula

X?—;l \/ /\ Xzz /\ K(II3(2", 2%, X))],

SEW, 4 8(2)= 5(2)=1

for which we have 7 lbqi1 Fe(z) » D) = xoH1(7*). Clearly, x2£' defines the
set XoFH! in A+ without parameters.

Let us consider the computable limit ordinal o = lima(p). By induction
hypothesis, given e, x and a(p), we can effectively produce the %$ formula Xa(p )
which define the set XS®) in A(@(®) without parameters. Since Iz(e*, z*, 1) €

Kil(p) if and only if T4(e*,2*,p*,7%) € K2, we effectively transform each Xa(p)

into the X{ formula ;23};’) which define X¢. ) in A without parameters. Now we
define the Xf formula for X as follows:

Xe:v \/ /\ X?,(zp)(X) A /\ K(H4<Z*,Z*7p*,X>)].

SEWe,» 6({z,p))=0 3((z,p))=1
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Since 7 Ik Fo(z) < A = X¢ . (77), the formula x¢, defines the set X', in ()
without parameters. O

We did all the hard work. Now we are ready to show that 2(®) is (o/,1)-
conservative extension of 2.

Corollary 7. For any countable structure A and computable ordinal o > 0,
A = Y@,
Moreover, for any o -generic enumeration g of 2,
AL (g7 @) =r g1 @)W =p g @A) =p g7t (@A),
where g, is defined as in Proposition 3.

Proof. First we note that, having Lemma 9, we can prove analogues to Corol-
lary 2 and Corollary 3, that is, we can show that for any computable ordinal «,
X e n¢(A@), zo € 2¢(A), and X € DGA@), Z* € £5(A). Now all we
need to do is check the premises of Corollary 4 for 8 =1 and B = A(®) | where we
have a few cases for a to consider:

@ < w, @ = a+ 1. As noted above, we have that X € S§(A(®), Z* ¢
¥§(A)). Since Y™ = K2, we also have Y € 2§ (A()).

-a=v+4+1>w, o =a. We have that X7 € 2§(A™), 27 € 5(A™)). Then
by Proposition 7, X7 € 3§ (A(®) and Z7 € ¢ (A(®). We also have Y7 = K2
and hence Y7 € X§(A(@).

- a =lima(p), o’ = a. Here we have that X e x¢(A@), Zzo e x¢(A@). By
definition, Y = K. Thus, Y € X§(2A).

By Corollary 4, we conclude that 2 :f/ (),
Now we will prove the second part. By Corollary 4, since g is o/-generic,

Al (g™ @) <r g (A @ 2,
where Z is such that E(g, g) is c.e. in Z. By Proposition 3, we have that E(g, gx)
is computable. Thus, we obtain A%, (¢7*(2)) <7 g;'(A). By Corollary 6,
2A@ =1, 9* and hence g;*(A@) <p A (g7 (A*)). Again by Proposition 3,
g () =1 g7 1(A*). Combining all of the above, we conclude
A (g™ @) =7 g7 W =7 g7 @A) =7 g @A),

0

Theorem 7. For every countable structure A and computable ordinal o > 0,
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1) A @?/ A or in other words, A is a (o/,1)-conservative extension 2U;
2) A ¢ A e A s also a (o/,1)-conservative extension A*;

3) A Toletl) - pyp ) gl glett),

Proof. One direction of 1) is Corollary 7. For the other direction, let us take
an enumeration f of 2. By Proposition 3, f, is an enumeration of 2* and hence it
is an enumeration of A(*). Moreover, by Corollary 6, f;1(2(®) <7 A%, (f71(2A%)).
Since f7H(A*) =7 f~1(2) and E(f., f) is computable, we get 2 <=L, (@),

2) We take any enumeration f of 2(®) and since by 1) 2 =¢ A we choose
h of A such that h <¢ f. h, is an enumeration of A*, E(h,,h) is computable and
RN (A*) =¢ h~1(). Thus, h, <@ f and hence A* =¢ A, The other direction
is exactly Corollary 6, because A* and A(®) are structures with equal domains and
in this case A =1, A* is equivalent to A* < A(@) | Therefore, A* <¢ A,

3) By Proposition 7, KX € Z§(A+D). Then by Corollary 4, we obtain
(@) =1 e+ Agsume (@) <] A+ and let g be an (o’ 4 1)-generic enumer-
ation of 2. Since g, is an enumeration of 2A(®), there exists an enumeration f of
2@+ such that f <1 g, and hence f~1(AH+D) <7 g, (A). By Corollary 6 we
have g,(A®)) <7 AY,(g;7(21*)) and by Proposition 3, g7 (A*) =7 g~ (). We
conclude that f=1(RAFTD) <7 AY, (g7 1)) =7 g(2A) (.

We apply Corollary 4 for = 1, B = 2A(®*+1) and obtain that for the given
enumeration f of A@*1 and (a/+1)-generic g enumeration of A, AS, | (¢~ (A)) <r
FHet)) @ Z, where Z is such that E(f,g) is c.e. in Z. Since (z,y) € E(f, g) if
and only if (2z + 1,y) € E(f, g.) and E(f, g,) is c.e. in g7 (A(™)), we can replace
Z by g; 1 (A(®). Therefore,

g AT =1 AL (g7 @) <o fTHRAETY) @ g (@A) <p g7 ).

We reach a contradiction. O

Corollary 8. For a countable structure 2 and computable ordinal o > 0,
1) (VX C A)[X € 55, (An) & X € B5AG))];
2) DS®) = DS, (2).

Proof. Direct application of 1) of Theorem 7, Theorem 4 and Theorem 5. O

Theorem 8. For all countable structures A, B with A C B and computable
ordinals o, f > 0, A @%f B if and only if A &1 B9,

Proof. By Lemma 6, for any «, 8 > 0, 2 <5 B if and only if A* <3 B*. We
explain only why * ég: B* implies A =1 BB, The other directions make use
of similar ideas.
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By 2) of Theorem 7, B* :>f' B(P) . Take any enumeration f of B and
let h be an enumeration of B* for which h g?' f. Since A* :>g: B*, there
exists an enumeration g of 2A* such that g ggf h. By Corollary 6, g’l(Q((o‘)) <r
A, (g71(2*)). We clearly have g~ (@) <7 A%, (g1 (2%)) <p AY, (71 (B*)) <r
F7YB®). Since (x,y) € E(g,f) if and only if there is a number z such that

(z,2) € E(g,h) and (z,y) € E(h, f), theset E(g, f) is c.e. in f~1(B#)). Therefore,
g g‘f‘/ f- We conclude that 2 :>g,/ 9B implies A =1 B#), g
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In the present paper we continue the study of the definability in the local substructure
G of the w-enumeration degrees, which was started in the work of Ganchev and Soskova
[3]. We show that the class I of the intermediate degrees is definable in G,. As a
consequence of our observations, we show that the first jump of the least w-enumeration
degree is also definable.

Keywords: Enumeration reducibility, w-enumeration degrees, degree structures, local
substructures, definability, jump classes

2000 Math. Subject Classification: 03D28, 03D30

1. INTRODUCTION

A major focus of research in Computability theory involves definability issues
in degree structures. Considering a degree structure, natural questions arise about
the definability of classes of degrees determined by the structure’s jump operation.
The same questions can be transferred to its local substructures as well. As an
interesting special case one can ask for which natural numbers n the jump classes
H, and L,, consisting of the high,, and the low, degrees respectively, are first
order definable in a degree structure.

As it has been shown by Shore and Slaman in [9], the Turing jump is first order
definable in the structure of the Turing degrees, D, so for all natural numbers n
the classes H,, and L,, are first order definable in Dr. For the local substructure
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Gr consisting of all Turing degrees less than or equal to the first jump of the least
element in D, and for the substructure R consisting of all computably enumerable
Turing degrees, Nies, Shore and Slaman [7] showed that for each natural number n
the jump classes H,, and L, are first order definable. The question whether the
class L is first order definable is still open.

In the case of the structure of the enumeration degrees, D., Kalimullin [5]
proved that the enumeration jump is first order definable, so all of the classes H,,
and L,, are first order definable as well. In the local structure G, consisting of all
enumeration degrees below the first jump of the least element in D., we know by
a recent result of Ganchev and M. Soskova [4] that the class L; is definable. The
problems concerning the definability of H; and of the classes of the high,, and low,,
degrees for n > 2 still resist all attempts to be solved.

Further one can consider the questions about the first order definability of the
jump classes H = | JH,, of the degrees which are high,, for some n < w, L =JL,
of the degrees which are low,, for some n < w and of the class of the intermediate
degrees I. It is known that the classes H, L and I are definable in Dp. This follows
from the fact that each relation on Dy is definable in Dy if and only if it is invariant
under the automorphisms and it is induced by a degree invariant relation on 2¢
definable in Second-Order Arithmetic, see [10]. An analogous reasoning is valid for
the structure D, [11].

What is the situation in the local substructures? In the case of the structure
of the c.e. degrees, R, the classes H, L and I are not definable. Indeed, by Solovay
(see for instance [12]), the set of the indices of the c.e. sets which are intermediate
is Hg+1—complete, and the sets of the indices of the c.e. sets which are in H and
L respectively are both ¥ 4 1-complete and hence are not definable in First-Order
Arithmetic. On the other hand, by Nies, Shore and Slaman [7], a relation on
c.e. degrees invariant under the double jump' is definable in R if and only if it
is definable in First-Order Arithmetic. Therefore I, H and L are not definable
in R. From this point one may conclude that I, H and L are not definable in
Gr. Indeed, following Nies, Shore and Slaman [7], a relation on degrees below 0/
invariant under the double jump is definable in G if and only if it is definable in
First-Order Arithmetic. But the classes of the indeces of the A-sets having Turing
degrees in I, H or L respectively are not definable in First-Order Arithmetic, since
otherwise adding to their definitions the condition of being c.e. (which is definable
in First-Order Arithmetic) would result into definitions of the indices of the c.e.
sets in I, H and L. So again I, H and L are not definable in Gp. Finally, let us
consider G.. Here one can argue in a manner similar to the above by noting that
R is isomorphic to the structure of the I1Y enumeration degrees [8], and that the
latter are definable in First-Order Arithmetic. Now assuming that one of the classes
H,L and I is definable in G, one can easily show the definability of the respective
class of indeces of X9-sets in First-Order Arithmetic. So a definition in First-Order

1A n-ary relation R on degrees is invariant under the double jump if and only if whenever
R(x1,...,xn) and x{ =y{,...,x], =y, it is also true that R(y1,...,¥n)-
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Arithmetic of the corresponding class of c.e. sets is obtained, once again leading to
a contradiction.

In this paper we investigate the question about the definability of the classes
I, H and L in the local theory of the structure of the w-enumeration degrees, D,,,
which is a proper extension of D..

The structure of the w-enumeration degrees was introduced by Soskov [14] and
further studied in a sequence of works by Soskov, M. Soskova and Ganchev [15,17,3].
Unlike the structures of the Turing degrees and of the enumeration degrees, D, is
based on a reducibility relation between sequences of sets of natural numbers. To
be more precise, a sequence A = { A }r<, is said to be w-enumeration reducible
to a sequence B = {Bg}r<w, if and only if Js C J4, where for any sequence
X = { Xk }k<w, Jx denotes the jump class

Jx ={dr(Y)| Xi is ce. in y (k) uniformly in k}.

The jump A’ of a sequence A is defined [15] so that the class J4: consists
exactly of the jumps of the Turing degrees in J 4, i.e. so that J4 = J/. The jump
operator on sequences is monotone and thus induces a jump operation ’ in D,,.
Like the jump operation in D, the range of the jump operation in D, is exactly
the cone above the first jump of the least element 0,. In other words, a general
jump inversion theorem is valid for D,. Moreover, even a stronger statement turns
out to be true, namely, for every w-enumeration degree a above 0, there is a least
degree with jump equals to a. This property is neither true for Dy nor for D,.

The strong jump inversion theorem makes the structure D, worth studying,
since using it one may consider a natural copy of the structure D, definable in D,
augmented by the jump operation. Moreover, the automorphism groups of D, and
D, (i.e. the structure of w-enumeration degrees augmented with jump operation)
are isomorphic.

The jump operation gives rise to the local substructure G, consisting of all w-
enumeration degrees below 0/,. Thanks to the strong jump inversion, G, contains
a class of remarkable degrees having no analogue in either R, Gr or G.. These
degrees are denoted by o,, n < w, and are defined so that o, is the least degree
whose n-th jump is equal to the (n + 1)-th jump of 0,. In other words, o, is the
least high,, degree. The degrees o, turn out be also connected to low,, degrees.
Indeed, a degree in G, is low,, if and only if it forms a minimal pair with o,.

Each one of the degrees o,, turns out to be definable in G, [3], and hence so
are the classes H,, and L,,, for n € w. The definition in G, of o0,, given by Ganchev
and M. Soskova [3] is based on the notion of Kalimullin pairs, or more simply K-
pairs — a notion first introduced and studied by Kalimullin in the context of the
enumeration degrees. For an arbitrary partial order D = (D, <) a pair {a,b} is
called a IC-pair if and only if

x=(xVa)A(xVb)
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holds for every x € D.

The K-pairs in G, can be separated into two disjoint classes. The first class
consists of the K-pairs formed by two almost zero degrees (a degree in G, is called
almost zero if and only if it is bellow each o,,). The other class contains the K-pairs
inherited from De[oé”%oé”“)] for some natural number n. The degrees o, are
strongly connected with the inherited C-pairs. In fact the degree o,, is the greatest
degree which is the least upper bound of an inherited K-pair, which cannot be
cupped above 0,1 by a degree less then 0,_1. On the other hand if a C-pair is
not inherited, then it is bounded by every o,,_1 so that we can relax the condition
on the K-pairs to be inherited in the above characterisation. Since oq is the top
element in G, we can define each of the degrees o,, inductively in G,,,.

In this paper we continue the study of the connections between the degrees o,
and the IC-pairs. Our aim is to prove the following theorem.

Theorem 1. The classes H,L and I are first order definable in the local
substructure G,, of the w-enumeration degrees.

To obtain the above mentioned definability result it suffices to prove that the
set © = {o,|n < w} is definable in G,,. Indeed, we obviously have that

x€eH < (Gn)xeH,] < (In)o, <ux] < (Jo € D)o <, x].
Similarly
xel < (In)[xeL,] < (In)jo, Ax=0,] <= (Joe€ O)loAx=0,].

So how do we define 7 As we stated above, each o, is the least upper bound
of an inherited K-pair. Then our first goal is to define the set of the inherited -
pairs in G,,. We achieve this using a result by Kent and Sorbi [6]. Namely, we show
that a [C-pair is inherited if and only if each of its elements bounds a non-splittable
degree. So we concentrate only on least upper bounds of inherited K-pairs. First
we show that for each o, and for each inherited C-pair, the elements of the C-pair
are either bellow o,, or are incomparable with o,,. Then a result by Ganchev and
M. Soskova [3] allows us to show that this necessary condition is also sufficient, so
that we obtain the desired definition of 9.

Moreover, we shall extend our observations for the KC-pairs in G, and charac-
terise the KC-pairs in D,,. We shall see that the IC-pairs in D,, either consists only of
a.z. degrees, or are inherited just like in the case of G,. But the inherited KC-pairs
are always below 0/,. So, knowing how to distinguish (in D,,) the inherited K-pairs
from the others and using the fact that 0/, can be represented as a least upper
bound of an inherited K-pair, we conclude that 0/, is the greatest degree which is
least upper bound of an inherited KC-pair. Thus we have

Theorem 2. The first jump of the least element 0, is first order definable in
D, .
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2. PRELIMINARIES

We denote the set of natural numbers by w. If not stated otherwise, a, b,
¢,... stand for natural numbers, A, B, C,... for sets of natural numbers, a, b,
c,... for degrees and A, B, C,... for sequences of sets of natural numbers. We
shall further follow the following convention: whenever a sequence is denoted by a
calligraphic Latin letter, then we shall use the roman style of the same Latin letter,
indexed with a natural number, say k, to denote the k-th element of the sequence
(we always start counting from 0). Thus, if not stated otherwise, A = {Ag }r<w,
B ={Bj}r<w, C = {Ck}r<w, etc. We shall denote the set of all sequences (of length
w) of sets of natural numbers by S,,.

The notation A & B stands for the set {2z |z € A} U{2z+1 |z € B}.

We assume that the reader is familiar with the notion of enumeration reducibil-
ity, <., and with the structure of the enumeration degrees (for an introduction
on the enumeration reducibilities and the respective degree structure we refer the
reader to [1, 13]).

For a natural number e and a set A C w, we denote by WEA the domain of the
partial function computed by the oracle Turing machine with index e and using A
as an oracle.

Intuitively, a set A is enumeration reducible (e-reducible) to a set B, if there
is an effective algorithm transforming each enumeration of B into an enumeration
of A. More formally, A <. B if and only if there is a natural number 4, such that
for every enumeration f of B, the function {i}/ is an enumeration of A. It turns
out that A <. B if and only if there is a c.e. set W, such that

r€A = (Fu[{r,u) e W& D, C B, (2.1)

where (z, u) denotes the code of the pair of natural numbers (x, u) under some fixed
encoding, and D,, is the finite set with canonical index w. Usually this is taken as
the formal definition of the enumeration reducibility. If the set W in (2.1) has index
1, we say that A is e-reducible to B via W;, and we shall write A = W;(B).

The relation <. is a preorder on the powerset P(w) of the natural numbers
and induces a nontrivial equivalence relation =.. The equivalence classes under =,
are called enumeration degrees. The enumeration degree which contains the set A
is denoted by d.(A). The set of all enumeration degrees is denoted by D.. The
enumeration reducibility between sets induces a partial order <. on D, by

d.(4) <. d.(B) <— A<, B.

We denote by D, the partially ordered set (D., <.). The least element of D,
is the enumeration degree O, of (). Also, the enumeration degree of A® B is the
least upper bound of the degrees of A and B. Therefore D, is an upper semilattice
with least element.

By AT we shall denote the set A @ (w '\ A).
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The enumeration jump A, of A is defined by A, = {z | z € W,(A)}T.
The jump operation preserves the enumeration reducibility, hence we can define
d.(A) = d.(A’). Since A <, A’, then we have a <. a’ for every enumeration
degree a. The jump operator is uniform, i.e. there exists a recursive function j
such that for every sets A and B, if A = W,(B) then A" = Wj(B’).

The jump operation gives rise to the local substructure G, consisting of all
degrees bellow 0, — the jump of the least enumeration degree. Cooper [1] has
proved that G, is exactly the collection of all X9 enumeration degrees.

Finally we need the following definition, which we shall use in order to char-
acterise w-enumeration reducibility. Given a sequence A € S, we define the jump
sequence P(A) of A as the sequence {Py(A)} k<. such that:

1. Py(A) = Ao;
2. Pk+1(A) = Pk(A)/ O Ag41-

3. THE w-ENUMERATION DEGREES

Soskov [14] introduced the structure of the w-enumeration degrees D,, in the
following way. For every sequence A € S,,, we define its jump class J4 to be the

set:
Ja = {dp(X) | Ay is c.e. in X®) uniformly in k}. (3.1)

We set
A<, B < JgC Jg.

Clearly <, is a reflexive and transitive relation, and the relation =, defined by
A=, B <= A<, B&B<, A

is an equivalence relation. The equivalence classes under this relation are called
w-enumeration degrees. In particular, the equivalence class d,,(A) = {B | A =, B}
is called the w-enumeration degree of A. The relation <, defined by

a<,b < JAcadBeb(A<, B)

is a partial order on the set of all w-enumeration degrees D,. By D, we shall
denote the structure (D, <,). The w-enumeration degree 0, of the sequence
B = {0} r<y is the least element in D,,. Further, the w-enumeration degree of the
sequence A @ B = {Ax ® By }r<w is the least upper bound a V b of the pair of
degrees a = d,(A) and b = d,(B). Thus D,, is an upper semi-lattice with least
element.

An explicit characterisation of the w-enumeration reducibility is derived in
[16]. According to it, A <, B <= A, <. P,(B) uniformly in n. More formally,
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A <, B if and only if there is a computable function f, such that for every natural
number k, Ay = W) (Pr(B)). From here, one can show that each sequence is
w-enumeration equivalent with its jump sequence, i.e. for all A € S,

A=, P(A). (3.2)

Further, for the sake of convenience, for sequences A, B € S, we shall write A <. B
if and only if for each k < w, Ay <. By uniformly in k. So A <, B — A <,
P(B). Note that there exist only countably many computable functions, so that
there could be only countably many sequences w-enumeration reducible to a given
sequence. In particular every w-enumeration degree cannot contain more than
countably many sequences and hence there are continuum many w-enumeration
degrees.

Given a set A C w, denote by A 1 w the sequence (4,0,0,...,0,...). From the
definition of <, and the uniformity of the jump operation, we have that for every
sets A and B,

Atw<, Btw <= A<, B. (3.3)

The last equivalence means, that the mapping & : D, — D, defined by, k(x) =
d, (X T w), where X is an arbitrary set in x, is an embedding of D, into D,,.
Further, the so defined embedding k preserves the least element and the binary
least upper bound operation. We shall denote the range of x with D;.

4. THE JUMP OPERATOR

Following the lines of Soskov and Ganchev [15], the w-enumeration jump A’ of
A € S8, is defined as the sequence

A/ = (Pl(A)7A27A3a"'7Ak7"')'

This operator is defined so that if A’ is the jump of A, then the jump class J 4
of A’ contains exactly the jumps of the degrees in the jump class J4 of A. Note
also, that for each k, Py(A') = Pi1x(A), so A" =, {Prut1(A)}.

The jump operator is strictly monotone, i.e. A <, A and A <, B= A <,
B’. This allows to define a jump operation on the w-enumeration degrees by setting

a' =d,(A),

where A is an arbitrary sequence in a. Clearly, a <, a’ and a <, b =a’ <, b’.

Also the jump operation on w-enumeration degrees agrees with the jump op-
eration on the enumeration degrees, i.e. we have

k(x') = k(x)', for all x € D,.
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We shall denote by A the n-the iteration of the jump operator on A. Let
us note that

,A(") = (Pn<.,4), An+1, An+27 . ) =w {Pn+k<"4)}k<w- (41)

It is clear that if A € a, then A™ € a(®, where a(™ denotes the n-th iteration of
the jump operation on the w-enumeration degree a.

The jump operator on D, preserves the greatest lower bound, i.e. for each
X7 y7 z E DW7
xANy=c=x ANy =c'[2] (4.2)

Further, Soskov and Ganchev [15] showed that for every natural number n if b is
above a(™ then there is a least w-enumeration degree x above a with x(") = b.
We denote this degree by IZ(b). An explicit representative of IZ(b) can be given
by setting

I'i(B) = (Ao, A1y ..., Ap_1,Bo, By, ..., B, ...), (4.3)

where each A € a and B € b are arbitrary.

From here it follows that for every given a € D,, and n < w, the operation I7} is
monotone. Further, its range is a downwards closed subset of the upper cone with
least element a. In fact, even a stronger property holds: if x,a,b € D,, are such
that a <, x, a® <, b and x <, I?(b), then x is equal to I?(x(™). The above
property can be easily verified by simple relativisation of claim (72) of Lemma 1 in
[3].

It what follows, when a = 0, we shall write I" instead of I . Finally, we
provide a property of the jump inversion operation, a proof of which can be found
in [3].

(xVI'(a)™ =x™ va. (4.4)

5. THE LOCAL THEORY AND THE o,, DEGREES

The structure of the degrees lying beneath the first jump of the least element
is usually referred to as the local structure of a degree structure. In the case of the
w-enumeration degrees we shall denote this structure by G,. When considering a
local structure, one is usually concerned with questions about the definability of
some classes of degrees, which have a natural definition either in the context of the
global structure (for example the classes of the high and the low degrees) or in the
context of the basic objects from which the degrees are built (for example the class
of the Turing degrees containing a c.e. set).

Recall that a degree in the local structure is said to be high, for some n if
and only if its n-th jump is as high as possible. Similarly, a degree in the local
structure is said to be low, for some n if and only if its n-th jump is as low as
possible. More formally, in the case of G, a degree a € G, is high,, if and only if
a™ = (0/,)™ = 0" and is low,, if and only if a(™ = (0!,)(™,

214 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 207-224.



As usual, we denote by H,, the collection of all high,, degrees, and by L,, the
collection of all low,, degrees. Also H stands for the union of all the classes H,
and analogously, L is the union of all of the classes L,,. Finally, I will stay for the
collection of the degrees that are neither high,, nor low,, for any n. The degrees in
I shall be referred to as intermediate degrees.

Using the corresponding results for the structure of the enumeration degrees,
it is easy to see that there exist intermediate degrees and for every natural number
n, there are degrees in the local structure of the w-enumeration degrees, that are
high(,,41) (respectively low(,41y) but are not high,, (respectively low,,).

Soskov and Ganchev [15] gave a characterisation of the classes H,, and L,, that
does not involve directly the jump operation. Let us set o, to be the least n-th
jump invert of OSJLH), ie., o, = I"(0("*1). Note that o, is the least element of
the class H,,. Thus for arbitrary x € G,

xeH, < o, <, x. (5.1)

In particular, since every high,, degree is also high(,41), 041 <& 0,. On the
other hand, since H,, 11 \ H,, # 0, the equality 0,11 = 0o, is impossible, so that

0, =00 >, 01 >, 00> >4y 0y >y ...

Recall that if a degree is beneath a least n-th jump invert above a, then it itself
is a least n-th jump invert above a. In particular, if y <, o, then y = I"(z) for

some degree O&") <,z <, 05,"“) or more concretely y = I” (y(”)). On the other
hand if y € G, is a least n-th jump invert, then from the monotonicity of I" we
have y <, 0,. Thus

{y€Guly<won}={I"(z) | Ot(un) Swz=u Ofun+l)}-
In particular, since I" is injective,

() (n 1)),

w ? w

[0,,0,] ~ [0
Ganchev and M. Soskova [3] showed that for arbitrary x € G,
I"x™) =xAo,. (5.2)

Indeed, let us take an arbitrary x € G,,. Clearly I"(x(™) <, x and I"(x("™)) <,
0,,. On the other hand if y is such that y <, x and y <, 0, then from the second
inequality we have y = I"'(z) for some z. This together with the first inequality
gives us z = (I"(z))" =y <, x(™, Thus y = I"(z) <, I"(x(").

This gives us a characterisation of the low, degrees in terms of the partial
order <, and the degrees o,,, namely

xeLl, < xANo,=0,. (5.3)
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They also show that for arbitrary a € G, a is a degree in Dy iff
Vx €G,(xVo; =aVo; »x>,a). (5.4)

The formula (5.4) characterises the degrees in D1 NG, in terms of the ordering
< and the degree o;.

Soskov and Ganchev [15] introduced the almost zero (a.z.) degrees. Following
their lines, the degree x is a.z. if and only if there is a representative X € x such
that

(VE)[Pe(X) =, 0P)]. (5.5)
It is clear that the class of the a.z. degrees is downward closed. Further, one can
easily show that the only a.z. degree a for which there is a natural number n such
that a(™ = 00" is the least element 0.,. Note also that there are continuum many
a.z. degrees and hence not all a.z. degrees are in G,,,.

The a.z. degrees in G, are exactly the degrees bounded by every degree o,,

X €Geisaz. <= (Vn <w)[x <, 04]. (5.6)

Further, the classes H and L can be characterised in terms of the ordering <., and
the a.z. degrees [15], namely

aeH < (Vx—a.z.)[x<, al, (5.7)
and
acl < (Vx—a.z)x<,a—x=0,, (5.8)

where all quantifiers are restricted to degrees in G,,.

From the second equivalence it follows that the only low,, a.z. degree is 0.
Further, according to (5.1) no a.z. degree is high,, for any n. Thus all a.z. degrees
are intermediate degrees.

6. DEFINABILITY IN G,

We prove in this section that the set © = {0,|n < w} is first order definable
in G,,. Thus, by (5.1) and (5.3), we may conclude the proof of the Theorem 1. For
this purpose we shall need the notion of a Kalimullin pair (or K-pair).

Definition 3. Let D = (D, <) be a partial order. The pair {a,b} is said to
be K-pair (strictly) over u for D, if a,b,u € D,u < a,b (u < a,b) and for all
x € D such that u < x, the least upper bounds xV a,xVb and greatest lower bound
(xVa)A (xVDb) ezist, and the following holds:

x=(xVa)A(xVb). (6.1)
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Further, if D = (D, <) is a partially ordered set and u,v € D, we shall use
the notation D[u, v] for the set {x € D|u < x < v} together with the partial order
inherited from D.

Clearly, there exists a first order formula K of two free variables such that if
D has a least element Op, then

D = K(a,b) < {a,b} is a K-pair strictly over Op for D.
Also, we shall use the fact that for each a € D, the set
Z = {b | {a,b} is a K-pair strictly over Op for D}

is either empty or ideal, see for example [5].

The starting step of the first order definition in G, of the set 9 is the char-
acterisation of the K-pairs in G, due to Ganchev and M. Soskova [3]. According
to it, whenever {a,b} is a K-pair in G, strictly over 0O, then either a and b are
both a.z. or the K-pair {a, b} is inherited from the structure D,, i.e. there exist
sets A, B and a natural number n such that:

L 0™ <. A B <, 0"tD) and A’ = B’ = )(+1);
2. {d.(A4),d.(B)} is a K-pair in De[Ogn)7 0£"+1)] strictly over 00" ;
3. a=I"(k(de(A))) and b = I"(k(d(B))).

It is known [3] that every two degrees a, b € G,,, which are inherited from D,
in the above sense, form a [C-pair in G, strictly over 0.

Note that by definitions of the embedding x and the least jump inversion
operation (4.3) the last condition of the above characterisation of the K-pairs in the
local theory is equivalent to the fact that the degrees a and b contain respectively
the sequences (0,0,...,0,A4,0,...,0,...) and (0,0,...,0,B,0,...,0,...).

SN—— ——
n n

Using the above characterisation, one can prove that for each n > 0, 0,41 is
the greatest degree (in G,,) which is the least upper bound of a K-pair {a, b} strictly
above 0, such that (Vx <, o,)[aVx <, 0,]. Since og is the greatest degree in G,,,
it follows that for each natural number n, o, is first order definable in G,,.

Note that the a.z. degrees are closed under the least upper bound operation
and no oy, is a.z., thus if {a, b} is a K-pair {a, b} strictly over 0,, with aVb = o,
then {a, b} is an inherited KC-pair.

Now we shall show how to separate in G, the inherited K-pairs from those
formed by a.z. degrees. Suppose that {a, b} is an inherited K-pair and let A, B C w
and n < w be the corresponding witnesses for this. It is known by the a result of
Kent and Sorbi [6], that every nonzero enumeration degree x € D,[0., 0.] bounds
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a nonzero nonsplittable? degree y € D,[0,,0.]. Relativising this result over 0™
we conclude that there are sets Ay, By C w such that ") <, 4y <, A4, 0" <,
By <. B, such that both d.(Ap) and d.(By) are nonsplittable over 00", But then
the degrees ag = I"'(k(d.(Ap))) and by = I"(k(de(Byp))) are nonsplittable. Indeed,
assume without loss of generality that ag is splittable. Then ay = ¢ V d for some
0, <w ¢,d <, ag and let C = {Cp,}m<w € ¢,D = {Dp}m<w € d. According to
(4.3) and (3.2), (0,0,...,0"D Ay, 0+D ) € ag, so that
—_———

n

PC)@P(D) <c (0,0',...,00 ", A9, 00 +Y,.),

From here P, (C) ® P, (D) <. Ao,
PC) = (0,0,....00" "D P, (C),0" D )

and

P(D) = (0,0/,...,00= D, Py (D), 0"+, ).

Since ag <,, cVd, then (0,0,...,0=D Ay, 0+ ) <, P(P(C)@P(D)). Then
we have that Ay <. P,(P(C)®P(D )) e Pn (C) @ P,(D), 3, so finally 4y =,
P, (C)@ P,(D). Since d.(Ap) is a nonsphttable degree over 0", either P, (C) =, Ay
or P,(D) =, Ap. In the first case we have that ag = ¢, and in the second — ag = d,
i.e., we reach a contradiction.

Thus, if {a, b} is an inherited K-pair strictly over 0, then both a and b bound
nonzero nonsplitting degrees. Next we shall see that if {a, b} is a a.z. K-pair strictly
over 0, then neither a nor b bounds a nonzero nonsplitting degree. Moreover, the
following property holds for every a.z. degree in D,,,.

Lemma 4. Every nonzero a.z. degree in D,, is splittable.

Proof. Let a be a nonzero a.z. degree and let A € a satisfy (5.5). We shall
construct sequences B and C such that 0, <, B,C <, A and B&C =, A. We shall
construct B = {Bj}r<w and C = {Cf }r<w using induction on k. For every k we
shall set either By, = ) and Cy, = Ay, or By, = A and Cp, = (0. This condition will
ensure that B&C = A. So, in order to build B and C as desired, it suffices that
B,C <, A and that the following requirements are satisfied:

Roe : Tk (pe(k) TV A # W 1y (Pi(B)))

2Let D = (D, 0, <, V) be an upper semilattice with a least element. Let a,b € D be such that
b < a. We shall say that a is splittable over b if and only if there are x,y € D such that

b<x,y<a=xVy.

When there are not such x and y we shall say that a is nonsplittable over b. In the case when b
is the least element we shall say only that a is splittable or nonsplittable.
3the last equivalence can be easily verified using induction on n < w.
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Rocyr s 3k (0e(k) TV Ak # W1y (Pr(C))) -

Note that B,C <, A gives us automatically, that B and C satisfy (5.5). The
requirement Ry, ensures that A can not be uniformly reduced to P(B) using the
e-th computable function. Similarly, Ro.41 expresses that A can not be uniformly
reduced to P(C) using the e-th computable function.

The construction: During the construction we shall use a global variable t
which shall show us the least requirement that is (possibly) not yet satisfied. We
start by setting v = 0. Also we set By = By = (), Cyg = Ag and C; = A;. Let
us suppose that k£ > 2 and that B, and C are defined for s < k. Note that our
assumption yields that for s < k, Ps(B) and Ps(C) are defined as well.

Case 1: v = 2e. If p(k—2) T or Ag_o # W, (1—2)(Pr—2(B)), set By =Ay, Cr,=0
and augment t by 1. Otherwise set B, = @), C}, = A and keep t the same.

Case 2: v = 2e+1. If g (k —2)1 or Ap_2 # W (k—2)(Pr—2(C)), set By =10,
Cj = Ay and augment t by 1. Otherwise set By = A, Cr = 0 and keep t the
same.

End of construction.

First of all let us note that, according to the definition of the jump sequence P(A),
0" <. Py(A) for k > 2 uniformly in k. Hence for k > 2, given any enumeration of
Py (A) we can uniformly decide if p.(k — 2) 1. Further, for k > 2, P,_2(A)" <,
Py (A) uniformly in k. These properties of P;(A) and a simple induction on &k >
2 yield that given any enumeration of Py(A), we can uniformly answer to the
questions

Qe(k —2) 1 V Ap_a # Wy, (5—2) (Pr—2(B))

and
ek =2) 1 V A2 # Wy, (k—2)(Pr—2(C)).

In particular, any enumeration of Pj(A) can compute uniformly the value of v at
stage k and hence it can compute uniformly By and Cj. Therefore B,C <, A.

It remains to prove that all the requirements are satisfied. Towards a contra-
diction assume that some requirement is not fulfilled and let n be the least index
of such a requirement. Note that the construction yields that at some stage m,
the global variable v has been set to be equal to n, and from then on t has never
changed its value. First let us suppose that n = 2e for some natural number e.
Then for every k > m, Ag_o = W, (1—2)(Pr—2(B)), so that By = ) for & > m and
Ay <. P(B) uniformly in k£ > m. On the other hand for 0 < k < m,

Bk Se Pk(-A) Se @(k)’

which together with our previous observation yields B <, §},, and A <, B. Thus
A <, 0, contradicting the choice of A.
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If n = 2e + 1, we obtain in a quite similar way A <, 0, contradicting once
again the choice of A. Therefore our assumption that some of the requirements is
not satisfied is incorrect, and hence 0, <., B,C <., A. O

Thus, we have obtained that every inherited KC-pair bounds a nonsplitting
degree, whereas every a.z. is splittable. Therefore we may define a first order
formula /C;,,;, separating the inherited KC-pairs from the ones formed by a.z. degree
by setting

Kinn(a,b) = K(a,b) & (Ix)[z <, a & (Vu,v)[u,v <, x > uVv <, x|

Now we have the instrument needed for the definition of the set . Recall that
every degree o, is the least upper bound of an inherited /C-pair, so that we need
just to focus on the properties of the least upper bounds of such K-pairs.

Suppose that {a,b} is an inherited KC-pair and let A, B C w and n < w be
witnesses for this. Since

@,0'...,00m=1 glm+) gimt2) -y € o,
| —

(®7 (Z)lv e @(n—1)7A, @(n—&-l)’ . ) € a,
—_———
(Q)a ®/7 ) @(n—1)7 Ba ®(n+1)7 . ) € b,
| S —

n

P <, A, B <, 0D and A’ = B’ = 0"t we have a,b <, o, for m < n. On
the other hand, m > n implies that a,b £, o,, and o,, £, a, b, for otherwise we
would have A <, 0™ and (™1 <, (™) respectively.

Hence, for every m < w and every inherited KC-pair {a, b}, either a,b <, oy,
or a, b|,0.,.

Now we claim that whenever x is the least upper bound of an inherited K-
pair and x is not o,, for any natural number m, there exists an inherited C-pair
{a,b} such that al,x and b <, x. Indeed, suppose that x = ¢ V d for some
inherited K-pair {c,d} and for all m < w, x # 0,,. Let the sets C,D and the
natural number n be witnessing that the C-pair is inherited. Then the sequence
@,...,0,C®D,0,...) is an element of the degree x. Note that C, D <. §(»+1)
——

and x = cVd # o,, so COD <, P, Since ¢ and d are not a.z., we have
that C and D are low over )™ and hence C,D € A(#™). But then we have
also Co D € AY(P™). In what follows we shall need the following result due to
Ganchev and M. Soskova [3].
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Theorem 5. For every total* enumeration degree g and every degree e, such
that g <. e and e contains a set AY relative to g, there is a K-pair {a,b} in
D.[g,g'] strictly over g, such that aV e = g'. In the case when e <. g’ we

additionally have that &|.e and b <, e (since e = (aVe)A(bVe) and ave =g').

Now let {a, B} be the corresponding KC-pair for g = 02") and e = d.(C® D).

Let A and B be sets having enumeration degrees a and b respectively. Then the w-

enumeration degrees a = d (0,...,0,4,0,...) and b=d,(0,...,0,B,0,...) form
N—— ~——

n n
an inherited K-pair for G,, such that al,x and b <, x.

Thus we have proven that a degree x <,, 0/, is 0,, for some natural number n if
and only if x is the least upper bound of an inherited K-pair and for each inherited
K-pair {a, b} either a,b <, x or a, b|,x. Namely,

x €9 <= (Ja,b)[Kinn(a,b) & x=aVbl&
(Va,b)[Kinn(a,b) = a,b <, x V a, b|,x].

This gives us a first order definability in G,, of the set 9 as well as of the classes
H and L. A direct consequence of the latter and (5.6) is the following corollary.

Corollary 6. The set of all a.z. degrees is first order definable in G, .

7. DEFINABILITY OF 0/,

In this section we characterise the class of the [C-pairs strictly over 0, for D,,.
Namely, we shall show that either such a IC-pair consists of a.z. degrees, or it is
inherited. As a consequence of this characterisation and the fact that 0/, bounds
the elements of all inherited KC-pairs we shall find a first order definition of the first
jump of the least element in the structure D,,,.

First, let {a,b} be a K-pair strictly over 0, for D,,. Let A € a and B € b
respectively. Using the connections between the K-pairs in D, and G,, derived in
[3], we are able to conclude that for each n < w, {dc(P,,(A)),dc(P,(B))} is a K-pair
over 0" for D.[> 0&")]. Hence by [5] each of d.(P,(A)) and de(P,(B)) is quasi-
minimal over 02") (the enumeration degree a is quasiminimal over the enumeration
degree b <, a if and only if there is no total b <, ¢ <, a). Since for each n,
0"t <, d.(P,(A)) <¢ de(Prny1(A)) and de(P,(A))’ is total (since every jump

is total), then for each n, P,(A)" =, (Y. The same equivalence obviously holds
also for P, (B)".

4An enumeration degree is said to be total if and only if there exists a set A such that the
degree contains the set AT. With other words a degree is total if and only if it is an image of a
Turing degree under the Rogers’ embedding ¢ : D — D.. For example, for each n, the degree

05]” is total.
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Having in mind the last observation, consider a K-pair {a, b} strictly over 0,
for D, and suppose that at least one of the degrees a or b is not a.z.. Without
loss of generality, suppose that a is not a.z. degree and let A € a. Therefore there
is n < w such that P,(A) #. 0. Let a~ be the w-enumeration degree which
contains the sequence (0,...,0, P,(A),0,...). Note that a~ is bellow 0/, and that

——

{a7,b} is a K-pair strictly over 0, for D,. Since 02") <o de(Pr(A)) <. Oénﬂ),
then the equality de(P,(A)) = Oé”H), together with Theorem 5, yields

d.(P,(A)) Vx =x'=0"tY

for some 00 <, x <. 00", So for the w-enumeration degree x(x), we have

that Oi,n) <o k(x) <, Oan'H) and since the jump inversion operation is monotone,
I"(k(x)) <, 0/,. Therefore,

I"(r(x)) = (I"(r(x)) va™) A (I"(k(x)) V b).
Hence, using (4.4) and (4.2), we obtain
r(x) = (r(x) V (@7) ™) A (k(x) v B).

By the choice of the degree x, we have that x(x) V (a=)(™ = 0" Therefore
b <, k(x). But k(x) = 00" 5o we may conclude that b(*+1) = 0" From
here, noting that b # 0, and recalling that for each nonzero a.z. degree p and each
n<w, p™ %o 05,”), we conclude that b is also not a.z. degree.
Therefore, there is m < w such that P, (B) %, @™ Let b~ be the degree
containing the sequence (0, ...,0, P, (B),0,...). Thena~, b~ <, 0/, and {a~, b}
——

m
is a KC-pair strictly over 0, for D,,. Note that {a=, b~} is a K-pair strictly over 0,
also for G, whose elements are not a.z.. From the characterisation of the IC-pairs
for G,, noted in the previous section, we conclude that m = n. Because of the
choice of n and m, we have that for all k # n, Py(A) =, Py(B) =, 0*). Therefore
a=a Vpand b=b~ Vqwhere p and q are both a.z.. But p <, a, so if p # 0,
then {p, b} is a K-pair strictly over 0,, for D,,. Now since b is not a.z. we conclude
that p is not a.z.. A contradiction. So p must be equal to 0,. Analogously, q = 0,
and hence a =a~,b = b™. So we have the following characterisation of the KC-pairs
{a, b} strictly over 0, for D,,.

Theorem 7. Let {a,b} be a K-pair strictly over 0, for D,,. Then exactly one
of the following assertions holds:

1. Both a and b are a.z..

2. There is a natural number n < w and sets A, B C w such that

o )™ <. A, B < 0"t and A = B/ = )(n+1);
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o {d.(A),d.(B)} is K-pair strictly over 0" for D.[> O(en)];
o (0,0,...,0,A,0,...,0,...) €a and (0,0,...,0,B,0,...,0,...) €b.
S—— ——

n n

Note that each KC-pair strictly over 0, for D,, whose elements are both not
a.z., is an inherited K-pair for G, and hence its elements are bellow 0/,. So, by
the observations in the previous section, each of its elements bounds a nonzero
nonsplitting degree. Now, recalling Lemma 4, we have that the K-pair {a, b}
strictly over 0, for D, consists of non a.z. elements iff,

Dw ': ICinh(av b)v

where KC;,n is the corresponding formula from the previous section. Since the
elements of each inherited K-pair are both below 0/, then their least upper bounds
are also below 0.

Now note that, by Kalimullin [5], 0/, can be split by a K-pair {&, b} strictly over
0. for D, such that a and b are low. Then () and x(b) are not a.z. degrees and
{r(@), k(b)} is a K-pair strictly over 0, for D,, with x(a)V#(b) = 0,. Thus we may
define 0/, as the greatest degree, which is a least upper bound of the elements of a
KC-pair strictly over 0, for D,,, whose elements are both not a.z.. Thus Theorem 2
is proved.
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WEIGHTED BANACH SPACES OF HOLOMORPHIC
FUNCTIONS WITH LOG-CONCAVE WEIGHTS

MARTIN AT. STANEV

Some theorems on convex functions are proved and an application of these theorems
in the theory of weighted Banach spaces of holomorphic functions is investigated, too.
We prove that H,(G) and Hy, (G) are exactly the same spaces as Hy (G) and Hyy, (G)
where w is the smallest log-concave majorant of v. This investigation is based on the
theory of convex functions and some specific properties of the weighted banach spaces
of holomorphic functions under consideration.

Keywords: Associated weights, holomorphic function, weighted banach space, convex
function

2010 Math. Subject Classification: 46E15, 46B04

1. INTRODUCTION

Let C be the complex plane and
G={z=z+iy|z e (—o0,), y € (0,00} CC

be the upper half plane of C. Throughout, v : G — (0,00) will be a function such
that v(z) = v(x + iy) = v(iy) for every z = = + iy € G, and

inf v(iy) >0 forevery c¢> 1. (1.1)
yE[%,C]

We define
(Pv(y) = _lnv(iy)a yE (0700)7
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and property (1.1) is reformulated as the following property of ¢, (y):

sup p,(y) < oo for every ¢ > 1. (1.1)
ye[%,c]

The weighted Banach spaces of holomorphic functions H,(G) and H,,(G) are
defined as follows

o f e H,(G) if f is holomorphic on G and

| f llo=supv(z)|f(z)| < oo;
z€G

o fe H,(G)if f € H,(G) and f is such that for every € > 0 there exists a
compact K. C G for which

sup - v(2)[f(2)] <e.
z€G\K.

Here, we use notations from [1, 2, 3, 4, 5].

In [1], [2] the authors find an isomorphic classification of the spaces H,(G) and
H,,(G) provided the weight function v satisfies some growth conditions.

In [3], [4] weighted composition operators between weighted spaces of holomor-
phic functions on the unit disk in the complex plane are studied and the associated
weights are used in order to estimate the norm of the weighted composition oper-
ators.

The associated weights are studied in [5].

This paper is about weights that have some of the properties of the associated
weights. We prove that H,(G) and H,,(G) are exactly the same spaces as H,,(G)
and H,, (G), where w is the smallest log-concave majorant of v. Here, the smallest
log-concave majorant of v is exactly the associated weight, but in case of other
weighted spaces this coincidence might not take place. Our work is based on the
theory of convex functions and some specific properties of the weighted banach
spaces of holomorphic functions under consideration.

The results of this paper are communicated at the conferences [7] and [8].

2. DEFINITIONS AND NOTATIONS

Let @ be the set of functions ¢ satisfying the following conditions:
e ¢:(0,00) >R and
e there exists a € R such that

inf (¢(z) —az) > —o0.

z€(0,00)
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Note that if ¢ € @, then —co < p(z) < oo for every z € (0, 00).
We denote by @, the limit inferior

A, = liminf M, p e .

If ¢ € @, then
e 4, € RU{oo}, a, > —o0;

e G, =sup{a|a€cR, 1(1&f : (¢(z) — az) > —oo}
xe (0,00

If ¢ € ® is convex in (0, 00), then

By ®1, ®5, &3 we denote the following subsets of ®:

P1={p: p€P, A, =o00};
Oy ={p : D, d, < oo, liminf(p(z) — dpa) = —00} ;

r—00

O3 ={p : pe®, d, < oo, liminf(p(z) — dpz) > —o0}.

r—00

Note that ®1, 5, ®3 are mutually disjoint sets and &, U @5 U &3 = .
If ¢ € @5 U @3 is convex on (0, 00), then

liminf(p(z) —a,2) = lim (p(r) —apz).

Note that a function ¢ € ® is not necessarily continuous. In fact, ¢ € ® is not
supposed to satisfy any conditions beside those of the definition of ®, &1, ®5, P3.
There are a number of simple functions that belong to ®, ®;, ®5, ®3, for instance,

e o1(x) = 22 belongs to @ ;
e vo(x) =z —\/x belongs to Po;

e p3(x) =21 belongs to Pz,

and @1 (), v2(x), ps(x) are all convex on (0, 00).
Fora ¢ € @ let

M, = ,0)la, b€ R, inf t) —at) > by.
{(a,b)| a te;gm)(sO() at) > b}

The function ¢** : (0,00) — R is defined as

e (x) = sup (axz+D).
(a,b)eM,,

k%

p** is referred to as the second Young-Fenhel conjugate of ¢ and it is the largest
convex minorant of .
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3. MAIN RESULTS

Here we state our main results.

Theorem 3.1. Let ¢, ¢ € ®. If 1) is convezx on (0,00), then
inf (p(x) —y(x)) = inf (p"(z) ().

2€(0,00) 2€(0,00)
Theorem 3.2. Let ¢, v € ®. If 9 is convex on (0,00) and, in addition,
m (p(z) — ¢(x)) = oo, then

li
z—0t

lim (™ (z) —(z)) = co.

z—01

Theorem 3.3. Let p € ® and ip € &\ ®3. If ¢ is convex on (0,00) and, in
addition, li_}In (¢(z) — p(z)) = oo, then

lim (¢**(z) — () = .

Tr—00

The next examples show that the assumption for convexity of 1 in Theorems
3.1-3.3 cannot be omitted.

Example 3.1. Theorem 3.1 does not hold with the functions

T
= mi 1 1 = — 0 .
plo) = minfe, 1 41, 9(@) = T e (0,00
Note that ¢ € ®, and ¥ € ® is not conver on (0,00). We have ¢**(x) = 1,
z € (0,00), and

L= inf (@) —v@) # inf (¢ (@) — () = 0.

z€(0,00) 2€(0,00)
Example 3.2. Theorem 3.2 does not hold with

1 1 1 2 2

p(r) = PJrEsin;JrE, w(z):@(x)*? x € (0,00).

Note that @, ¥ € @, the function 1 is not convex on (0,00) and

o= lim () = ¥(x)) > liminf (¢ (z) — ()

z—0t
This fact is proved in Proposition 4.1.
Example 3.3. Theorem 3.3 does not hold with

o(x) =2® +xsine + 2z, Y(x) = @(r) —22, € (0,00).
Note that p € @, 1p € O\ D3, 1) is not convex on (0,00) and
% = lim (p(a) = ¥(2)) > limint (o™ (z) - ¥())

This fact is proved in Proposition 4.2.

228 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 225-245.



Corollary 3.1. If ¢, ¥ € ® are such that

lim (p(z) —¥(z)) = oo,

z—01

then
lim (o™ (z) — ¢**(x)) = 0.

z—0t

Proof. Since ¢** < 1, we have

lim (p(z) =97 (2)) > lim (p(e) —v(@)) =

z—0*t

Now Theorem 3.2 applied to ¢, ¥** proves (3.1).

Corollary 3.2. Let ¢ € ® and ip € @\ O5. If ¢ and ¢ satisfy

Jim (p(z) — 9 (2)) = o0,
then
Th_)n;o(@**(x) — ™ (x)) = 0.
Proof. Note that
e ** € &\ &3 by the Lemma 4.1;
.« <0,
Theorem 3.3 applied to ¢, ¥** implies (3.2).
Example 3.4. Let o(x) = 2> + = and

3z —1, z € (0,1]
P(r) =<5 — 3z, x € (1,2]
> +x -7, x€(200).

We observe that ¢, 1 € ® and

e ¢ is conver on (0,00), and therefore p** = ¢,

e 1 is not convex on (0,00) and

A direct calculation shows that

inf (p(z) —¢(x)) =0#1= inf (¢"*(z)—

z€(0,00) z€(0,00)
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Thus, there is no analog of Theorem 3.1 involving ¢** and ¢ as in Corollar-
ies 3.1 and 3.2. O

4. AUXILIARY RESULTS

Proposition 4.1. Let

1 1 .1 2 2
<p(x)fﬁ+;sm;+; and Qﬁ(x)—ga(x)—g, x € (0,00).

Then ¢, ¥ € ®, the function v is not convexr on (0,00) and

oo = lim (p(z) —(z)) > liminf (¢** (z) — ¥(z)) .

z—0t z—0t

Proof. The function v satisfies

L1 2e(0,1)
) > 2 x? ) ’
w()_{mlz, x € [1,00),
hence, ¥(z) > 0 for every x € (0,00), and this implies that ¢ € ®.
Since ¢ > 1), we have also p € ¢ .

Note that 5
li - = lim — =o0.
Jim, ((z) — ¥(x)) Jim = =00
Let
5 _ k=0,1,2
Tp = , T = ) =0,1,2,....
F —32” + 2km F —5” + 2km

We observe that xp > T > zr11 > 0, hm xzp = 0, and the harmonic mean of zj,

ZTry1 is equal to . A direct computatlon shows that ¢"(Zg) < 0, therefore 1 is
not convex on (0, 00).
Let

f(z) = % + %, x € (0,00).

The function f is convex on (0,00) and f(z) < p(z), = € (0,00). So, f is a convex
minorant of ¢ and thus f < ¢**

Therefore, f(xr) < ¢** (1) < @(ar) = f(xr) and this implies that
flze) =™ (zr), k=1,2,3,....

Furthermore,

~ ~ ~ Ty — Tg Ty — Tht1
(@x) = f(@k) < 9™ (@) < ———— 0" (@pr1) + ——— 9™ (21)
Tk — Tk+1 Tk — Tk+1
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because of the convexity of ¢**. Thus,
o~ ~ Tp — Ty T — Tpt1 ~
0 <" (Tr) = ¥(Tr) € —————f(@r41) + —— f@e) — f(Tn) -
Tp — Th41 T — Tk+1
After some simple calculations we obtain

Ty — T Ty — ~ ~
P f(wp4r) + = f(an) = f(@) = (3 + Tl
Tp — Tkt Tk — Thk+1
Consequently, 0 < ¢**(z1) — ¥(zx) < (3 +Tp)72, k=1,2,3,..., and

lim inf (¢**(z) — ¥(z)) < oo. O

z—0*t

Proposition 4.2. Let
() =2* +xsinz + 22 and Y(z) = p(z) — 22, 2z € (0,00).
Then ¢ € @, 1 € @\ @3, the function ¢ is not convex on (0,00) and

oo = lim (p(x) — ¢ (x)) > liminf (™ (z) — ¥(z)).

T—r00 T—r00

Proof. The function v satisfies the inequalities

2 Vs
(o) > 2, z € (0,7),

-z, x€[m,00),
therefore ¥(z) > 0, x € (0,00), and thus ¢ € ®. Moreover,

2
~ .. x .. T~ —x
Gy = liminf M > liminf
T—00 xX T—r00 X

=00,

therefore @y, = oo and thus ¥ € &1 C &\ ®3.
Now ¢ € ® since ¢ > ¥ and ¥ € ¢. Moreover,

lim (¢(z) —¢(z)) = lim 2z = co.

T—>00 Tr—00

Let 3 5
$k=§+2k‘ﬂ', %kzg—&—ﬂm, k=0,1,2,...

Note that, for k € N, 0 < x < T < Tg41, Tk + Tpr1 = 22k and klim TR = 00.
—00

A direct computation shows that 1" (Z¢) < 0, hence 4 is not convex on (0, 00).
Let
fx) =242z, x¢€(0,00).
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The function f is convex on (0,00) and f < ¢ therein. So, f is a convex minorant
of ¢ and thus f < @**. Therefore, f(zr) < ©*™*(a) < p(zr) = f(zk), and this
implies

flzr) =™ (xx), keN.

Furthermore, by the convexity of ¢**, we have

LTht+1l — Tk 4x Tk — Tk

) = f(F) < 0™ () < TEEL TR o) R TR e (1)
(@) = f(Tr) < @™ (Tk) P (k) P (Th+1)
Thus,
r ~ T -7 Ty —x -
0< @™ (@) — (@) < 8 flan) + T flag) — f@).
Tk+1 — Tk Tk+1 — Tk

After some simple calculations we obtain

Tht1 — Tk Ty — T _
L E flag) + ———" f(apt1) — f(@k) =72, keN.
Tyl — Tk Tk+1 — Tk

Consequently, 0 < o**(Z1,) — 1 (Zx) < 72, k € N, and

lim inf (¢**(z) — ¥(z)) < oo. O

T—00

Lemma 4.1. If ¢ € ®, then

(1) liminf ¢(z) = lim ¢**(x);

z—0t z—0+

(2) liminf #lz) = lim L(az)

T—00 x T —»00 x

Proof. Let ¢ € ®. Then

liminf o(z) > liminf o** () = lim ¢**
iminf p(z) 2 liminf o™ (z) = lim ¢™(z),

z—0t
timinf 2% s fiming £ gy, 270

Let ag, bg € R be such that apx + by < p(z), z € (0,00). Then

liminf p(x) > by > —o0, (4.1)

z—0t

—~

lim inf ()
r—00 T

> ap > —00. (4.2)

Let b be such that lim irif o(x) > b > —oc0. We choose § > 0 so that
z—0

inf :
o225 P10 >0
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Then

inf LW) —b > min{ inf plw) —b inf (@) = b}

>0 x 0<z<35 x < T

)}>—oo.

Set a = min{0, ggf (ap+22=L)}, then (a,b) € M, and consequently ©**(z) > az+b,
z € (0,00). Thus,

bo—b

> min{O, inf (ao + 2
60<z xT

li o >b
xi}ng v (:C) -

and, by our choice of b,

li **(z) > liminf .
Jim, (@) 2 it (@)

Hence, assertion (1) of Lemma 4.1 is proved.

Let « be such that lim inf @ > a > —oo. We choose A > 0 such that

TrT—0o0

inf L(x)
z>A xT

> Q.

Then

(¢(x) — ax)}

> min{0<i£1£A (agx + by — ax), O} > —00

e o
inf, (pl) — aw) 2 min{, inf, (o(o) - o), jnf

Let g = rnin{O in£A (aox + bg — ax), O}. Then (o, §) € M, and consequently,
<z<
©**(z) > ax +  for every x € (0,00). Therefore,

im ¢ (z)

T—00 x

>

and, by our choice of «,

lim L(w) > liminf M

T—00 T T—00 T
Thus, assertion (2) of Lemma 4.1 is proved. O
Lemma 4.2. pe ®;, < ¢ € d;, 1=1, 2, 3.

Proof. The assertion ¢ € &; <= ¢** € &, is proved as (1) of Lemma 4.1.
The proof of Lemma 4.2 will be completed once we prove that

p € Py «— @**6@3.
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Let ¢ € &3 U &3 and

a, = liminf M = lim 14 (ac)
T—00 x xr—00 X

If p** € @3, then ¢ > ** implies ¢ € Ps.
Now let us suppose that ¢ € ®3. Let ag, by € R be such that agz + by < ¢(z)
for every = € (0,00). Let b € R be such that liminf (¢(z) — @,x) > b > —oo.
Tr—ro0

Let A > 0 satisfy

xlng ((z) — apx) > b.

Then,

inf (o(e) ~ ) > min{, int

(p(2) = Gpr) }

> min{0<i§:1£A (aox + by — Gypx), b} > —o0.

A (p(z) —apz), JEfA

Let b = min{0 in£A (apw +bo —dyz), b}. Then (aw,B) € M, and consequently
<z<

©**(z) > apx + for every z € (0,00). Thus,

lim inf(ap**(x) — ?iwx) > b> —00 ,

Tr—00

and ¢** € &g. O

Lemma 4.3. Let p € ®. If a is such that a < a,, then
ir>1f0 (¢(z) — az) > —0
and

lim (¢(z) —az) = oco.

Tr—r00

Proof. Let ag, by € R be such that (ap,by) € M, let a and a; satisfy the
inequalities —oo < a < a1 < @y, and A > 0 be such that

inf M > a.
x>A X

So, p(z) — az > (a1 — a)z for x > A and lim (¢(x) — azx) = oo. Therefore,

Tr—r 00
i 40— ) = min i (50) -02) o (oto) - )}
> min{ki?gA (aox +bo — az); zH>1fA (a1 — a)x} > —00.
Lemma 4.3 is proved. O

234 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 225-245.



Lemma 4.4. Let v : (0,00) = R be convex on (0,00) and
{/J\(x) = Q/}(‘T) - 1//(90_)3% z € (0, OO),
where ¢¥'(x~) = lim M If 0 < 21 < 2, then

t—x—

o~

U(@1) > (),
Proof. Let g = IlJ””’“ Note that
o 2¢(x3) < P(a1) + P(22),

o f(u,v) = % is a monotone non-decreasing function of each variable
u, v >0, u # v, and

—oo<tlim_ Lf(x):z//(x_)gz//(ﬁ'): lim w <oo, x>0.
Now, 121\(932) < 12(1:1) follows from the inequalities
Baa) = vlas) — V(07 22 < (aa) - D=L
2~ T3
= (o) ~ 9(w2)) o = ) = o) o — Y(a)
To To + X1
< (Y (x2) +(21)) P Y(x2) pr——
To + 1 T
= ) BT () +uan)
To + 11 2z 21
< (z1) P Y(z3) PR Y(z1) = ((23) — ¥(21)) p—
— o) - PP ) ) s < 0e) 0
= (x1).

Lemma 4.5. Let ¢ € &o U P3. If ¢ is conver on (0,00) and

lim (@/}(x) — w’(x*):c) > —o00,

r—00

then ¢ € 3.

Proof. Note that the limit value exists due to Lemma 4.4.
Let o € R satisfy

lim (¢(z) — ¢ (z7)x) > a > —oo.

Tr— 00
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Let A > 0 be such that inf (¢(z) —¢'(z7)x) > . Then,

z>A
¢(m)—M$>a, A<t<zx
t—x

and therefore

() —a Y@ - Act<a

t = x ’
Consequently,
Yo —a L d@ e )

> lim

T T—00 x o0 I
Thus, ¥(z) — a@yx > « for z > A, and
. s _
$ll>r1(}()(1p(ﬂv) ayz) > o> —o0,
ie. 9 € Ps.

As a direct consequence from Lemma 4.5 we obtain

Corollary 4.3. Let ¢y € Oy. If ¢ is convex on (0,00), then

lim (¢(z) — ' (z7)z) = —o0.

T—r00

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3.1. Let ¢ € ®, ¢» € & and ¥ be convex on (0,00). Since

p > ©**, we have

inf (p(2) — (@) > inf (¢™(2) - () .

2€(0,00) 2€(0,00)

We consider separately two cases:

Case 1. i(%f ) (¢(z) — ¥(x)) = —oo. We have
xe€ (0,00

inf ((p(x) — w(x)) = inf (cp**(x) — ¢(a:)) = —00.

z€(0,00) z€(0,00)

Case 2. c¢:= inf (p(z) —(x)) > —oo. In this case,
z€(0,00)

p(x) = (@) +¢, e (0,00)

and ¥ + ¢ is a convex minorant of . Therefore, p**(z) > ¥ (z) + ¢

ie. ;I;%(ap**(z) —(x)) > cand

(" (@)~ v(@) > int (pla) - (a).

(5.1)

x € (0,00),
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It follows from here and inequality (5.1) that
inf (p(z) —¢(x)) = inf (p"(z) - ¥(x)). O

z€(0,00) xz€(0,00)
Proof of Theorem 3.2. Recall that ¢, ¢ € ®, 1 is convex on (0,00) and
li — =00.
Jim (p(x) =0 (x)) = o0

Note that lirgl+ P(z) =: (07) € RU{oo} and ¢(0") > —oo, because ¢ € @
z—
and v is convex on (0,00). Therefore, ¢(0%) = oo and from Lemma 4.1 we obtain
that **(07) = oo.
If (0") < oo, then
lim (™ (z) — () = ¢™*(07) — 9(07) = oo.

z—01
In order to complete the proof, we have to examine the alternative when v satisfies
¥(0) = co. We shall define a new function 1 that is a convex minorant of .
Let ag, by € R be such that (ag,by) € M, and ¢ € R. We choose A; > 0 such
that
inf (p(z) —¢(z)) >c.

0<z<Ay
Next, we choose As such that A; > Ag > 0 and

0<i9cn<fA2 (w(l‘) +c— (aol‘ + bo)) > 0.

Now, we choose As, Ay > Az > 0, so that 1(z) is monotone non-increasing on
(0,A3). For z € (0,As) we have the following inequalities for the convex function

P

V() ~v(e) | VAe) =) i) — e)

0>
Az Az -z t—rat t—x

= /(o)

and from ¢ (0) = oo it follows that

lim ¢/ (z*) = —oc.
Ji ¥aT) = oo

Further, we choose A4, Az > A4 > 0, such that

sup ¢’ (z7) < ao.
0<z<Ay

If x € (0,A4), then
lim Sup(w’(:t+)(A1 —z)+¢(z)+ c)

z—0+t
= limsup (¢’ (27)(A1/2 — 2) + ¥(z) + ¢+ ' (27) A1 /2)

z—0t

< limsup(¢(A1/2) + c+ ¢ (#)A1/2) = —c0.

z—0t
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Finally, we choose As so that Ay > Ag > 0 and

sup (¢/($+)(A1 —xz)+¢Y(x) + c) < apA; +bg.
0<z<As

Let x1 € (0,As). We set

ar =" (xF), b=y @))e + () + ¢,
hence,
() (2 — 1) + (1) +e=arx + b1, x € (0,00).

From

a1ry + by = ¥(x1) + ¢ > apxy + bo,
a1A1 + b1 < a0A1 + bo

we conclude that there exists x5 € [£1, A1] such that ayza + by = apza + bo.

We define a function J as follows:

Y(x) + ¢, x € (0,z1)
Y(x) := < ayx + by, x € |r1, x2]
aox + bo, x € (x2,00).

The function 1 is convex on (0, 00) because it is continuous, P'(x7) < a1 < ag
and ¥ + ¢ is convex on (0, x1).
Furthermore,

d(z) = (@) +c < pz), x€(0,21),

d(@) = arw + by <P(@) +e< p(x), @€ [11,22],

Y(x) = apx + by < p(x), x € (x3,00).

Hence, 1) is a convex minorant of ¢, and () > {E(x)7 z € (0,00).
Thus ¢**(z) > ¢¥(x) +¢, = € (0,21), and

lim inf (¢**(z) — ¥(z)) > ¢,

z—0t

which, according to the choice of ¢, implies that

lim (¢**(z) — ¥(x)) = cc. O

z—0t

Proof of Theorem 3.3. Recall that ¢ € ®, ¢ € &\ P3, ¢ is convex on (0, 00)
and li_>m (p(z) —p(x)) = oo,
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By Lemma 4.1 we have

G, = timinf 25— £7@)
T—>00 x T—>00 X

ay = liminf ) = lim )
T—00 x T—00 x

Let A > 0 be such that

inf (go(x) — LZJ(:U)) > 0,

z>A

then p(x) > ¢ (x) for every x € (A, 00) and

d, = liminf M > liminf M
T —00 X T—00 X

= Qy.
The proof proceeds with separate consideration of several cases:
Case 1: Uy > Q.
Let a1, as € R be such that
Uy > a1 > ag > Uy

We choose A < Aq such that
" () Y(z)
T

> a; > ag > - x € (Aq,00).
Hence, ¢**(z) — ¢(x) > (a1 — a2)z, = € (A1, 00), and

lim (¢**(z) — ¥ (z)) = c0.

T—00
Thus Case 1 is settled.
Case 2: G, = ay. This case is split into three subcases.
Case 2.1: p € ®3. We make the following observations:
e Lemma 3.2 implies that ¢** € ®3.

e Y € &, and since 1 is convex, we have

liminf(¢(z) — @yx) = lim (Y(z) — aya) = —o0.

r—00 T—r 00

We claim that
;r;% (¢**(x) — dpx) > —00. (5.2)

Indeed, let us choose the real numbers b, Ay, ag and by in the following way:
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— b is such that

hmrggf(ga**(x) —Qyx) > b;
— Ay > 0 is such that

zi>n£2 (9™ (%) — Apx) > b;

— ap and by are such that (ag,bg) € M, and therefore

apx + by < (), z € (0,00).
We have
i (400 - 8.0) i, (20) -85 g (" (0) 5.2

> m . P _
> 1rnnr1{o<1gcn§fA2 (aox + bo awx), b} > —00

and claim (5.2) is proved. Now,

lim inf (¢** (z) — ¢(x)) = lim inf((w(x) — ) + (Apr — 1/)(33)))

Tr—00 Tr—r00

> inf (¢ (2) — @) + liminf (@2 — (x))

= nf (o™ (2) — @pr) + lim (@Gyz —(x)) = oo
Case 2.1 is settled.
Case 2.2: ¢ € ®y and Case 2.3: ¢ € ®;.

Let ¢ € R, A > 0 satisfy ian(go(a:) —(z)) > ¢, and ag, by be such that
>

(@o,bo) € M,. In the present cases, the assumptions imply that ¢ € @2 (p € 1)
and @, > ag. So, Gy = dy, > ag, P € o (¢ € 1), and by Lemma 4.3,

li_)m (W(x) — apz) = 0.

Let A1 > A be such that

Jc1>II£1 <¢($> +c— (agr + b())) > 0.

Since ¢ € 5 (¢ € ®q) is a convex function, we have
Y(a7) <Y (xh) < ay, z > 0.

For a fixed 2’ and oo > 2 > 2’ > 0 we have

w(wxg - j(z) < lim o( 1:f($) _(a) <y
Y(x) () N _
— Jim o = i SO < i ) <3,
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therefore
lim ¢'(z7) =ay.

Let Ay > A1 be such that

f .
m1>nA2¢( 7) > ao

We claim that there exists Az > Ag such that

P (27 ) (A — ) +Y(x) + ¢ < agA + by,

x> Ags.

(5.4)

The arguments for the proof of this claim in Case 2.2 and Case 2.3 are different.

In Case 2.2 we have @, < oo, and Corollary 4.3 applied to ¢ imply

Tim ((x) (27 ) = —o0.

Therefore by (5.3) we obtain

lim (¢'(z7)(A —z) +¢(x) +¢) = —o0

r—r 00

On the other hand, in Case 2.8 we have lim v¢'(x~) =@y = co and

Tr—00

V@) A =z) + (@) + e <P (@7)2A —2) + () + e = (a7)A

SY2A)+e—¢(z7)A,
since ¥/ (x7)(t — ) + P(x) < P(t) for =, t > 0. Hence,

lim (i (27 )(A — 2) + () + ) = —00.

T—r 00

Thus (5.4) is proved and let A3z > Ay be such that (5.4) is fulfilled. For z; > Aj

we set

ar =Y (z7), b ==y (a])z1 +Y(z1) +

Note that a; > ag. Then

a1z + by <Plx)+e, Vae (0,00),
a1z1 + by =¥(x1) + ¢ > apry + bo,
a1 A+ by < agA + by .

We choose z2 € (A, z1] so that
a1z2 + b1 = agz2 + by,

and define a function ¢ : (0,00) — R as follows:

- aox + by, x € (0,29],
Y(r) = a1z + by, € (z2,21],
Y(z) +c, € (z1,00).
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Notice that ¢ is convex on (0, 00), because it is continuous, ag < ay < ¢ (x7)
and ¢ + ¢ is convex on (21,00). Moreover, ¥(z) < @(z) for every z € (0,00).
Therefore, 1h(z) < ¢**(x), x € (0, 00).

Thus for > 1 we have (x) + ¢ < ¢**(z) and

im inf (o** () — >ec.
lim inf (o™ () — ¥ (2)) > ¢
It follows from our choice of ¢ that

lim (¢**(z) — ¥ (x)) = oco. O

T—r00

6. APPLICATION

In this section we apply Theorems 3.1, 3.2 and 3.3 to the theory of spaces
H,(G) and H,,(G).
We make use of the following notation:

Mf(y)= sup |[f(z+iy)l,

z€(—00,00)
Vr(y) =ImMf(y),  Vy>0,fe€ADp)),

where f is a holomorphic function defined on the upper half plane G.
Note that
—In || £ llo= inf (pu(y) = ¥s()

Here we reformulate our results from [6].
Theorem A. [6, Th. 1.2] If ¢ satisfies condition (1.1'), then
Hy(G) #{0} <= ¢€?,
where v =e"%.
Theorem B. [6, Th. 1.3] If ¢ satisfies condition (1.1'), then

pED,
©(0F) = oo,

Hy(G) # {0}
where v = e~ %.
Theorem C [6, Th. 1.4] If ¢ satisfies condition (1.1') and H,,(G) # {0}, then
vy € @\ O3 for every f € H, (G)\{0},

where v = e~ %¥.

Note that 1 is convex on (0,00) and 9y € ®, Vf € H,(G) \ {0}.
In this section we prove two new theorems.
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Theorem 6.1. If ¢ satisfies condition (1.1') and ¢ € @, then
(Ho(@): ]|+ llo) = (Hu(G) Il - llw) »
where v =% and w = e~ ¥ .
Proof. Let v =e~% and w = e~ ¥ . The following implications hold:
o > " = ™ satisfies condition (1.1');
e ped = ** € P, because My« = M, # 0.

Thus, H,(G) # {0} and H,,(G) # {0}, by Theorem A. Moreover, H,(G) > H,(G),
because || f [[v<|| f [lw< 00, Vf € Hy(G).

Note that for every f € H,(G) # {0} the function ¢y = In M f is convex on
(0,00) and ¢y € ®. Therefore, by Theorem 3.1,

inf (p(z) — (@) = inf (™ (x)—y(z))

2€(0,00) z€(0,00)
Thus f € Hy(G) # {0} and || f [[o=]] f [|w- O

Theorem 6.2. If ¢ satisfies condition (1.1'), ¢ € ® and ¢(01) = oo, then

(HUO(G)= H ) ||U) = (Hwo(G)7 H : Hw)7

*

where v=e"% and w = e~ ¥ .
Proof. Let v =e¢"% and w = e~ ¥ . The following implications hold:
o > ™ = ™ satisfies condition (1.1");
e pec® = p** € P, since My =M, #0;
e p**(0") = p(0") = oo, by Lemma 4.1 (1).

By Theorem B, H,,(G) # {0} and H,,,(G) # {0}. Moreover, H,,(G) D Hy,(G),
because of

0 < w(iy)lf(x +iy)| < wliy)|f (e +iy)|
for every f € Hy,,(G) and z € (—00,0), y € (0;00).
By Theorem 6.1, || f ||o=]| f ||l for every f € H,,(G) # {0}.

We have to prove that f € H,,(G) # {0} for every f € H,,(G) # {0}. Let
f € H,(G) # {0}. In view of the definition of H,,(G),

lim sup wv(z)|f(2)|=0,
i sup v(:)17(2)
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where K C G and K is compact. So,
lim v(iy)M f(y) =0, lim v(iy)M f(y) =0,
y—0+ Yy—ro0

and after reformulation,

lim (ply) — () =00, Jim (o) = () = o0,

Y—>0o0

By Theorem C, 9y € &\ ®3. By Theorem 3.2 and Theorem 3.3 we have
li *k o _ li *% . _
Jim (07 (y) = vp(y)) = oo, lim (07 (y) ~ s (y)) = oo,

ie.
lim w(iy)M f(y) =0, lim w(iy)M f(y) =0.
y—0t Y—00
For an arbitrary € > 0 we choose ¢ > 1 such that
sup w(iy) M f(y) <e, supw(iy)Mf(y) <e.
y<% y>c

The quantity

sup w(iy)
+<y<c

T inf v(iy)
1<y<c

satisfies m < oo, since ¢** € ® and therefore inf1.,..¢**(x) > —oo for every
c>1.

In view of the definition of H,,(G) there exist 1 > 0, ¢; > ¢ and a compact
1
Ki={e+iy| —z1 <z <mz,— <y<c}
C1
satisfying

. . €
sup  v(iy)|f(z +iy)| < —
z+iyeG\K1 m

Let K = {z +iy| —xlgmgmh%gygc},then

sup  w(iy)|f(z +dy)|

z+iyeG\K
= max{ sup w(iy) M/ (y), sup w(iy) Mf(y), supw(iy)M[(y) |
y<i Ii'r\>w1, y>c
ZSQSC

< max{ g, sup v(iy)m|f(z+iy)|, e } <e
|z|>x1,
1<y<e

and therefore f € Hy, (G). O
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BRANCHING PROCESSES: STATISTICAL APPLICATIONS
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In this communication it is proved a fluctuation limit theorem for controlled branching
processes. Under the conditions that the offspring and control means tend to be crit-
ical, the obtained limit is a diffusion process. This result is applied to conclude that
the standard parametric bootstrap weighted conditional least squares estimate for the
offspring mean is asymptotically invalid in the critical case.

Keywords: Controlled branching processes, weak convergence theorem, diffusion pro-
cess, conditional least squares estimation, parametric bootstrap
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1. INTRODUCTION

Branching processes are regarded as appropriate probability models for the de-
scription of the extinction/growth of populations whose developments are subject
to the law of chance. In particular, controlled branching processes are useful to
model some situations which require control of the population size at each gener-
ation. This consists of determining the number of individuals with reproductive
capacity at each generation, mathematically through a control process.

Let us provide its formal definition: A controlled branching process (CBP) with

a random control function is a stochastic process, {Z,, }n>0, defined recursively as

follows:
én(Zn)

ZQZNEN, Zn+1: Z ana TLZO7 (1)

Jj=1
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where {X,,; : n = 0,1,...;5 = 1,2,...} and {¢,(k) : n,k = 0,1,...} are two
families of independent non-negative integer-valued random variables, with X,
n =0,1,...; j = 1,2,... being independent and identically distributed (i.i.d.)
random variables having mean m and variance 72 (both assumed finite), and for
eachn =0,1,..., {¢,(k)}r>0 are independent stochastic processes with equal one—
dimensional probability distributions with E[¢, (k)] = (k) and Var[¢, (k)] = o2(k)
(both assumed finite for each & > 0). The random variable Z,, represents the total
number of individuals in generation n, starting with Zy = N > 0 progenitors. Each
individual, independently of all others and all with identical probability distribu-
tions, gives rise to new individuals. The random variable X,,; is the number of
offspring originated by the j-th individual of generation n. If in a certain gener-
ation n there are k individuals, i.e., Z, = k, then, through the random variable
on(k), identically distributed for each n, there is produced a control in the process
fixing the number of progenitors which generate Z, ;. Thus the variable ¢, (k)
determines the migration process in a generation of size k: for those values of the
variable ¢, (k) such that ¢, (k) < k, k — ¢, (k) individuals are removed from the
population, and therefore do not participate in the future evolution of the process;
if ¢, (k) > k, ¢n(k) — k new individuals (immigrants) of the same type are added
to the population participating as progenitors under the same conditions as the
others. No control is applied to the population when ¢, (k) = k. It is easy to see
that {Z,}n>0 is a homogeneous Markov chain. This model was introduced in [10]
for degenerated control distributions (deterministic case) and in [11] for the random
case. The probabilistic theory on this model has been developed in [1], [6], [8] and
[11] (and references therein).

Let define 7, (k) = k™ E[Z,41 | Z,, = k], k =1,2,.... Intuitively 7,,(k) is in-
terpreted as the expected growth rate per individual when, in a certain generation,
there are k individuals. The process can be classified depending on the limit be-
haviour of the sequence {7,,(k)}r>1. In a broad sense, the cases lim sup;,_, ., 7m (k) <
1, liminfg oo Tn (k) < 1 < limsupy_, o, Tm(k), and liminfy_, o 7 (k) > 1 are re-
ferred to, respectively, as subcritical, critical, and supercritical situations for a
CBP. It is easy to obtain that 7, (k) = mk~'e(k), k > 1. Hence the classification
of the process is determined essentially by the behaviour of the offspring and con-
trol means. Whenever exists the limit of the sequence {7,,(k)}x>1, as k — oo, we
refer to it as the asymptotic mean growth rate.

In this paper we consider an array of CBPs {Zi(n)}izo, n =1,2,..., defined
recursively by

™M (2
Zi"=NeN, zlh= > X i=01..n=12.. (2
j=1
For each n, {XZ-(;L) :1=20,1,...;5 =1,2,...} is a sequence of i.i.d. non-negative

integer—valued random variables with mean m,, and finite variance 72, and {qbl(") (k) :
i =0,1,...;k = 0,1,...} are independent non-negative integer—valued random
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variables with means ¢, (k) and finite variances o2 (k) for every k > 0. Also, for
each n, we assume that {Xf:)} and {qﬁgn)(k)} are independent.

The main aim of this paper is to provide a Feller diffusion approximation for
an array of CBPs whose offspring and control means tend to be critical. Using
operator semigroup convergence theorems, it is proved that the fluctuation limit
is a diffusion process. From a practical viewpoint, the interest of developing this
result stems from the usefulness of it in determining the asymptotic distributions of
estimators of the main parameters of a controlled branching process. In particular,
we are interested in the weighted conditional least squares (WCLS) estimator of the
offspring mean. As an statistical application of the obtained fluctuation limit theo-
rem, it is determined, in a parametric framework, the bootstrapping distribution of
the WCLS estimator of the offspring mean in the critical case. From this, it is con-
cluded that the standard parametric bootstrap WCLS estimate is asymptotically
invalid in the critical case.

The communication is organized as follows. In Section 2 we prove that the
functional fluctuation limit of a sequence of CBPs is a diffusion process. We present
in Section 3 the WCLS estimator of the offspring mean of a CBP. We show its
limit distribution from a classical viewpoint and in a parametric framework, its
bootstrapping distribution by applying the obtained functional limit theorem. From
the last, it is concluded that the standard parametric bootstrap WCLS estimate is
asymptotically invalid in the critical case.

2. DIFFUSION APPROXIMATION THEOREM

Let consider an array of CBPs as given in (2). Let us introduce the sequence
of random functions {W,, },>1 as W, (t) = n‘lZ[(:t)], t>0, n=12,..., with []
denoting the integer part. It is clear that {W;, },>0 is a Djg,+0)[0, 00)-valued random
variable, with Dy o)[0, 00) the space of non-negative functions on [0, c0) that are
right continuous and have left limits. Denote by C2°[0,00) the space of infinitely
differentiable functions on [0,00) which have compact supports. Throughout the
paper «B» denotes the convergence of random functions in the Skorokhod topology,

«dr the convergence of random variables in distribution and N(-,-) the normal
distribution.

Using operator semigroup convergence theorems, we prove a weak convergence
theorem for the sequence of random functions {W, },,>0.

Theorem 1. Assume that
(A1) muy=m+ant+o(n"!) as n—o00, 0<m<oo, —00<a<oo;

(A2) 12572 as n— oo, 0< 72 < 005
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(A3) for any sequence {xy}n>1 suchthat z, =z as n— oo, 0 <z < oo,
and for all € >0,

lim 7,°E 1x§m —mn|21{|xg’;>—mn|ze\/m} =0,
with 14 denoting the indicator function of a set A;
(Ad)  en(k) =e(k) + fulk), with lim, o frn(k) =0 uniformly for k ;
(A5) me(k)k ' =1+4+~k"t+o(k™1) as k— 00, —c0<y<o0;
(A6) 02(k) = Buk + gn(k), with limg_ oo gn(k)k™ = 0 uniformly for n,

Bn — 0 as n — oo.

Then W, z Wa as n — oo, weakly in the Skorohod space Do o) [0,00), where
W, s the diffusion process with generator

1
Aof(x) = (v +am™ ) f'(z) + 572m711:f"(x), f e Cr0,00). (3)
The proof of Theorem 1 can be found in [7].
The process W, is the (unique) solution of the stochastic differential equation

AW (t) = (v + am™ Wy (t))dt + (T2m ™ W, (t))/2dB(t), t > 0,

where B is a standard Wiener process.

In next section it is necessary to consider a particular array version of CBPs
of the general situation considered in (2). Let {Zi(”)}izo, n=1,2,..., be an array
of CBPs with the same hypotheses about the offspring and control variables as in
the definition in (2), but with the additional condition that for each k£ > 0, the

variables {¢§”)(k)}, i > 0; n > 1, are identically distributed with E[(bgn)(k:)] =e(k)
and Var[qbgn)(k)] = o%(k). In respect to the offspring law we assume conditions
(A1)-(A3). Moreover, in relation to the control mean and variance we consider the
following assumptions:

(B1) me(k)k ' =1+~vk ' +o(k™!) as k— 0o, —00 <7< o0;

(B2)  limgoo 0%(k)k™ =0,
which are the simplified version of (A4)-(A6) in this particular case. Then, applying

Theorem 1 one obtains
D
W, = W, as n — oo,

where W, is the diffusion process with generator given in (3).
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3. WEIGHTED CONDITIONAL LEAST SQUARES ESTIMATION AND
ASYMPTOTIC RESULTS

Let consider a CBP given in (1) and let F,, be the o—algebra generated by the
random variables Zy, Z1, - - , Z,. From the fact that E[Z,|F,—1] = me(Z,—1) a.s.,
we can represent 7, as

Zn =me(Zp—1) + 0n, n=12,..., (4)

where the error term 0, has F [5n|}"n_1} = 0. In order to obtain an efficient

estimator of the offspring mean, we divide both sides of (4) by (e(Z,_1) + 1)*/?
and rewrite the model as

Z, Zn—
_omeln) s o

e(Zn-)+ D (e(Zom) + 1)

with 6, = 8,/ (£(Zn_1) + 1)*/2.
The WCLS estimator of m is obtained by minimizing the expression Y .., §7.
It is easy to check that the value of m that minimizes it is

(& Zie(Zi) ~ 2(Zia) -

1=

We are interested in the study of the limit distribution of the pivot

- 82(Zi—1) 2 ~
Vi = <Zl E(Zz1)+1) (M —m). (6)

1=

This presents different kinds of behaviour depending on the classification of the pro-
cess. In [5] it was established that a CBP {Z,, },>¢ with P(Xo1 = 0) > 0, P(X¢1 <
1) < 1 and P(¢o(i) > i) > 0,¢ =0,1,..., converges in distribution to a positive,
finite and non-degenerate random variable Z.

Theorem 2. Assume that

i) lmsup,_,o Tm(k) <1;

11 P(X01:0)>07 P(X01S].)<1,'

i) P(¢o(i) >i) >0, i=0,1,...;

1v

)
)
)
)

Elu45(2)] < 00, with py(2) = El|¢o(2) —e(2)[*], k> 1.
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Then

where

e[

The proof can be seen in [9)].
In the supercritical case, we consider that

lim 7,,(k) =m lim k™ 'e(k) =nm > 1.

n—oo n—oo
Then the following result holds

P(Z,— o) >0 and lim L,=L as, (7)

n—o0

with L, = (nm)~"Z, and P(L > 0) > 0. Indeed, conditions that guarantee (7)
can be found in the papers [3, 4].

Theorem 3. Assume that
i) limsupy_, . 7m(k) > 1 and (7) hold;
i) limg_eo k~Lo2(k) = 0.

Then
Va ﬁ)N(O,UQ), as n — oo.

The details of the proof can be seen in [9].
Regarding the critical case, we obtained:

Theorem 4. Assume that
i) 7T(k)=14+k Yy +o(k™t) as k — oo, where v is a real number;
i) limpeo b 'o?(k) = 0.

Then
as n — 0o,

g W) -W() -~
= ) 172
(% Ik W(t)dt)

where W is a diffusion process with generator (3) with o = 0.

n
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The reader can find the proof in [9].

This result can be generalized to the particular array version of CBPs consid-
ered in the previous section (2). We provide the behaviour of the array version of
the estimator m,, and the pivot quantity V,,, which is the interest for the study of
the behaviour of the bootstrap estimator of m. Let

and

1/2
. Lz ]
i e(Z;27) +1

Theorem 5. Assume that assumptions (A1)-(A3) and (B1)-(B2) are satis-
fied. Then, as n — oo,

1/2

_ Wa (1) = Wa(0) — 1t
" (4 Wa(t)dt>1/za<m/0 Wa(t)dt) ’

with Wy, as in Theorem 1.

Briefly, three different limit distributions for V,, were obtained for three differ-
ent cases, as n — 00, namely

N(0,V), if limsupy_, . Tm(k) < 1 (subcritical),

a % if T (k) =1+ k~'y+o(k™), v €R (critical)
m JO

N(0,0?), if liminfg_eo T (k) > 1 (supercritical),

with V and W as previously defined. Hence the classical asymptotic theory does not
provide a unified estimation theory for the offspring mean. Thus it is of interest to
approximate the sampling distribution of V,, by alternative methods. In particular,
we are keen on the bootstrap procedure. We apply the fluctuation limit theorem
previously established to determine the asymptotic distribution of the bootstrap
WCLS estimator in the critical case. We consider a parametric framework and
obtain as a consequence of this last limit result that the standard bootstrap version
of the pivot quantity does not have the same limit distribution as V,, in such a
case. Although the behaviour of the parametric bootstrap for the subcritical and
supercritical cases is of interest as well, due to this fails in the critical case it will be
most interesting for the future to make efforts in developing a modified bootstrap
procedure to be valid in all the three cases. Let us introduce a parametric bootstrap
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for CBPs following analogous steps to those given in [2] for branching processes with
immigration. We assume that the offspring law, pg, has probability mass function

pe(k) = PQ(Xol = k)a k= 0717"'7

depending on a parameter § where § € © C R.

Consider m = Ey[Xo1] = f(0) for some function f, which we will assume to be
a one-to-one mapping of O to [0, 00). Moreover, f is assumed to be homeomorphism
between its domain and range. For instance, the power series family of distributions
satisfies the conditions imposed above.

The bootstrap procedure can be defined as follows: given the sample M, =
{Z1,...,Z,}, estimate the offspring mean by the estimator m,, given in (5), and
therefore let 6, = f~Y(m,). Conditional on M,,, define a sequence of i.i.d. random
variables X . having distribution given by g, - The bootstrap sample M» =
{Z%,...,Z"} is obtained by

z;)
Zh = Z r,m=0,1,..., with Zj = N.

We define the bootstrap estimator of m as m;, given by
Zre(Z; o (Z* o
A~k i—1 i—1
e (B0 (Sah)

and the parametric bootstrap analogue, V.*, of the pivot quantity V;,, given in (6),

as 1o
" (27 y)
* 1—1 Sk~
5= (Seih) oo

Note &(-) is assumed to be known and ¢, (-) are observable. In this context,
let denote the distribution function of V,, by F,(m,z) = P(V, < z), € R. Then,
notice that

P(Vy < xz|M,) = F,(Mmy,,z), z €R.

Our interest is to determine the limit behaviour of F,,(m,,z), € R, assuming
that the true model is a critical CBP. We check that for every € R the random
variables F,,(m,,, x) converge in distribution to a non degenerate random limit, and
consequently one has that it is not verified that

sup |Fn,(m,z) — F(My,x)] =0 as.  asn — oo, (8)

—oo<r<oo

obtaining the asymptotic invalidity of the bootstrap procedure in the critical case.
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Define

a,m, T2 :Wa(l)—Wa(O)—y_a 1 1 1/2
W(a,m, 7%,7) (%folwa(t)dt)l/z (m/o Wa(t)dt> ,

with W, the diffusion process defined in Theorem 1, and

F(a,m, 72, v,2) = PW(a,m,1%,7) <), v € R.

As in [2], it is not hard to prove that, for each z € R, F(V,, m, 72,7, x) is a random
—1

variable, with Vy = (W (1)—W(0)—~) <% fol W(t)dt) . Now, we are in conditions

to state the result that establishes that (8) does not hold:

Theorem 6. Assume that

2

(C1) The variance of the offspring law, 72, is a continuous function of 6.

(C2) The moment Eg[|Xo1|**], for some §>0 is a continuous function of 0.

Then, it is verified that for every x € R, as n — oo,
Fn(mnv .’IJ) i F(V(), m, 7_27 v, $>

It is not hard to check that the power distribution family verifies (C1)-(C2).
The key of this proof is Theorem 5 and the details can be read in [7]. One of the
reasons for the standard parametric bootstrap does not work well in such a case is
the rate of convergence to the offspring mean parameter of its WCLS estimate.
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ON A GENERALIZATION OF CRITERIA A AND D
FOR CONGRUENCE OF TRIANGLES

VESSELKA MIHOVA, JULIA NINOVA

The conditions determining that two triangles are congruent play a basic role in
planimetry. By comparing not congruent triangles with respect to given sets of cor-
responding elements it is important to discover if they have any common geometric
properties characterizing them. The present paper is devoted to an answer of this
question. We give a generalization of criteria A and D for congruence of triangles and
apply it to prove some selected geometric problems.

Keywords: Congruence of triangles, comparison of triangles

2000 Math. Subject Classification: Primary 51F20, Secondary 51M15

1. INTRODUCTION

There are six essential elements of every triangle - three angles and three sides.
The method of constructing a triangle varies according to the facts which are known
about its sides and angles.

It is important to know what is the minimum knowledge about the sides and
angles which is necessary to construct a particular triangle.

Clearly all triangles constructed in the same way with the same data must be
identically equal, i. e. they must be of exactly the same size and shape and their
areas must be the same.

Triangles which are equal in all respects are called congruent triangles.

The four sets of minimal conditions for two triangles to be congruent are set
out in the following geometric criteria.
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Criterion A. Two triangles are congruent if two sides and the included angle
of one triangle are respectively equal to two sides and the included angle of
the other.

Criterion B. Two triangles are congruent if two angles and a side of one
triangle are respectively equal to two angles and a side of the other.

Criterion C. Two triangles are congruent if the three sides of one triangle
are respectively equal to the three sides of the other.

Criterion D. Two triangles are congruent if two sides and the angle opposite
the greater side of one triangle are respectively equal to two sides and the angle
opposite the greater side of the other.

We notice that in criteria A and D the sets of corresponding equal elements
are two sides and an angle. The given angle may be any one of the three angles
of the triangle. The problem “Construct a triangle with two of its sides a and b,
a < b, and angle o opposite the smaller side” has not a unique solution. There
are two triangles each of which satisfies the given conditions.

In the present paper we compare not congruent triangles with respect to given
sets of corresponding elements and answer the question what are the geometric
properties characterizing such couples of triangles.

2. THEORETICAL BASIS OF THE PROPOSED METHOD FOR
COMPARING TRIANGLES

Throughout, for the elements of two triangles A ABC and A A;B;Cy we
shall use the notations AB = ¢, BC = a, CA=0b; A1By = ¢, BiCy = aq,
C1A; = by. Moreover, 6 and #; will stand for two corresponding angles of A ABC'
and A A;B;C1, respectively.

Suppose that in A ABC and A AyB;C; the relations ¢ = a;, b = b; and
0 = 61 hold. We consider four possible cases.

e The angle 0 is included between the sides a and b, i.e., 8§ = <ACB and
01, = <A1 C1B;y. The triangles are congruent by Criterion A.

e Let a =10, ie., AABC and A A B,Cy are isosceles. Since 6§ = 6, the
triangles are congruent as a consequence of Criterion A.

e Let a > b and the angle 6 be opposite the greater side a. In this case the
triangles are congruent in view of Criterion D.

e Let a > b and the angle 0 is opposite the smaller side b. In this case the
triangles are either congruent or not.
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- If the triangles are congruent, then the angles opposite the greater sides
are necessarily equal. It could happen that the sum of the equal angles
opposite the greater sides equals 180°, then obviously the triangles are
right-angled.

- If the triangles are not congruent, then we show that the sum of the
angles opposite the greater sides is always equal to 180°.

Lemma 2.1. Let A ABC and AN ABD be not congruent triangles, and let
AC = AD. If <ABC = <ABD, then <ACB + <ADB = 180°.

Proof. Since A ABC and A ABD are not congruent, then AC < AB (and
hence AD < AB). Let us denote <ACB = a and <ADB = .

B

N

el

A

¢

Fig. 1.

There are two possible locations of the points C' and D with respect to the
straight line AB.

(i) The points C and D lie on opposite sides of AB.

The symmetry with respect to the straight line AB transforms A ABD into a
congruent A ABG which lies on the same side of AB as A ABC (see Fig. 1). Since
ANABC 2 NABD, then AN ABC 2 A ABG. The condition <ABC = <ABD
implies that the straight line AB is the bisector of <DBC'. From the symmetry
with respect to AB it follows that G € BC and BG # BC'. Let, e.g., G/BC (the
case C/BG is analogous). Clearly, if the assumptions of Lemma 2.1 are fulfilled
for A ABC and A ABD, then they are also valid for A ABC and A ABG and vice
versa.

Let us consider A ABC and A ABG. The side AB and <ABC are common
for both triangles. In view of the symmetry with respect to AB and AC = AD, we
get AD = AG = AC. Hence, A ACG is isosceles and <ACG = a = <AGC. The
angles <AGC and <AGB = <ADB = f3 are adjacent and hence <AGC+<AGB =
SACB + <ADB = o + 3 = 180°.

Remark 2.2. The quadrilateral ACBD can be inscribed in a circle.
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(i9) The points C and D lie on one and the same side of AB.
This case was already considered in (i), with D = G. O

Remark 2.3. In the case when A ABC and A A; B1Cy are not congruent, the
relations AB = A1 By, AC = A;Cy and <ABC = <A, B,C; are fulfilled and the
triangles have no common side, we can choose a suitable congruence and transform
A A1 B1Cy into a congruent A ABD so that A ABC and A ABD satisfy the
assumptions of Lemma 2.1.

Based on the above arguments we formulate a theorem, which is a generaliza-
tion of criteria A and D for congruence of triangles (see also [6], p. 12).

Theorem 2.4. Assume that N ABC and /\ A1 B1Cy have two pairs of equal
sides, a = a1, b = by, and equal corresponding angles, 8 = 01. Then A ABC and
N A1 B1Cy are either congruent, or not congruent, in which case the sum of the
other two angles, not included between the given sides, is equal to 180°.

Lemma 2.1 and Theorem 2.4 can be used as alternative methods of comparing
different triangles.

3. APPLICATION OF THEOREM 2.4 TO TWO GEOMETRIC PROBLEMS

The solutions of next selected problems are based on Theorem 2.4.

Problem 3.1 ([4, Problems 4.20 and 4.23]; [5]). Let the middle points of the
sides BC, CA and AB of NABC be F, D, and E, respectively. If the center G
of the circumscribed circle k of A\ FDE lies on the bisector of <ACB, prove that
N\ ABC s either isosceles (CA=CB), or not isosceles, in which case <ACB=60°.

\V\

Fig. 2.

Proof. Let the center G of the circumscribed circle k of A FDE lie on the
bisector of <ACB (Fig. 2). Since ACGD and ACGF have a common side
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CG@G, equal corresponding angles <DCG = <FCG and equal corresponding sides
DG = FG@ (as radii of k), the assumptions of Theorem 2.4 are satisfied.

(1)) f ACGD and A CGF are congruent, then CD = CF and hence CA = CB,
i.e., A ABC is isosceles.

Remark 3.2. There are two possibilities for <ACB: either <ACB = 60°, in
which case A ABC is equilateral, or <ACB # 60°, and then A ABC is isosceles.

(ii) If ACGD and ACGF are not congruent, then in view of Lemma 2.1
<CDG + <CFG = 180° and the quadrilateral CDGF can be inscribed in a circle
k' (Fig. 2).

It is easily seen that A EFD = A CDF and their circumscribed circles k& and
k' have equal radii. The circles k and k' are symmetrically located with respect
to their common chord F'D. Since the center G of k lies on &/, then the center
G' of k' lies on k. Hence, A DGG' = A FGG’, both triangles are equilateral,
<DGF = 120° and <ACB = 60°. O

Problem 3.3 ([3, Problem 8]; [4, Problem 4.12]). Let in AN ABC' the straight
lines AAy, A1 € BC, and BBy, By € AC, be the bisectors of <CAB and <CBA,
respectively. Let also AAy N BBy =J. If JA; = JB1, prove that A ABC is either
isosceles (CA = CB), or not isosceles, in which case <ACB = 60°.

Proof. Let <BAC = 2a, <ABC = 23, <ACB = 2. Since J is the cut point
of the angle bisectors AA; and BB; of A ABC, then the straight line CJ is the
bisector of <ACB and a + 3 + v = 90° (Fig. 3).

Fig. 3.

Since <C'B;J is an exterior angle of A ABBj, then <CB;J = 2a + . Since
<C'A;J is an exterior angle of A ABA;, then <CA;J =25+ a.

Let us compare A CA;J and A CB;J. They have a common side CJ, corre-
sponding equal sides JA; = JB; and angles <<A;CJ = <B;CJ. We observe that
AN CAyJ and A CByJ satisfy the assumptions of Theorem 2.4.

(i) f ACA;yJ and A CByJ are congruent, then their corresponding elements
are equal, in particular,

<CBJ =<CAJ & 2a+=20+a & a=0.
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Hence, A ABC is isosceles with CA = CB.

Remark 3.4. There are two possibilities for <ACB: either <ACB = 60°, and
then A ABC is equilateral, or <ACB # 60°, in which case A ABC is isosceles.

(ii) If ACA;J and A CByJ are not congruent, then by Theorem 2.4,
<ACBJ +<CAJ =180 & (2a+8) + (28 +a) =180° & a+ B =60

Hence, <ACB = 180° — 2(a + 3) = 60°. O

4. GROUPS OF PROBLEMS

In this section we illustrate the composing technology of new problems as an
interpretation of specific logical models.

Our aim is the basic problem in each of the groups under consideration to be
with (exclusive or not exclusive) disjunction as a logical structure in the conclusion
and its proof to be based on Lemma 2.1 or Theorem 2.4.

4.1. PROBLEMS OF GROUP I

Suitable logical models for formulation of equivalent problems and generating
problems from a given problem are described in detail in [3, 4]. The basic statements
we need in this group of problems are:

t := { A square with center O is inscribed in A ABC' so that the vertices of
the square lie on the sides of A ABC and two of them are on the side AB.}

p = {<ACB = 90°}
q:={CA=CB}
r:={<ACO = <BCO}

We describe the logical scheme for the composition of Basic problem 4.4, which
has not exclusive disjunction as a logical structure in the conclusion:

- First we formulate (and prove) the generating problems - Problem 4.1 with a
logical structure t Ap — r and Problem 4.3 with a logical structure t Aq — r.

- To generate problems with logical structure (%) ¢t A (pV q) — r we use the
logical equivalence

tAp—=r)AN(EAg—=T) & tA(pV Q) — T
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- Finally, the formulated inverse problem - Basic problem 4.4 - to the problem
with structure (x) has the logical structure t Ar — pV gq.

Problem 4.1. A square with center O is inscribed in A\ ABC so that the
vertices of the square lie on the sides of A\ ABC and two of them are on the side
AB. If <ACB = 90°, prove that <ACO = <BCO.

Proof. Let the quadrilateral MNPQ, M € AB, N € AB, P € BC, Q € AC,
be the inscribed in A ABC square (Fig. 4). Since the diagonals of a square are

Fig. 4.

equal, intersect at right angles, bisect each other and bisect the opposite angles,
then OP = OQ and <POQ = 90°. The quadrilateral OPC(Q can be inscribed in a
circle k£ with diameter PQ. To the equal chords OQ and OP of k correspond equal
angles, hence <ACO = <«BCO. O

Fig. 5.

Problem 4.2. A rectangle with center O is inscribed in AN ABC' so that the

vertices of the rectangle lie on the sides of N ABC and two of them are on the side
AB. If CA = CB, prove that <ACO = <BCO.
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Proof. Let the quadrilateral MNPQ, M € AB, N € AB, P€ BC, Q € AC,
be the inscribed in A ABC rectangle (Fig. 5). Since the diagonals of a rectangle
are equal and bisect each other, then OM = ON = OP = 0Q.

Let CH L AB, H € AB. Since A ABC is isosceles with CA = CB, H is the
middle point of AB and C'H is the bisector of <ACB.

Since MQ || NP, NP || CH and MQ = NP, it follows that A AMQ =
ABNP (by Criterion B) and AM = BN. Hence, H is also the middle point
of MN. Since A MON is isosceles, then its median OH is also an altitude, i.e.,
OH | MN. This means that O € CH and <ACO = <BCO. O

A special case of Problem 4.2 is Problem 4.3 with a logical structure t Aqg — r.

Problem 4.3. A square with center O is inscribed in N\ ABC so that the
vertices of the square lie on the sides of the triangle and two of them are on the

side AB. If CA = CB, prove that <ACO = <BCO.

Now we formulate and prove the Basic problem in this group.

Basic problem 4.4. A square with center O is inscribed in A\ ABC' so that
the vertices of the square lie on the sides of the triangle and two of them are on the
side AB. If <ACO = <BCO, prove that CA = CB or <ACB = 90°.

Proof. Let the quadrilateral MNPQ, M € AB, N € AB, P € BC, Q € AC,
be the inscribed in A ABC square (Fig. 6). Since the diagonals of any square are

C

Fig. 6.

equal, intersect at right angles, bisect each other and bisect the opposite angles,
then OP = OQ and <OPQ = <OQP = 45°.

We compare A CQO and A CPO. They have a common side CO, respectively
equal sides OQ = OP and angles <QCO = <PCO. We find <CQO = <CAB+45°
and <CPO = <CBA+45° as exterior angles of A QAN and A PBM respectively.
Therefore, A CQO and A CPO satisfy the assumptions of Theorem 2.4. We
consider separately the two possibilities.
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(i) If ACQO and ACPO are congruent, then <CQO = <CPO and hence
<CAB =<CBA,ie, CA=CB and A ABC is isosceles.

In this case <ACB is either a right angle and A ABC is isosceles right-angled,
or not a right angle and A ABC' is only isosceles.

(ii)) If ACQO and A CPO are not congruent, then, according to Lemma 2.1,
<CQO + <CPO = 180° and hence <CAB + <CBA = 90°, i.e., A ABC is
right-angled with <ACB = 90°. g

Remark 4.5. A logically incorrect version of Basic problem 4.4 is Problem 1.54
in [1].

We reformulate Problem 4.4 by keeping the condition of homogeneity of the
conclusion.

Problem 4.6. A square with center O is inscribed in N ABC' so that the
vertices of the square lie on the sides of the triangle and two of them are on the

side AB. If <ACO = <«BCO, then A\ ABC is either isosceles with CA = CB or
not isosceles but right-angled with <ACB = 90°.

4.2. PROBLEMS OF GROUP II

By formulating appropriate statements and giving suitable logical models we
get two generating problems that are needed for the construction of Basic prob-
lem 4.9. The basic statements we use are:

t:={In AN ABC the straight lines AA;, Ay € BC, and BBy, By € AC, are
the bisectors of <CAB and <CBA, respectively.}

p = {<ACB = 60"}
¢ = {<CAB = 1200}
ri= {<BB1A; = 309}

Since the sum of the angles of any triangle is equal to 180%, statements p and
g are mutually exclusive. Hence, if p is true, so is —¢ and vice versa.

We describe the logical scheme for the composition of Basic problem 4.9, which
has exclusive disjunction as a logical structure in the conclusion:

- First we formulate (and prove) two generating problems - Problem 4.7 with a
logical structure ¢t Ap — r and Problem 4.8 with a logical structure t Aq — r.

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 257-269. 265



- Since statements p and ¢ are mutually exclusive, the equivalences pA—q <
pand —-pAq < ¢ are true. As a consequence of these facts problems with
logical structures t Ap — r and tA (pA—q) — r are equivalent. So are
the problems with logical structures t Aq — 7 and ¢ A (gA—-p) — 7.

To generate problems with a logical structure (xx) tA (pYq) — r we use

the logical equivalence

EAPA—Q) =T)ANEAN(pAG) —T) & tA(PYq —r.

- Finally, the formulated inverse problem - the Basic problem 4.9 - to the
problem with structure (*x) has the logical structure t Ar — pV gq.

Problem 4.7. In AABC the straight lines AA,, A1 € BC, and BBy, B1 € AC,
are the bisectors of <CAB and <CBA, respectively. If <ACB = 60°, prove that
<BB1A; = 30°.

Fig. 7.

PT’OOf. Let <BAA1 = <fCAA1 = qQ, <IABBl = <[CBBl = 6, J = AAl ﬂBBl
Since J is the intersection point of the angle bisectors of A ABC, we have that
<JCA =<JCB =~=30° (Fig. 7).

From o + 8+ v = 90° we find that <AJB = 120°. Hence, the quadrilat-
eral CA;JB; can be inscribed in a circle. Then <JA;B; = <JCB; = 30° and
<JB1A; = <JCA; = 30° as angles corresponding to the same segment of this
circle. O

Problem 4.8. In AABC the straight lines AAy, A1 € BC, and BBy, B € AC,
are the bisectors of <CAB and <CBA respectively. If <BAC = 120°, prove that
<BB;A; = 30°.

Proof. Let J = AAy,N BBy, E = A\BynCJ, C; = CJN AB. Since
<BAC = 120°, its adjacent angles have a measure of 60°. It is easily seen that the
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point By is equidistant from the straight lines BA, BC, AA; and that the straight
line A; By is the bisector of <CA; A (Fig. 8). The proof that the straight line 4;C4
is the bisector of <BA;A is analogous. It follows that <(B;A;C1 is a right angle
(the bisectors of any two adjacent angles are perpendicular to each other) (see also
[2], p. 194, Problem 156).

As a consequence we get that F is the intersection point of the angle bisectors
CJ and A1B; of A AA;C and hence <JAFE = <FAB; = 30°.

Let @Y = <OA1B1 = <IB1A1A and Y= <010A = <10ch. Then <IAlBlC =
60° + ¢ as an exterior angle of A A;B1 A, the sum of the angles of A AA,C is
600 4 2p 4+ 2y = 1807, i. e. ¢ 4+ v = 60° and hence <JEB; = 120°.

Thus, the quadrilateral AJEB; can be inscribed in a circle. We conclude
that <JAE = <JB1E = 30° as angles in the same segment of this circle. Hence,
<BB;A; = 30°. O

Now we formulate and prove the Basic problem in this group.

Basic problem 4.9. In A ABC the straight lines AA,, A1 € BC, and BBy,
B, € AC, are the bisectors of <CAB and <CBA respectively. If <BBA; = 30°,
prove that either <ACB = 60° or <BAC = 120°.

Proof. Let us denote <BAA; = <CAA; = a, <ABB, = <CBB; = 4,
AA;NBB; = J. Since J is the intersection point of the angle bisectors of A ABC),
then the straight line C'J is the bisector of <ACB. Denoting v = <JCA = <JCB
we get a + B+~ = 90° (Fig. 9). Let the point A’ be orthogonally symmetric to
the point A; with respect to the axis BB;. It follows that A" # A. (If A’ = A
then A ABC' does not exist.) The straight line BBy is the bisector of <ABC and
consequently A’ € AB and B1A; = B1A’. On the other hand, <BB;A; = 30° and
hence A A1 B, A’ is equilateral.

We find <AA’B; = 30° + 3 (as an exterior angle of A A’BB;), <AA’A; =
90° + 3 (as an exterior angle of A A'BE), <AB1 A’ = 60°+~—a and <AB;A; =
120° + 4 — a.
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Fig. 9.

Let us compare A AA; By and A AA; A’. They have a common side AA1, equal
corresponding sides A;B; = A1 A’ and angles <B1AA; = <A’AA; = a. Hence
Theorem 2.4 is applicable to A AA; By and A AA; A’. We have two possibilities:

(i) AAA By and A AA; A’ are congruent. Then <AB1A; = <AA'A;, i. e.
120 + v — a = 90° + 3. Hence, 2y = <ACB = 60°.

(i) A AA; By and A AA; A" are not congruent. By Theorem 2.4 it follows that

IAB1A; + <AA’ A} =180, 1. e. (120° +~ — ) + (90° + 3) = 180°. Hence,

2a = <BAC = 120°. d
Remark 4.10. An alternative version of Problem 4.9 is Problem 6 in [6].

To formulate a special type equivalent problem (see also [4]) to this Basic
problem we need

Proposition 4.11. If the statements p and q are mutually exclusive, then the
following equivalences are true:

(=(p¥Yq) & (pV-9)A(=pVq) & —pA-g.
Proof. We have

(=Y q) & =((pA=q)V (=pAq))

& (pV-g) A(pVg) & pA(mpV @V -gA(—-pVa)

S (PADP)VAQV(mgA-p)V(gA—q) & —pA—g.
O

By Proposition 4.11, problems with logical structures t A (=(pYq)) — —r
and t A (-pA—q) — —r are equivalent.

The following problem is equivalent to Basic problem 4.9.
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Problem 4.12. In A ABC the straight lines AA,, Ay € BC, and BBy, By €
AC, are the bisectors of <CAB and <CBA, respectively. If <ACB # 60° and
<CAB # 120°, prove that <BB1A; # 30°.

Proof. Assuming that the opposite statement is true, i.e., <BB;A; = 30°, we
would get a contradiction to Basic problem 4.9. O
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ACCURACY IMPROVEMENT BY NEW SENSOR SYSTEM
FOR AUTOMATIC BONE DRILLING
IN THE ORTHOPEDIC SURGERY

VL. KOTEV, G. BOIADJIEV, K. DELCHEV, T. BOIADJIEV, K. ZAGURSKI,
H. KAWASAKI, T. MOURI

Many orthopaedic operations involve drilling before the insertion of implants into the
bones. Usually drilling is executed manually, which may cause some problems. In free
hand performance of drilling some errors such as an inaccurate penetration and dilate
of bone hole, overheating, harm soft tissues could be occurring. Automatic drilling is
recommended to avoid such problems and reduce the subjective factor. The aim of this
paper is to select, develop and test a new sensor system for a bone drilling robotized
system. More in particular we utilize a sensor to measure thrust force during the
bone drilling manipulation execution. Therefore a force sensor is fixed to the drilling
robotized system. Moreover, an experimental identification of the drilling technical
parameters such as bone resistant force and feed rates are done. The resistant forces
are measured and plotted. The control algorithms and programs for drilling have done
based on the experiments.

Keywords: Automatic bone drilling, sensor system, experiments, orthopedic surgery

1. INTRODUCTION

In the orthopaedic surgery many interventions involved freehand bone drilling
procedures. Total knee (TKR) and hip (THR) replacement are ones of the most
frequent performed orthopaedic operations [1-5]. In the both operations surgeons
have to perform drilling manipulations in order to insert implant components into
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bones. Late detection of bone/soft tissue breakthroughs can cause unnecessary
damage to the patient [1-12]. In manual operations, breakthrough detection is based
on surgery’s skills and visual inspections of the drill tip using imagining devices
like x-rays [1-4, 6, 8-10, 12]. However, frequently exposes of x-rays is not useful
for both surgeon and patient [1-4, 6]. The breakthrough detection based on thrust
force measurement on the drill bit could be reduced or eliminated the need of x-ray
imaging [1, 3, 6, 8, 9]. The successful execution of bone drilling requires a high level
of precision, dexterity and experience [1-10, 12-15] because the drilling resistance
is large and sometimes vibrates violently to difficultly grasp the hand-piece or even
break the slender drill. Relatively large forces experienced during bone drilling
pose significant challenges to effective application of bone drilling [7-15]. Drill bit
breakage occurs frequently, and since the broken drill could obstruct placement
of other devices and cause adverse histological effects due to corrosive reactions
with the surrounding soft tissue, commonly necessitates follow-on procedures for
removal of the broken drill bit [6, 8-11]. Generally, the increased torque during
drilling induces shear stresses that exceed the strength of the drill bit, causing it to
fracture [8, 11]. Similarly, uncontrolled or unpredictable bone drilling forces may
result in drill breakthrough, causing considerable damage to surrounding tissue [4,
6-13]. Furthermore, drilling forces are the main source of heat generation during
bone drilling [3, 4, 11-13]. Increased temperatures on the bone could induce thermo
necrosis, and therefore, significant trauma to the bone tissue [2-4, 10-13].

The results show the automatized bone drilling manipulators or robots improve
the quality of the drilling procedures [1-6, 10, 12, 13]. Moreover, the utilizing of
the mechatronic drilling tools and robots will reduce/eliminate the need for X-rays
imaging used in traditional bone fixation [4-8, 10, 12, 13]. In addition, there are
several studies which refer to measurement of thrust force, feed rate, and detected
breakthrough [1, 4, 6-8, 11-15]. It is will know that computer assisted surgery (CAS)
and robots extremely decrease errors and time for orthopaedic surgery operations
[1-5]. Usually, orthopaedic robot-assisted drilling systems consist of two modules
first-one is executive drilling module and second one is assistant robot (manipulator)
[1-3]. These days CAS robotized systems like Da Vinci and The RIO Robotic Arm
of MAKO have been installed in many hospitals and performed many operations
successfully [1, 2]. Unlike of big and expensive robots with high degree of freedom
(DOF) and master slave systems [1-3], a small sizes, cost effective with special
purpose robots and intelligent tools have been developing most recently [1, 2, 5,
15]. A miniature orthopaedic robot MARS with parallel structure is developed [1, 2,
5]. Praxiteles is a bone mounted guide positioning robot for TKA operation [4]. In
order to remove the subjective factor and avoid the problems in hand bone drilling
manipulations, the robot DORO (Drilling Orthopaedic RObot) has been created
[11- 13]. Orthopaedic Drilling Robot (ODRO) has been developed latter [14-16].
This robot is intended to increase the patients safety in view point of it is accuracy,
performance and sterilization. At the same time it has to be affordable for hospitals
(low cost) and user friendly. ODRO can monitor time, linear velocity, angular
velocity, resistant force, depth of penetration and temperature during the drilling
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process as well as bone breakthrough [11-13]. ODRO has own control/power block
meets medical requirements. The aim of the present study is to select, develop and
test a new sensor system for a bone drilling robotized system in order to increase
accuracy and develop the control algorithms of it. First a small-sized compression
load cell is selected to measure the thrust force in bone drilling procedure. Second
we have designed a box to attach the load cell into a bone drilling robotized module.
Third experiments on a pork bones are made to measure thrust force.

2. AN AUTOMATIC BONE DRILLING SYSTEM

During orthopedic surgery, a primary concern is to penetrate the bone tis-
sue without causing mechanical and thermal damage. Therefore, without careful
attention to the thermal and mechanical issues, bone drilling could impart consid-
erable damage to the musculoskeletal system, reducing effectiveness of the surgical
operation and increasing the post-operation recovery time. We are working on
development of a hand-held robotized system for bone drilling procedures (Fig.1)
to avoid the mentioned above problems. It is intended to perform drilling with
preliminary setting of depth and stop automatically after the cutting process is
completed. Drilling conditions would be changed automatically in accordance with
bone density.

Fig. 1. A bone drilling experimental set up.

On the Fig. 2a are shown the executive drilling module and the control system
of the experimental set up. In order to decrease length and increase of working
zone of the executive drilling module we suggest the axis of motors to be parallel
[17], unlike of these of DORO [12, 13] and ODRO [14-16]. Regards to the parallel
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structure the working zone becomes 121 mm, the length becomes 220 mm and
height becomes 110 mm. The developed bone drilling experimental set up has the
following basic components:

- Brushless DC motor MAXON [18]. The motor is equipped by servo con-
troller /driver 1-Q-CE and amplifier DEC 50-5 [19].

Linear motor 43000-17 [20]. It is a stepper motor with embedded screw for
linear motion.

- Small and lightweight LMB-A force sensor (Fig.2.b) to measure thrust force
[21].

PCD-300 Series Sensor Interfaces [22].

Fig. 2. The experimental bone drilling set up (a). The Kyowa’s force sensor LMB-A (b).

In order to increase the accuracy of the bone drilling set up based on the
experiments, date of literature, and companies’ catalogues we have selected a force
sensor LMB-A made by Kyowa (Fig.2b) to measure thrust force. It is a compact,
lightweight, and low price load cell [21]. Moreover, to measure the thrust force
more precisely during the drilling procedure execution the force sensor LMB-A is
connected to the Kyowa’s sensor interface PCD-300 series [22]. It is shown on
the Fig.1. on the middle. The sensor interface PCD-300 series is a measuring
instrument that can easily carry out measurements simply by connecting to a PC
using a USB interface. We have designed and manufactured a box (Fig.2.a red
arrow) for the LMB-A cell load in order to attach it to the moving part of the
experimental drilling set up.

Control system of the experimental set up gives information about the drilling
process execution in real time, for successful end of the task. The control block
has terminals for connection with PC. They give a possibility to re-program the
software, which is recorded in the controllers. Controllers can change and update
the programs and to transfer the information between the sensors and PC while
the drilling is executed in real time.
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3. EXPERIMENTS

Bone is an in homogenous and anisotropic material, consisting two different
types of bones: cortical and cancellous bone respectively. These two types of bone
tissue differ in density, or tightness of the packed tissue. In a long bone such as tibia
or femur, the outer shell is the cortical bone, and the inner layer is cancellous bone.
Cortical and cancellous bone comprise the diaphysis of long bones and the thin shell
that surrounds the metaphyses. In addition, cancellous bone is the metaphyses and
epiphyses. The outside of the bones consist of a layer of connective tissue called
the periosteum. The interior part of the long bone is the medullary cavity with
the inner core of the bone cavity being composed of yellow marrow in adults [1,
4, 11]. The inhomogeneous structure of human bone, including a cortical (dense)
portion at the outer part, followed by a cancellous (highly porous) portion and
bone marrow, brings considerable complexities to application of bone drilling. The
structure of bone varies between different bones (e g., femur vs. vertebra), between
person to person, and between different age groups [6, 8, 11].

3.1. BONE DRILLING EXPERIMENTS. DETERMINATION OF THRUST FORCE IN
DRILLING

The experiments were carried out under the following conditions: object of
drilling - a pork bone; diameter of the orthopaedic drill - 4 mm; depth in bone
drilling of tubular bones - 10 mm; depth of bone drilling in sponge-like bones -
20 mm; data reading - every 100 ms; velocity of drilling - 6 mm/s. Some of the
obtained results are illustrated on the charts in Fig. 3 and Fig. 4.
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X 100 ms

Fig. 3. Thrust force of drilling of cancellous bone.

It can be seen from the given results that in sponge-like bone drilling the
resistance force varies within 30-55 N, while in tubular bone drilling the resistance

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 271-279. 275



force reaches up to 90-100 N, i.e. for one and the same bone depending on its
structure the resistance force varies from 30 to 100 N. This means that during the
performance of the operation the force of pressure should be consistent with the
specific object and must be controlled accordingly.

- i N
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X 100 ms

Fig. 4. Thrust force of drilling of cortical bone.

3.2. RESULTS

Specific drilling effects are revealed during the experiments. The thrust force
is achieved by controlled automatic bone drilling regime in comparison with hand-
drilling one. Comparison of new sensor system, implemented in the robot, with the
old one is done and its better functional abilities are shown. Algorithms are created
and their software realization is made. Curves of resistant force with respect of the
time are presented.

4. CONCLUSIONS

Automatic bone drilling can solve the problems which arise during manual
drilling. An experimental setup is designed to identify some parameters of bone
drilling such as the resistant force due to variable bone density, the appropriate
mechanical torque of drilling, the linear speed of the drill, and the electromechanical
characteristics of motors, drives and corresponding controllers. The last leads to
main conclusion that the automatic drilling guarantees higher safety for the patient.
This will reduce/eliminate the need for X-rays imaging used in traditional bone
fixation. The result has shown that, the bone drilling operation can be handled
by a robot manipulator to improve the quality of the drilling operation. With this
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system, the bone breakthrough can be easily detected and further damage of the
healthy patient tissue would be avoided.
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CLASSIFICATION OF DIFFERENT TYPES BEE HONEY
ACCORDING TO PHYSICO-CHEMICAL CHARACTERISTICS

KRASTENA T. NIKOLOVA, DOYCHIN T. BOYADZHIEV

The physicochemical parameters (refractive index, water content, S-carotene, color
parameters and content of glucose, fructose, sucrose and oligosaccharides for 14 types
of bee honey have been investigated. They are grouping according to the following
parameters:

1.  Geographic region 1 — valley-mountain

2.  Geographic region2 — North or South Bulgaria

3. Year of producing — 2008 or 2009

4. Botanical origin — honeydew, multiflorous, sunflower, lime.
Analysis of the data gives the opportunity for characterizing the samples of bee honey
by using discriminant analysis. The models correctly present geographic region, year of

producing, botanical origin and it can be used for determining the type of unidentified
samples.

Keywords: Bee honey, physicochemical properties, discriminant analysis, mathemat-
ical modeling

2000 Math. Subject Classification: 62P30

1. INTRODUCTION

Bee honey contains a variety of different sugars, more than 180 ingredients
such as enzymes, organic acids, vitamins, minerals, polyphenols, carotenoids, an-
tioxidants, flavonoids, etc [1, 2, 3]. As is well known, one of the parameters to
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estimate the quality of honey is the contents of sugars. The most common glucose,
fructose and saccharose are contained in honey in proportions as follows: 31.3%,
38% and 8% [4]. The variety of components of bee honey are an important criterion
for the quality and mark some particular features of the corresponding sample. A
number of authors have sought to identify the most significant parameters in order
to classify bee honey. Models to classify citrus and eucalyptus honey by studying
the water content, electric conductivity, pH factor, contents of glucose, saccharose
and fructose have been proposed [5]. Color coordinates z, y and lumineance L are
of essential significance for the classification of 15 types of Spanish honey — forest,
lavender, eucalyptus, rosemary, citrus etc. [6]. Data about step-by-step discrimi-
natory analysis, principal factor analysis for Spanish, Italian, Iranian and African
honeys have been reported [7, 8]. There is comparatively little data on Bulgarian
honeys such as multi-flower, acacia, lime, sunflower, forest honeydew.

The objective of this work is to test discriminatory models using the analyzed
indicators to discern the geographic origin (field, mountain or Northern—Southern
Bulgaria), year of production (2008-2009) and botanic origin (multiflorous or sun-
flower).

The objective defined requires the solution of the following problems:

e Creation of database, including types of bee honey of different botanic origin
and region of cultivation;

e Determination of physical-chemical parameters (color coordinates a* and b*,
x and y in two colorimetric systems SIE Lab and XYZ, correspondingly,
luminance L*, content of pigments such as S-carotene and chlorophyll, water
content, index of refraction, sugar content).

e Establishing of significant differences in the parameters under study.

e Modeling and analysis of the groups by types of honey, yield, and regional
origin.

e Test of the obtained model by using independent samples.

2. MATERIALS AND METHODS

2.1. SAMPLES

The basic data includes 14 types of bee honey of field and mountain regions
in Northern and Southern Bulgaria. The samples were purchased from producers
and suppliers, from two years — 2008 and 2009. Four samples of multi-floral honey
with commercially available sweeteners were used to test the models.
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2.2. METHODS

The color parameters of two different colorimetric systems — XY7Z (aimed at
large color differences) and CIE Lab (aimed at small color differences) [9] are mea-
sured. A colorimeter Lovibond PFX 880 (UK) and a cuvette with a 10 mm thickness
are used. To determine the water content the refractive index is measured using
an Abbe refractometer (Carl Zeiss, Germany) at 20 £ 0.5 °C The equivalent water
content is determined from a table, given in Official Methods of Analysis [10]. After
the honey solution is filters, the sugar content is determined using liquid chromatog-
raphy with an IR detector (Waters). The parameters of the methods are: column
Aminex HPX-87H; detector Differential refractometer R401, (Waters); tempera-
ture of the column and the detector is 30°C, the volume of the sample injected was
101, speed — 0.5 ml/min. The software “Statistica” to process the data was used.
Their distribution is normal according to the Kolmogorov—Smirnov criterion [11,
12]. To establish the statistically significant differences between the indicators for
the different sorts Tukey criterion for multiple comparisons was applied [13].

Discriminatory analysis is used to model the group with a priori equal proba-
bilities to fall into the groups [14].

3. RESULTS AND DISCUSSION

The database includes 14 types of bee honey from different regions (valley-
mountain or southern-northern Bulgaria). For each of the samples studied, four
independent measurements have been performed. The Scheffe criterion shows sig-
nificant statistical differences in the studied types of honey. The presence of con-
siderable difference in the physicochemical characteristics of honey provides the
reason for a subsequent modeling of its origin. To model the honeys by region
valley-mountain a step-by-step linear discriminatory analysis was used.

A model with grouping parameter “extraction area” was obtained and it in-
cludes the following parameters by the order of introduction into the model: =,
oligosaccharides and refractive index. The classification of the different sorts ac-
cording to the extraction area is 100% (Table 1).

TABLE 1. Classification of the samples by the model Valley—-Mountain

Group Percent | Mountain Valley
correct | p=0.357 | p=0.643
Mountain 100 20 0
Valley 100 0 36
Total 100 20 36

It has been attempted to discern the samples by the geographical region with a
grouping variable Geographic area 2: Northern-Southern Bulgaria. With a classify-
ing parameter “Geographical area 2” (Northern or Southern Bulgaria) we observe a
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76.8% correct classification, with all samples from two types from southern Bulgaria
and one from Northern Bulgaria were incorrectly classified.

Except by region, the samples are subdivided by the year of extraction. More
parameters are included in the new model — the color coordinates, luminance and
beta carotene. The presence of more variables in the model is easy to explain
because the content of sugars is decisive for the crystallization of honey, while the
refractive index (water content) — for the development of microorganisms in the
product. The indicated parameters are related to the kinetics of the process in the
bee honey during storage. The classifying parameter (Year of production) (2008
and 2009) 94.64% of the samples are recognizable, of them only three fall into a
wrong group (Table 2).

TABLE 2. Classification of the samples by the year of production

Group Percent 2008 2009
correct | p=0.286 | p=0.714
2008 87.50 14 2
2009 97.50 1 39
Total 94.64 15 41

With a classifying parameter “Botanical origin” two models are possible: with
color parameters included and physicochemical indicators arranged as luminance,
parameter a, saccharose, or only with color parameters: y, L, a, b and refractive
index.

TABLE 3. Modeling of botanical origin by color and physicochemical indicators

Group Percent | Honeydew | Multi-floral | Sunflower
correct p=0.273 p=0.455 p=0.273
Honeydew 100.00 12 0 0
Multi-floral 80.00 0 16 4
Sunflower 100.00 0 0 12
Total 90.91 12 16 16

For the classifying parameter “Botanical origin” both model have the same
sample identification capability of 90.91%, with four samples in the first model move
from multi-floral group into the sunflower, while in the second model three multi-
floral samples (wrongly identified in the first model as well) go into the sunflower
group, while one sunflower sample was identified as multi-floral. The results are

presented in Tables 3 and 4.
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TABLE 4. Modeling the botanical origin by color indicators

Group Percent | Honeydew | Multi-floral | Sunflower
correct p=0.273 p=0.455 p=0.273
Honeydew 100.00 12 0 0
Multi-floral 85.00 0 17 3
Sunflower 91.67 0 1 11
Total 90.91 12 18 14
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For a better visualization of the results a subsequent canonical analysis was
performed. On the basis of the first two canonical variables, the position of the
separate samples for the model with included color parameters and physicochemical
indicators is presented in Fig. 1, the four wrongly identified samples being marked.

Root 1 vs. Root 2
3.5

3.0F

25F @ Honeydew
[J Multyfloral

20k 4 Sunflower

Root 2

Fig. 1. Disposition of the three sorts of honey in the plane of the first two canonical variables

The figure confirms the stated hypothesis for the presence if significant dif-
ferences between the separate types of honey. The analysis of the Mahalanobis
distances between the three basic groups shows that the sunflower and the multi-
floral honeys are close to each other and are relatively far from the honeydew. This
is clearly seen from the figure shown if we trace the projections of the clouds of
the various sorts upon the first canonical variable which plays an important role in
discrimination of the groups — the sunflower and multi-floral are projected on the
positive, while honeydew is projected on the negative direction.

The samples used are for the control of the adequacy of the created model for
the description of the botanical origin of honey. From the remaining three types
of honey with a known botanical origin, the samples which are insufficient to form
separate groups two-lime and acacia can be classified as multi-floral, while that of
thistle — as sunflower. This can be explained with the different seasons during which
they are collected — the former two in the spring while the third in the summer.
Honeydew is classified correctly, lime honey and acacia honey are in the group of
multi-floral honey. The results from the classification according to the obtained
models are presented in Table 5.
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TABLE 5. Verification of the model for botanical origin with independent samples

Sort Classified as

Lime Polyfloral

Acacia Polyfloral

Honeydew Honeydew

Thistle Sunflower

With sweetener | Polyfloral, Honeydew

4. CONCLUSIONS

The analysis of the data base give the opportunity to characterize different

types of bee honey by using the discriminant analysis. It provides an efficient tool
for the qualitative distinction of natural bee honey and adulterated honey contain-
ing admixtures from sugar or glucose. The models and the associated Mahalanobis
distances enable the classification of unknown samples or samples with admixtures.
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