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CTO M IECET 'OJIUHU
PAKYJITET TIO MATEMATUKA Y MHOPOPMATUKA
[PY CY ,CB. KIUMEHT OXPUICKU"

VUBAH I'"'AHYEB

Mamemamurama e Deazapusd om abaxa 0o KomMniomspa

CLubara Ha BCEKM UOBEK ce ompenesisi 0T pasnnunu daxropu. OcHosua
POJIA BCPEX TAX UrpasT obaye KOMIIEKCLT TeHEeTUYHO HACIEHEHU KAdecTBa
U cpenaTa, IpeACTABIABANA CLILO KOMILIEKC 0T (AKTOPH, B KOATO C& Pa3BU-
Ba gagena auunoct. C paspUTHETO HA UMBMIM3ALUATA B DAMKUTE HA BTODUA
0CcHOBEH (akTop (cpenaTa) ce NOABABA €AVH, KOMTO 3al0O4YBa [[a UTDae BAXK-
Ha pOJIA B DA3BUTUETO HA BCe moBede xopa. Tosa e yummumero. To kato
UHCTUTYLMA CLOIO0 MMa CBOEC DA3BUTHE, a C TOBA DAa3BUTHE Ce M3MEHA U BJIM-
AHMETO MY BLPXy 4oBexa. CMes na TBLpXAS, Ue BCE Oule MAJKO € M3CIeIBaH
BLOPOCDLT KaK PAa3BUTHETO HA YYMIMINETO € BJIUAJO BLPXY Pa3BUTHETO HA
xopata. Unrtyuruno obave enua 3HAUMTENHA YACT OT TAX OLUEHABAT 3HAUM-
MOCTTa Ha TOBA BJAXSHME U O PA3JINYHM HOBOAM C¢ OOPLIMAT KLM UCTOPUATA
KaKTO Ha CBOA POJ, TAKA ¥ HA CBOMTE yumanma. BepoaTHo mMame ocHOBaHuUE
Ja KaykeM, 4e Ta3u 4acT OT XOpaTa IOHe NOHAKLIE ONpOBEPraBaT TBLPJE-
HUeTO Ha u3BeCTHUs HeMcku duuocod Xeren Mcropusra yum, ye HUKOIR HE
ce yunu oT Hes'. Helo noseue, T€ Ca ZOCTUCHAIM N0 OCL3HABAHE HA POJIATA
Ha 3HAHMATA 34 MUHAJNOTO, 33 pa3bupaHe HA HACTOAIIETO, T.e. A0 MMUCLITA,
M3KA3aHa OT rojeMmus Hemcku maremartuk . B. Jlaibunn ome npes 17 Bek, a
uMeHHO: ,, Ko#iTo UCKa Jja ce OrpaHryM C HaCTOAIMETO, TOW HUKOra HAMa Ja o
pasBepe.”

* AKaJeMUYHO CJOBO, MPOUETEHO Ha TbPyKECTBEHOTO ChOpanue 8B PMU, npose-

neno Ha 24.11.1999 r. no cayyait 110 roavHu OT HEroBOTO C'b3JaBaHe.



Hait-ceTre, ¢ mpoBemmaHeTO Ha CaMOTO HACTOALIO uYecTBaHe Ha 110-ro-
AUITHUHATA Ha Halmd GakyaTeT NOKaszBaMme, Jye CIopes KMACAUATA Ha IoeTa
A. C. IIywkuH 3a MHTEIUI€HTHOCT W TIOCPEACTBEHOCT, HUE MONAAAMe B IDYIIa-
Ta #a u"Tesurentuure. e npunomus, ve uakuae A. C. [lymkua Geme nucar:
,» OTHOIIEHUETO KLM MMHAJIOTO OTAMYaBA MHTEIMIEHTHOCTTA OT HOCPEACTBE-
nocTTa. “ OOpLIMAKY Ce K'LM UCTOPUATA Ha HalIuA GAKYJTET, HE MOXKE [a He
OPOJBUM MHTEPEC M KLM HErOBAaTa IPEeAUCTOpPUA, KLM (GAKTOPUTE, CL3 AU
Cpenara, B KOATO Ce e IOYYyBCTBAJA HEOOXOAUMOCT OT OPraHU3UPAHeTO My U
BTL3MOKHOCT 34 HeroBoTO (pyHEnuouHupare. OT xora obaue 3amousa Nnpegnc-
Topusita Ha PMU?

Moe On pasauyEM XOpPa Iie INPUCMAT 33 HAYAIO HAa TA3U IPeAUCTOPUA

paszmuuEM gatu. B crarus, nyGiauxysana B cn. ,, O6ydJenuero no mareMaTu-
ka“, akagemuk . IleTkaHumu 3amouysa Ta-

[ ! L < ! 3u . Hup-
| o P : PeIvCTOpUs CLC CL3AABAHETO Ha IIbp

m Ml v f -“ BaTa OwvJarapcka ambp:kaBa. J[losepspaii-

w oA ? s KM Ce Ha yCeTa KDLM HCTOPUUECKUTE (ak-

';; l!l.'l: M i ; TU ¥ JOorukKaTta Ha akagemuk b. [letkanuun
n'llll// nnlllll'l : é , CUMTAM, Y€ B €IUH TAKDLB TLDPAKECTBEH MO-
x))s y x .; Lx MEHT, CBbp3aH ¢Lc 110-rogumnus o0uneit

XX X A48 *~ » Ha Paxkynarera, CLIIO € nenecnLobpasHo 14
xxxz e 1 é . npencTasg Ha DBamero BHUMaHUE CLBCEM
xﬁ; mﬂ M ¥ o HAKPATKO II'LPBO HAKOM (AKTU, KOUTO Ce
Bt mﬂ’}gﬁ ; ;’7, : OTHACAT [0 NPeIUCTOPUATA HA (PAKyJTera.
X; i : ,'c! bt IInpBuTe CBeneHus, CBLP3aHU C MaTe-
XXX HHA] = T | MATHUYECKUTE 3HAHUSA, U3NON3BAHU [pPe3 TO-
XX iy ; z"; s 34 MEPHMOJ, Ce OTHACAT OO HUPPUTEe, C KO-
%§§ MIII?I')‘!I ; g -: nto npabvarapute masar Ha Lasjaxanckus
;f;( ‘;(g( m’ﬂ’ﬁﬁﬂ ¥ nosyoctpos (¢ur. 1). Hakou oT Tax ca Ha-
RK » N MEepEeHU NPU APXEOJOTUUECKU U3CIEABAHUA

Ha Ilaucka.

CrmecTBed HeAOCTATLK HA CTApO6LI-
rapCckuTe qUGOPOBU CHUCTEMU, & CLINO U Ha
CNaBAHOOLAraPCKUTE € TOBA, Ue Te HE Ca
yoobuu 3a cmsatae. CLIUAT HEHOCTATLK
MMaT CTaporpLUKaTa u a-GeTuynara mud-
pOBa cuCTEMa. 3aTOBA OCHOBHOTO CpPeEJC-
TBO 33 CMATAaHE C [O-TOJIEMH YuCciIa e Du
abaxoT. [lopaau OrpaHuUyYeHOCT HA BpEMe-
TO TYK caMmo e orbenexa, ve npean 20
FOMMHU MU Ce yAaJde Ia BL3CTAHOBA ODii-
rapcku abax, M3NOJI3BAH Mpe3 BTOpAaTa Io-
gosuna Ha 19 sex B PakutoBo (dur. 2).

Typckoro poOCTBO OTKLCBA OLarapc-
dur. 2 KMsl HApOJ OT OYPHOTO DAa3BUTUE HA MaTe-
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MvaTudeckure 3ganua B Espona ot 15 no 19 sek. M3secten npobasactk B yueb-
HOTO AeJIO0 B TOBa OTHOIUEHME Ce [OABABA CaMO B YMIpPOBCKOTO yuuauiie, 3a
KOETO 3a CLYKAJEHUE HAMAaMe MOUTH HUKAKBU KOHKDETHU CBEJEHUsA. 3aTOBa HA
TO3U MEPUOM HAMA AA Ce CIupame.

WMurepecer n3TOUHUK, KOWTO HU AaBa CBEAEHUA 33 XapakTepa U PaBHUIIE-
TO HA MATEMATUUECKUTE 3HAHUA, PA3NPOCTPAHEHU MEXIAY OOVKHOBEHUTE XOpa
no 19 Bex, ca 3amadyuTre -— HAPOJHO TBOPUYECTBO, HAKOM OT KOUTO Ca MOMEC-
TeHM NpU TaTaHku B cTaTuu owe npean 1878 r. 3a orbensassane e obaue, ue
TAKMBa 3aJa4M IOYTU HAMA B I'LPBUTE HU yueOHUUM IO MaTeMaTuka. 1oBa
[OKa3Ba, Y€ HAKOW MATEMATUUYECKU 3HAHWs CA Ce NPEAaBaJu OT €HO MOKO-
JeHUE Ha APYTO, KAKTO €a C€ NPeaBaiy TOBOPDUMUAT €3UK U OOUKHOBEHUTE
3HAHWS, CBLP3aHU ¢ bura.

Jlo mauvanoro Ha 19 BEK eAUHCTBEHUTE MECTa, KLAETO OPTaHU3UDPAHO Ce
IpEeOABAT CLBCEM €JEMEeHTADHU MATEMATUYECKM 3HAHWA, Ca MAaHACTUpPUTE, B
KOMTO Ce MOATOTBAT cBemeHuiu. O6eMbT HA 3HAHUATA Ce € ONPEeNeNAi OT
FPAHMUMTE, B KOUTO Ca Ce NPOCTUPAIN HYXKIUTE 33 BOAEHE HA IPOCTH (QUHAH-
COBU MAHACTUPCKM CMETKU U 32 NPECMATAHMATA, CBBLP3aHu ¢ u3paboTBaHEeTO
Ha ITLPKOBHNA KaJeHaap. EaHoBpeMeHHO ¢ TOBa OT Kpad Ha 18 Bek B ch3aane-
HUTE CPLIKA YUYUJIMINA BCE IMO-YeCTO 3al04YBaT A3 HOCTLIBAT U ODLArapyera,
KLIETO TC 3aCOHO C ApyruTe yuebHU NMpeaMeTd M3ydaBaT M MaTeMaTHKA.

IluppaTta kHMra Ha OLJTApPCKU €3UK, B KOATO MM MaTEeMATUYECKU 3Ha-
HMSA, WU3JIO0KeHU 3a ycsosBaue, e  Pubnusar Oyksap® na II. Depon, usnanen
npes 1824 r. B Hes na 9 crpaHnnu ca n3noxesn TabJUnM 33 YETUPUTE apUT-
METUYHM AEACTBUA M HAKOU IPUMEPH Ha aJCOPUTMU 33 AeHCTBUA C IIO-TOJIEMU
yncaa. B rabaunure uucaara ca 3aMMCaHM ¢ apabCcku mugpu, HO He ce U3-
HOJ3BAT 3HAOMTE 33 APUTMETUYHM JeficTBUA M 3HAKDLT ,=". V3noxena e u
KUPWIKIATA KATO HU(GPOBA CUCTEMA.

[IpBuAT 6LArapCcKr y4ebOHUK IO MATEMATHKS € apUTMETHKATa Ha XpUC-
Taky IlaBnosuy, m3paneHa upes 1833 r., Korato aBTOPDLT € yUHUTEJd B Cb3-
nazeHoTo oT Hero npe3 1831 r. xmacHo yunmamme B CBumos. To3m yueBHuk
CBILPAKA 3HAHWUA, KOUTO B AHELUIHOTO HAIe YUMJIMINEe Ce u3y4yaBaT B 4 u O
kiac. Ocsen oOuxnOBEHU APO6H, B TO3U ydeOHUK CA M3JIOMKEHM IPOCTO TPOH-
HO IIPABWJIO, CJIOKHO TPOMHO HPABUIO, JLKIUBOTO NPABUIIO ¥ U3BECTHUAT HU
anroputby Ha Epkiaug 3a HOJ. C nonobso cLaLpKaHue € ¥ BTOPUAT OLII-
rapcku yuebHUK M0 apuTMeTHKa, Hamucan cbino B Cpumos ot H. Gossenu u
Enm. Backnmosud KaTo pe3yiararT OT MHOIOTOAMIIHATA UM YYHTEJICKA ACHHOCT
B CL3JALEHOTO OT BTOPMS OT aBTOpUTE yuuiume ome npe3 1815 r. B Toa
VUNANIIE To-KLCHO yuu Ewm. ViBanoB — enud oT cL3martemure Ha CY u Ha
PUUKO-MATEMATUYECKUA PAKYITET.

Tperuar y4ebHUK MO apUTMETHKA Ha OLArapCcky e3uK, n3jageH npes 1843
r., € IPeBeIeH OT IPLIKU €3UK U CLABLDKA HAKOM eJIeMEeHTH, XapaKTepHU 34
VUMIMIIHUA Kype 1o anrebpa. B Hero ce pasraexzaT HanpuMep KBaJApaT U
xkyD Ha cOOp M pa3nuka Ha gBe ducia. 1IpeBoLLT Ha ydueOHMKA € OCLIIECTBEH
ot Casa Mnues Ilanarmopeuna.



YeTBLPTHAT OLArAPCKH yUYebHUK MO apUTMEeTUKA ¢ usnanen npes 1845 r.
ot Cnuan Hukosos, koiito e vuenux na Xp. [lasaosuu. [lo cnasLpxanue Tol
¢ Ha paBEHMINCTO Ha npepezennsa or Casa Muaues rpouxu yueOHUK, HO B HEro
e U3J0MKeHA U uaeaTa 3a mudsLpa KaTo CPeACTBO 3a KOAUpaHe.

[Ivpeuar 6varapcku yuebuuk mo aarebpa Ha Xp. Bakaunos uaausa mpes
1859 r. 1 ¢ aBropu3mpaH npepox Ha (percku yucbHuk. [Ipemu Ocrobomne-
HueTo npe3 1868 r. uznusa #Ha 6LArapcKku e3uk u BTopu yueOHUK no asrebpa,
KOUTO CDLINO € IPeBOJEH.

Cropen cBeeHUATa, C KOMTO Pa3nosaraMe, TeOMeTPUs KATO OTACHEH yde-
Oen npenmer ce uszydasa B Jlackanonausauiara B Eiena ome npes 40-te ro-
muan Ha 19 Bek, a B PLKOMUCHUA y4eOHWK no reorpadus Ha Xp. Hasinosuu
0T OKONO 1846/47 r. Ma U3NOKEHU HAKOU OCHOBHU IE€OMETPUYHU 3HAHUS, KO-
WUTO CJIe] TOBA CE U3NOJ3BAT IPY NPENoNaBAHETO HA ACTPOHOMUYECKU U TeOT-
padcru 3HaHuda. [ILpBuar 6bArapCcKu caMoCTOATeNeH VUeDHUK 10 TeoMeTpud
obaue e usganen npe3 1867 r. or B. I'pyes. Bropusar u tperuar yuebHuUk
O reoMeTpusa Ha OLATAPCKU €3UK Ca IPEBOAHU CLOTBETHO OT ¢peHcku (mpes
1871 r. na Onusue) u or pycku e3ux (npe3 1873 r. wa A. 1O. lasumos).
YuebunrnT Ha OnuBre € U NLPBUAT yUeOHUK HA OTLIrapCKky €3UuK, B KOWTO Ca
U3JI0MKEHU 3HAHUA OT TPUCOHOMETPUATA M MEXAHUKATA.

Tyk 3acay:xaBa BHUMAHMUE CJAEIHUAT (PAKT: aBTOPUTE Ha II'LPBUTE [BA
OLarapcku y4eOHUKA 10 MATEMATMKA €& YUYW B IPDLIKMA YUMAMIA. Y YEHUK
Ha Xp. [laBnoBuy e aBTop1LT Ha YeTBLPTUN yueOnuk Cuuan Hukosos, a oc-
nopHata ¢urypa B lackagonusHunara B Eiaena e VB, Momunnos, koiito e
YJYCHUK Ha ydeHMKa Ha Xp. I[lasmnosuwu, Auapeit PoGoBcku. IlpesomausT na
rpetua yuebnuxk Casa MimeB c1LIIO € yunma B I'PLUKO y4yuauie. ABTOPDLT
Ha, B33aUMOYUUTEJHU Tabaunu o MaTeMaTHKa U cL3JaTenaTr Ha ['abposckoTo
yunsume (npe3 1835 r.) Heopur Pusicku cumo e yuun B rpLUKO yunanie.

B1.0o0me eqHo mo-1sioCTHO M3CJIeABAHE HA MCTOPUATA HA 00yd4eHHETO 1o
MaTeMAaTUKa V HAC NOKasBa ciaengnorTo: lILpBuTe HM yyuTenu 0 MATEMATHKA
B OLATAPCKUTE YUUJIMNA HOArOTBAT YUYEHUIM, YACT OT KOUTO CTABAT HALIPABO
yuaureau. Te 0T CBOA CTpaHa Bede NOATOTBAT YUEHULHN, KOUTO ca OUIKU B CbC-
TOSIHME 8 NMPOALJKAT 0OPa30BAHMETO CU IO MATEMATUKSE B Pycusa uau apyru
eBpOIENCKN CTPAHM 1 Ja Ceé BLPHAT y HAC KaTO yUUTENU N0 MaTeMaTUKa NPeIu
niu HenocpeacTsedo cuaen OcBoBOXKIEHUETO, HO BEYE ¢ MHOrO 1M0-3a1Liboue-
Ha MAaTEMaTUYECKA IOATOTOBKA. TaKUBA yUUTENU UM ABTOPU CA CIIOMEHATUAT
peue Msan Momuuios, Jobpu Yurryaos, Tonop Ukonomos, Xpucro Baknu-
joB, Usan [iozenes, Atanac Tunrepos, Emanyua Usanos, Credan Jladuuen
u Ip.

Hpyr $axT, KOUTO 3acC/yKaBa BHUMaHUE, € CJIeNHUAT: BTOPUAT yUeOHUK
Ha OLarapcky e3uk no anrebpa M BTOPDUAT U TPETHUAT yUeDHMK IO reoMeTpus
Ha OLATAPCKU €3MK, KAKTO U HAKOM OT PLKOIMCHUTE aBTOPU3UPAHU IPEBOIU
Ha APYTU 4y IECTPAHHN YYeOHUUM [T0 MaTeMaTuka, u3noaspanu ot 1860 r. no
1877 r. (kato To3u Ha . UnHTysoB), ca BeUe Ha PABHUINETO HA ydyebHULUTE,
U3M0J3BAHU B YUMIMIIATA HA BOAEIUTE €BPONENCKYU CTPAHU.
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TpeTtu QarT, KOATO 3aCAyKaBa BHUMAHUE, € CBLP3aH ¢ UABaHeTo B Buara-
pua HAa YyRIECTPAHHU y4uuTeau HerocpencTtseHo ciaen Ocsobownenuero. Io-
KOHKPETHO, CL3AANeHUAT UHTEPEC B HAIIKA HAPOL KLM 00pa3zoBaHUETo olne
npenu OCBODOMIEHNETO OT TYPCKO pODBCTBO M NOpPACHAJNUTE HY:XKAU OT obOpa-
30BAHU KaJPU B MJagaTa OLArapcka IbpraBa DOBEXKIAT A0 OLDP30TO pa3pac-
TBAHE Ha YUYMJIMIHATA MpPEXa. A OT TaMm W OO0 yBeJudapaHe HeoBXOIMMOCTTA
OT YUMTEJCKM KaJpU MO MATEMATUKE. 1OBa Hajara ga O1LAAT NOKAHEHU y4U-
teau oT uy:xkOuna. C ocobena OT3UBUMBOCT IOKAHATA C€ IPUEMA OT IPYIa
gemky yumtend. Mexay tax ca Kapen Munge, Kapen Ixopnuma, AnTOoH
IIoypek, ®pantumex Cnaurex, Usan Hemen, Bnagucnas lax u ap. Taxaa-
Ta 3a4LIO0YEHA MATEMATUYUECKA M METOMYECKA [TOATOTOBKA M3UTDABA BAMKHA
pOJIA 34 U3JUIaHe MATeMaTHYeCKaTa IOAIOTOBKA B yKpensamuTe B KHMKCCTBO
Duarapus u B ¥iarouna PyMmesnusa yumianmia, HO U T€ He MOTAT LA 330BOJIAT
BCE NO-HAPACTBAIIUTE HYKIW 32 YUUTENU [0 MAaTeMaTuka B rumHasuure. [lo-
A0OHA MONOKUTENHA POJsg urpae u poumar npe3 1889 r. ot Pycusa yuuren
no Maremaruka Mwuxaun KeaprupHUKos.

Ilpu ToBa nonosxenue ciaen cpenaTta Ha 80-Te roouan Ha 19 Bek oT enxHa
CTpaHa €a HAJUIE YYBCTBUTEJIHU HY/KIU OT YUUTEIU IO MAaTEMATHKA C BHUCIIE
obpa3zoBanue, OT APYra — ¥Ma Bede AOCTATBLYHO MOANOTBEHM MJIALEKU, 3a-
BLPIIMJIM TUMHA3KA, KOUTO C YCOEX MOraT xa cleaBaT BLB BY 3, a oT Tpeta

MMa U NOAFOTBEHM B 4Uy:KOUHA yUHMTEIM IO MATEMaTHUKa ¢ Bucuie obpaso-
BaHMC, KOoMTO Ouxa Morau mo nogobue Ha yueDHUTE 3aBCICHUA, KDLIAETO Ca
VUMM Te CaMuTe, Ja HOATOTBAT yUUTENU. AHAJOIMYHO € MOJOKCHUETO U
IIPU HAKOM ApyTrW Hay4HU obaactu. 3aToBa, 0COBEHO Cien CLEeIVHEHMEeTO Ha
Kusmskecrso Duarapus ¢ Matouna Pymenus npes 1885 r., y Hac ce 3acuasa
IBIKCHUETO 3a CL3JaBaHe Ha BUclie yueDHO 3aBeleHUe ¢ ILPBa 3a/1a4a, IOHe
B HA4YaJOTO, 3 HOATOTBA YUUTENH 33 cpexuute yumnuma. He cayualino Tyk
Ka3BaM , 3aCHJIBA ABIDKEHMETO , 3aI0TO CaMaTa UAes 3a CL3TaBaHe Ha OL.J-
rapCKd YHUBEpPCUTET BOAM HauasoTo cu ome ot 1880 r. OcxoBua 3aciyra 3a
Hed, KaKTO M3TJIeKAA, UMa JYelkuAT ydeH VMpeuek. 3a ILPBM ILT BLOPOCLT
3a OTKPMBAHE HA BUCIIE YYMJINUIIE WJIM YHUBEDCUTET y HAC C€ NOCTABA B Y.
69 ma mpoerTta 3a ,, OCHOBEH 3aKOH 33 YUMJIMINATA B OLIrapCKOTO KHAKECT-
BO, MUHaAJ caMO Ha NnbpBo 4dertene B HapomHoTto cuOpanme Ha 25.11.1880 r.
IlpoerTtnT e nonrotsed or Usan I'tozenes u Mpeuex. Ot Torasa go 1888 r.
BLIPOCTLT 33 OTKPUBAHETO HA YHMBEPCUTETa YIOPUTO Ce IOCTaBA OT Hal-pes-
HOCTHUTE pafeTesn 33 ypeaeHo 6Liarapcko 06pa3oBaHue, HO CPEIa, ¥ TOIAMA
cvoporusa. llle oTbenexa camo ciaegHuTe PakTHU.

Ha 06.10.1882 r. Vpeuek nume B nresruka cu: , /Inec Hue tpuma I'eHues,
Bauos u a3 noganrasupaxme 3a 0LIrapCKU yHUBEDCUTET, IpecMeTHaXMe pa3-
HOCKWTE 3a Iopuandeckus garyarer (7 mymu npodecopu), GU3MKO-MATEMATH-
yecku (6 oymm) U MCTOPHUKO-(LIIOIOrHYEecKy (5 AYINM) BCUYKK C TPUIOUIIEH
kypc, npubauszurenno Ha 300 000 ¢p. romumHo; cuMped, TOJKOBA, KOJKOTO
CTPyBa OLPKABHUAT CLBET. 3a Crpaja me ciayxu pa3bupa ce ceramHaTa
rUMHA3UA.



Ha npomannara cu seueps Ha 12.09.1884 r. Mpeuek Baura Ha3apaBUIa
3a ,,0baemua OLATAPCKU YHUBEPCUTET, MakKap 4e e | [IPEeCHTCH C J0CaId M
naTpurn” B BLarapusa u 4e mpenu TOBa U3MOBALBA , 4e € A0WLJ B DLarapus
(hyrerMaTUveH U CIOKOeH ) HO ue OMJ CTaHaul ,, 0OTIOC/Ee TBLPJe HEBPO3€H, IIPU
TOJIKOBA HENMPUATHOCTHU U TaKLB TPy AeH xxkusoT . Cren MHOTO HEepUIIETUN Ta3u
uies ce OCLINECTBARA B TB'LPAE CKPOMHA ¢dopma npes3 1888 r. MunucrepcTro-
TO Ha HAPOAHOTO NPOCBelenne pemasa ga otkpue B Codus gyroguied Bucnr
neparoruaecku kypc (BIK). Eana koMmucwusa xuMm Hero uspaborsa ,, Bpewmen-
Hu npaBuia 3a ypexnane Ha BIIK (Bucm negaroruueckn kypc) B Codus®.
3a orbenaspaHe e, ue B HCA BJAM3AT JULNA, KOUTO HO-KLCHO UIPASIT BayKHA
poasa B ucropusara sa CoduilcKusa yHUBEpCUTET, & UMEHHO (uinocodnT VBaH
Ieopros, aurteparypoBeabr Msan Hlummanos, marematuktt Evanynn Mea-
HoB, ¢unosgorn,T Jwbomup Muneruu. BIIK ce orkpusa na 01(13).10.1888
r., kato pabora 3amouYpa CaMO NCTOPUKO-(DUIOJOrMYECKUAT oThen. Bropu-
AT — QU3NKO-MaTeMaTudeckuaTr orzen "a BIIK, mapeuen ma 18.12.1888 r.
, Brucme yunmmme” (BY), ce orkpusa npes mecen oktomspu 1889 r. Enanma
OT CHeLMAJHOCTUTE HA BTOPUA OTHEN € , MareMaTura u ¢usuka“. IInpsute
IPCNOAABATENM-MATEMATHIM B Hes Ca 4eXbT Teonop MoHMH, Ha3HaueH Ka-
To peaoped nperoxasaresn or 01.09.1889 r., u Emanyun Vipanon, HaszaueH
KaTO u3BLEpencH npenogapatea or 01.10.1889 r. C roma, rakTo orbesnsassa
B IMTUpaHaTa no-rope cratus axagemMuk . IleTxkanuun, 3a np1LB OLT BAM3aE
0GUIMAJHO B HAIIATA CTPAHA , BUCINATA MaTeMaTHKa ‘.

Coe 3axkon or 24.12.1894 r. 318 BY ce cp3masar darynrern, GaxkyITCTHU
CLBETH 1 C€ BLBEKAAT ILKHOCTTA MEKAH M 3BAHUATA Npo(ecop U IOLEHT,
a cvne 3akoH or 29.01.1904 r. BY ce nmpeumeHyBa B YHUBCDCUTET C TPHU ¢a-
KyJaTeTa, COMH OT KOUTO € (M3MKO-MATEMATUYECKUAT. B1LB BTOpHA OT Te3u
34KOHM M3PUYHO CE CIOMEHAaBAT Beue OQOPMUIJIUTE Ce KaTeApU BLB BCUUKK
dakyatern. [lo matemaruka Te ca: OCHOBM Ha BUCmIATa MaTeMaTuka, Bucm
anamu3s, leomerpus, Bucma anrebpa n Mexanuka.

Cnen T. Monsun u EM. MBanos, no 1897 r. Bkiaouurenno, 8L $Pusnko-ma-
TeMATUYeCKUA (QaKyaATeT MOCIEOBATENHO HOCTLIBAT MaTeMaTunuTe: AHTOH
Ioypex — ot 01.10.1890 r., Bramucnas Max — or 01.10.1891 r., Muxana
Mowmumnos — ot 01.10.1891 r., Aranac Tunrepos -— or 1893 r., Cunpu-
nou [amen -— ot 01.10.1893 r. ToBa ca mareMaTauwTe B HAMUA (QakKyJITeT
OT TaKa HAPEUYEHOTO [TLPBO MOKOJEHUE, KOMTO MOJaraT OCHOBUTE HA BUCIIETO
MaTEeMaTU4YeCKO 00pa3oBaHue y Hac.

Ot 1889 r. mo 1900 r. npectmxbT HAa Pusmro-maremarnyeckusa Qaxy.-
TET NMOCTENEeHHO HAPACTBa U JOKATO B HAUAJOTO HA TO3M NEPUON Ce MU3Ka3BarT
OTIACEHUA, U€ HAMA JAa Ce HAMEDAT JOCTATBLYHO KaHAUIATH 32 3alMCBaHE B
HEero, TO B Kpaf HA TO3W NePUOo] TOH IOUTY HAI'LJHO 33J0BOJABA HYXKIUTE HA
CTPAHATA HU OT YYWUTEJM, a [TO-K'LCHO M 33 HPENoJaBaTe]u B CaMUA HEro.

IIupBuAT BUMYCK , U3MKO-MaTeMaTuuu®, 3aBLpumuin npes 1892 r., ce
cuerom oT 16 muTOMIM OT PasJMYHM Kpauma Ha crpanara”. Ot anbywm, 3a
KOHTO ce cmomenasa B kH. 9 u 10, 1942 r., ma , Cnncanve Ha (pU3MKO-Ma-
TEMATHUUYECKOTO APYHKECTBOY, Ce BIDKAA, 4e Te3W MLPBU NUTOMIM ca: Kupua
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Ixaros or Kapnoso, Tonop O6pemkos ot Tunpuoso, Xpucro Maszes 0T c.
Panxkosnu — Tpesnencko, Tomop Jobpunos or Ceumos, Usar Kyommxues
or Ecku Dxyman, Msan II. dumues ot c¢. Crpanmra — fAmGoncko, Tomop
Tomopos or Cnuser, Crepan Panocnasos or Tupuoso, Msan ['apsanos ot
Cr. 3aropa, Kocra Arasacos or Topuoso, Togop Cesemapos ot Yupman,

Bacun Pycues or Bsana wepksa — Twpuoscko, Uaua T. Uaues ot Crapa
3aropa, Meronuit Gosxunos ot ¢. Kpusa 6apa — Jlomcko, Tomop Panos ot
¢. Anu nama — Yupnaucko n Anron Kpaskos or Ka3zannbk.

B nutupanua maTtepuas yereM cienHaTa Genexka: , Penaxkumara TLpcu
noprperute Ha Il Bunyck — 3apnpmuiaure npes 1893 r. “ He 3Haem naau TOBa
’KemaHue Ha pedakmmaAra oT 1942 r. ce ¢ ocLIecTBUIIO, HO MOXKe DU IposBe-
HUAT OT HesA UHTepec TOoraBa TpAOBa Ia HU NOACETH U 3a HAKOW LEHHOCTH,
cBLp3aHu ¢ ucropusara #a PMU, xouTo u aHec Gu Guso mobOpe Oa BLPIIUM.

II'.pBuAT DOmeHT BLB (akyNTeTa — HEroB BL3MUTAHUK, € [eopru Cros-
HOB, HazuaueH npes 1909 r.

IIpes 1907 r. CouiicKNAT yHUBEPCUTET, & 3a¢AHO0 C HEro M ®usmxo-mare-
MATUYECKUAT (DAKYJATET MPEKAPBAT TEXKKO uanuTanue. [lopagu OCBUPKBAHETO
Ha PepIuHAHA OT CTYIEHTUTE, YHUBEDCUTETDLT € 3aTBODEH, a npodecopure
ca ysoaHenu. Clen HAKOJKO MECEla YHHBEPCUTETDLT € OTBOPEH U Ca Ha3Ha-
yeHn apyru npodecopu. Crexn omie HAKOIKO Mecena obade APYr MUHUCTLP
YBOJIHABA HOBOHA3HAUEHUTE NPOGECOPU U BL3CTAHOBABA CTApUTe.

Ciren nBe roAyHM HOBO HEUACTHE CHOJETSIBA MATEMATUUYECKUA UHCTUTYT.
Bwe BpL3ka ¢ne cramnan mexay npod. Cu. [ames u crymentn mpes 1910 r.
npodecopure Em. Vpanos u Atr. TUHTEPOB AEMOHCTPATUBHO HANYCKAT YHU-

dur. 3
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o1 1963 r. KaTo uspas Ha yBaKeHWe ¥ NPU3HATETHOCT KbM 1e0To Ha Hukona
Obpewkos caen cubprTa My Oe yupenena sarpagsa H. O6pemros®, koaTo
ce IPUCLEIA 3a 0CODeHM mPpUHOCH B 0DAACTTA HA (PUIMKO-MATeMATUYECKUTC
Haved. Yuumpa #a 11.08.1963 r.

TperoTo nokosenue npodecopu-MaTeMaTunn, paboTnian L PU3nKo-ma-
rOMATUYCCKUS PaxyaATeT, noBexaa npod. I'eopru Bpaauctuios, a caes Hero
7O FONMHMTC Ha PAKIAHE ce HApExRAaT npod. Laarosect lonamunen, axai.
Gosr [erxamans, npod. Anmnum Marecs, akan. Jlwo6ouup Waues, un. xop.
npog. Spocnas Tarammnuru., KoM cnmoro nokonenue tpadsa ga 100aBuM u
aonenture letko Upanos, Mopran Hyitues u Jumurpuura Hlonosa. Topa
NOKOJICHUE IPOALIEY TPAIUIMATA Ha BTOPOTO A Ce CTPEeMU A& MOLILPHAKA
PABHUIETO HA HAVKATA Ha HUBO. OJU3KO AO CBETOBHOTO, U 44 MOACOTRA Ka -
pu. KoUTo Ja 6LaaT nocToidHu Herosu 3avectHunu. (Ocobeno npoAyKTUBEH B
TOBA OTHOLICHHE Oelle HAYYHUAIT KPLKOK 10 HUDEPEHIMATHO U UHTETPAJHO
cvsTane Ha npod. H. Taramumnxku. Tperoro mokoneHwe, KakTO U MTLPBOTO,
oTeaa 0cobeHo BHMMAHME HA M3NPAN[AHeTO Ha CHeNUAJU3AHTH B 4y:KOUHA.
ToBa MOKONIEHUC TPOALIKMA TPAIULMATA A CE TPUAU U Ja Ce YYBCTBA OT-
IFOBOPHO 33 ODYUCHMETO MO MATCMATHUKA y HAC HAa BCUYKU DABHUINA U Ja71e
A00LD TPUMEpP B TOBA OTHOWICHUE HA CJEABAIATC HOKOJEHUS MaTeMaTHUIM.

Ipu npoexaanceTo Ha [ILpBaTa MexIyHADPOAHA MATEMATUUYECKA OJIUM-
MIajad, a U HAKOJIKO MOJMHU CJIE TOBA, HAYYEH P'LKOBOAUTCI HA OLITApPCKUA
othop e mpod. A. Marees. 3ap1pmBamara nNoArOTOBKA HA 0TOOpa OT TOTaBa
M 0 JHCC CE MPOBCKAA OT CKUNM, CLCTABCGHU IIPEIUMHO OT MATEMATUIM OT
daxvatera u or MW opu BAH. Caen npod. A. Marees nay4daure pLKOBO-
auTeau Ha OLATApCKUTe 0TOOPH CDIMO BUHATH ca Duam OT (PaKyaTeTa uau OT
MW uwa DAH.

Tpez 1961 r. no MHUNUATUBA HA MJIAJUTE TOMABA ACUCTEHTU OT (haKyJ-

reta Mopaan Kyunsos n Wpan anues 3a npLB LT He ¢avMo B DBLarapus, a
n B cpeTa, ce opraEm3upa HanmoHaner panuo-KOHKYPC IO MaTeMaTHKa. 1ol
OCHrypABAILIC HA BCHYKM VUEHHLM C MOBUIIEH MHTEPEC M0 MATEeMATUKA B IIPO-
abmkenue Ha 10 roauHEY e IHAKBU BL3MOMXHOCTH 32 PAa3BUBAHE Ha yMEHUS 3a
POIIABAHC HA 33424l CLC CJIGKHU permenuda. [Ipes To3u mepuos OCHOBHATA
YACT OT YUYACTHALUTE HA MEXIYHAPOAHATA MATeMaTUYeCKa OoJauMInana Os-
X AKTUBHM VUACTHUOY U B PAAMO-KOHKYpCA. MHOro OT TAX JHEC Ca MEXIY
BOICIIATE HAYYHU PAOOTHULIM O MATeMATUKa B Duuarapus.

Makap u ¢ TedeHue Ha BPEMETO BCE MO-TPYIAHO & MOMKE Aa Ce OTIACIAT
CHHO OT APYTFO HOBUTE MOKOJEHUS MATeMATUIM, CMATaM, Ye MOMKe /ia OTHe-
JAUM UeTBLPTOTO noKoJeHwe mareMmaruny BLB PMEP. Tora moxosenue Moke
fu Tpabsa ma 3amouneM ¢ non. Aznexcananp ['LOHOB, ILPBUAT MaTeMaTHK-
ACIIMPAHT 3aTUTUN KaHIUIATCKA IMcepTalud B'LB dakyaTeTa npe3 1953 r., u
na apoanikuM ¢ npod. s, Uobanos, npod. Ba. Yaxanos, nou. Losu Ilen-
kop, npod. Hotunn Hoituunos, non. Bacua Huamanaues, npog. Padvo Hen-
uep, gou. Juvmurup Humurpos, non. Kupua Houes, non. dumuttp dobpes,
qon. Hukona Maprusos, gon. Tarana Apruposa, npod. Togop Tenuen, akan.
Bararopect Cenpos, npog. 3anpsad 3anpasos, upod. I'posno Cranunos, mom.
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Mpanka Msaunosa, npod. dumursp Cropaes, non. VMopaas Kyumnos, now.
Wpan TNanues, mou. Kocranun Ilerpos, npod. Meanr IIponanos, mou. Axamu
Jlanros, npod. Huxonatt Xamxkuusanos, cr. H. ¢. Muxaun aBpusnos, go.
Humvntsp Mumkos.

Ocobena 3acayra Ha TPETOTO NOKOJEHUEC MATEeMATUIM €, Ue IMAABHO IO
BPEMETO HA HEroBaTa akTUBHA JAEHHOCT ce IOCTAaBA HAYAJIOTO HA UHPOPMATU-
KaTa y HaC CLC CL3ZaBaHeTo npe3 1959/1960 r. cLe cTyAeHTH MO MAaTeMaTHKA
ot III kypc va npodun , Msuncaurenna maremarura“. KaxTo 3a mocrassaze-
TO Ha TOBA HAYAJO, TaKa M 33 MO-CETHEIUHOTO PA3BUTHE HA M3YUCINTETHATA
MaTemaTuKa 0co0eHo rosemu 3acayru uma akan. JI. Mianes.

Oxono 10 roguun npesu toBa BLB PME ce nocrasa v HAYANOTO HA M3Y-
yapaHeTo Ha MeTtoauka Ha oOyuennero no maremaruka (MOM) B camus da-
KYJITET, B PAMKUTE HA OOydYeHMeTO Ha CTyNEeHTUTE, FOTBEIN CE 33 YUUTEIH.
Topa sBREHME M3UTIpPaBa CLINECTBEHA OJNOMKUTEIHA POJA 33 W3TPAXKAAHETO
#a MOM kaTo CLBpPEMEHHA CHUCTeMa OT HAYYHU 3HAHUS U Ha KaApPU, KOUTO 14
Pa3BUBAT Ta3W CUCTeMa Ha DaBHUIIETO, HA KOETO Ts € B CTPAHUTE C Pa3BUTO
YUMIMIIHO obyueHue no matemMaTuka. OcCoBeHO rOJEMU 3aCayru 3a yCHeXuTe
HU B TOBa oTHomeHue nMaT gou. II. Meanos u npod. A. Matees.

[ITe cu 1103BOJMA 4a IPUNOMHA CLBCEM HAKPATKO Kak Oele IOCTABEHO CIIO-
MEHATOTO MO-TOpe HAavaJo Ha Pa3BUTHETO HA MHGOPMaTUKATA (TAKLB TePMUH,
pas3bupa ce, Torasa Hamauie) npean 40 rogunu 818 PMP na Coduitckus yHu-
pepcurer 1 B Maremarudeckus ugctutyT Ha BAH. I1o onosa ppeue Tesu npe
HAYYHN MHCTUTYLMH paboTexa Taka equHHO, 0CODEHO NpH NMOCTABAHETO HA
HAYaJIOTO HA M3UMCIMTEJIHATA MATEMATHKA, Y€ a C€ TLPCU HAKAKDLB MPUOPU-
TCT Ha eJHATa COPAMO APYTaTa, CNOpeXx MeH e De3CMUCIeHO. 3a TOBA BpeMme B
MOKJIAAa CU Ha TLPXKECTBeHaTa cecus no caydait 100 roaMuan oT ¢1L31aBaHETO
Ha Qakyiarera npod. II. bupres kaza: , lanoro passurue ma uadopmarukaTa
3anouHa B Maremarnueckusa mrctutyT npu BAH un 818 $MP npu Coduiic-
kusg yHuBepcuteT. ToBa passuTre Gellle 3aKOHOMEPHO U HEU30EKHO, HO BLPXY
Hero Bausiexa un cybexktunHu dakropu. IIpeura Geme cu3namoro ce 8 CCCP
OTPUIATENHO OTHOLIEHME KLM KuOepHeTHraTa, npenecero y "ac or T. Ilas-
noB. Drnaronpusres ¢paxkrop Hemwe enepruunara u gobpe miaHMpasa JeHHOCT
va Jlwbomup Maues. Tasm mefiHOCT ce OCLIMECTBABAIIE B TPU OCHOBHU HAII-
pABJIEHUA:

1. IoxroToBka Ha KaapH.

2. Cn3paBaHe HA OPraHU3AIMOHHU BTL3MOMKHOCTH.

3. OcurypsBaHe Ha TEXHUKA.”

Kazanoro 3a nmeitHoctTa Ha axan. JI. Mnues kato dakrop B mocouenu-
Te TPU HaIpaBjeHUA B HayaloTo Ha 60-te roguau Ha 20 Bek e egHa TBLPAE
CKpOMH3, oneHka. Makap u ga 06Ax ToraBa cTpaHuYeH HabjaogaTen Ha Ta3ud
EWHOCT, cMes Ja TBLPJASA, 4e [IOHE TOraBa Toit Oeure riaBHUAT U CTPATEr HE
camo B MU na BAH u ®M® na Coduiickus yrusepcurer, Ho U B Bnarapus.
Herosy npBr IMOMOIMHUI B TOBA OTHOIIEHUE HAXA MJIAAUTE TOTABA, HALUIM KO-
aern Brarosect Cenpos u Bosn enkos. Te, zaenno ¢ Anocron O6perenos,
faxa M NLPBUTE NpenojaBaTenu B cL3gazeHara upez 1959/1960 r. nupsa
CIenMain3anua y HaC IO M3YUCIUTENHA MATeMATUKa. 1l1LpBuTe crienuanv3aH-
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Tu B Tas3u cnenmanusamma 0axa Jnuursp lumkos, eopru Henues, Becenmn
Croupunonos u Credan [enues.

IIpes mecen 1orm 1961 r. Geme u3npatena Ha ALATOCpOYHa pabora B Jdy6-
ga B 6uBmma CCCP 3a oBnangsawe Ha paboTaTa ¢ Bede CL3NALEHHTE TaM
ECM nuppara OLJArapcka rpyna OT MaTeMAaTULUM M WHKEHEDH.

Tarxosa Oenle HauanoOTO, & 33 M3KIIOUYUTETIHO OLP30TO pa3BUTHE HA U3-
YMCJIUTENHATa MaTeMaTuKa cJlael ToBa BLB dakynTera u MU, a or tam u B
Loarapus He ce CYMTaM 3a KOMIIeTeHTeH na roeops. Camo me ordenexa, de
JAMYHO HA MEH MM € TBLDJC HeNPUATHO, KOMATO B MO-HOBO BPEME C€ TOBOPU 32
rOJICMUTE YCIEeXK Ha OBIrapckuTe nHGOPMATULNM, Te 1a ce IPUIMCBAT UM Ha
OpYTH MHCTUTYIUY, MJIM I3 CC PA3TIASKAAT KATO NOABMIN CE€ HAKAK OT CaMO
cebe cu.

ITpe3 1963 r. MarteMaTUYeCKUAT GAKYITET C& OTIALNU KATO CAMOCTOATEN-
HO 38cHO Ha CoduiicKUsA yHUBEPCUTET C NLPBU Aekad upod. A. Marees. Toit
KaTO TOBA OTAeJsiHe Oelle HEeXeNaHO OT KOJIEeruTe Quautm, geinoctra xa Ma-
TeMaTHYeCKusa (akyareT Oelle MHOTO 3aTpyAHeHa. 1ol mpujinualme Ha U3-
FOHEHO MJIAJA0 CEMEHCTBO OT HEeJOBOJHHU BL3PACTHM pomuTenu, Oe3 ma My ce
e HIKAKBA MOKLIHMHA. Daaronapenue Ha obwuTe yCUIUA Ha UAJATA Ma-
TCMATUYECKA KOJIETMsA TOTABa MOA PLKOBOACTBOTO HA NLPBUS, a CJAEI TOBA U
Ha BTOpUs JgekaH Ha MaTtemarwdeckus dakrynarer, noi. Anexcauanp ['LowOB,
y ¢ uomomura Ha Koserure or MU wa BAH paGorara BLB daxynrera cropen
MEH Ce pa3BUBalle MHOro .106pe.

Ha 08.12.1970 r. crymernTtute n npenonasatenute ot Paxynrera mo ma-
TEMATUKA Y MEXAaHUKA NPEeKUBAXME M3KIoUnTesHo cnbOutue. Ham roct no
BpeMe Ha TLPYKEeCTBEHATA Beueps [0 Caydall CTyAeHTCKUA NPA3HUK belle KOH-
CTPYKTOPDLT Ha IILPBATA B CBETA €JEKTPOHHA CMETAUHA MAIIWHA, aMEDUKAH-
CKUAT yueH oT Opvarapcku npowsxon xon Aramacos. [lo urunuarusa Ha
toraba Maaaua upodecop La. Cennos, Toit Beme mokanen kato roct Ha BAH
u yaocroer ot Ilpesnnuyma va Haponnoro cunOpanue ¢ opuren ,, Kupua u Me-
ronuit“ I creneH. -

B kpas »a 60-Te roausmn uETErpaunoHeEuTe BpL3kn Ha $Pakynrera mo mare-
yvaruxa u nadopmarura ¢ MU na BAH ce pasmupuxa u 3aa1La604mMxa TOIKO-
Ba MHOTO, Y€ CLBCEM eCTECTBEHO ce OOCTUrHA A0 C1L.3aaBaHero Ha EIIITKMM
npes 1970 r. (cnrpareno EIIMM), korato Beue nexkan Ha MP Geme nou.
Jouunr Hokuunos. KoM MoMenTa Ha cu3naBanero Ha EIl npes 1970 r. B
MaremaTuueckus daryarer umaire 8 karenpu: Bucma anrebpa, ['eomerpus,
Indepernmanio ¥ MHTErpasHo cMmarare, Bucm ananus, Mexanuka, O6ma u
NpUIOKHA MaTeMaTuka, V3uucianrensa MareMmarmka M Meronuka Ha oDyue-
HUeTO 10 MaTeMaruka. llpu cp3zaBanero Ha EIIMM or karenpure ma M®
n or cexnumte Ha MU npu BAH 6sxa cu3mamenu 13 mHTErpupanu 3BeHa,
mapeuenn cexropu. Cn3nanena Oelle M HOBA CTPYKTYDa HA OPraHM3AIMATA
Ha CIeNUaJHOCTUTE, CLOTBETCTBAINA HA €4Ba CEra yTBLPIACHATA 33 UAJIATA HU
crpara 0aKaJaBLPCKO-MArucTLpceka cuctema. Cru3gageHa Geme CLIMO Taxa
1 HOBa OPraHM3anusa Ha yueDHMsA MPOLEC, KOATO BIOCJHeACTBHE Deme mouTu
M30CTABEHA.
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[To pa3nyWyeH HAUYMH CC BBL3NPUE TOTABA CL3JABAHETO Ha EIIMM ot pa3z-
mrann kostern kaxkro oT M®, raka n o MUW. Hemo noseue, pasmuunnre ones-
KM Ha CL3AABAHETO W cbwecTByBanero Ha EIMM kato spienwe m mocera ca
daxr. TLpxecTBeHMAT XapakTep HA QOPYM KATO HACTOMINMA 0faue He MU
MO3BOJIABA A4 CE ONMUTBAM [l OIEHABAM KOM CA NOJOMUTETHUTE U KOU — OT-
punatennure nociaencTsmnsa. Mowe OM ¢AMHCTBEHHAT (GAKT, KOHTO Torapa Ce
npueMalle eIUHOAYIIHO KaTO MOJNOKUTENHO MOCTCACTBUC OT UHTErpal[UATa.
Gee HABAHETO HA caMocToATesHAa crpaja Ha M® u ornyckameTo ua 3mauu-
TeIHW QUHAHCOBU CPEACTBa 33 ob3amexmamero u. Kakpa HaydHA npomykund
mapaxa 13-Te cexTopa, HC Ceé HAaeMaM Ja OUCHABAM, HO CMATAM, de MMAIIe
[IOHC CIHO ABJCHUC, CBLP3AHO ¢ HAYYHATA ACHHOCT B THAX, KOETO MOBEYETO OT
KOJICTHTE ONEHABAT KAaTO HoJoxuTenHo. ToBa ca eykeromHuTe HAYUHO-OTUETHU
KOH(EPEHIUU, KOUTO Ce MPOBeXJaxa Mo CCKTOPU.

Hokato Heme 3Bero, Gpynrumonanno warerpupano ¢ MU wa DAH, Ma-
TCMATUYCCKUAT (PaKyJATeT ABa I'LTU CMCHM MMETO CHM: OTHa4asio mpes 1970
r. 1ol Oeme HapeueH PaxkyaTeT IO MATEMATHKA M MEXaHHUKA, & MO-KLCHO ~—
daxyarer o Maremaruka u uapopmarura. EIIMM Geme pasdgopMuposan B
kpad na 1988 r. u ot Hauasgoro Ha 1989 r. $axynTernLT Mo MareMaTuka u
UH(GOPMATHKA CLIIECTBYBA KATO CaMOCTOATENHO 3BeHO camo Ha CY  Cs. Ki.
Oxpuncku®. Torasa B mero 6axa chopmupanu 14 xarcapu u 3 naboparopuu.

IIpes mocaegaute 10-15 roquHyM M3MEHEGHUC NPETLPHA ¥ HOMEHKJIATY PaTa
HA CIELMUAJHOCTUTC BLB (AKYJITCTAa, KOATO € B CLOTBETCTBUE C HOBUTC MOT-
pebrocTy Ha OBLIECTRBOTO.

Tlpemu 1a M3KaKa 3aK/IIOUUTENHUTE IyMHU Ha CBOA OOKJIAJ, CMATAM, 4e
tpabpa Aa CHOMEHA MMEHATA M Ha KOJeruTce, Kouto OAxa AexkaHu Ha (axyire-
ra cren moiu. dowunu Hoftunuos. Tosa ca: akan. Ba. Cenpos, mon. JuMurshp
Junutpos, npod. Pauo lenues, npod. Fenuo Cropaer, npod. Loan JInmut-
pos, c¢T. . ¢. Muxaun aspunos, npod. Emun Xoposos. Ha Benmurn Tax u
Ha TEeXHUTE MOMOIIHMIM Tpsabsa aa cMe 6arofapHM 38 yCHIMATA, KOUTO HO-
garaxa, 3a JAa MOKe (QAKyJnTeTLT HE CaMo Ja CLINEeCTBYBa, HO M HE3ABUCUMO
OT pa3audYHUTe TPYIAHOCTU TOW Aa Ce Pa3BMBA, A4 C€ Da3sBUBAT HECOBUTE Kal-
pu, Aa Ce Da3BMBa Heroeara Marepuanasa 6a3a, 1a NOATOTBA BLIMATAHULMU,
TLPCEHU U NPU3HABAHM HE CaMO Yy Hac, HO u B 4y:kOuna, ma noamomara pas-
BUTHETO HA MATEMATHUYECKUTC KaJpPU U B CL3AALEHUTe ciel Hero apyru BY3
B Buarapus.

B saxJoueHue e CU NO3BOJA A& IPEMNOKS HA MOYMTAEMOTO CLOpaHMe
A TOMUCTINM AaJu He e nobpe, xaxto npe3 1882 r. Upeuek, I'enuen u Banos
ca moGaHTA3UPAINA 33 CL3AABAHETO HA OLATAPCKM YHUBEPCHUTET U HUE HAKOrd
na modaHTasupaMe Aa IpeBbLPHeM CrpajaTd Ha HaWMa (axyJITeT B HOB BUI
cpeaume; B CPEIUINE, KOETO U CLC CBOUTE KOPUAOpH, Qoaiera u CTEHH y4du
Ha MATEMATHKa, BL3ANUTABA YBAKEHUE K'LM TO3M Hall-BUCII TPOAYKT HA YOBEII-
Kara JOTMKa, KLM HEroBaTa UCTOPUHA, KLM HErOBUTE TBOPLH, KATO 3aMEHUM
BUCALLMTE MO LEJU MECeIH MO CTeHUTE OKLCAHU IJIAKATH U CLOOIICHNUA, MOHA-
Kora HAMAIIM HUINO OOINO ¢ OCHOBHATA AEHHOCT Ha (aKynTeTa, CLC CKPOMHA
VEKpaca, NPeACTABANA HAYKATa MATEMaTUKa U HEHUTE TBOPUM.
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REMARK ON THE NON-INTEGRABILITY
OF THE PERTURBED MOTION OF THE PARTICLE
IN A CENTRAL FIELD IN CONSTANT CURVATURE SPACES

OGNYAN CHRISTOV

In the recent article [1] Kozlov and Harin generalize the motion of a particle in a central
field to the case of constant curvature spaces. In this remark we show that the problem
of the non-integrability of the perturbed motion in a central field on the sphere and on
the Lobachevski’s space is reduced to the flat case considered by Holmes and Marsden
using Melnikov integrals.

Keywords: constant curvature spaces, central field motion, non-integrability, Mel-
nikov integrals

MSC 2000: 37J30, 70F05, 70HO7

1. INTRODUCTION

In 1] Kozlov and Harin generalize the motion of a particle in a central field
to the case of constant curvature spaces. They study mainly the cases when all
orbits are closed. It turns out that these cases are analogous to the gravitational
potential and to the potential of an elastic string. Another important result is that
the integrability of generalized two-center problem on a constant curvature surface
is established and it is shown that the integrability remains even “elastic forces”
are added.

It is natural to consider also the non-integrability of perturbed motion of the
particle in a central field in constant curvature spaces. More precisely, we consider
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the interaction potentials which allow separatrices in the dynamics of the unper-
turbed problem and these separatrices split after small perturbation. As a tool we
shall use the so-called Melnikov’s integrals [2].

In this note we shall show that the problem of non-integrability of the perturbed
motion in a central field on the sphere and on the Lobachevski’s spaces can be
reduced to the flat case, considered by Holmes and Marsden [3]. We shall first recall
briefly their result, which is an example of a more general treatment of Melnikov’s
theory.

Consider the perturbed Hamiltonian

H* = HO(r,p,,pg) + H (r,pr, 0,p0) , (1)

where m = 1, (r,6) are the usual polar coordinates,

-1 (pa ; ?—§> V(). 2)

Let V (r) be a potential with a single maximum, so that for suitable values of ps # 0
the effective potential has a minimum at r_ and a maximum at r4 (r— <r4) and

V(r)+pi/(2r*) 50 as 0.
Thus H? has a homoclinic orbit

where
7ty >y, Dr(t)—=0 as - Foo,

t
pr(0)=0, Pa#0, 6(t) :/ Q) dt.
0
The derivative Q(t) = GH®/0py is evaluated on the homoclinic orbit.

Proposition 1 ([3]). Let the Melnikov integral

M (6)) :/_Oo {Ho%l} (t,60)dt,

X0

where {-} is the Poisson bracket, have simple zeros as a function of 6g. Then for
a sufficiently small €, the system (1) has Smale horseshoes on the energy surface
¢ = h and hence it is non-integrable.

The note is organized as follows. In section 2 we consider the motion of a par-
ticle in a central field on 3, following Kozlov and Harin [1]. A simple construction
reduces the problem to the flat case, already discussed in the foregoing. In section
3 we consider briefly the situation on Lobachevski’s space. We conclude the note
with several remarks.
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2. MOTION IN A CENTRAL FIELD IN S3

In this section we consider the analogue of the classical problem in a central
field on S3. We follow closely Kozlov and Harin [1]. Consider the particle P with
unit mass moving in a field of force with the potential V', depending only on the
distance between the particle and some fixed point M (say the north pole) on the
sphere S3. Let 8 be the length of the arc of the great circle connecting the points
P and M. It is well-known that the potential of gravitational interaction satisfies
the Laplace equation. Then V" has to be a function of the angle § only and the
Laplace equation has to be replaced by the Laplace-Beltrami’s one

Io} 5 OV
_— 1 72 —_— i 2 —_— =
AV =sin 989 (sm 088) 0.

Its solution is
Y

Ve — + o,
tanéd
where «, ¥ > 0 are constants. It is seen that in addition to the attracting center
M, this field has a repulsive center at the antipodal point M’. It is proven also that
when V is an arbitrary function of 8, the trajectories of P lie on two-dimensional
sphere containing points M and M’.
Let (8, ) be the spherical coordinates on the above mentioned two-dimensional

sphere. Then the Lagrangian is

1 /. .
L:i@%mmww)~vw, V() = U(tan ).
Introduce the polar coordinates by
9
=, r:cotani,

see Fig. 1. (A slightly different construction was used in Dubrovin et al. [4] or
Kozlov et al. [1].) In these variables the Lagrangian becomes

1/ 42 4r2g? -
L‘§<u+ﬂy+u+ﬂy>_w”'

e~

Fig. 1
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Next, introduce the “new” time by

ds = (1+7r%)dt/2.

The ‘prime’ denotes differentiation with respect to this new time variable, ' = d/ds.
Then 1
L= 3 (1"2 + 7‘2(Lp')2) —U(r).
Passing to the Hamiltonian, we get
o 1( 5 P} 2
H ‘—‘-5 p,,+;2~ +U(T)> (3)

which has exactly the form (2) and hence it is integrable.
Consider a small perturbation of the Hamiltonian (4), namely

HS =H 4 eH (r,pr, 0, Dy)- (4)
The following proposition is true:

Proposition 2. Given a potential V' (6) such that U(r) has a single mazimum
and for suitable values of p, # 0, the effective potential has minimum at v and
mazimum at s (r- < ry) and U(r) —|—pi/(27‘2) — oo asr — 0. Thus, H® = h
has a homoclinie orbit. Then, if

oC Hl
M(‘Po):/ {Ho,ﬁ}(t,wo)dt,
— oG
evaluated on the homoclinic orbit, has simple zeros, the system (4) is non-integrable.
Remark 1. For instance, the class of the potentials of the form
Ulr) = ar? — br,

with positive constants a, b, satisfies the requirements we need.

3. MOTION IN A CENTRAL FIELD IN LOBACHEVSKI'S SPACE

This case is similar to that of the previous section and therefore it will be
briefly discussed. Let (x, ) be the polar geodesic coordinates. Then the potential
V (x), analogous to the gravitational potential, has to satisfy the Laplace-Beltrami
equation

m':sinh—’zxﬁ— sinhQXa—V =0,
dx ox

see {5]. Its obvious solution is
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where «, v > 0 are constants.
Consider now the Lagrangian of the point with unit mass with more general
potential V{(x) = U{tanh x):

1, .. 0
L=3 (X* + sinh® x¢?) — U(tanh ) .
Introduce the polar coordinates

=, r:tanhg (r<1).

Then L reads

BYARG 43\ -
L= (T ) 00

Let us introduce the “new” time, whose definition in the case under study is
ds = (1-r?)dt/2.

Passing to the Hamiltonian, we get now

o= 2 <p$ + p;) LU, (5)

2 2

which has ezactly the form (2).
Consider, once again, the perturbed system with small Hamiltonian perturba-
tion
H® = H+eH' (r,pr,0,D,) - (6)

The following proposition is true.

Proposition 3. In the conditions of the Proposition 2 (note that here r < 1),
if the Melnikov function M (pqo) has simple zeros, the system (6) is non-integrable.

We shall conclude the note with several remarks.

Remark 2. Similarly to Holmes and Marsden [3], it is to be noted that for
almost all choices of U(r), the function M () has simple zeros.

Remark 3. The foregoing problem can be considered as well in higher dimen-
sions. Then the Melnikov’s vector can be used (see Wiggins [6]), but certain KAM
conditions are needed.

Remark 4. It is seen that the analogue of the classical Kepler problem does
not fall in our cases, since it does not possess a homoclinic orbit. We believe
that the methods, used by Yoshida [7], can be applied to it for certain classes of
perturbations, see also [8].

Acknowledgements. The partial support of the Bulgarian Ministry of Edu-
cation and Science under Grant No MM 608/96 is acknowledged.
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In this paper necessary and sufficient conditions for a family of finite functions and a
family of totally recursive functions to have a universal partially recursive function are

given.
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The problem of finding necessary and sufficient conditions for a given family
of partially recursive (p.r.) functions (recursively enumerable (r.e.) sets) to have a
universal p.r. function (r.e. set) is one of the interesting problems in the Recursion
theory. For example, if we want to find a recursive model for a given recursively
enumerable theory in some cases, we have to know if a given family of recursive
functions has a universal recursive function or not. It is well-known that the family
of all p.r. functions (r.e. sets) has a universal p.r. function (r.e. set), while the
family of all recursive functions (totally defined on some N™) has no universal
recursive function. On the other hand, in the works [2, 3, 5] a related problem
is considered. Some necessary and some sufficient conditions for the family of all
recursive functions and some finite initial functions to have a universal r.e. set are
obtained.

In [1, 4] Ishmuhametov and Selivanov have obtained sufficient conditions for a
special class of families of r.e. sets. In [6] the author has characterized the families

* Research partially supported by the Ministry of Education, Contract No 1-604, 1997.
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of finite sets which admit a universal recursively enumerable set. But until now
such a necessary and sufficient condition is not found for arbitrary families of r.e.
sets (p.r. functions).

In this paper we notice that the characterization of the families of finite func-
tions which admit a universal partially recursive function is the same (in some
sense) as in the case of families of finite sets of natural numbers [6] and we give
necessary and sufficient conditions for a given family of recursive functions to have
a universal recursive function. We want to stress the analogy between both cases.

Here we use N to denote the set of all natural numbers {0,1,2,...} and N, to
denote the initial segment {k | k € N& k < n} of the set N. We suppose that there
is some fixed effective coding (.,.) of the pairs of natural numbers and Az.(z)o,
Az.(z); are such recursive functions that ({(zo.z1))o = %o and ((zg,z1))) = 7.
If fis a partial function, we use Dom(f) to denote the domain, and Ran(f) to
denote the range of values of the function f. In the case when Dom(f) C N* and
Ran(f) C N, we shall write f : N* —» N, and if Dom(f) = N* and Ran(f) C N,
we shall write f : N¥ — N. For the sake of simplicity, we use mainly unary functions
defined on a subset of N. If f and g are functions, we say that f is a subfunction
of g (and write f C g) iff Va(z € Dom(f) = = € Dom(g) & f(z) = g(x)). We
say in such a case that g is an extension of the function f, as well. Denote by 6,
the finite function with cannonical index v. For example, if 8 is such a function
that Dom(6) is finite and Dom(8) = {z1,..., 2}, 21 < ... < xy, then we can
. L 271 38(=1) o=k 38(7g) . . .
consider v = pg.p; ... Di . Here pg, p1, ... is the increasing sequence
of all prime numbers. If Dom(8) = Ny, for some natural k, we say that 6 is defined
on an initial segment. By . we denote the e-th partially recursive function in the
standard enumeration of the partially recursive functions.

Let ¥ : N2 —e» N and ¥ be a family of partial functions defined on N. The func-
tion ¥ is said to be universal for the family ¥ iff for any n the function A\z.¥(n,z)
is in the family §, and, conversely, for any function f € § there exists such n that
f=2Az.¥(n,z). If ¥: N*> - N, then ¥,, denotes the unary function Az.¥(n,x).

It is well-known [cf. 7, p. 38] that if ¥ : N? — N is a recursive function
which is universal for the family ¥, then there exists a recursive function
f: N?> = N such that for all n 8;(,0) C 04(s,1),-- and 1i£n9f(n’s)(;1:) = U(n,z),

ie. VnVa3seVs > s0(ff(n,s)(x) = ¥(n,1)).
The following theorems and their proofs are analogous to the ones in [6].

Theorem 1. Let § be a nonempty family of finite fuctions defined on N.
Then the family § has a universal partial recursive function iff the following three
conditions hold:

(i) The set V = {v | 3f(f € F& 0, C f)} is recursively enumerable;

(ii) The set I = {v |0, € F} is XJ (in the arithmetical hierarchy);

(iii) There exists such a partial recursive function h that

V C Dom(h) and VYo(v €V =0, C @pp) €3F)-

Theorem 2. Let § be a nonempty family of finite functions defined on N
such that for every f € T at most finitely many functions g exist in § such that
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[ Cyg. Then the family has a universal partial recursive function iff the following
two conditions hold:

(i) The set V. ={v | 3f(f € F&8, C f} is recursively enumerable;

(ii) The set I = {v |6, € F} is in the class X9.

Theorem 3. Let § be a nonempty family of finite functions defined on N such
that the set I = {v | 8, € §} is in the class TI9. Then the family has o universal
partial recursive function iff the following two conditions hold:

(i) The set V ={v | 3f(f € &b, C f)} is recursively enumerable;

(i1} There exists a partial recurswe function h of two variables such that the
following three conditions hold:

(a) Yo(v € V = An.h(v,n) is totally defined);
(b) Yo € VVmVng(nl <ng =6, C elz(v,m) - gh(v,ng));
(¢) Yo € VIn(Oppn) € F).

Now we shall consider the case of families with recursive functions.

Theorem 4. Let § be a nonempty family of unary recursive functions. Then
the family § has ¢ universal recursive function iff the following two conditions hold:
(i) The set V ={v | 3f(f € F& b, C f)} is recursively enumerable;

(i) There exist a family & such that § C & and a recursive function ¥, which
is universal for the family &, such that the following two conditions are satisfied:
a) the set I = {n| ¥, € F} is Y (in the arithmetical hierarchy);

b) there exists such a partial recursive function h that

V C Dom(h) and Vu(v €V =0, C ¥, € F).

Proof. Suppose first that the family § has a universal recursive function ¥.
Then the set

V={v|3f(feF&b, C f)}

921 30uv(e1) 2%k 30u(zp)

= {v| 3n3k3z; ... 3zx (v = pt.p? Dy,
&U(n,z) Z0,(z1)& ... &T(n,z) = 0,(xx))}

is recursively enumerable.

Fix &=F. It is obvious that the set I = {n | ¥,, € §} = N, so the condition a)
from (ii) is satisfied.

Let us define the function h as follows:

h(v) 2 pn[Fk3zy ... 3z 3y .. 3y (v = php? 3 R
& \I’(TL’Ll) 2y & .. & ‘Il(n,xk) > yk)]

It is clear that h is a p.r. function and satisfies b) from (ii).
Conversly, let the conditions (i) — (ii) hold and F be a unary recursive function
such that F'(0) = 1 and Ran(F) = V.
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In addition, let exist a family & such that § C & and a recursive function ¥,
which is universal for the family &, and a : N> - N be a unary recursive function
such that for all n

601(71,0) g 6)oz(n,l) C_: g ea(n,s) g Tty
and for all n and 2 lim 6,5, ) (z) = ¥(n,2). For the sake of simplicity, we suppose
s

that Dom(fy(,s)) is an initial segment for all n and s. At the end, let G be a
ternary total recursive function such that

nel < Javy[G(n,z,y) =0]

and h be a partial recursive function such that V' C Dom(h) and Vo(v € V
= 6, C ‘Ilh(v) € 3')

We construct the so-called strong recursive sequence of finite functions by steps.
On step s for any (n,z) we construct a finite function 8, , ) for a recursive
function g and at the end we will fix

O((n,z),z) =limby, 5 5 (2).

Let us describe the construction of the recursive sequence of finite functions.

Step s = 0. Take g(n,z,s) =1, i.e. Ognas) = 9.

Step s > 0. We consider two cases:

Case 1. Yy[y <s < G(n,z,y) =0].

Take g(n,z,s) = F(tngs), where tn,. s < s is such that Dom(fp, . .))
is a maximal initial segment in the set {Dom(fp(), ..., Dom(0F())} such that
O, ..y is a subfunction of the function ¥,.

Case 1I. Fyly < s& G(n,z,y) # 0]

Take gg(n,m,s) = Ha(h(g(,m’s(j_l)w), where So = [LS[G(TL,Q’J,S) # 0]

Thus the construction is completed.

Obviously, the construction is effective, so the function g is recursive.

First of all, we shall see that for all fixed n, 2 and z the limit lign Oyin.z,s)(2)

exists and belongs to the family §. We consider two cases:

Case 1. Vy|G(n,z,y) = 0]. Then ¥,, € § and for all s g(n,x,s) = F(tn ),
where t,, 5 s 18 such that Dom(ef‘(tn,z,s)) is a maximal initial segment in the set
{Dom(0F (o)), - .., Dom(0p(s))} such that §p(, , ) is a subfunction of the function
W,. Thus, 8,(5.2,0) € Og(n,e,1) € --. and the limit exists and it is U, (z), because
for all k there exists s such that {0,...,k} C Dom(f,(n.z,s))-

Case II. 3y[G(n,z,y) # 0]. Let so = us[G(n,z,s) # 0]. Then g(n,z,s) =
alh(g(n,z,s0 — 1)),s) and for all s > so by(n,z,5) = Oath(g(n,e,s0—1)),s)- Lherefore
the limit lign By(n,z,5)(2) exists and it is Ty(g(n,z,50-1))(2)-

Now let f € F. Then f = ¥, for some n € I. Therefore a natural = exists
such that Vy[G(n,z,y) = 0]. It is clear now that f(z) = ¥,(2) = lign Oy(n,z,5)(2)-

Define the function @ as follows:

lim6,, . »(2), ifk={(nx)),
N

fo(2), otherwise,
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where fy is a fixed element of the family 3.

It is clear that © is total, recursive and universal for the family §.

The following examples show that none of the conditions (i) - (ii) can be
skipped.

Example 1. Let A be a nonrecursively enumerable set. Define the family of
recursive finctions by the following equality:

@ ={ S

, otherwise.

Then let § = {fn | n € A}. It is easy to see that the family ¥ does not have a
universal recursive function but § satisfies the condition (ii).

Ezample 2 a). Let § be the family of all total recursive unary functions. It is
well-known that the family § has not a universal recursive function. On the other
hand, it is obvious that the conditions (i) and a) from (i1} are fulfilled.

Example 2 b). Let A be the set of cannonical codes of finite sets such that 4
is not in ¥9. Define the family & = {f,},en U {gv}ven of recursive functions by
the following equalities:

0, ifz€ekE,
1, otherwise,

(2) = 1, ifzekE,,
Jul®) = 0, otherwise.

Let § = {fu | v € A}. Tt is easy to see that the family § has not a universal
recursive function, but § satisfies the conditions (i) and b) from (ii).

Ezample 3. Let A be the set of cannonical codes of finite sets such that the
family § does not satisfy the condition (ii) from Theorem 1 (see the Example in
[6]). We define the family of recursive finctions by the following equality:

0, ifzeE,,
folz) = { 1, otherwise.

Then let § = {f, | v € A}. It is not difficult to see that the family § has not a
universal recursive function, but § satisfies the conditions (i) and a) from (ii).

For the next theorem we need to recall a definition. The total function A is
sald to be a boundary function for the family § iff for every finite subfunction 8 of
h there exists a function f € § such that 6 is a subfunction of f. If § is a family of
unary recursive functions and a function h exists such that h is a boundary, we say
that § has a boundary function, otherwise we say that § does not have a boundary
function.

e ={

2

Theorem 5. Let § be a nonempty family of unary recursive functions which
has not a boundary function. Then the family § has a universal recursive function
iff the following two conditions hold:

(1) The set V = {v | 3f(f € &0, C f)} is recursively enumerable;

(ii) There exist a family & such that § C  and a recursive function ¥, which is
a universal for the family &, and the set I = {n | ¥, € F} is X9 (in the arithmetical
hierarchy).
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Proof. The first part follows from Theorem 4. Let F be a unary recursive
function such that F(0) = 1 and Ran(F) = V. Let in addition a family QS exist such
that § C & and a recursive function ¥ exists, which is a universal for the family &,
and « : N*> - N be a unary recursive function such that for all n Bo(n,0) € Oain1)
C -~ Clan,s) C--- (again for the sake of simplicity we consider that D’om(ﬁa(n,s))
is an initial segment for all n and s), and for all n and = lim#b,, ;) (z) = ¥(n, 2)
and G be a ternary total recursive function such that )

ncl «— FaVy[G(n,z,y) =0]

We construct again a strong recursive sequence of finite functions by steps,
analogously to Theorem 4. Let us describe the construction.

Step s = 0. Take g(n,z,s) = 1,1e. Oynqeqs = 9.

Step s > 0. We consider two cases:

Case 1. Vy[y <s <= G(n,z,y) =0].

Take g(n,z,8) = F(tnazs), where tn o < s is such that Dom(0p(, , .)) is
the maximal initial segment in the set {Dom(fp()),. .., Dom(0r))} such that
Orit, .. 1sa subfunction of the function ¥,,.

“Case 11. Jyly < s&G(n,z,y) # 0]. Take g(n,z,s) = F(tne.s), where t, , s is
such that Dom(0p (4, . .)) is an initial segment, 8y, 5 s—1) C O, . ) and 0y, , )
is the maximal element of the set {fp(),...,0F ()}

Thus the construction is completed. It is effective, so the function g is recursive.

Analogously, we shall see that for all fixed n, z and z the limit ligﬂ O(n.0,5)(2)
exists and belongs to the family §. For fixed n,  and z we have to consider two
cases, but the first is the same as in Theorem 4, so we shall consider only the second
case.

Case 11. 3y[G(n,z,y) # 0]. From the construction it is clear that for all s
(nw.s-1) C Og(n,a,s)- Therefore, the limit hm9 (n,z,s)(%) exists. Let us suppose

that for some z € N the limit lim 8y, ; 5)(2) is undeﬁned. Then there exists sg such
mYg(n,

that for all s > 50 Og(n,z,5) = Og(n.z,s0)- On the other hand, 9p<tn‘mv30) C fegfor
some f. Since for all natural k a finite functions 6 C f exist such that Dom(#) =
Nis1 and 6 C £, then for all such 6 there exists s such that 6 (,) = 0. It is clear now
that 6,55 (2) is defined for some s, which contradicts the supposition that the
limit 11m9 (n,z,s)(z) is undefined. Therefore for all z € N the limit lim Og(n,z,5)(2)
§ S

is defined.

Assume now that lim#y(, , ;) does not belong to the family §. Then accord-

§

ing to the construction, natural numbers si, sz, ... exist such that Oy, z5,) C
Oyina.sy) C - and Oy 25 C Un, for all i. This means that limf,., ., is a

boundary function for the famlly 3.
The proof that if f € §, then f = ¥, for some n € I, is the same as in

Theorem 4.
At the end, let the function © be defined as in Theorem 4:

lim gg(n,:c,s)(z)v if k= <n7l'>7
(k,2) =4 °

fo(2), otherwise,
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where fo is a fixed element of the family . The theorem is proved.
Let us note that if a family of (total) recursive functions is finitely generated by
some effective operations, then the family has a universal (total) recursive function.
At the end, we shall note the following

Proposition 6. If the family § of unary total recursive functions has ¢ uni-
versal recursive function, then there ezists a family & such that § C & and the
family & is finitely generated by some effective operations.

Proof. Indeed, let © be universal for the family §. Fix the functions I, S, O
and f defined as follows:
I(z) =x,S(z) =z +1, O(z) =0 and

£(2) = { O(n,z), if z ={n,z),

0, otherwise.

Let us define the binary operation (.,.) between the functions as follows:

(F1, fo)(z) = {f1(2), f2(2)).
It is easy to show that the family &, which is generated from the functions I, S, O,
f, Ax.(x)o, Az.(r); by the operations composition and (.,.), contains the family .

Open problem. Given a family § of unary total recursive functions, which
has a universal recursive function, is it true that the family § is generated from
finitely many functions belonging to § by a finite number of effective operations?
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1. INTRODUCTION

In the present paper we are using the method of regular enumerations [9] in
the context of definability on abstract structures.

For the sake of simplicity, we consider only unary sets. All the definitions and
results can be easily generalized for sets of arbitrary finite arity.

Given two sets of natural numbers A and B, we say that A is enumeration-
reducible to B (4 <, B) if A = I',(B) for some enumeration operator I'; [7, 1,
3, 5, 8]. In other words, if D, denotes the finite set with a canonical code v and
Wo,...,W,,...is the Gédel enumeration of the recursively enumerable (r. e.) sets,
we have

A<, B < Vz(z e Ao Fv({(v,z) e W, & D, C B)).

Given a set A, denote by A" the set A @ (w\A). The set A4 is called total iff
A =, AT. Note that the graph Gy of each total function f is a total set.

* This work was partially supported by the Ministry of Education and Science, Contract
U-604/96.
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Given a set A, let I(% = <T,Z) | T E F:(A)} We define the e-jump ;lle of A
to be the set (K9)T.

Several properties of the e-jump are proved in [6, 9, 5]. Since we are going
to consider only the e-jump here, we omit the subscript e in the notation of the
e-jump. For each set B, B(Y) = B and BV is the e-jump of B(™

Let N be an infinite countable set and w be the set of the natural numbers.
We assume that we have an equality (=y) and an inequality (#5) in N. Consider
n+1sets By,..., B, such that B; C N for cach i € [0,n]. The algebraic structure
a=(Nw =n,%#n,Gy, D), where:

e f:w — N is a bijection,
e D C wis a total set,

is called an enumeration. From now on we write o = (f, D) to denote the enumer-
ation a and if D = G, for some total g, then we write & = (f, g).

The set A C N is called edmissible relatively By, ..., B, iff for each enumera-
tion o = {f, D) it is true that

F ' Bo)<e D& ... & fYB,) <. D™ = f~1(4) <, DM,

The aim of the present paper is to obtain a normal form of the admissible sets.

Consider a countable first-order language consisting of the binary predicate
symbols =, # (interpreted as =y and #py) and unary predicate symbols T; for
each i € [0,n] (interpreted as B; and taking only the value true (0), whenever
defined).

An elementary existential formula is a formula in a prenex normal form with a
finite number of quantifiers which are only existential, and a matrix which is a finite
conjunction of atomic predicates of =, # and Ty. These formulae are interpreted
in the usual way and the quantifiers are over the set N. The elementary existential
formulae can be effectively coded by natural numbers. If n is the code of a certain
formula, the formula itself is denoted by [n]. We use the notation @(Z,...,Z,)
for the formula ¢ with free variables among Z1,..., Z,.

Bellow we define E;L—formulae and H?‘—formulae for each i < n.

A S} -formula is a formula of the form \/7(71) [v(n)1(Z1,...,Z,), where v is
a recursive function and [v(n)](Z,...,Z,) is an elementary existential formula.
These formulae are interpreted in the usual way. The Hg-formula W(Zy,...,2Z,)
is a formula of the form ~®(Z,,..., Z,), where ®(Z1,...,7,) is a Zg—formula. If
5 € N%, then:

U(Z|5) 20 & &®(Z|5) 0.

Proceeding by induction, suppose that ¢ < n and for each j € [0,4] we have
defined E;’- and H;”—formulae, which can be effectively coded by natural numbers.
An elementary E;l-formula is a formula in a prenex normal form with a finite
number of existential quantifiers and a matrix which is a finite conjunction of
atomic predicates of Tiy1, =, # and & - and II] -formulae. These formulae are
interpreted in the usual way and they can be effectively coded by natural numbers.
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A T} -formula is a formula of the form Vo [Y(M)(Z1,. ., Za), where v is a

1+1
recursive function and [y(n)](Z1,..., Z,) is an elementary £, | -formula. A II}, ;-

formula W(Z,, ..., Z,) is aformula of the form = ®(Z,,..., Z,), where ®(Zy,..., Z,)
is a Eiil-formula. These formulae are interpreted similarly to the £ - and Har—
formulae.

The set 4 C N is called definable iff there exist a X} -formula ®(Wy,. .., W,, Z)

and t1,...,t, € N, such that for all s € IV,
s€cA & ®WIE Zls) ~ 0.
We are going to prove the following result, which gives a normal form for the
admissible sets.

Theorem 1. Let A C N. Then A is admissible iff A is definable.

The “only if” part of the theorem is obvious, so we must prove only that if 4
is admissible, then A is definable.

2. REGULAR ENUMERATIONS

The method of regular enumerations is introduced and studied in [9]. In this
paper we adapt it for abstract structures.

Let us fix n > 0 and subsets By, ..., B, of N. Since for every bijective mapping
fofwinto N f~1(B;) =, f~1(B;) ®w, we may suppose that f~!(B;) and hence B;
are not empty. We use the term finite part to denote an ordered pair 7 = (f;, g-)
such that:

e f.is a finite injective mapping of w into N;
e g, is a finite mapping of w into w defined on a finite segment [0,q — 1]
of w.

The finite parts will be denoted by the letters 7, 6, p and A. If dom(g;) =
[0,q — 1], then let lh(g,) = ¢. We assume that an effective coding of all sequences
and all finite mappings of w into w, defined on a finite segment, is fixed. Let
7= (fr,9-) and p = (fpagp)' If / C f, and g, C g,, we write 7 C p.

Bellow we define ¢-regular finite parts for each ¢ < n.

A O-regular finite part is a finite part 7 = (f;, g-) such that dom(g,) = [0, 2¢+1]
and for all odd z € dom(g,), g-(2) € f71(Bo).

If dom(g,) = [0, 2¢ + 1], then the O-rank, |7|o, of 7 is equal to ¢+ 1, the number
of all odd elements of dom(g-). For each O-regular finite part 7, let BJ™ be the set
of the odd elements of dom(g; ).

Given a O-regular finite part 7 = (f-, g-), let

gr ko Fe(z) & Fu({v,z) € W, & Yu € Dy(g-((w)o) = (u)1)),
gr ko ~Fe(z) & V(0-regular p = (f,,9,))(m C p = g, ¥o Fe(z)).
Proceeding by induction, suppose that we have defined the i-regular finite parts

for some 1 < n and for each i-regular finite part 7 = (f,,g,;) we have defined its
i-rank |7];, the set BY™ and the relations g, IF; Fe(z) and g, ¥; F.(z).
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Let f, be a finite mapping of w into IV and g, be a finite mapping of w into w
such that dom(g.) = [0,¢' — 1] and 7" = (f;,g}) is i-regular. Let

G = {gp | pP— (fpagp) is i-regular & ' Cpk glr Cyg, & g, Ik Fe(x)}'
We say that g7 is appropriate for f., g,, e and = (we denote this by app(gy, fr,
gr,e,z)) iff one of the following is true:

e G # @, gl i Fe(z), (fr,g7) is i-regular, go C g7 and lh(gy)

= min{lh(g) | g € G};

° G = @_/ (fT?g;‘l) iS i_regU1arﬂ |(f‘l'7g;‘l)‘l - i(f‘f)g;)|l + 1 a'nd g;— C glrl
Let 7 be a finite part, g, be defined on [0,¢—1], and r > 0. Then 7 is (i +1)-regular
with (i + 1)-rank 7 + 1 iff there exist natural numbers

O<n0<b0<n1<b1...<nr<br<rzr+1:q

such that (f;, g, | mo) is an i-regular finite part with é-rank land forall j,0 < j <,
it is true that:

1. app(g‘r f bja frrgr | (TL]‘ + 1)7 (j)Oa (])l)a

2. g:(b;) € f7 1 (Bira);

3. (fr, g+ | mjs1) is an i-regular extension of (fr,g- I (b; + 1)) with {-rank

i(fTng I (b] + 1))|1 +1
Let BY[, = {bo,...,b-}. The next lemma shows that the (7 + 1)-rank is well

defined. Its proof follows easily from the definition of (i + 1)-regular finite parts.

Lemma 1. Let 7 be an (i + 1)-regular finite part. Then:
(i) Let mo,ag,...,Mp,ap,Mpy1 and ng, o, ..., Ny, by, Mrgy be two sequences
of natural numbers satisfying 1-3. Then r = p, npy1 = Mp41 and for all
j <p,n; =mj and b; = aj;
(ii) If p s (i + 1)-regular, 7 C p and |7iy1 = |pli+1, then gp = gr;
(iii) 7 is i-reqular and |7]; > |7|iv1.
To complete the definition of the regular finite parts, let for each (i +1)-regular
finite part T
gr bipy Fo(z) & Fw((v,z) € We & Vu € Dy(u = (eu, Tu, €)
&e€{0,1} & g- Ik (m) Fe, (2))),
g- Fiy1 ~Fe(z) < Y((i + 1)-regular p = (fpagp))
(1 Cp=gp Hip1 Felx))

Lemma 2. (i) There exists an (i + 1)-regular finite part with (i + 1)-rank 1;
(ii) If 7 is an (i + 1)-regular finite part, then there exists an (i + 1)-regular
finite part p such that T C p and |pliz1 = |7|ix1 + 1.

The proof of this lemma also follows immediately from the definitions.
The enumeration o = (f,g) is called regular iff the following two conditions
hold:
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o For each finite part § C « there exists an n-regular extension 7 of § such
that 7 C «;
o If i < nand z € B, then there exists an i-regular 7 C « such that

f7(z) € BY.

T

Given a regular enumeration a = (f, g) and 7 < k, let
B} = {b| 3(r = (fr,9,) Ca)(r is i-regular & b € BY")}.

Clearly, f~(B;) = g(B}). Similarly to the analogous proposition 2.8, in [9], one
can prove the following lemma:

Lemma 3. Suppose that o = (f,g) is a regular enumeration. If i < n, then
FHU(B) <e 9!,

Let g be a total mapping of w into w. For each i < n, e and = we define the
relation gF; F,(z) by induction on i:

gEo Fo(z) & Jov((v,z) € W, & Vu € Dy(g((u)o) ~ (u)1)),
gFi1 Fe(z) © 3v({v,z) € W, & Vu € D,((u = (ey, 24,0)
&gk Fo(x) V(u= (ey, Ty, 1) & g&; Fe(2)))).

Let for each ¢ € [0, n]
gFi~Fe(z) & g¥iFe(z)

The following lemma can be proved by induction on 4.

Lemma 4. Let g be a total mapping on w into w, A C w and i < k. Then
A <, g9 iff there exists e such that for all z, x € A & gF; F.(z).

Lemma 5 (Truth lemma). Let « = (f,g) be a regular enumeration. Then for
all 1 < n,
gFi Fe(z) © 3r C afr is i-regular & g, IF; F.(z)).

Proof. We use an induction on ¢. The lemma is obviously true for i = 0.
Suppose that 7 < n and it is true for 7. First, we are going to show that

g~ Fe(z) & 37 Caris i-regular & g, I —F,(x)).

Suppose that gF; ~F,(z) and for each i-regular 7 C «, g, ¥ —~F.(z). Then for
each i-regular finite part 7 of a there exists an i-regular p such that 7 C p and
gp IF Fe(z). Let § be an (i + 1)-regular finite part of o such that |6]i11 > (e, x).
By the definition of the (7 + 1)-regular finite parts, there exists an i-regular p’ C §
such that g, IF; Fe(z). By induction gF; F.(z). A contradiction.

Suppose now that 7 C a is i-regular, g, IF; = F.(z) and gF; F.(z). By induc-
tion, there exists an i-regular p C a such that g, IF; Fe(z). Using the monotonicity
of i, we can assume that 7 C p and get a contradiction. Now the lemma easily
follows from the definitions and monotonicity.
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3. NORMAL FORM OF THE ADMISSIBLE SETS

Now we are ready to prove that if a set is admissible relatively By, ..., Dn,
then it is definable. First of all, we need to prove that cach admissible set has a
normal form based on forcing relation and regular finite parts [10]. After that we
can “translate” this normal form into a ¥ -formula.

We say that A C N has a forcing normal form iff there exist a natural number
e and an n-regular finite part ¢ such that for each s € IV the following equivalence
18 true:

s € A & Jadr D 4(7 is an n-regular finite part

& fr(z) = 5 & g7 Ibn Fe()).

Theorem 2 (Forcing normal form). Let A C N. If A is admissible, then A
has a forcing normal form.

Proof. Suppose that A has not a forcing normal form. We are going to construct
by steps a regular enumeration o = (f, g) such that for each i € [0,n] f~1(B;) <.
g, but ~(4 <, g™). At each step g we shall define an n-regular finite part d,
such that 6, C gy1-

Let sg, s1, ... be an arbitrary enumeration of N and §p be an arbitrary n-regular
finite part with n-rank 1. Let ¢ > 0 and let ¢, be defined for all r < q.

I (qg)o = 3n. Let s be the first element of the sequence sg, s1,..., which does
not belong to the range(fs,_,), and z be the smallest natural number, which
does not belong to dom(fs,_,). We define f5 () ~ s and f5, (z) ~ f5,_, (z) for
x # z and gs, = g5, -

11. (q)o = 3n + 1. Let §, be an arbitrary n-regular finite part such that 6, 2 §;1
and |04}, = [0g—1|n + 1.

1. (¢)p = 3n + 2 and (g); = e. Since A has not a forcing normal form, for §,—;
and e there exists s € N such that the following equivalence is not true:

s € A & 3237 D 64—y (7 is an n-regular finite part
& fr(z) ~ s & gr Ik Fe(T)).

1. Let s € A and YzV7 D §,-1(7 is an n-regular finite part & f,(z) ~ s =
gr ¥, F.(z)). Let a = (f, g) be a regular enumeration such that a 2 d,-1.
We shall prove that f~'(A) # {z | gF, Fe(z)}. Let z = f~*(s). Suppose
that 2 € {y | gFn Fe(y)}. Using the Truth lemma and the monotonicity
of the forcing, we obtain a finite part 7 such that f-(z) = s, d,—1 C 7, and
g- IF F,(x). A contradiction. In this case we define d; = d,_;1.

2. Let s ¢ A and 3z3r D 641 (7 is an n-regular finite part & f-(z) ~ s
& g; IFn F.(z)). Let us fix 7 with the above properties and let a = (f, g)
be a regular enumeration such that @ 2 7. Using the monotonicity of
the forcing, we have that gk, F.(z) and f(z) = s, but s ¢ A. Hence
fHA) # {z | gEn Fe(x)}. So in this case we define §, = 7.
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Let o = (f,g) be a regular enumeration defined as follows: f = | fs, and
gEW

g = U g5, Using Lemma 3 and Lemma 4, we obtain that 4 is not admissible,
gEw
which proves the theorem.

-Let us fix a variable Z. Denote by Var the set of all remaining variables. Let
us fix a recursive bijective mapping var of the natural numbers onto Var.

We use the sign “*” to denote the concatenation operation on sequences of
natural numbers, and “C” to denote the relation “is a subsequence of”.

Bellow we define i-patterns of the i-regular finite parts for each i < n and when
an i-regular finite part 7 is coordinated with the i-pattern o.

Let ¢ = 0. Then o is a O-pattern iff it is the code of a sequence of natu-
ral numbers of the form (ro,...,7r2441). The O-rank of o, |olg, is ¢ + 1. The
O-regular finite part 7 is coordinated with the O-pattern o iff {ry,rs,... ,roy41} C
dom(f-), ¢-(j) =~ r; for j € [0,2¢ + 1] and 1h(g;)} = 2¢ + 2. We denote 7 =
(var(r1), var(ra), ..., var(rag41)) and (@) = (fr(n), fo(ra), -, fr(rags1)).

Let ¢ > 0. Then o is an ¢-pattern iff it is the code of a sequence of natural
numbers of the form

<T/01 No, <§O, 50>a bo, My o5 ey Ny <§r7 Er), br: 77r+1>7
where 7 is an (¢ —1)-pattern with (i —1)-rank 1 and for each j € [0, ] the following
conditions are satisfied:
1. ¢; € {0,1} and ¢ is an (i — 1)-pattern such that & D n;*(no) and if e = 1,
then [n;li-1 = [njli-1 + 15
2. mj+1 is an (¢ — 1)-pattern such that 741 2 & * (bo) and |79j41]i-1 =
&li-t + 1.
The i-rank of o, [o];, is 7 + 1. The i-regular finite part 7 is coordinated with
the i-pattern o if the following conditions are satisfied:
o {by,...,b,} Cdom(f;);
o If mp,a0,...,Mp,ar,Mrr1 is a sequence of natural numbers satisfying
1-3 of the definition of i-regular finite part for 7, then (f;, g, | mq) is
coordinated with (i — 1)-pattern 7o and for each j € [0, 7] we have:
L g (m;) = ny;
2. (f-,9- [ aj) is coordinated with &;;
3. if g5 = O, then gr ”'i~1 F(j)o((j)1)7 else gr Héi_l F(])o((])l)a
4. g-(a;) = by;
5. (fr,9r [ mj41) is coordinated with the (i — 1)-pattern n;;.
Let 7 = (T/r+17 var(bo), . . - ’Var(br)) and f.(7) = (f+ (ﬁr+1)a fT(b0)7 Ty fr(br))
Let for i € [0, n]

Ri(6,2) ={s|s € N&3Ir Df:(x) ~s &7 isi-regular)}.

Lemma 6. There exists an uniform effective way, given gs, yi,...,yr Such
that & = (fs,9s) is i-regular and dom(fs5) = {y1,...,Yr}, and given natural num-
bers e and z, to define a T} -formula ®%¢° with free variables among var(y,) =
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Yi,.ovar(yr) = Y5, Z such that for all s € R,(5, z),
®%(Y | £5(y), Z|s) =0 & 37 2 6(r is i-regular & g, IF; F.(z)).

Proof. We prove the lemma by induction on i. For i = 0 it immediately follows
from the definitions.

Let ¢ > 0 and let assume that for each j € [0,¢ — 1] the lemma is true. Using
the inductive assumption, one can easily prove the next lemmas.

Lemma 7. There exists an uniform effective way, given (i — 1)-pattern o,
natural numbers e and x and o finite set D = {y;,...,y,}, to define a Z;L_I -formula
=D with free variables among var(y1) = Y1,...,var(y,) = Y,, & such that for
each (i — 1)-reqular finite part T coordinated with o and such that D C dom(f,) it
s true that

20DV f5(y), 71f,(5)) ~ 0
& JA D 7(A is (i — 1)-regular & ga b1 Fo(z)).

Lemma 8. There ezists an uniform effective way, given an (i — 1)-pattern o,
natural numbers e and x and a finite set D = {y1,...,y,}, to define a T}, -formula
®o¢®D with free variables among var(y;) = Y1,...,var(y,) = Y,, & such that for
each (i — 1)-regular finite part T coordinated with o and such that D C dom(f,) it

s true that o
@DV f5(0),51f- (@) = 0 & gr Fios Fula).

Lemma 9. There ezists an uniform effective way, given an (i — 1)-pattern o,
natural numbers 1, e and x and a finite set D = {y1,...,y,}, to define a £} |-
formula ®74¢5L with free variables among var(y1) = Yi,...,var(y,) = Y,, &
such that for each (i — 1)-regqular finite part T coordinated with ¢ and such that
D C dom(f;) it is true that

eohen (Y| f5(y),71 /(7)) ~ 0
< 3A D (A is (i — 1)-regular & Ih(ga) <! & ga IFio1 Fu(z)).

Lemma 10. There exists an uniform effective way, given an (1 — 1)-pattern o
and a finite set D = {y1,...,y-}, to define a T} | -formula ®7° with free variables

U,...,Ux among var(y,) = Y1,...,var(y,) = Y,, @ such that for all 5 € N* it is
true that

d*P(U|5) ~ 0 & 3I7(r is an (i — 1)-regular finite part coordinated with o
& {y1,...,yr} C dom(f;)
& frvarH (Uh)) = s1, & ... & fr(var ™ (Uy)) = ).

Let us fix g5, ¥1,...,¥r, € and z. Let D be a finite set of natural numbers. We
say that D is compatible with g5 iff the following conditions are true:
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e Bach u € D is of the form (e, Ty, €.,), where ¢, € {0,1};
e There are not elements v and w of D such that u = (e,2,0) and w =
le,x,1);
o If (e,z,6) € D and (e,y) < |d];, and if € = 0, then g5 ki1 Fe(y), else
gs Wio1 Fe(y).
Let ¢ be an i-pattern. We say that D is compatible with ¢ = (o, no, (€0, €0), bo,
e, &y )y by g1 ) 1 (e, y,€) € D implies €. oy = €. We call o compat-
1ble with gs iff for each 7 coordinated with o, g5 C g,. We define 1h(c) as lh(g,),
where 7 is (i — 1)-regular and coordinated with o.
Consider the r. e. set
W = {{o,v)|{v,z) € W, & o is an i-pattern
& D, is compatible with ¢ and gs & o is compatible with g }.
Let <O',U> € Wv g = <’I70,TLO, <§0750>:b077717 sy ey Ny, <€7‘7€7‘>7 bT‘anT-i—l): .7 > |6IZ
and D = {y1,...,Yr, 2}
I g; = 0. We define
& = D A @it D A @8N E A &y AT (var(by)),

where ®6°P and ®%+1:D are the formulae from Lemma 10 and ®%-()e-()1.D

is the formula from Lemma 8, and if |&;|i~1 > |nli-1 + 1, then &y =
S+ (o) h(E;).(es(1D where @ *(o)IE)(Do 1D s the formula

from Lemma 9, else <I>1 =(Z =2).
II. ¢; = 1. We define

&5 = 5P A i+ D A 2@ (00D A T(var(b))),

where the first two formulae are the same as above and ®&-(e(D g
the formula from Lemma 7.

We denote by E the set of all variables in @ and {Y1, ... Y.}, Let {Wy,..., W,}
be the set E\ {Y1,...,Y,}. If var(z) € E, we define
= N U#FWAva(s) =2
UWEE,U#W

else
= N\ U#W

U,WEE U#W
Let ®¢°%) be the formula

W, 3W( N\ @A)
i>ol

Note that the above is an elementary £ -formula. Now we are ready to define our
vt -formula:
@5,3,39 — \/ @ o,v)
(o, v)eW

This completes the proof of Lemma 6.
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Using the previous lemma and Theorem 2, one can easily obtain our main
result, Theorem 1.

4. CONCLUSIONS

In the papers [2] and [4], a normal form of the %,-admissible sets in total
structures is obtained. In the particular case, when B; = ... = B, = N, we
find a normal form for the sets which are X,.4;-admissible in some partial struc-
ture. It would be interesting to extend the method of regular enumerations for the
constructive ordinals and to prove a similar theorem.

Acknowledgements. The author would like to thank a lot Ivan Soskov for
his help and patience.
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TERMAL EQUATIONS AND FINITE CONTROLLABILITY

ANTON ZINOVIEV

The notions termal system and solution of termal system in a structure are given. It is
shown that any unsolvable in some structure termal system is unsolvable in some finite
structure as well. Then this result is applied to show the finite controllability of some
classes of formulae.
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1. INTRODUCTION

The system of termal equations is a commonly used notion in the unification
theory. This theory has many applications in the modern in recent years constraint
logic programming. As it is known, the Robinson unification used in the traditional
logic programming languages such as Prolog gives a complete set of solutions. In
opposite to that, in the constraint solving it is usually sufficient just to decide
satisfiability.

Many used in practice mathematical structures are finite. For example, it is
possible to think of a database simply as a finite structure. An important part of
mathematics is the study of finite structures as finite graphs or finite groups. This
makes it interesting to analyse the connections between constraint solving and the
finite-model theory.

In this work we will show that the solvability of the finite systems of termal
equations is finite controllable problem. If such a system is unsolvable in some
structure, then it is unsolvable in some finite structure, too. Then this result is
applied to show the finite controllability of some simple classes of formulae.
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In this paper the set of all variables will be denoted by Var. The universe of
the structure M will be denoted by |9M|. tP'[I] is the value of the term t in the
structure 9 with the interpretation I: Var — |9|. A sentence is finite satisfiable
iff it is satisfiable in a finite structure. A sentence is finite controllable if it is either
unsatisfiable or finite satisfiable.

2. TERMAL SYSTEMS

Definition 2.1. (i) Termal equation is an expression having the form ¢t ~ s,
where t and s are terms.
(i) Termal system is a finite set of termal equations.

Definition 2.2. Given a structure 91, we say the interpretation I: Var — |90|
is a solution of the equation t ~ s iff t™[I] = s™'[I]. We say the interpretation I is
a solution of a termal system iff it is a solution of all equations in the system.

Lemma 2.1. Any termal equation in the form z ~ t ort ~ x, where t # z
and = is a variable occurring in the term t, is unsolvable in some finite structure.

Proof. The term ¢ is not variable, so ¢ has the form f(t1,...,t,). For some IV,

1 < N < n, the variable z occurs in the term tn. Let T' be the set of all subterms

of t that contain the variable z. Define {90 def

g. ¢"N(T1,...,Tm) be the set

{g(s1,.-ysm)€T: Vie{l,... m}(s; €T = s; € T;)} UM, (2.1)

2T and let for any functional symbol

where M = {z} iff f=gandty € Tn,and M =0 iff f £gorty €Tn.
Let I: Var — |9 be an arbitrary interpretation.
By induction on complexity of the term s we will show that s € T implies

s € s &z € I(z). (2.2)

If s is a variable and s € T, then s = = and hence {2.2) is obvious. Otherwise, if s
is g(s1,...,8m) and s € T, then from (2.1) it follows that

sesTIevie{l,...,m}(s €T =s; € s [I)). (2.3)

For all sy € T, N € {1,...,m}, from the induction hypothesis it follows that
sy € sR[I] & = € I(z). Moreover, there exists N such that sy € T'. Hence
zelm)eVie{l,...mi(s; €T = s; € sTI)). (2.4)

From (2.3) and (2.4) follows (2.2).

From (2.1) it follows z € t™[I] & ty ¢ t¥[I], and from (2.2) it follows
tn €t & z ¢ I(z) & z ¢ z™'(I). Hence t™[I] # 2™[I]. The given termal
equation (t ~ z or = ~ t) is unsolvable in the structure 9. O

Theorem 2.2. Any termal system, unsolvable in some structure, is unsolvable
in some finite structure.
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Proof. Denote by ¢ the number of the equations in the system, by o the number
of variables in the system, by 3 the depth of the most complex term in the system
if § #0, and 3 =0if § = 0. Denote by v the number of the equations containing
some term with depth 8. We are going to prove the theorem by induction on the
ordinal aw?® + Bw? + vw + 4.

Case 0. The system contains no equations (i.e. it is the empty set). In this
case the theorem is obviously true, because in any structure any interpretation is
solution of the empty system.

Case 1. Among the equations containing a term with complexity 8 some
equation has the form x ~ z, where z is a variable. Make new system containing
the other equations and use the induction hypothesis for the new system.

Case 2. Among the equations containing a term with complexity A some
equation has the form o ~ t or t ~ z, where z is a variable occurring in the
term ¢t and t # z. According to Lemma 2.1 there exists a finite structure, where
the cquation z ~ t is unsolvable, and hence in that structure the whole system is
unsolvable too.

Case 3. Among the cquations containing a term with complexity 8 some
equation has the form z ~ t or t ~ z and the variable z does not occur in the term
t. Make new system containing the other equations replacing everywhere in them
x by t. It is obvious that the former system is unsolvable in the structures where
the new system is unsolvable. Moreover, if I is a solution of the new system in
some structure M, then I’ is a solution of the former system in M defining

oy det [I{y)  ify #a,
I(y)‘{tﬂﬂm if y = z.

Hence the new systemn is unsolvable in the structures where the former one is
unsolvable and the theorem follows from the induction hypothesis for the new
system.
Case 4. Among the equations containing a term with complexity 3 some
equation has the form
fltr, .y tn) ~g(s1,.- -, 8m) (2.5)

and f # g. Define || def 0,1}, f™ w1y -y pin) 4 and g7 (11, - .-, o) def g,

Thus the equation (2.5) is unsolvable in 9, so the system is unsolvable in 9 too.
Case 5. Among the equations containing a term with complexity 8 some
equation has the form

f(tla"'atn)Nf(sla-~-73n). (26)

Make new system replacing (2.6) by the equations t; ~ sy,..., t, ~ s,. In any
structure the solutions of the new system are solutions of the former one and hence
if the former system is unsolvable in some structure, the new one is unsolvable

: : def
there, too. Moreover, given a finite structure 9, define || = M| x [9N|" and

def{(fm(al,...,am),(al,...,am)) if g=f,

n 3 sy msMm = 1
g (a1, 81), -, {am, Bm)) (9™ (a1, am), ) if g # f,
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where o is an arbitrary element of [91]". Let 7 be the projection of |9 on |90
For any interpretation /: Var — || and any term ¢

ton[ﬂ, oll=mo tm[l].

Hence if I is a solution of the former system in M, then 7 o7 is a solution of the new
system in 97 and therefore if the new system is unsolvable in some finite structure,
then the former one is unsolvable in some finite structure, too, and the theorem
follows from the induction hypothesis for the new system. O

Corollary 2.3. Let n termal systems be given and they have no solution in
some n structures. Then there exists a finite structure where none of these systems
has any solution.

Proof. According to Theorem 2.2 there exist finite structures 9, ..., M,
where the n systems have no solution correspondingly. Let 90t be the cartesian
product of the structures My, My, ..., My, ie. M| = |M}; x ... x |M|,, and for

any functional symbol f the following equation is valid (where m is the arity of f):

f?ﬂ((u”’ I a,uln>a ey <Hmly “ee ,/~Lmn>)
= <f9ﬁ1 (.ulla e aunll)a e ~afmn (,ulnz ce ;,umn)>- (27)

Suppose that one of the n systems has a solution in 901, say the system

{ti~siiie{1,2,...,k}} (2.8)

has a solution I: Var — |90|. Therefore for ¢ = 1,2,...,k we have
1] = 57" [1]. (2.9)
Let fy:Var — |9M];, 5 = 1,2,...,n, be the unique functions such that for any
variable z we have I(z) = (l1(z),...,I,(z)). By induction on term complexity

using (2.7) it may be shown that for any term ¢
I = ¢, TR L)), (2.10)

From (2.9) and (2.10) it follows that for alls =1,...,kand j=1,...,n

T

(3

1) = 70 1),

(2

but this is a contradiction, because the system (2.8) has no solution in at least one
of the structures 9y, Mo, ..., M,,. 0

3. FINITE CONTROLLABILITY OF SOME CLASSES OF FORMULAE
Theorem 3.1. Every satisfiable finite set A whose elements are closed formu-
lue in the form Vzi.. Vzap or Vo ... Va,~, where ¢ is an atomic formula, is

satisfiable in some finite structure.
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Proof. Without a loss of generality we may assume that no variable occurs
in two different formulae in 4. Denote by DT the set of all atomic formulae
p{ti....,ty) such that there is a formula Vz; ... Va,p(t1, ..., t;y) belonging to A.
Similarly, denote by D~ the set of all atomic formulae P(¢1,. .., ¢, ) such that there
is a formula Vay ... Vz,~P(ty,..., ) belonging to A. Obviously, D and D™ are
finite sets. From Corollary 2.3 it follows that there is a finite structure 9 where
for any two atomic formulae p(tq,...,t,) € DT and p(s1,...,8,) € D~ the ter-
mal system {t; ~ 81,80 ~ S2,...,tn ~ $n} has no solution. Define new structure
2N such that |9 = [M] and for all functional symbols f™ = f™. For predicate
symbols p let p™ be the set of all tuples {(a;, ..., a,) such that for some atomic for-
mula p(t;....,t,) € DF and interpretation I and for all i = 1,2,...,n o; = tJ1[I].
Clearly, all formulae Vaq ... Va,p(f1, ..., tm) from the set A are true in M. Suppose
a formula Vo, ... Vz,—p(t, ... tm) € A is false in 9. Then (¢3[1],... 1) € pTt
for some interpretation I. By the definition of p™ this means that there ex-
ist a formula p(sy,...,sp) € DT and interpretation J such that tJ'[I] = s7'[J],
i=1,2....,n. According to the assumption in the beginning of the proof the terms
¢, and s; have no common variables and so we may assume that [ = J. Thisis a con-
tradiction, because we obtain a solution of the termal system {t; ~ s1,...,t, ~ sn
in 9T 0

Theorem 3.2. Every satisfiable finite set A of closed formulae is satisfiable in
a finite structure provided each of the formulae in A is built from atomic formulae
and their negations by conjunction and quantifiers.

Proof. Let @ be the conjunction of the formulae in A. Then ¢ is satisfi-
able just in the structures where A is satisfiable. Let ¢’ is equivalent to ¢ and
in the form Qiz1... Quzn{L1 A ... A Ly), where all Q; are either ¥ or 3 and
Ly...., L, are atomic formulae and negations of atomic formulae. The formula
o' is true just in the structures where ¢ is true. By skolemization we obtain a
formula " in the form Va, ...Vz, (L) A...V L],) such that ¢ is satisfiable iff o'
is satisfiable and ¢’ is true in the structures where " is true. Denote by B the

set {Vay...Va,L},... Vo1 ... Vo, L} }. The formulae in B are simultaneously true
just in the structures where ¢ is true. By Theorem 3.1 if B is satisfiable, then B
is satisfiable in some finite structure. 0

4. CONCLUSION

It may be expected that the result in §2 will have many other applications.
The execution of a Prolog program can be thought as a constructing of a solvable
termal system. More generally, it is possible to think of the searching of proof in
a formal deductive system as searching of solvable termal system that has some
additional property. This topic can be theme of a future publication.

Acknowledgements. The author would like to thank prof. Dimiter Skordev,
who was interested in the truth problem of Theorem 3.1 and thus inspired this
work.
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ON A CLASS OF MEROMORPHIC FUNCTIONS WITH
NEGATIVE COEFFICIENTS
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In this paper we obtain coefficient inequalities and distortion theorems for the class
T*(a, B, A) of meromorphic functions with negative coefficients.
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1. INTRODUCTION

Let % denote the class of functions of the form
1 (o)
flz)= ;+Zlanz” (1.1)
n—

which are analytic in the punctured unit disk
Ur={2:2€Cand 0 < |z| <1}

with a simple pole at the origin and with residue 1 there. Let £* denote the subclass
of ¥ consisting of functions f(z), which are convex with respect to the origin, that
is, satisfying the condition

%{— (1 + z;;;i?)} >0, zeU*. (1.2)
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Let ¥*(«) denote the subclass of ¥ consisting of functions f(z) which are convex

of order «, that is, satisfying the condition
z //(Z)
?R{*<1+ >}>a, zelU", 0<ax<].
['(2) -
Let ¥*(a, A) denote the class of functions f(z) € X such that

zf"(z) _ 1+ (A -ad+aw(z)
Yy T 1+w(z)

Here w(z) is analytic in U = {z : [z < 1} and satisfies the conditions

w(0) =0 and |w(z)| <1, =ze€lU.
The condition (1.4) is equivalent to

2f"(2)
f'(z)
z ”(Z

f'(z)

+2

<1, =zeU"

1+ )+(A~aA+a)

We note also that
Y a,—1) = T¥(a).

Let T denote the subclass of ¥ consisting of functions of the form
1 o
fe) =7 - S Janlem.
n=1
A function f(z) € ¥ is in the class £*(a, 8, A) if it satisfies the condition
Zf”(Z)
f'(z)
2 L (A-ad+a)

+2

Zf//( <ﬂ’

f(z)
2€U"0<a<],0<8<],-1<A<L
Let us write

1+

T (e, 8,A) =X (e, B, A)NT .

We note that
T*(a,1,-1) =T" ()

(1.3)

(1.4)

(1.6)

is the class of meromorphically convex functions of order a with negative coeffi-

cients, which was studied by Uralegaddi and Ganigi [1].

In this paper we obtain coeflicient inequalities and distortion theorems for the
class T*(a,3,4). We employ techniques similar to those used earlier by Silver-

man [2].



2. COEFFICIENT INEQUALITIES

Theorem 2.1. Let the function f(z) defined by (1.1) be analytic in U*. If

oG

S {n+1) +8n+ (1 - Ao+ AlInja,] < (1= A)B(1—a) , (2.1)

n=1
0<a<1,0<p<1, -1< A<, then f(z) € £*(a, 3, A).

Proof. Let (2.1) hold true for all admissible values of «, 3, A. Let us consider
the expression

F(f ) = 12" + 2f(2)] = BIf'(2) + 2f"(2) + (A — Ao+ ) f'(2)]. (2.2)

Replacing f and f' by their series expansions, for 0 < |z| = r < 1 we have

F(f,f") = Z(Tb-f- Dnapz™"
n=1
-3 (L:%;a) -+ i[n + (1 - A)a+ A]nanz”_l‘ .
n=1
Now
"F(f, f) < Z(n + D)nja,|r™
n=1
- {(1 - A)(1-a)- i[n + (1 - Ao+ A]n*anvn—%l}
n=1
=> {n+1)+pn+(1-Aa+ Anfa,|[r" '} - (1 - A)F(1 - ).
n=1

Since the above inequality holds true for all » (0 < r < 1), letting r — 1—, we have

F(f.f' Z{<n+1 + B+ (1 — A)a+ A} nfan| - (1 - A)B(1 - a) <0
n=1
by (2.1).
Hence it follows that
Iéi)) +2 <ﬁ’1+ (>) +A-Aa+al,

so that f(z) € £*(a,5,4). O

Theorem 2.2. Let the function f(z) defined by (1.6} be abalytic in U*. Then
f(z) e T*(a, B, A) iff (2.1) is satisfied.



Proof. In view of Theorem 2.1, let us assume that the function f(z) defined
by (1.6) is in the class T*(a, 3, 4). Then

Zf”(Z)
f'(z)
SO
+ o) + (4 - Aa+p)
- Z(n + Dnlan|z"?
- =2 <pB, zeU~
(1___%1—_01) — Z{n+ (1 _ A)Oz + A]n|an|zn—1

z

+2

n=1

But R(z) < |z] for all z. Thus we have

z(n + Dnja,|z"?
R n=l <B, zeU*. (23)
(1 — Azgl - a) _ Z[n + (1 - A)OL + A]n|an|z”_1
n=1

2f"(z)
f'(2)

clearing the denominator in (2.3) and letting z — 1— through real values, we obtain

Z(n+1)n|an| Sﬂ{(l 1 —a) Z a+A]n|an|}

n=1 n=1

Now we choose the values of z on the real axis, so that 1 +

is real. Upon

or
o0

S {n+ D) +8n+(1-Aa+A}nla,| < (1-4)B(1-0a),  (24)

n=1

which proves the theorem. [O

3. A DISTORTION THEOREM

Theorem 3.1. Let the function f(z) defined by (1.6) be in the class T*(a, 3, A).
Then for 0 < |z} =7 <1

1 (1- A)B(1 - a)
ST T A A+ (- Aa SO
1 G-a80-a

2+[3[1+A+(1—A)a]r’




1 (1- 4)3(1 - a) ,
2 2481+ A+ (1~ A <17
1 (1- 4)3(1—a)
< = ‘ .
- 2+2+ﬁ[1+A+(1—A)] (3-2)
The result is sharp. The equality holds true for the function f(z) given by
1 (A-4)801 - a)
TG = o sir A+ A= Da]” (3:3)
at z=r.
Proof. In view of Theorem 2.2, we have
= 2+ﬂ1+A+(1—A)a]
Thus for 0 < |z} =r < 1
n (1 - 4)ﬁ(1 - a)
< - < - -
= +Z|a”"" +’°Z|“"|~ S+ P+ A+ (1- Al
and
n (1-A4)8(1 -a)
> - n > - n
2| nzl'“”’" rZ’”'—r S+ L+ A+ (- A)a]
Furthermore, it follows from Theorem 2.2 that
- (1-A)8(1 -a)
< .
;”'“"I S 24 Bl+A+(1-4)]
Hence
- L1 & 1 (1-A)B(1 - a)
l < n-1 < <
FEIS 5+ 2 nlaalr™™ < + 2 nlnl S G4 g g G-
and

[ee]

' 1 = n— 1 1 (1 — A‘)ﬁ(l _ Od)
ez 5= 2 nlaal™™ 2 5= ) nlanl 2 5~ g e

n=1 n=1

It can easily be seen that the function f(z) defined by (3.3) is extremal for Theo-
rem 3. 0O
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OF CONSTANT DRIFT AND DIFFUSION PARAMETERS IN
k-DIMENSIONAL DIFFUSION PROCESS OBSERVED AT
DISCRETE RANDOM SAMPLING

DIMITRINKA IVANOVA VLADEVA

This article is concerned with the problem of a parameter estimation of the constant
drift and diffusion coeflicients: unknown vector A and unknown positive definite matrix
B, respectively, of a k-dimensional diffusion type process, when the observations at the
moment of random point process are given. We compute the means and variances
of the maximum likelihood estimators and establish their asymptotic properties. The
unbiasedness, the strong consistency and the asymptotical efficiency of the estimation
for A are proved. The estimator of B is unbiased and consistent and the variance of this
estimator does not depend on the distribution of the random moments of observations.

Keywords: diffusion process, k-dimensional Wiener process, discrete random sam-
pling, maximum likelihood estimation, unbiasedness, consistency, efficiency, Fisher in-
formation

MSC 2000: 62H12, 62M05

1. INTRODUCTION

In this article we consider the diffusion process X; = (X}, X?,..., X7, ¢t >0,
defined by the stochastic differential equation

dX; = Adt + BY?dw,, t>0, Xo=0, (1)
where 4 = (a',a?,...,a*)T and
bin bia ... bk
B=1...
by br2 .. bik
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are unknown constant vector and positive definite symmetric matrix, respectively,
and Wy = (WH W2, .., W[)T is a standard Wiener process with a mean 0 and a
variance Iy.

The solution of the differential equation (1) exists in a strong sense, it is unique
and is represented by the process

Xt:At+B1Wt, tZO (2)

More information about this problem can be found in [1].

The maximum likelihood estimation problem for the model (1), when we ob-
serve the process Xy, t > 0, continuously in the interval [0, 7], is solved in [2]. In
the case when we have at disposal the discrete observations at equidistant points,
many close to this one problems can be found in the monography [3]. At first,
the random sampling scheme has been used by J. Beutler in [4]. Recently, many
authors (see [5] and [6]) consider continuous diffusion processes when the observa-
tions are provided in discrete moments belonging to the interval [0,7]. In [7] A.
Le Breton has solved the estimation problem for the model (1) when the points of
observations are determinant.

Usually, the maximum of the distance between the points of observations tends
to zero, while their number tends to infinity.

Our conditions are more natural. Let us denote the observations X;,, ..., X;,,
Xi, = (X1, X2, ..., X)T. The moments ty, ..., ty are the first N points of an
arbitrary point process with independent identically distributed increments. The
process {t;},7=1,..., N, is independent of the process X;, ¢t > 0, and we compute
E(F(X:)) = E/(Ex(F(X:))). The problem is to find the maximum likelihood
estimators of the unknown constant vector A and the matrix B and to establish
their properties. In the one-dimensional case this problem was solved in [8].

Let us denote X; = X;,, AX; = X, — X;1, Ay =t;—t;_1,1=1,...,N. For
simplicity we denote B = B/2.

2. MAXIMUM LIKELIHOOD ESTIMATION

Using the maximum likelihood method, we can prove the following natural
results.

Theorem 1. If N > 2, the statistic

- X
Ay="72 3)
tn
is a mazimum likelihood estimator for an unknown vector A.
We prove this theorem using the standart maximum Jlikelihood procedure.
Theorem 2. If N > k, the statistic
N e
— 1 AX,AXT  XnXE
By = —= o 4
NTN ;{ A; t )
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is a maezimum likelihood estimator for an unknown matriz B, when A # 0.
For A = 0 the mazimum likelihood estimator is

N
1 & AXAXT
Bx=y XL —& =

1

Our approach is different from the ones used in the proofs of similar proposi-
tions. {For example, see [9, p. 75].) Our proof is based on the following lemma.

Lemma 1. Let y; = (yil,...,yl’-“)T, 1= 1,...,N, be k-dimensional vectors

N
such that B =3 yiyiT is o non-singular matriz. Then:
=1

a) the matriz B is symmetric and positive definite;
N N -1

b) €= ZyiT<ZyiyiT> yi =k
i=1 i=1

Let us note that for the estimation of one of the parameters (4 or B) it is not
necessary to know the other one.
The estimator By is not unbiased. Therefore we prefer to use the estimator

.1 EN:{AXiAXiT_XNX,E}

By =
NTNC P Ay tn

)

The proofs of these theorems can be found in [12].
Our purpose here is to establish the properties of the maximum likelihood
estimators, which are given in Theorems 1 and 2.

3. PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATORS

By arbitrary distribution of the process 1, ..., tx and natural conditions for
its moments we can compute the means and variances of the considered estimators
and to obtain their asymptotic properties.

Let 1222& A; do not tend to 0 when N — o0, and ¢ty — oo when N — oo.

Theorem 3. The estimator given by (5) is unbiased, strongly consistent and
asymptotically effective for the unknown vector A if the condition

> Bty <o (6)
N=2

is satisfied.

Proof. We compute

A X X At
EAny=E <—N> = E,Ex <—N) —g = _ A
tn tn tn
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Hence, An is an unbiased estimator.
The variance of this estimation is

- . XyXT E(Aty + BWN)(Atn + BWN)T
AT _ NAN N N N N
EANAN_E< . ) z
N
T
—44T+BEWW AAT+BE—
N

AsE(i
t

> — 0 when N — oo, the considered statistic Ay is consistent.
N

A sufficient condition for the strong consistency of Ay is

f:P([AN—A{>E)<oo.

N=2

. 1/4
Let | Al = (E 3 af‘) be the norm of the random vector A and A = || B||
=1

be the maximum eigenvalue and the norm of the positive definite matrix B. Then
using Markov’s inequality, we obtain

(‘AN~4‘>5 <—ZE‘AN~A‘ %i (||AN—A||4)4
5

) 3k
N=2

From condition (6) it follows that the estimator (3) is strongly consistent.
The Fisher information matrix for the estimator Ay is

Lytm =B ({2 22 @)} { Tom 2 @)} )

where X is the Lebesque measure in R*.
Let c; be the (j,1)-th element of the matrix B~! and b;; be the (i,)-th
element of the matrix B. We compute the first factor of I; (I, m):

N_‘Z
BWall'
tn

S§iEZ(

N=2 i=1

8  dPap 9 N
i B (o) = (4, B) ;;c” <a]A - AXY )
We use that .
AX] =d A+ ) b AW
n=1

and

P N k &k
sl B == 3 2:: bimcii AW

=1j=1n

.
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Then
kk ok

Nk ok k&
Li m)y=EY S 3" bjucyy AW bpgcmp AW

i=1 j=1 n=1 p=1 ¢=1

For n # ¢ the mathematical expectation is equal to zero and

N N
EY (AW])? =Y EA,; = Ety,
=1

i=1

so the information matrix is

N k k k
I (m)=E> 33> bincijcmpbpn (AW])?

i=1 j=1 p=1 n=1

ko k k kK
= EtN Z Z Z bjncljcmpbpn = EtN Z Z ijcljcmp
j=1p=1n=1 p=1j=1
k
= EtN Z Dlpcmp = EtNC[m.
p=1

Here B;, denotes the (jp)-th element of the matrix B and D, denotes the (Ip)-th
element of the diagonal matrix BB = I}.
In this way we obtained that the information matrix is B~!Ety. Hence

-1
eff Ay ~ (BE tiB—lEtN) -1
N

when N — oo and the estimator Ay is asymptotically effective.

The distribution of Ay (for a fixed ¢y) is normal with parameters 4 and ot
N

i.e. the vector .
(AN - A) B 'Vin
has a k-dimensional standard normal distribution.

Note. The sufficient conditions for strong consistency of the estimator can be
written in terms of statistical moments of A;.

For the estimator By we can establish the following properties:
Theorem 4. The statistic (5) from Theorem 2 is unbiased and consistent
estimation for the unknown matriz B and the variance of this estimation is
k+1

To prove these properties, we calculate the moments of the estimator. We need
the next lemmas.
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Lemma 2. For every integer k > 2 the identity

N N N
§ § min(iy, ... i) = § ik
i1=1 =1 i=1
holds, where iy, 1o, ..., i} are natural numbers between 1 and N.
Proof. We consider the sum
N N
E E min(il,...,ik),
=1 Q=1

where £ > 2. The minimum can accept all integer values from 1 to N. The

number of all possible values of the k-dimensional variable (i,1s,...,1;) is N¥.
The number 1 does not appear in (N — 1)* cases. For the rest N¥ — (N 1)"' cases,
min(iy,...,i;) = 1. Thus min(iy,..., ;) = 2 exactly (N — 1)¥ — (N — 2)¥ times,
.., min(41,...,1;) = N only one time.
Therefore
N N
> min(iy,. i) =Y (N =i+ D[ = (i - D]
iypeir=1 i=1

= NP =04+ LINF - (N = 1)f =) ik,

=1

If £ =2, we obtain

N
ZmanJ :zzQ N+1)

i,5=1 i=1
Some characteristics of the considered processes will be usefull for our proofs.
Let us denote

T
AW =Wy, =Wy, = (Wh = WE_ W2 =W WE=WE)
A; = t; — t;i_q and [, is the identity matrix of dimension k. The arbitrary reneval
point process t;, i = 1,..., N, is independent of the process X;.

Lemma 3. For the moments of the Wiener process the following equalities
are satisfied:

EAW,AWT = EA I, E(AW,AWT)” = (k +2) EA? I,
EAWAWT =0, i#j, E(AWAWT) = BAZL, i<},

EAW,AWIAW; =0, EAW,W} = EA; I,
N N A

EWNWY =EtyI, EY Y t—Nl =N-1
i=1 j=1
J#
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Proof. We will prove only the first two equalities.

We use the facts that B and By are symmetric matrices, the increments of
the Wiener process are independent and their odd moments are equal to zero.
EAWIAW™ =0, 1 #m, EAWH2=FEA, Iim=1,... k.

Then it holds:

( E(AW}H?  E(AW!AWY) ... E(AW}AWﬁ))
EAW, AW =

E(AWFAWY) E(AWFAW?) .- E(AW})?

A, 0 .00
=1 =FEA; I;.
0 0 ... A

Let djm, where I,m = 1,2,...,k, be the (I,m)-th element of the matrix
E(AW;AWT)2. Then
k
d =E Y (AWPPAWAW™ + EAW/ (AW

n=1

n#l,m
+ E(AWHRAW™ + E (AW])*.
Sody, =0ifl #m, I,m=1,...,k, and

k
du=E Y (AW (AW + E(AW])' = E
n=1

n#l

E

AW (AW + BE(Aw))!

33
Il
Lo

= (k—1)EA? +3EA? = (k + 2)EA}.

Hence
EAW,AWT)? = (k+2)EA? I, Vi=1,...,N,
EAW, WL = EAW?I, = EAIL,

N N
EWyWE =Y EAW AW T, =Y EAly = Bty

i=1 i=1

Proof of Theorem 4. It is easy to establish that the estimator By is unbi-
ased:

1

N
- 1 - A; tN
= §: AATEA, + BEZX ) — AATty — BE— | = B.
EBx N—1<i:1< Bdit A> N m)
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After substituting AX; = AA; + BAW;, Xy = Aty + BWy, we find:

E(B - B*) =E(N-1)" ((ZAX AXTA, "1>

1=1

2

N
23 AXAXT XN XE Aty + (XwXE) *2) - B?

i=1

N
Z ((A4T)" Aia;+ BAWAWT B AATA;A, !

+ AATBAW,AWT B’ AiA; ! + BAW,ABAW, 4

+ AAWT B  BAW; AT + BAW,ATAAW] B + AAW[ B  AAWI B’

+ BAW,AWT B BAW,AWTB A7 A — 2 (AATEWNW/}VFETMN—1

+ (AAT)? Aty + BAW,AWT BT AATtN A + AAW, ATAWEE

+ AAWTIBT AWE BT + AAWT BT BWy AT + BAW, ATBWy AT

+BAWAWI B BWyWEB A7 lt,—vl) + BWNWEB BWNWIB ty2
+ (AATY’ 2, + BWAWEB AAT + AATBWAWEB' + AWTB AWTE"

+ AWSB BWT Aty + BWyAATWEB' + EWNATFWNAT) .

Using the formulas from Lemma 3, we calculate that a part of similar terms
are equal to zero. For example:

N N ]
E (Z BB AATA;-2Y BB AATty + BB AATty
ij=1 i=1

N N
+ Y AATBA -2 AATBWNWEB Aty + AATEB‘TtN)

i,5=1 i=1
= BAATE (Nty — 2Nty + ty + Nty — 2ty +ty) = 0.

Deleting these terms, we get:

E (B3 - B?)

N N
=(N-1)"%E (Z B AW AWIB A, S B AW AW B A7

i=1 j=1
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N
+ > BPAW AW AW AWT A2

1=1
N N N )

=S BAWAWT B aw; Y AWB A
i=1 j=1 =1

B? (k + 1) t3 ‘
Bty = )ty —(N—1)ZBQ>
N

N Be o N . T
—(N-1)? <}: B EAWAWTE A S B EAW,AWIB A,

=1 j=1

N
+ 3 BPEAWAWT AW AWT A2

i=1

N N N
~E (Z BAWAWTB S aw; N AWIFTA;It,‘V1>

i=1 j=1 =1

+B*(k+1) - (N - 1)232>

N
=(N-1)"? <32 (N> = N)+ N(k+2)B* - 2(k+2)B>Y_ Aity ™"

i=]

N N
—2B*Y ) Ajtn '+ B2 — (N -1)° B2>.
=1 j=1
J#E
The means of some terms we calculate by the following reasoning. Let us
denote

N N N
FG,jl)=E (Z BAW,AW[ B> AW, ) AW,FTAitN”l) .
=1 i=1 =1

Then F(i,7,1) = 0in all cases when 1 # j # 1 # 1.
If j =1, we obtain

N N v .
' AW, AWT AW, AW o
Flij.§) = B* Z Z E <—A_—z—> i <—J{_J_) + F(i,1,1)
i=1 j=1,ji i N
N A N R
=B’ =l 2i) L oproa o
=B ;Ik <Ai>fkj:¥#iE<tN> B*(N — 1) 4 F(i,i,i),
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where

AW, AWT AW, AWT , N 2
F(i,i,i) ZB E( Wi AW AW ) :Bz(k+2)2E< Al )
i=1

Aty tND;
= B*(k + 2).
Hence
N N
E|Y BAW.AWIBY AW, ZAWIB Ayt = BAN 4+ 1)
=1 j=1 =1

In the same way we calculate the means of all terms.
Finally, we obtain
N E+1 .
E (B} - B?) = B,
N N-1
Hence BN is the consistent estimator for the unknown matrix B.
The estimator By can be represented as follows:

N
By=(N-1)"" <§: (AX; — AN (AX; — AA)T AT

i=1

N
—(Xn — Aty) (Xn — AtN)Tt;}) ==Y ey,
ij=1
where
Y; = (X; — AA)ATY? ~ N (0,B),
-1 -1
N N
aii:l—Ai ZAj y aij:\/AiAj ZAj
j=1 ji=1

The random variables Y; and Y; are independent and

N N
Y ai=N-1, Y o =N-1
=1

2,7=1

There exists an orthogonal transformation ¥ = CZ such that

By=(N-1)" ZZ

which is k-dimensional Wishard distribution with N — 1 degrees of freedom.

4. COMMENTS
It is interesting to underline the next facts.
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At first. the estimator An depends only on the last observation, the same
as the continuous time sampling, and in the case when determined moments of
observation are used. It is interesting to compare the estimators given by different
sampling schemes. For example, the point process ¢;,7 = 1,..., N, can be Poisson’s,
geometric, uniform. Results of this kind can be found in [10] and [11].

The second fact is that the variance of By is independent of the distribution
of the random point process t1, ta, ..., tn, ... and tends to zero as O(N~!) by
N — o0. The proved formula (7) for £ = 1 is given in [8], i.e. the obtained results
generalize the one-dimensional case.

The third fact is that the used sampling scheme is natural. We add the
(N + 1)-th observation to the first N observations and do not need new N +1
observations. We established good properties of the estimations without the con-
dition Jpax A; = 0 when N — o0, as in the other sampling schemes.
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EXTENSION OF THE DUHAMEL PRINCIPLE FOR THE HEAT
EQUATION WITH DEZIN’S INITIAL CONDITION

GEORGI I. CHOBANOV and IVAN H. DIMOVSKI

The classical Duhamel principle for the heat equation is extended to the case when
the initial condition u(z,0) = f(x) is replaced by the nonlocal A. Dezin’s condition
pu(0) — uw(T) = f(z), £ # 1. To this end three types of operational calculi are devel-

oped: 1) operational calculus for 5 with the Dezin’s functional, 2) operational calculus
2

d
for ] in a segment [0, a] with boundary conditions 4(0) = 0 and u{e) = 0, and 3) a
)

combined operational calculus for functions u(x,t) in C(A), A =[0,a] x [0,7].

Keywords: convolution algebra, multiplier, operational calculus, divisor of zero, com-
mutant, Duhamel principle

MSC 2000: 44A40

1. INTRODUCTION

d
In [3] a general operational calculus for — with arbitrary boundary value func-

tional ® is developed. Following the pattern of Mikusinski’s operational calculus
[6] in the space C[0, 1], the convolution

(f =)t {/ft+7—o) (0)do } 1)

instead of Duhamel’s convolution
¢
= [ #te=mg(ryar @)
0
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is used. For the details connected with the convolution (1) found in 1974 ([1]) by
one of the authors, see [2] and [3].

In order Mikusinski’s scheme to work, only the restriction ${1} # 0 is needed.
Without a loss of generality then we may assume

3{1} = 1.

In the case ®{1} = 0 the Mikusinski’s scheme is also applicable, but with some
modifications.

In [4] and [5] A. A. Dezin considered non-local boundary value problems for
the differentiation operator with boundary value condition of the form

ny(0) —y(T) =0 (3)
with pu # 1. For unessential technical simplifications, in the sequel we assume that

u is real. The case of a complex p can be treated in almost the same way. Instead
of the functional pf(0) — f(T") we may take the normed functional

3(f) = = Wf(0) ~ £(T)

and then (1) takes the form
1 t T
(290 = =7 |u [ fe=natndr+ [ (T +t-ngtmyar| . @
t
According to [2] operation (4) is a convolution of the right inverse operator

t T
0 = [ 1+ = [ soar Q

of p in C[0,T). This means that f % g is a bilinear, commutative and associative

operation, such that

Wfxg)=(f)*g.
Since I f(t) is determined as the solution of the boundary value problem
v =1 wy0)-y(T)=0,

then from the representation

Lf(t) = {1} = f,
where {1} is the constant function 1, it follows that (4) is a convolution of [ in
Clo,T).
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2. CHARACTERIZATION OF THE MULTIPLIERS
OF THE CONVOLUTION ALGEBRA (C[0,T], *)

According to Larsen (8], an operator M : C[0,T] — C[0,T] is a multiplier of
the convolution algebra (C[0, T}, *) iff the relation

M(fxg)=(Mf)xg

holds for all f,g € C[0,T]. In [8] it is shown that each multiplier is a continuous
linear operator. From a general result of {2], p. 32, it follows that each multiplier
operator M of the convolution algebra (C[0,T], *) has the convolution representa-
tion

= Zm ), ©

where m(t) def M{1}.
In order to characterize the multipliers it remains to specify the representation
functions m in (6).

Theorem 1. A linear operator M : C[0,T] = C[0,T] is a multiplier of the
convolution algebra (C[O,T], *) iff it has the representation

Mf(t):%{ﬁiAm(t—T) dT+-——/ m(T+t-71)f(r)d } (7)

where m is a continuous function with bounded variation in [0,T].

Remark 1. If m € C N BV, then (7) can be written in the form

T
dtu—l/mt_T ) dmy( )+— t m(T + t — 1) dm(r). (8)

Proof. From a more general result in [2], p. 32, it follows that each multiplier

of (C[0,T],*) has the form (7), where m(t) e M {1} is a continuous function. It
remains only to prove that m is a function with bounded variation in [0, T].

To this end let us fix t (0 < ¢t < T’} and consider (M f){t) as a linear functional
on C[0,T]. According to the F. Riesz representation theorem (M f)(t) has the form

T
=Afmmmx (9)

where o;(7) is a function with bounded variation in [0,7] depending on ¢ as a
parameter. For the sake of uniqueness we may assume that a;(7) is continuous
from the left. It would be possible to accomplish the differentiation in (6) termwise
provided m € C N BV, but we can assume only m € C, which is not enough to
ensure the differentiability. Therefore we apply the operator ! to (7) and obtain

t T

le:m*f:ﬂ—li—l— A m(t—r)f(T)d‘r+ﬁ t m(T +t—71)f(r)dr (10)
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since for g € C*[0,T] we have

lg,:g_ug(O)w(T)
p—1

and the function g = m * f satisfies the boundary value condition pg(0) —g(T) = 0.
The operators M and ! commute since they both are elements of the multipliers

algebra and hence
IMf=MIf=mxf. (11)

From (9) we get

T T
(MLf)(E) = /0 (N (1) dau(7) = (LF)(T)ee(T) = (1F)(0) e (0) —/0 f(r)eu(r) dr.
(12)
Comparing (10), (11) and (12) we obtain the identity
t T

E‘ﬁ—l ; m(t—T)f(T)dT-F"/I}_—l t m(T+t—71)f(r)dr

T
— (1) (T)ae(T) — (1) (0)eu (0) - /0 F(r)as(r) dr.
Since
AN = i) =~ [ sryar

then the right-hand side takes the form

- /0 " [at(T) 4 D) = u(0) O‘t(o)} dr.

uw—1

If 7 is a point of continuity of oy, then the following two functional identities should

hold: - .
_at(,r)_liat(”)—_lat( ) — Iuitlm(t—’r), 0<7<t, (13)
and
D) gy

pw—1 uw—1
From (13) and (14) it follows that m € BV. Moreover, from (13) and (14) it follows
that m satisfies the boundary value condition um(0) — m(T) = 0. Indeed, if we
take 7 =t in (13) and (14), we get um(0) = m(T).

d
If m € CN BV, then the derivative E(m * f) exists as a function from C[0, T

and hence the linear operator
Mi=Limef)
o dt
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is well defined in C[0,T]. Obviously, it is a multiplier of the convolution algebra
(C10,T], ).

Since the operator [ has a cyclic element — the constant function {1}, then
the multipliers ring of convolution (4) coincides with the commutant of { (see [2],
p. 33).

Thus we obtained a complete characterization of the linear operators M
C[0,T] — C[0,T), which commute with the integration operator {. This explicit
characterization can be considered as the “solution” of the non-local spectral prob-
lem considered.

In abstract setting the aim of any operational calculus for the operator [ reduces
to characterizing the class of operators commuting with {. But since the commutant
of I coincides with the multipliers ring of the convolution algebra (C’[O,T]7 *), in
this abstract setting the spectral problem obtains its solution by means of Theo-
rem 1.

Usually, in the general spectral theory (see [9], pp. 287-296) only analytic
functions of a given operator are considered.

Here we prefer to develop a direct algebraic operational calculus for the oper-
ator [, following the multiplier quotients scheme instead of Mikusinski’s approach.

3. OPERATIONAL CALCULUS BY MULTIPLIERS QUOTIENTS

Here the basic elements of an operational calculus for the integration opera-
tor (5) will be developed. One can follow either the Mikusinski’s scheme or the
multipliers quotients scheme proposed in [2].

The basic multiplier is the Dezin’s integration operator [f = {1} = f. This
multiplier is the convolution operator I = {1}*. Let M be the ring of the multipliers
of the convolution algebra (C[0,T],*) and N be the multiplicative set of non-zero
non-devisors of 0 of this algebra.

Let us denote by R the quotient ring of M with respect to A, i.e. R = NI M
(see [7], Ch. 2, Sec. 3). The elements of the ring R are quotients of the form

P
m:a, where P € M and Q ¢ NV.
We should always bear in mind the equivalence
P R
— == <<= PS=RQ.
Q75 ?

If ¢ € C, we will use the same letter for the numerical multiplier ¢{f(t)} =
{cf(1)}. By 1 we denote the unit of R, which is different from the convolution
multiplier {1}* = {. Then the algebraic inverse element of | will be denoted by

s L
1
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Theorem 2. If f € C'[0,T), then the relation

. py(0) — y(T)
y=sy- = (15)

py(0) —y(T)
pu—1
numerical multiplier, and y and y' are the convolution multipliers {y}* and {y'}x,

respectively.

holds, where the term is viewed not as o constant function, but as a

Proof. Tt is easy to verify the identity

Hy'(6)} = y(t) - y(0) + ulj{ym — YO} = () - M%_—lﬂﬂ |

If we express this equality as an identity of multipliers, it takes the form

=y - *L—"’((L)—}f(—ﬂl- (16)

Multiplying both sides by s, we obtain (15).

Remark 2. We will refer to (15) as the basic formula of the Dezin’s operational
calculus.

1
Theorem 3. If A\ € C and A ¢ —f(ln || + 2mmi), m € Z, then

si)\ :{ej;(_ue-u})}‘ (17)

Proof. Using (15), we obtain

(s = V{eM} = s{eX} — A{eM) = MeM} + &/%E;i — MeM)

and (17) is obvious.

4. OPERATIONAL CALCULUS BY TRANSFORM APPROACH

An alternative approach is based on a finite integral transform associated with
the Dezin’s condition. (For a transform approach for a more general boundary
value condition, see Dimovski [3].)

This finite integral transform can be defined, using the resolvent operator

Raf = {EZ—(_’-‘;}TQ} «f. (18)
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Then the F. Riesz projector is defined as

Pulf) == [ Rasar (19)
I

1
where I'), 1s a small contour around the zero \,,, = T(ln || + 2mmi), m € Z, of

From (18) it follows that
Poi{f} = {en(t)} * f,

1 eM(p—1) p=1 st
em(t):~%/m—d)\:u7€ ™o,

where

It is easy to verify the idempotency property

2

Ery = €m * €m = Eny.

It corresponds to the fact that P, is a projector operator.
Using (4), it is easy to find that

T
Puif}= (ﬁ | et dr> enlt)

The coefficient, of e, (t) is the corresponding finite Fourier transform

T
Fulf} = pﬁ—l /0 e T () dr,  meL (20)

This transform could be used as an alternative approach to the operational calculus
we considered by a direct approach. In the following theorem we summarize the
basic operational properties of the finite integral transform (20) for arbitrary m € Z.

Theorem 4. For arbitrary m € Z the following equalities hold:

.. 1
@ Fnfif} = 3l
i Falf} = dmFnify - LOZID),
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(iv) Fudf * 9} = Fond{ f} Fmdg},

and the inversion formula

oo f-1 1 T
; t) = - - Amt — —Am T Amt
W 0= N = g ) | e sy dnete

when the series in the right-hand side converges uniformly.

Proof. (i) and (ii) are obvious.

(iii). From
o 10 = SO
p—1
and (1) it follows
L e pfO) —1(T) 1
m}—m{lf}—]:m{f}— -1 X

(iv) follows immediately from the representation

Pm{f} = Fn{flem(t)

of the m-th Riesz projector (see Section 4).
(v) follows from the uniqueness theorem proven in [11}, pp. 255-271.

Remark 3. Formula (iii) corresponds to the basic formula (15) and can be
used in almost the same way.

2
5. OPERATIONAL CALCULUS FOR —DD? WITH BOUNDARY VALUE

CONDITIONS U(0) =0, U(A) =0

Following the multipliers quotients approach in [2], a survey of the operational

calculus for the simplest boundary value problem for the second order differential
2

operator D = ) in C[0, a] will be made. For more details one may consult our
recent paper [10].

The starting point of this operational calculus is the operator L_ 2. For f €
C[0,a] the function y = L_j2f is defined as the solution of the boundary value
problem

y' + Ny = f(a),
21
y(0) = 3(@) = 0. 21

It is easy to obtain the explicit expression

sin Az

/0 TsinMa- 7@ de. (22)

Asin Aa

Lonf@) = [ simate - o)5(6) de -
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The operation

a g3
o = -5 | l | rera-nomar (23)

¢
-/ fU€ =2 —nl)g(in])sgn (¢ — = - U)Tl)dﬁ] d¢

is a convolution of L_,2 such that

asin Az

Loy flz)= { } « 1(@). (24)

sin Aa
The special case A = 0 is used as the basic operator of the corresponding
operational calculus. Denoting L = Ly, we have

Lf(z) = {z} » f(), (25)

i.e. L may be considered as the convolution operator {z}*. For simplicity we will
write L = {z}. Also, if f € C[0,a], then by {f} we will denote the convolution
multiplier operator {f}*.
Let M, be the ring of the multipliers of the convolution algebra (C[0,T7], )
and let by NV, we denote the multiplicative set of the non-divisors of 0 in M, \{0}.
Further we consider the ring of the multipliers quotients R, = N, * M, of the
form P/Q with P € M., Q € N,.

Basic is the role of the multipliers quotient
1
S=—, 26
3 (26)

where by 1 the identity operator in M, is denoted.
The basic formula of the operational calculus under development can be ob-
tained from the identity

Lf" = £ = (1-2) £0) + Zf().

Writing it as an identity of multipliers operators, it takes the form

n_ [T 1
Li"=f-{1-2} 50 + ~f(a)L. (27)
Multiplying by S, we obtain
1
= 8f=8{1-2} 10 - > f(w), (28)

1

where the numbers f(0) and — f(a) are to be considered as “numerical operators”,
a

Le. as numerical multipliers in (C[0,a],*). Using (28), we can find that

1 _ { asin Az } (29)

S+ A2 sin Aa
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for /\#—. n € N.
Pmof It is casy to see that

1
S+ N

= L,)\z

Indeed, if y = L_y2f, then from (28) it follows Sy = y” = f — A’y. Now the
assertion follows from (24).
The direct approach can be duplicated by the finite sine-transform (see [12]).
We will use a variant of the sine-transform having (23) as its convolution. It
is slightly different from the finite Fourier sine-transform introduced by Churchill
i [13], p. 349.

Definition 1. The transform F? : C[0,a] = C" is defined by

Fin =0 / F(e)sin e, (30)

n=12,...

Theorem 5. The basic properties of the sine-transform are:

() Fatey= - (%)
(i Rl == (=) Fidsh
S§ Pt — TL_7: ] = (__1\" .
(i) Ftry = - (U)o} - Llfta) - (-1 )]
(iv) Folf =gy =F AN gk
and the inversion formula
(v) flz) = 2% Z(—l)"nfg{f} sin %7
n—=1

holds when the right-hand side series converges uniformly.

Proof. (i) and (ii) can easily be obtained directly. (iii) follows from (27) using
(1) and (ii):

FalLf"} = Fodf} = £(0) fs{l——}+ f (a)F{z}

or
(-D)"a a

o 1@

(LY F sy = R - £00)

nm 2

(nm)
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since
Fi1-2) =

(iv) It can easily be verified that

. nm . nw (-1)"a ., n=m
sin —ux ) * {sin —zx sin —uz.
a a

I

Since
Fiif} SIII%ZIL = (sm %711) * f,
then
n b
Fotfahin e = (022 « 1+ ) = 307) (50 )
= PN Filg}sin .
(v) See [12], Ch. 3.

6. A TWO-VARIATE OPERATIONAL CALCULUS FOR THE HEAT
EQUATION WITH DEZIN’S BOUNDARY VALUE CONDITION

Our first aim is to develop an operational approach to the following non-local
boundary value problem for the heat equation in the rectangle A = [0,q] x [0, T:
Uy = Ugy + F(.’E,t), (1,t> € A?
pu(z,0) —u(z,T) = f(x), 0<z<a, (31)
w(0,8) = (), ula,t) =9(t), 0<t<T,
where g # 11s a real parameter.
To this end we need a two-variate operational calculus for functions u(z,t) of
a space variable and a time variable. We will follow the pattern from [10].
We have to find an inner operation for functions f € C(A), which is a convo-
lution both for the operator

v T
l{u(.r.,t)}:/o u(:r,r)dr—i—u—ii ; u(z,7)dr (32)

and the operator
Zz T a
Liu(z.t)} :/ (= Qul(€ t)dE — g/ (@ —&ul€,t)d¢E.
0 0
According to (23) the operation

(9w = —5

. £

i [/ f€+z—=n)g(n)dn (33)
13

-/ U&=z ~n)g(nl)sgn ((€ — =z —n)n) dn} d¢
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is a convolution for L in C([0,al).
Now we are to combine (33) with (4) in order to obtain a two-variate convolu-
tion, such that [ and L to be multipliers of the corresponding convolution algebra.

Theorem 6. Let u,v € C(A). Then the operation

0L =gt [ [/ [ fa €=t = ot dndr
T ré
+/t Af(ac+€—n,T+t—T)9(77»T)d77dT (34)

9’ £
= [ st =a =kt =olnl.Isgn (6 = o - nia)dndr

T e
/ F(€ =z —nl, T+t =7)g(Inl, m)sgn (€ — = —n)1] dndr} dg
t -
is a bilinear, commutative and associative operation in C(A) such that the operators

t
Hf}={1}+7
and .
L{fy={z} = f
are multipliers of the convolution algebra (C(A), z>ét) )

For a proof one can follow the lines of the corresponding proof in [10]. Since
the bilinearity and the commutativity are almost obvious, only the associativity
needs to be proved. We verify it for product functions F(z,t) = f(z)p(t) and
G(z,t) = g(z)y¥(t) using the identity

F S @) ) = (F £ 9)@) (e + )0,

followed by an approximation argument.
Let us denote by R the multipliers quotient ring of the convolution algebra

(C(A), 0 ) In R the one-variate identity

{0} = s{e(®)} - ﬁﬂ%}o@
takes the form
{_‘%_(éiz_"t_)} = s{u(z,t)} - I:HU(I,(L)_—;J«(ZE,T) X 35)

where by []; it is denoted that the expression in the brackets is a numerical operator

with respect to t,i.e. []¢ = {-} .
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The corresponding identity with respect to z has the same form as in [10):

% =5Su—S§ {1 - g} [u(0,1)], — Eu(a,t)} , (36)

1 . . s
where S = T and []; is to be considered as a numerical multiplier with respect to
, t
z,le e =1{}
For the proof of the uniqueness theorem in the next section we need to char-

.t
acterize the divisors of O of (C(A), (z* ) ) This is done by means of the following

two-variate finite integral transformation.

Definition 2. For v € C(A) let

Frnloh = N [ et sn ™ e dcar

be a two-variate finite integral transform corresponding to the two-variate convo-
lution (34).

Theorem 7. The following properties of F, ., are satisfied:

. B a\2

(1) fm,n{Lu} - = (E) ]:m,n{u};

(ii) fm,n{lu} = /\m}—m,n{u}’

Amt o ZLI _ Amt o E (z,t)
(iii) Fmn{ute™™ sin 5= {e sin — x} * o,
(iv) fm,n{u * 7}} =Fn n{u}]:m n{U}

a

0 Fna{ G b= () Pt - S mlua§) - (17,0,

(vi) Fm {g‘t‘}_x Fonn{u} P{““(‘”’?__;‘(LT)}.

Proof. Follows immediately from Theorems 4 and 5.

Lemma 1. A function u € C(A) is a divisor of 0 iff for some m € Z, n € N
we have Fp, n{u} = 0.
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Proof. Indeed, let for some m € Z, n € N we have F,, ,{u} = 0. Then

{e*tsin E:17} {u x,t)}

[/ / 7 sin —fdﬁdr} emtsin HT = 0.
— 1 nm a

Hence v is a divisor of 0.
. . (zt) . (1)
Let us now conversely assume that w is a divisor of 0 of " | i.e. that u *

v = 0 for some function v € C(A) , v # 0. If we assume that F, p{u} # 0 for all
m € Z and n € N, then

(z.t) (at) [y 4 . N } (—=1)™u
’ m T sIn — = ——"fm n le 'y = 07
(u x v) =* {e sin —2 e {u}Fon{v}

whence Fp, n{v} = 0Vm € Z, ¥n € N. This is equivalent to

(sin HL) * [ At v(z, )| = 0.
a

If we denote the functions in the brackets with F,(z,t), the last equality implies
that
Fol(z,t) =0, Ym € Z.

Fixing now z € [0, a], we obtain
et i vz, t) =0,
whence v(z,t) = 0 V¢ € [0,T], contrary to the assumptions.
Theorem 8. L — 1 is a divisor of 0 of the multipliers ring of the convolution
algebra (C(A),(l;éf) ) iff % %m% € N.

Proof. If (L —1)M = 0 for some M # 0, then there exists a function v € C(4A),
v # 0, such that Mv = u # 0 and (L — {)u = 0. The fact that u # 0 implies that
for some m € Z and n € N we have

Fmnfu} #0.

According to (i) and (ii) of Theorem 6 we have

9
Fonn{Lu — lu} = {— (=) - /\m} Fn{u} =0.
This is possible only if
2
(i) + A = 0.
nw
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1
Since A, = T(ln i+ 2mmi), this is only possible for m = 0, i.e. when

rhn=-(2)

for some n € N, whence the assertion follows. The converse is obvious.

7. GENERALIZED SOLUTIONS OF THE HEAT EQUATION
WITH DEZIN’S INITTIAL CONDITION

The common notion of a generalized solution in the sense of distribution theory
is unpractical for boundary value problems. This is especially true for nonlocal
boundary value problems in finite domains.

In the case of the boundary value problem (31) it is very useful to introduce
the notion of a generalized solution in the framework of the algebraic analysis of
D. Przeworska-Rolevicz [14].

Let C?'(A) be the space of functions that are twice continuously differentiable
with respect to £ and continuously differentiable with respect to t. Let us assume
that (31) has a classical solution u € C*!(A). Applying the operator Ll to the
cquation

U = Uz + Fz)t),

we obtain
L(lug) = l(Lugy) + LIF (z,t).
From (16) we get
1

lug = u — Ff(w)

and from (27) we have

Ltigy = u— (1 - g) w(t) + %d)(t).

Hence

L |u(z,t) — ﬁf(m)} =1 [u(w,t) - (1 — 2) o(t) + gw(t) + LIF(z,t)

or

1 z z
(L= Du= " Lf) - (1 - 5) Lp(t) + ~1(8) + LUF (2, ). (37)
Conversely, if a function v € C?1(A) satisfies (37), then it is a solution of (31).
83
Indeed, if we apply the differential operator 30701 to (37), we obtain
o 0
(;9_15 — @) U—F(Z,t)
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and hence u(z,t) is a solution of the heat equation.

. L " . o?
In order to verify that the initial conditions are satisfied, let us apply 5.2 only.
x

We obtain

! 1f(x) +1F(z,t).

u—lugy =
Applying to this equality the functional
U{g(t)} = pg(0) — g(T), (38)
we get
U{u} = f(=),
i.e. the Dezin’s initial conditions since ¥{lg} = 0.

0
In a similar way applying 3 to (37) we get

Lui—u=— (1 - z) o(t) + %w(t) + LF(z,b).

Since (Lg)(x) satisfies the boundary conditions (Lg)(0) = (Lg)(a) = 0, then the
above equality for z = 0 and for z = a gives ©(0,?) = (t) and u(a, t) = P(t).
The above considerations justify the next definition.

Definition 3. If u € C(A) satisfies the integral relation (37), it is said to be
a generalized solution of the boundary value problem (31).

Lemma 2. Ifu € C(A) satisfies (37), then u(0,t) = ¢(t), u(a,t) = ¥(t) end
pu(z,0) —u(z,T) = f(z).
Proof. From (37) for z = 0 we get

_lu(0>t) = "lSO(t)a
whence u(0,t) = o(t). In a similar way, substituting £ = a in (37), we obtain

u(a,t) = ¥(t).
Applying the functional (38) to (37), we get

L {ulz, 1)} = u—i—lmxml}

(since LY, = ¥,L) or

L{pu(z,0) — u(z,T)} = Lf(z).

5

a2 to both sides of
T

Now Dezin’s initial condition follows applying the operator

the above equality.
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8. APPLICATION TO THE HEAT EQUATION

The two-variate operational calculus developed above allows to algebraize com-
pletely the boundary value problem (31). We use formulas (35) and (36) to obtain

[f ()]s x 1
Y —5{1‘~} e — ~[()]a :
Tl = su “Hel - RO + {F(.0)
The solution u exists as an element of the ring R, i.e. as a multipliers quotient and
it can be represented in the algebraic form

{Fet) U@l S s 1
T e o5 1 o ek Yol 39)

It is valid provided s — S is a non-divisor of 0 in R.
Theorem 9 (for uniqueness). The element s — S of R is a non-divisor of 0
1.1
provided 2 am= g N.
VT pu

Proof. Let us assume the contrary. As in [10] it is easy to show that this
assumnption reduces to the existence of a non-zero function u € C(A) such that

(L—-0u=0.
Then the proof follows from Theorem 7.
1
Now the formal solution (39) exists provided 2 fln ~ ¢ N. In order to
™ It

interpret it, we introduce

1 Ll
Q: = .
sS(s—-85) s-8

Since Ll = {z}, then 2 can be interpreted as a solution to the boundary value
problem (31) with F(z,t) =z and f(z) =0, ¢(t) = 0, (t) =

If such a solution u(z,t) exists, we can find it by means of the finite sine
transform. If u(z,t) is the solution, then

Pt = 7 { S5+ 7o)

Using (i) and (iii) of Theorem 5 and the boundary conditions for
uy(t) = Faf{u(z, t)},

we obtain the equations

7= () w0~ () )

g (0) —un(T) =0

89



for n = 1,2.... For the functions un(t) we find the explicit expressions

(p—1)a ()

i~ e ) -

up(t) =

Taking into account the inversion formula (v) in Theorem 5, we now define

oC

O, t) = 25 (1) nua(t)sin oop = =2 (“)3 i U n T
Tty = — —1"nu, () sin —z = — : in —
a —r) a T — n3 S z
7 3 @ _1\n 5 -
+ Z(N 31)0 z =D — e (5 g My (41)
g n=1 n3(u — 6_(7) T) a
. —1 3 ©© —1)" Y
= ,l(lﬁ - a2m> + Q(IU g)a Z ( ) ey (ii(‘_’)ztsin n_TrT
0 i n=1 n3(u—ef(7) 7 a

It is a matter of a simple verification that Q(z,¢) satisfies the integral relation
LO— 10 = Li{z}. (42)

Theorem 10. Let F(z,t) € C*1(A) and let it satisfy the zero indtial-boundary
conditions of (31). Then the problem (31) has a generalized solution u(z,t), which
has the Duhamel type representation

(z) O3F

Proof. In order to prove that uis a generalized solution of (31), we are to show
that it satisfies the integral relation

(L - l)u= LIF.

From the assumptions made on f we have

OF
0220t
Then
. 9 63F ("n t) 63F
—lu=Lu— Llu=
Li(l - lyu = L*lu — Li*u = (Q S Ll ’at> l(( szat)
— % Fy e py = e -0 Y F

But LO — Q= Li{z} (see (42)) and then
(z,8)
Li(l—Du=L{z} * F
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Since {x} R = LIF, then
LUL - lu = L*°F.

Now “canceling” the term LI, we get Lu — lu = LIF.

Irom (43) it follows that u(x,¢) is continuous on A and it satisfies the initial-
boundary value conditions ©(0,¢) = u(a,t) = 0 and pu(z,0)—u(z, T) = 0 according
to Lemma 2.

Theorem 11. Let f € C1[0,a] and let f(0) = f'(0) = fla) = f"(a) = 0.
Then the function v € C*YA) defined by

1
nw—1

v(r, t) = — (Q : f(zl)(l')) - ﬁf(l) (44)

is a generalized solution of the equation vy = vy, with v(0,t) = v(a,t) = 0,

ez, 0) —v(e, T) = f(z).

Proof. 1t is not difficult to obtain this Duhamel-type representation from

RO
w—-1s-8"

v =

but it is easier to verify dircctly that (44) satisfies the equation (L — ljv = Lf.

Theorem 12. Let v € C?[0,T)] satisfy pp(0)—v(T) = 0 and wp' (0) —y'(T) =
0. Then the function w € C*1(A), given by

1 ¢ T
w(z,t) = —;Q x4 ~9(t), (45)

is o generalized solution of the equation wy = Wy, with w(0,t) =0, w(a,t) = P(t)
and pu{x,0) —w(z,T) =0.

Proof. We have to show that w satisfies the integral relation

(L—-Dw= —lxw(f).
a

This is a matter of simple calculations.

Remark 4. The case F =0, ¢(t) = 0, f(x) = 0 is not essentially different
from the just considered case. Although the corresponding expression

=S{1-2} o).
s~ S5

looks more involved than the expression

—[¥(t)].
(n="1(s=5)
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in the previous case, it can be simplified by introducing the new independent vari-
ablez=a —z.

Remark 5. In order the generalized solution of problem (31) to be a classical
solution, only a slight increase of the smoothness assumptions on F, ¢, ¢ and f
is necessary. It is sufficient to require the corresponding derivatives of the highest
order to be not only continuous, but absolutely continuous.
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A LOGARITHMIC CLASS OF SEMILINEAR
WAVE EQUATIONS

TOSHKO BOEV

We study the global existence, long-time behaviour and blow-up of classical solutions
of the equation Cu = »In?(1 + u?) in (3 + 1)-space-time with arbitrary big initial
data. Thus we have a case of a repellent potential energy term in the relevant energetic
identity, contrary to the attractive energy case described by the well-known equation
Ou = —ufu{P~1. The global existence result for 0 < q < 2 is first established. Then
special “counterdecay” (for 0 < ¢ < 2) and blow-up effects (for ¢ > 2) are found, which
show that ¢ = 2 is a “critical” value. In this way it is answered, in particular, to a
question that has arisen already in the pioneering works of Keller and Jérgens on the
semilinear wave equation.

Keywaords: global classical solutions, exponentially increasing solutions, blow-up so-
lutions

MSC 2000: 35L70, 35B05

1. INTRODUCTION

Consider the semilinear wave equation
Ou = f(u), (1.1)

where 0 = 0} — A, A = A, = 32782, n is the spatial dimension. For the
function f(u) it is assumed that f(u) = O (|ul?), for |u| = 400 or |u| = 0, with a
certain parameter p > 0.

As it is well-known, there are two critical numbers p*(n) and po(n) that play
a prominent role in the theory of Eq. (1.1). They are defined as follows:

P =55, () = 2, 12
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where z7 is the positive root of the equation
n-1z"~(n+1)z-2=0.

The significance of the number p*(n) was revealed by Jorgens [6], by the results
of many authors afterwards, see, e.g., [1, 9], and in the morc recent papers [3, 10,
12] and the references therein. This number gives an answer to the question for
the strongest nonlinearity of f(u), as |u] = +o00, which admits global (in time)
classical solutions to Eq. (1.1) without restrictions on the magnitude of the initial
data. In the above cited papers global existence results have been obtained in the
case 1 < p < p*, for an arbitrary magnitude of data, under the assumptions that
the potential energy term

Uylu E/Ouf(z) dz

is attractive, i.e. Us[u] < const, Yu, within the main class of functions f(u) of the
form

f(u) = —ululP~t (1.3)

The sccond critical number pg(n) shows up for u close to zero, in the quest
for existence of global solutions with small enough data. The number py(n) has
been found by John [5] for n = 3, when py = 1 + /2, and by Strauss [11] for
an arbitrary n. It is noted that after the blow-up result in [5] for the equations
Ou = fu? (see also Lindblad [8]) with p = 2 — a number within the subcritical
interval 1 < p < 1+ v/2, and the global existence result in [5] for p > 1+ /2, many
authors paid a special attention to the cases of the critical value p = py(n) and to
the supercritical interval p > pg(n).

In the present paper we consider the classical solutions of the Cauchy problem

Ou=uln?(1+u?), z€R* t>0,q¢>0, (1.4)

u(z,0) = p(x), u(z,0) =), =R (1.5)

where ¢ € C?, ¢ € C?. (As usual, C% = C*(R?) is the space of the k-time smooth
functions.) The main results below shed more light particularly on the small data
problem for Eq. (1.1). (For more details see, e.g., [11, 13, 14].) When |u] is small,
we recover in Eq. (1.4) a particular case of Eq. (1.1) with p = 1-+2¢. However, in the
subcritical interval ¢ < 1/v/2 (1 < p < 1+ v/2) the problem (1.4), (1.5) possesses
global solutions for arbitrary magnitudes of the data. From the view-point of the
interest of many authors to the so-called supercritical interval for Eq. (1.1), let us
note the following. For ¢ > 2 we have in Eq. (1.4) a whole interval of supercritical
powers p = 1 + 2¢, provided |u| is small; then, obviously, p > 5 > 1 + /2 (see
[3], where the critical value 1 + V2 is discussed in more details). Nevertheless,
our blow-up results (established below in Section 4) show that classical solutions
can exist for Eq. (1.1) (in the case (1.4)) with arbitrary small data, which blow
up in the case of big enough supports of the data. Such an “anomaly” seems to
be caused mainly by the repellent influence of the potential energy term Uy in
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Eq. (1.4), when Uy[u] > const, Yu. Compared with (1.3), the nonlinearity of the
source term is much weaker than that in the right-hand side of (1.4), as lu] = +oo,
but the potential energy term Upg{u] is repellent. Taking into account the Keller’s
pioneering result [7] (see also that of Glassey [4] and the counter-example in [9, 12]
for (1.1} with f = ulu[P~1), one can expect an absence of global solutions of (1.1)
for repellent Uy, when the test life-span T9,

+oc z ~1/2
TY = <1 2 d ) dz,
/0 + /0 f(s)ds z

is finite. However, it remains an open question in general whether Eq. (1.1) pos-
sesses global classical solutions for arbitrary data (1.5) if Uy > const, but T}) = +400.
For Eq. (1.4) we answer this question in Section 4 below. More precisely, we show
that there exists a unique global solution of (1.4}, (1.5) for 0 < ¢ < 2 (when
T}) = +o0). In Section 3 the behaviour of the positive solutions of the Newton
equation ¢ = vIn?(1 + v?), associated with Eq. (1.4), is studied. In Section 4 it is
proven that the classical solutions of Eq. (1.4) increase exponentially {“counterde-
cay”) if 0 < ¢ < 2, and blow up if ¢ > 2, for data, either positive or negative, which
produce the so-called space-destinated waves. Thus it is shown, in particular, that
¢ = 2 is a critical value for the global classical solutions of Eq. (1.4).

2. TWO BASIC PRINCIPLES

Consider the following Cauchy problem for the semilinear wave equation:
Ou=f(u), z€R’ t>0, (2.1)
w(@,0) = ¢(z), uz,0)=19(z), z € R, (22)
where f € C?(RY), f(0) =0, and p € C3(R?®),v € C*(R?). Recall that a solution
w of Eq. (2.1) is called classical in a set G C R® x (0, +00) such that G N {t = 0}
contains some domain in R? if u € C*(G) N CY(G), G being the closure of G. For
a given compact K C R® we denote by K7 the part of the backward light cone
contained in the strip 0 <t < T and based on K at ¢ = 0. Similarly, K; denotes
the forward light cone issued from K for 0 <t < T.
We suppose known the local existence theorem for (2.1), (2.2), and the theo-
rems for uniqueness and the continuous dependence on the data.
Below we shall use the integral equation

u=u’+FExf(uh). (2.3)

Here ©? is the solution of the free wave equation Ou = 0, given by the classical
Kirchhoff formula

u’(z,t) = 0, £ / oz + tw) ds,,
4w lw|=1
(2.4)
t
+ — Uz + tw)ds,, wé€ R?,
4r lw]=1 ( )
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where E is the fundamental solution of the wave operator, u™ = u (t > 0), ut =0
{(t < 0), and E x f(u") is the convolution in R? in the usual distribution sense.
Recall also that the following known formula is valid for E * f(u™), namely,

Ex f(ut) = i/@ T/1w|:1 fulz + Tw,t ~ 7)) ds,dr, (2.5)

forz € R® and t > 0.

2.1. COMPARISON PRINCIPLE

We realize here, in a new case, a classical comparison idea known, e.g., from the
theory of the finite-dimensional dynamic systems. The essence is to compare the
solution u(z,t) of (2.1), (2.2) with the solutions of the Newton equation @ = f(v)
from below or above. In the next theorem we impose the following requirements
upon the function f:

feC*RY, f(0)=0, f'>0, (2.6)

in R', and use backward light cones C5 in {0 < t}, based on closed balls B C R?.
(Obviously, a cone Cg can be represented as K, with K = B and big enough T'.)
Now the comparison principle reads:

Theorem 2.1. Suppose the condition (2.6) holds for f(u). Let the functions
u(z,t) and u(x,t) be the solution of (2.1), (2.2) and the function from (2.4), re-
spectively. Let Cg be a given backward light cone. Suppose also that u® satisfies
the inequality

ul(z,t) > ay +bit, (z,t) € Cy, (2.7)

with certain constants a;, by > 0 depending on B. Then the following estimate
holds for the solution u:

u(z,t) > vi(t), (z,t)eCgnNGN{0<t<Ti}, (2.8)
where vy (t) is the solution of the Cauchy problem
U= f(v)v U(O) =a, U(O) =b, (29)

defined for t € [0,T1), for a positive Ty, with a = ay, b = b1. Simularly, we have
the estimate

lu(z,t)] <va(t), (z,t) e CENGN{0 <t <Th}, (2.10)

if vo(t) is the solution of Eq. (2.9), defined for t € [0,Ts), Ty > 0, with data a = as,
b = bs, where
|u®(z,t)] < az + baot, (z,t) € Cg, (2.11)

and az, by > 0 are certain constants depending on B.
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Proof. Take an arbitrary backward light cone K. such that
KrCcCgnGn{0<t<T}

and set
wi(t,T) = minu(y,t), (y,t) € K7, t€(0,T),
y

with fixed ¢. Note that the solution u is non-negative in K7: this follows from the
condition (2.7) and the positivity of the operator in (2.5). For a fixed t € [0,7), in
virtue of Eq. (2.3) and the inequality (2.7), we have the estimate

wi(t,T) > a1 +bit + min E* f(u¥)(z,1), (z,t) € K . (2.12)
T
Next, we can easily verify the inequality
Ex f(u™)(z,t) > FEo * f(wh)(t), (x,t) ¢ KT, (2.13)

where Ej is the fundamental solution of the operator d?/dt*, and

Eo * f(w)(t) :/Otsf (wr(t —s,T)) ds. (2.14)
Indeed, the formula (2.5) shows that the fundamental solution E represents a pos-
itive measure and because of the monotonicity of function f we have
Exf(u") > Ex f(w]) = Eo* f(w)), (z,t) € Ky.
Then from (2.12), (2.13) we obtain
wi(t,T) > a1 + bit + Eg * f(w])(t,T), te[0,T). (2.15)

Now it is natural to compare the function w;(¢t,T") with the solution v (t), using
that v1(¢) solves the equation

vi(t) = a1 + bit+ Eo x f(o)(t), t€[0,T). (2.16)
Employing familiar arguments, it is not difficult to show that
1U1(t,T) Zvl(t)a Vte [O7T)7

which proves (2.8), because K is an arbitrary cone.
To prove the estimate (2.10), we utilize fully similar arguments. We now set

wa(t,T) = m;mx}u(y,t)], (y,t) e K7, te[0,T),

with fixed ¢t. Then
wy(t,T) < as + bot + Eg * f(w])(t,T)

as a consequence of (2.3), (2.11) and the properties of convolutions E x f(ut),
Eo * f(w*). Next it remains to compare the function ws(t,T) with the solution
v5(t), repeating the arguments from the comparison of w; and v;. This completes
the proof of Theorem 2.1. 0O
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2.2. CONTINUATION PRINCIPLE

This principle gives an affirmative answer to the natural question, concerning
time extension of the classical solutions of Eq. (2.1), dominated by certain “super-
solutions.”

Theorem 2.2. Suppose (2.6) is valid for f(u) and the following inequality
holds for the function u®:

T |uo(,’1:,t)] <a+bt, (z,t)€ K,;(J,

for a given cone K , with constants a,b > 0 depending on Ty. Let v(t) be the
solution of the problem (2.9) defined for t € (0,17), T < Ty. Then there exists a
unique classical solution ur of (2.1), (2.2) in K, which coincides withu in GNK
where

Ky =Ky n{0<t<T}
The proof, being known, is omitted (see, e.g., [5] and the references cited
therein). 0O

2.3. POSITIVE AND NEGATIVE SOLUTIONS

In this section we establish the existence of positive and negative solutions of
Eq. (2.1). We introduce a class of solutions called space-destinated waves and note
that they are positive or negative solutions, for ¢ > 0, if the initial data are positive
or negative, respectively. To this end we use the Lorentz pseudometric mp,

my = dt® — |dz)?, |dz|® = (dz')? + (d2?)* + (d2®)?, z = (z', 2% 2%).
Following Friedlander [2], we recall the relations

3
mr(€,n) =" =Y Fn,my(&6) = (€7 - €7, (2.17)

j=1
where & = (£',6%,6), €] = Z?:1(§j)27 and ¢ = (¢,€%), n = (n',n°) are
arbitrary vectors in R3*1.

Definition 2.1. A classical solution u(z,t) of (2.1) is called a space-destinated

wave if the set
Yo = {(z,t) € R*": u(z,t) = u(zo,0)}

is a non-degenerated smooth 3D-hypersurface in a neighbourhood of (z¢,0), Vzo €
I3, and the following inequality is fulfilled:

(_1>mL(£a§) 2 07 é € T(zo,O)(EO); 5 # 07 (218)
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where T, (o) is the tangent hyperplane to S at the point (20,0). A classical
solution w 1s called a strongly space-destinated wave if the inequality (2.18) is
strong.

Remark 2.1 (existence of space-destinated waves). It is not difficult to verify
(sce. e.g., [2]) that (=1)m; > 0 on the tangent space from (2.18) if and only if
my (u'(20,0),u'(20,0)) > 0, where v'(z,t) € R**! is the gradient of u(z, t) at the
point (z,t). Now, using the coordinate representation u'(z,0) = (Ve(z), v(x)),

where u(z,0) = ¢(z),u(2,0) = (x), and Vi is the gradient of p, we apply the
formula (2.17) for € = n = v’ and reach the following conclusion. A classical
solution u(z,t) is a space-destinated wave if and only if the data ¢(z), ¢:(z) have
the properties

(Vo(a),d()) # 0, ()] = [Vo(z)] > 0, x € R*.

Proposition 2.1. Suppose the function f satisfies the condition
flu) € C*(RY), wuf(u) >0, ue R,

and the solution u(z,t) of (2.1), (2.2), defined on a set G, is a space-destinated
wave. Then u(x,t) is positive in G, for t > 0, if the initial data u(z,0),u,(z,0) are
non-negative, for x € R*, and at least one of the following two conditions hold:

(1) u(z,0) #0, r € R,

(ii) u(z,t) is a strongly space-destinated wave.

Similarly, the solution u(z,t) is negative in G, for t > 0, if the initial data are
non-positive and at least one of the conditions (i), (ii) holds.

The proof is omitted, because the key ideas can be taken from the proof of
Theorem 2.1. 0O

Since the nonlinear part f(u) of Eq. (2.1) is odd, the following connection
between positive and negative solutions of this equation is obvious.

Proposition 2.2. Suppose the function f(u) satisfies the condition
flw) € C*(RY),  f(-u) = —f(u), Vu.
Then the map u(x,t) — —u(x,t) is o bijection between the sets of the positive and
the negative classical solutions of (2.1).

3. POSITIVE SOLUTIONS OF A NEWTON EQUATION

The so-called automodel solutions of the problem (1.4), (1.5), when the initial
data are constants, satisfy the Cauchy problem for the Newton equation:

il:ulnq(l-i-uz), t>0, (3.1)

99



u(0) = uo, w0) = w1, (3.2)

where ug, uq are constants. We study here the behaviour of the positive solutions
u(t) of (3.1), (3.2), provided ug > 0, 1 > 0 and ug +uy > 0. The positive solutions
of (3.1), (3.2) play the role of sub- and super-solutions for the wave equation (1.4),
estimating the solutions of (1.4), (1.5) under the assumptions of the comparison
principle (Theorem 2.1). For the solution u(t) of (3.1), (3.2) we shall use the
following well-known formulae:

u(t) = ug +urt +/0 (t — s)f (u(s)) ds, (3.3)

~1/2

u(t) z 2
t:/ G@+2/‘ﬂ®dﬁ dz, (3.4)

where f(u) = uln?(1 + u?).
A basic property of the positive solutions under discussion is given by the next
lemma.

Lemma 3.1. Ifug > 0,u; > 0, uo +uy > 0, then the solution u(t) of the
problem (3.1), (3.2) is positive and defined in a mazimal interval [0,T°). Moreover,
u(t) is a monotonically increasing function in [0,T°) such that

limu(t) = 400, t - T (3.5)

Proof. Let us write the relation (3.4) in the form F(u) = t, where

F(u)z/ <u1+2/ f(s >W1/2dz, u > ug.

Due to the monotonicity of the function F we have, for the solution u(t) of the prob-
lem (3.1), (3.2), u(t) = F~*(t), where F~! is the inverse function of F. The state-
ments of the lemma directly follow from the classical theory of the Newton equa-
tion. 0O

In the next lemma we study a general estimate for the solution u(t).

Lemma 3.2. Let u(t) be the solution from Lemma 3.1, defined for t € [0, 7%
and ¥(2) = z(z — uo) In?(1 + z2). Then the solution u(t) satisfies the estimate

[Tt r20)  d << VT / G4oud+9() " d (36)

0

Jor all t € [0,T9), u = u(t).
Proof. We begin by studying the function @(u) =2 / f(s)ds
Uo
u 14u?
»(u) :2/ slnq(1+32)ds:/ In?¢dt.
ug 1+u?
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Then
@'(z) = 2z1n%(1 + 2?),

9

2qz*
1+22

Y'(z) = (22 — ug) In?(1 + 22) + (z —uo) In? (1 + 2%).
Next we use the estimate for v’(z):
Y'(2) < 22In%(1 4 2°) + 2g2In%(1 + 22), 2> u,.
It follows from the above formula for ¢'(z), together with the inequality z%(1 +
2?)71 <In(1 + 2?%). Estimating ¢'(z) from below, we obtain
1

Vi(e) 2 2?1+ 2%) = 5¢'(2), 22 o,
Hence ]

39 (2) ¥ () <1+ 9)¢'(2), 2>,

and because of the initial data w(ug) =1 (ug) = 0 we obtain the inequality

396) SVE S L+ 0ol 22w (37)

From (3.4) we see that

t= /u (ui + go(z))—lf2 dz, u=ut),

Q

and applying (3.7) we establish the estimate

urf + —I%% <u?+ p(z) < u%’ + 21p(2),

which yields (3.6). O
The next lemma is a direct consequence of Theorems 2.1 and 2.2.

Lemma 3.3 (comparison and continuation principles). Suppose u(t), v(t)
are the solutions of (3.1), (3.2) with data (ug,u;), (vo,v1), defined in the mazimal
intervals [0,Ty), [0,T,), respectively. Then:

(i) u(t) <o(t), t€[0,T,)N[0,T,),
f 0<u; <vj,5=0,1

(i) Ty 2T,

if u(t) <wo(t) i [0,T,) N[0, T,).

Below we shall employ systematically the general estimate (3.6) in order to
study the global solutions of the problem (3.1), (3.2) (0 < ¢ < 2), their large time
behaviour and the blow-up phenomena (2 < ¢).
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Lemma 3.4 (global solutions). Let0 < ¢ <2 andug > 0, u; > 0, up+u; > 0.
Then the solution u(t) of the problem (3.1), (3.2) is global, i.e. T? = 400, and for
0 < g < 2 satisfies the estimate

2/(2— 2
u(t) <exp (A +u)t) 7 t>34u+ . 0<g<2, (38)
0,1
where dy1 = Inq/z(l +ud) ifur =0, doy =uy tf ug =0, and dp; = min{ln”/g(l +
ud),ur} if wiug > 0.
Proof. Suppose 0 < ¢ < 2. Consider firstly the case ug > 0, u3 > 0. In virtue
of (3.5) we can chose t; € (0,7°) such that u(t) > 2+ ug for ¢ > t;. Then, due to
(3.6), we have

u
tZ/ (uf+2(1+z)22‘11nq(1+z))_1/2 dz (t > ).
24ug

Therefore

u
(u';’+8)‘1/2/ (142 i 7?(1+2)dz<t. t>1t. (3.9)
24uqp

+oo
/ (1+2)'In" 7?1+ 2)dz = +o0
2+up

and (3.9) shows that the solution u(t) is global. The inequality u(t) > ug + uit >
2 + g, valid for ¢ > 2/u;, and (3.9) yield

21+ w) < B+u)t+In Y@ 4 ug) < d+u)t (>34 u).

The estimate (3.8) obviously follows now with dp; < w;. In the case ug > 0,
u1 > 0 we argue in a similar manner - — noticing that w(t) is global and employing
the formula (3.3) to get

ult) > uo + (2/2)f (uo) > 2+ w0 (¢ > 2/v/T(wa), [uo) = wo (1 +uf) ) .

Then (3.8) also follows but with dg1 < +/f(ug). Suppose now ¢ = 2. In the case
uo > 0,u; > 0 we reach again (3.9) and the solution w(t) is thus global. O

Lemma 3.5 (lower estimates). Let 0 < ¢ < 2 and T > 1 be a parameter.
Suppose the initial data (3.2) depend on T, ie. ug = ug, ¥1 = Uy 1, satisfying
the assumptions

0 < wuor, “1%? <uyr, (3.10)

c1 > 0 being a constant. Then the solution u(t) of the problem (3.1), (3.2) satisfies
the estimate

_ 2/(2—q)
u(t) > (4/ci) exp (216qh*t> , te2T/3,T] (0<¢<2), (3.11)
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when T 2 24/(2 = ™ and b = /(64 + ).

The proof uses arguments fully similar to those from the proof of Lemma 3.4.
That is why it is omitted. O

Lemma 3.6 (blow-up time). Suppose ¢ > 2 in Eq. (3.1) and upu; > 0,
up +uy > 0. Then the life-span T° is finite for the solution u(t) of (3.1), (3.2),
which blows up at the moment T°. Moreover, the blow-up time TO can be estimated
as follows:

1
<70
20/2(q — 2)(1 4 wy) (1 + up)e/2=1 —

(3.12)
S\/1+q<*§+27/52—> (’LL1>())‘,

(q—2)

1
<710
29/2(q — 2)(1 + ug ) (1 + up)4/2~1 =

) (3.13)

3+U0
< /1 2 . > 0).
- +a < wp In?(1 4 ud) + 24/2(q~2)> (uo )

Proof. To establish the left-hand sides of (3.12), (3.13), we shall use the left-
hand side of (3.6). For the sum u} + 2¢(z) we have

W2+ 2¢(2) <ud 2221 + 22) < (1 +w;)?(22)% In9(22)?,

when z > 1+ ug. From (3.6) it follows

o (14 un)20/2221092(22)  2972(g—2)(1+wy)

70 > /+°° dz In'~%2(2 + 2uq)
1

Afterwards we use the inequality In2(1 + wug) < 1 + ug, which yields the upper
estimates of (3.12), (3.13). In the case of uy > 0 we can consider ug = 0 (due to
the comparison principle). Then from (3.6), taking the appropriate limit, it follows

(Y(z) = 22 (1 + 2%)).

0. +oo
TS e
But for the just defined function v(z) we have 1(z) > 2922 In? z for z > 3. Hence
T < \/1+4¢q / L vlta /+Do
\/_ul 24/2 zln"/2
and the right-hand side of (3.12) immediately follows.

If ug > 0, we can similarly consider u; = 0 (again recalling the comparison
principle). Next, employing the estimate

¥(z) 2 (2 = uo)* In* (14 2%) > 297727 In? 2

103



for z > 2ug, we obtain from (3.6)

o 34+2up dZ
T S\/1+q/ +1+¢
uo Vuo In?(1 + ud)(z — uo)

which gives the right-hand side of (3.13). The blow-up property lim u(t}) = +o0 for
t = T9 has been already established in Lemma 3.1. O

3420, 29/27 12 ln“/2

4. GLOBALITY, COUNTER-DECAY AND EXPLOSION OF SOLUTIONS

In this section the main results of the paper are formulated and proven for the
class (1.4), where the potential energy contains a repellent term. It becomes clear,
in particular, that for Eq. (1.4) ¢ = 2 is a critical value when the global existence
problem for arbitrary big data is considered.

Theorem 4.1 (global solutions). Let 0 < ¢ < 2 in Eq. (1.4) and p(z) € C?,
Y(x) € C? are arbitrary functions. Then the classical solution u(z,t) of the problem
(L.4), (1.5) is global.

Proof. By the local theory the classical solution of (1.4), (1.5) exists in a set
G C R® x [0,+00). Let T > 0 be arbitrary big. Choose an arbitrary ball B C R?
with a radius R > T and let K7 be the backward light cone (see Section 2) based
on the compact K = B, K7 C {0 <t <T}. Let

o= maxp()], b= max (Vo) + ()]}, = € B.
Then for the free wave u®(z,t) (see formula (2.4)) we have
u®(z,t)] Sa+bt, (zt)€Cx,

where Cg is the backward light cone based on B and K = Cz N {0 <t < T}
for K = B. Moreover, the solution v(t) of the problem (2.9) is global in the case
of f(v) = vIn?(1 + v?), ¢ € (0,2], according to Lemma 3.4, and v(t) is defined,
in particular, for ¢ € [0, T]. Now the continuation principle (Theorem 2.2) assures
that the solution u(z,t) is indeed defined in K. This proves the theorem. [

Theorem 4.2 (exponential counter-decay). Let 0 < g < 2 and let the classical
solution u(x,t) of the problem (1.4), (1.5) be a strongly space-destinated wave, with
either non-positive or non-negative initial data, satisfying the inequality

inf (1+[z]) ([ ()| = [Ve(2)]) >0, @€ R (4.1)

Then for each compact K C R® there exist positive constants c',h', t' = t'(K) such
that

2/(2—¢
ju(z,t)| > (4/c") exp (2—6h' ) (0<qg<?2) (4.2)

104



on KLn{t > t'}, where KL = UK}, T € (0, +00), is the forward light cone issued
from K. If, moreover, we have

sup (le(@) + [Ve(@)] + [¢(@)]) < +oo, z € R?, (4.3)

then the solution u(x,t) satisfies, besides (4.2), the estimate
lu(z,t)] <exp((4+ c")t)z/(%q) Ve >t (4.4)

as well, with certain positive constants ¢’ and t" = t"(cg, c").

Proof. For a given compact K C R? let us fix a ball By C R* with a radius rg
such that K C By. Translate next the origin in RB? at the center of By. Obviously,
it suffices to consider only the case of non-negative initial data, due to Proposition
2.2. Now (4.1) shows that the constant ¢;, defined as

cr = inf(1 +2f) (¥ (z) - [Ve(2)]) (4.5)

is positive.

Let us take an arbitrary T > 1 + ro and an arbitrary point (z7,T) € KZT..
Denote by C~(zr) the backward light cone with the top at (z7,T). From the
Kirchhoff formula we obtain the following inequality for the free wave u®(z,t):

1
ez [ W) - 1) ds, (46)

47t |z —y|=t
When (2, t) varies in the cone C~(z7), we have obviously

lyl <ro+2T, yeR®: |z —y| =1,

and from (4.5) we find

c1 e c

— > > >
v(y) - Vel 2 T+ro+2T “1+3T =147

with ¢ = ¢1/3. Then (4.6) yields

!

ul(z,t) >

et H—Tt, (.’E,t) S Cﬁ(IT).

Now we can apply the comparison principle (Theorem 2.1) to find
U(.T,t) Z UT(t)a (:E?t) € C‘(JYT),

where vr(t) is the solution of the problem

B = vin?(1 +v?), v(0) =0, 0(0) =
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Afterwards it remains to apply Lemma 3.5 and to set (z,t) = (x,7), then
w(xr, T) > vr(T) > (4/¢) exp(?—l%qh'T)z/(Z‘q) (0 < q<?2).
This proves the estimate (4.2). When (4.3) holds, we set
co = sup [(z)l, "= sup (V)] + [ ()])

and using the Kirchhoff formula we get

[l (x, t)] < co +c"t, () € R® x [0,+00).
Then, in virtue of Theorem 2.1, we conclude that

fu(z, ) <U®), (2,t) € R*x[0,+00),

with U(t) solving the equation
7 =Um?(1+ U3, U(0)=co UW0)=¢".

It is clear now that the estimate (4.4) follows from Lemma 3.4. [

In the next theorem we shall deal with the classical solutions u(z,t) called
space-destinated waves on a given compact K C R?, which satisfy the requirements
of Definition 2.1 for each z € K. The notations

mp = min |u(z,0)], v € K, (4.7)
my = min (ju,(z,0)] — |[Vyu(z,0)]), z € K, (4.8)
. . \/g 3+ mo
0= ll—% o (M’ 2 24 moIn¥(1+m3d) )’ mo + 1 # 0, (4.9)
My = max|u(z,0)],z € K; (4.10)
M, = max (Jug(z,0)] + |Vou(z,0)])), v € K, (4.11)

shall be used for a given space-destinated wave u(z,t) on K. By Ty = Ty(u, K)
we shall denote the supremum of all T > 0 such that a given classical solution u
of (1.4) exists in the light cone K ; T, is usually called the life-span of u for the
compact K.

Theorem 4.3 (blow-up of the solution). Suppose ¢ > 2 and ¢ € C°, ¢ € C?
are arbitrary initial data, either non-negative or non-positive on a ball B, C R,
such that the solution u(z,t) of (1.4), (1.5) is a space-destinated wave on B, (r
is the radius of the ball). If the numbers m;(r), j = 0,1, and 7o(r) satisfy the
inequalities

’ 92-q/2
mo(r) +mi(r) >0, /1+g <To(7") + 7 -2 ) <,
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then the solution u(w,t) blows up in o finite time and the life-span T,(r) = Ty(u, By)
satisfies the estimates

2792 (1 + Mo(r)' ™" : 2
(g—2)(1+ M (r)) <T,(r) < \/m<m(1) + - > ’

where m(r), Mj(r), j = 0,1, and 7o(r) are the constants from (4.7)-(4.11) with
K =5,

Proof. By the Kirchhoff formula we obtain the cstimates
mo(r) + tmy (r) < |u’(z, )] < Mo(r) + tM,(r)

for u%(2.t) on the backward light cone C7(r) = Ky, where K = B,,T =r. In
addition, u°(x,t) is either positive or negative on C'~(r) N {t > 0}. Then the
comparison principle yields

v(t) <juz, )], (xt) € C7(r): 0 <t < min (r, 0.7T,(r)), (4.12)

(@, O <U(t), (2,8) € C7(r):0 <t <min(r,T,(r),T}}), (4.13)
where v(t) and U(t) satisfy the equation ¥ = zIn?(1 4 22) with the initial data
(. ma) and (Mo, M) and the life-spans T2, 77, respectively. Next, from Lemma
3.6 we sec that

2742 (1 + My)' /2 22-4/2

70 > T < \/1+ +
ARSI R

). (4.14)

g—2
Then the estimates (4.12)-(4.14), together with the inequalities

TG <T,(n) < T

v

prove the theorem. 0O
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The Hashin-Shtrikman and Walpole bounds on the effective shear modulus of a binary
elastic mixture are revisited. A simple method of derivation is given as a generalization
of the approach, recently proposed by one of the authors in the absorption and scalar
conductivity problems for a two-phase medium.
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The aim of this note is to present and discuss a simple derivation of the well-
known two-point estimates on the effective shear modulus of a binary elastic mix-
ture, due to Hashin and Shtrikman [1] and Walpole [2]. As a matter of fact, this
is a continuation of the recent paper [3], where a similar analysis is performed for
bounding the effective bulk modulus of the mixture. In the case of a shear modulus,
however, a number of technical difficulties arise, which makes the analysis much
more involving. The basic idea, as in [3], is a generalization of the approach, used
by one of the authors in the absorption and scalar conductivity cases [4].

Let us recall first how the problem is posed, see, e.g. [5, 6]. Assume that the
mixture is statistically homogeneous and isotropic. Let

1, if z € Q;,
0, otherwise,

xi(z) = {

be the characteristic function of the region Q;, occupied by one of the constituents,
labelled i’, 7 = 1,2, so that x1(z) + x2(z) = 1. Hereafter, all quantities, pertaining
to the region {1 or Q, are supplied with the subscript ‘1’ or ‘2’; respectively.
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The statistical properties of the medium follow from the set of multipoint
moments of one of the functions x;(x), say x2(z) for definiteness, or, which is the
same, by the volume fraction 72 = (x2(z)} of the phase ‘2’ and the multipoint
moments

Ma(z) = (x5 (0)x5 (@) . Ma(z,y) = OGO (@)xa (W), - (1)

with xh(z) = x2(x) — n, being the fluctuating part of the field x.(z). see, c.g., [3,
6]. The angled brackets (-) hereafter denote ensemble averaging. One point could
be taken at the origin because of the assumed statistical homogeneity, as already
done in (1).

Recall that for a statistically isotropic binary medium under study one has

My(0) = (X5(0)) = mma,  Mz(0) = (x5 (0)) = mmp(m —n2). (2)

Assuming also the constituents isotropic, the fourth-rank tensor of elastic mod-
uli of the medium, L(x), is a random field of the familiar form

L(z) = 3k(2)J' + 2u(2)J",
k(z) = kix1(z) + kaxa(z) = (k) + [k]x5(2), (3)
p(z) = pxa () + paxa(z) = (u) + [plxa(z),

where k and p stand, as usual, for the bulk and shear modulus, respectively. The
square brackets denote the jumps of the appropriate quantities, say, [k] = k2 — k1,
(1] = p2 — p1., ete. In Eq. (3), J" and J” are the basic isotropic fourth-rank tensors
with the Cartesian components

Jiin = §LJ6U Jim = %((5{/\«5]'1 + Gubjk — %51‘3‘%1) (4)

The displacement field u(z) in the medium, at the absence of body forces, is
governed by the well-known equations
V-o(z)=0,

o(z) =L(x) : e(z) = k(z)8(x)I + 2u(z)d(z), (5)

1 1
= é(Vu +uV), d(z)=e(x) - 59(.”13)1,

where o denotes the stress tensor, € is the small strain tensor, generated by the
displacement field u(z), d is the strain deviator, and 8 = tre is the volumetric
strain. The colon designates contraction with respect to two pairs of indices and I
is the unit second-rank tensor.

The system (5) is supplied with the condition

((x)) = E. (6)

prescribing the macroscopic strain tensor E, imposed upon the medium.
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Recall [5] that the random problem (5), (6) is equivalent to the variational
principle of classical type

Wie(z)] = (e(z) : L(z) : e(z)) — min,

- ) (7)
minW =E:L": E.
The cnergy functional W is considered over the class of random fields u(z) that
generate strain fields e(z), complying with the condition (6). In Eq. (7), L* is the
tensor of effective elastic moduli for the medium which, in the isotropic case under
study, has the form
L* =3k*Y +2u"J", (8)
where k* and p* are the effective bulk and shear modulus of the mixture, respec-
tively.
Consider, guided by [3] and [4], the class of trial fields for the variational
principle (7):

KW = {a@;) |i(z)=E-z
9)
+aBE :/(VG(.?: —y) T+ kVVVF(z — y))x'z(y) d3y},

having assumed now that E is deviatoric, tr E = 0. Since the solution, u(x), of the
problem (5), (6) linearly depends on E, we can assume that ttE-E=E : E = 1.
In the class of trial fields (9) a and x are adjustable scalar parameters and the
kernels there read

1 _ I

Glz) = dm|z|’ ) = dr’

(10)

Hereafter the integrals are over the whole R* if the integration domain is not ex-
plicitly indicated.

It is noted that the class of trial fields (9) has been first employed by McCoy [7],
when deriving the Beran’s type bound [8] for the shear modulus. The only difference
is that we have allowed the multiplier x in (9) to be adjustable as well (an idea
already used by Milton and Phan-Thien [9]). In the final stage of our procedure, the
appropriate optimization will bring forth the “best” value kopy = —1/(4(1 — »)),
see Eq. (23) below. This means that the integrand in the right-hand side of (9)
would exactly coincide with the Green tensor of one of the constituents. Hence
the original McCoy’s class of trial fields [7] will show up eventually. (See also the
discussion in [10].)

It is to be also noted that in [3], when studying in a similar way the effective
bulk modulus, we have chosen E spherical. This assumption considerably simplified
the analysis (in particular, there was no need to introduce the second term in the
integrand of the right-hand side of (9), containing the triple gradient). In this case
the result is the three-point bound on the bulk modulus, proposed by Beran and
Molyneux [11].
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The energy functional W, when restricted over K hecomes a quadratic func-
tion of o and «:

Wli(z)] = A+2Ba+Ca®, A=2(u), B=2[u)(Z;+rUi),
C = {p) (zg + %(1 — 8k — 8k*) Ty + 4KV, + 2,<;2U-2> (11)

+ (1) <23 + %(1 — 8k — 8x%) T3 + 4kV3 + 2/{2U3> +(1+ 2&)2(<k) Ty + [k]Ts),

with the dimensionless statistical parameters for the medium, defined as follows:
2= (8-B): [ TVG() Maly) &'y
7,= ®B): [ [T960) VVGR) Malr — ) 'y
7, = (B-B): [ [T96@) - VG My, 1) d'yidvs,
U =E :/VVVVF(y) My(y) d®y : E,
U, =E // VVVVE(y) : VVVVF(ys) Ma(y1 — y2) dy1d’ys < E,
U; = E :/ VVVVF(y) : VVVVEF () Ma(yr,y2) dPydys 1 B, (12)
Vo =B [ [ VG- TIVTF @) Malyr 32) iz .
Vi =E: [ [ V9G() - VYVVF@) Mo ) d'nid’ve B,
T =B: [ [ VY60 © YY) Malys ~ 1)y us - B,

T3s=E // VVG(y1) ® VVG(y2) Ma(yr,y2) dy1d’ys : E.

Moreover, the parameters Z; and Z, can be easily evaluated in the statistically
isotropic case under study. Indeed, Ma(y) = Ma(Jy[) then and the appropriate
integrals in the definitions of Z; and Z are isotropic second-rank tensors, thus
proportional to I:

/ VVG(y) Maly) dy = e,
//VVG(ZJI) ~VVG(y2)M2(y1 - y2) d3y1d31 2 = el
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with certain constants ¢; and cs. To find the latter it suffices to make a contraction
in the last two formulae, integrate by parts and recall that G(z) is just the Green
tunction for the Laplacian. This procedure yields

1 1 1 1
G =-3 M>(0) = 3, G2 = gMz(O) =3

and therefore ) 1
Z, = ~g M Zy = 3 2 (13)

(recall that we have assumed E : E = 1).
Note that in the statistically isotropic case under study ¢, = %PZ, where

Py = / VY () : VVG(ya) Malys — yo) dysdPys

is the two-point statistical parameter that appeared in the appropriate bounds on
the conductivity coefficient [4] and the bulk modulus [3] of the mixture. The above
simple reasoning is just the evaluation of this parameter done, e.g. in [3] (see Eq.
(12) there). Hence

1 1
Zl :4_§P2, 22:§P2, P2:771772'

As we shall demonstrate below, the rest of the two-point statistical parameters in
(12) are also proportional to Ps.
Due to the statistical isotropy of the medium the integrals

/ VYVVE(y) Ma(y) dy = o H,

/ VVG(y1) ® VVG(y2) Ma(y1 — y2) &y d’ys = csH,
(14)
/ VVG(y1) - VVVVF (y2) Ma(yr — y2) @y1d®ys = csH,

[ [ TG TV R it ) i = el

are fourth-rank fully symmetric isotropic tensors, thus proportional to the tensor
H, whose Cartesian components read

Hijiy = 8681 + 01050 + dudji,

with certain constants c3 to cs. (The fact that the integrals in (14) represent fully
symmetric tensors is easily seen if appropriate integration by parts is performed.)
Making a full contraction in (14) and integrating by parts, we find the needed
constants to be

2 1 2 4
—_— . = — Vi == — f = —
15]\{2(0), C4 15]\/[2(0), Cs 15A 2(0), Cg 15]\/12(0),

Cy = —
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so that the parameters Uy, T, Vy and U, thus become simply:

U = — 15 Mk T, = 75 ks )
(15)
4 8 '
Vo = 15 M2, U, = 75 e
taking into account Eq. (2) as well.
The variational principle (7), together with (11}, implies
2t < Wli(z)] = A+ 2Ba + Ca?, Va, k. (16)
In particular, at & = 0, one has
1< () (17)

which, obviously, is the elementary (Voigt) bound on p*.
Next, optimizing the right-hand side of (16) with respect to a, one gets another
estimate on p*:
B2

2u* < A-
v = o

ie. ) 5
Iu* < </L> _~ 2[:“’]“(210—5_ KUl) ’ (18)

having taken into account the expressions for A and B, see (11).

In (18) we have fixed the constant k. The next stage is to optimize it with
respect to k. The resulting bound will be then just the Milton- Phan-Thien’s one [9]
on the effective shear modulus p*. If x has the special value xk = —1/(4(1— 1/2))7 see
(23) below (so that the integrand in (9) is just the appropriate Green tensor), then
(18) is the McCoy’s bound on p*. This is obviously a three-point estimate since
for its evaluation three-point statistical information — the correlations Ms(y1,y2)
— is needed in the three-point parameters Zs, T3, V3 and U, see (12).

The main problem in specifying the bound (18) are the three-point parameters
Zs. T3, V3 and Us, whose evaluation for special and realistic random constitution
is clcarly a nontrivial problem. Note that the first of these parameters, Z3, is

1
Zy=3 B Po= [ [ V960 VGG Myl d'vid' e

where Pj is the three-point parameter that showed up in conductivity and bulk
modulus bounding procedures [3], [4]. This parameter is simply connected to the
so-called (-parameter of Torquato and Milton [12-14], see also [3, Egs. (18), (19)].

In the variational reasoning of [3], [4] we have excluded the parameter Ps3, using
the fact that the appropriate three-point bounds should be more restrictive than
the elementary ones, whatever the properties of the constituents. This fact led us to
-an inequality between P; and P,. Here we shall employ the same procedure; though
a certain additional three-point parameter (a linear combination of Z3, T3z, V3 and
Us) will show up, we shall obtain two inequalities for the two such parameters as
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a consequence of the fact that now we can vary more material properties, namely,
the bulk and shear moduli of the constituents.

Indeed, the bound (18) should be at least as good as the elementary bound
(17) (since the energy functional is minimized over a broader class of trial fields).
This implies that

C >0, AC-B*>0, (19)

because p* > 0. Since A = 2 {u) > 0, one has
C>DB?/A >0,
which means that the second inequality in (19) is the stronger one. Using the

expressions for 4, B and C from (11), we can write the latter in the form

1 : 9
<,U‘> (Zz + 5(1 — 8k — SKZ)TQ +4drVsy + 2K/dU2>

1 . A
+ ] <23 + §<1 — 8k — 8K%)T3 + 4KV; +2K2U3> (20)

2[u* (21 + kUy)? > 0.
() -

The inequality (20) should hold for every “realistic” choice of the elastic moduli of
the constituents (i.e. for which the appropriate elastic energy is positive-definite).
This implies

+(1+ 2&)2<<k’> T+ [k]T3> -

~T]2T2 S T3 S 171T2, (21@)

1

' 2
M -1 <Zg + = (1~ 8k — 8x%) Ty + 4KV, + 2/{2U2>

T/2

o

1 ‘ ‘
S 23 + 5(1 — 8k — SKZ)Tg + 4l€V3 + 2h2U3 (21b)

L ‘ 2Zy + KU
S <Z2 + 5(1 — 8k — 8k%) Ty + 4kV, + 2/€2U2> - (_1:“71) '
1

Hence we have indeed two sets of inequalities for the three-point parameters
that enter the bound (18). (And this is a consequence, let us underline once again,
of the fact that two material properties have been varied independently — the bulk
and shear moduli of the constituents.) Following the idea of [4], we can exclude the
“bad” three-point quantities

1 Co
T; and Z3+ 5(1 — 8k — 8k%)T3 + 4kV3 + 2K°Us
from this bound, by means of (21), thus replacing them by the two-point quantities
already evaluated. Depending on the signs of [u] = p2 — 1 and [k] = ks — &y, we

should use to this end the upper or lower bounds (21).
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For example, in the case [u] > 0 (i.e. u2 > p1) and [k] > 0 (.e. ky > k), the
upper bounds (21) are to be used, which results in the estimate

162 + 40k + 25

* < A{p) = 2P
p < () = 2 mme Py (22)
p = 160us + 120ks — 32[p)ma,
g = 160us + 120ks — 80[u]n2,
7 = 8513 + 30ka — 50[u]7o.
Optimizing this bound with respect to s, we find*
+ 3k 1 -2
R LI Vo = 3k = 2p, (23)

K =
OPL T T 9 (dps + 3ks) 4T—w)" 77 2py +6ky

so that v, is the Poisson ratio of the phase ‘2’. The best bound on p* thus becomes

2

M 1]
f2 (82 + 9k2)
6(2p2 + k1)

w< () — if o > py and ke > k. (24a)

Mo + n2py +

The calculations in the rest of the cases are fully similar, so that only the final
results will be given:

e [u)?

pt< () — if o < py and ka2 <k,

M2 + N2piy +

if py < pq and k2 > ki, (24b)

[3=)

Mg (p]

< - )
WS o n (2(8ua + 9%;)
Mpz + 1201 -————_6(2#2 N

if H2 Z H1 and k’Q S kl-

In the so-called “well-ordered” case, when (kg — k1)(p2 — p1) > 0, (24a) and
the first of the estimates (24b) coincide with the Hashin-Shtrikman bound on u*,
see [1]. The general “non-ordered” case was considered by Walpole (2]. It is easily
seen that our bounds (24) are just the Walpole bounds [2, 15].

The derivation of the lower bound, corresponding to (24), is fully similar. In
this case we write the elastic energy (7) as a functional of the stress tensor field:

Wio(z)] = (o(z) : L7} (z) : 0(z)) — min,

' - (25)
minW =% :L : 3.

IThe right-hand side of (22) has one more extremum point, x = —5/4, but it corresponds to
its maximum value and hence is of no interest for us.
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The functional W is considered over the class of trial fields, such that
Vioo(z) =0, (o(z)) =1, (26)

with a prescribed macrostress tensor 2, imposed upon the mixture.
The natural counterpart of the class (9) of trial stress fields for the functional
W in (25) now reads

Nmz{am|am=z+abawz

—u+am1(2:/vv0u—ymxwd%)

+KE /VVVVF(:v - yxa(y) &’y

+ 2k def (z : /VVG’(:c - x5 (y) d3y> } }

with deviatoric ¥, tr 3 = 0, and adjustable scalar parameters a and «; G(z) and
F(z) are the functions, defined in (10). In (27) ‘def’ denotes symmetrization of a
second-rank tensor, i.e. def T = (T + T*), see [10] for discussion.

The energy functional W, when restricted over AY)| becomes a quadratic
function of a:

Wio(z))= A+2Ba+Ca?, A=-(y)2: %,

DO | bt

1
B = 5[’}/](7717}22 X+ 221 + HUI),

1

C== [(771772(77171 + M2v2) + (g— + %n) ({2 — 771)’7%)2 ) (28)

N}

1
+2(m s + 12m) (221 + £U7) + () (222 +5(2- 85— 4k)Ty + 46V, + n2u2)

+[’)’] <223 + %(2 — 8k — 41{2)1—3 +4kV3 + I€2U3)} + El—_}_gi,f ((ﬁ) T, + [,B]Tg),
where
1 1

are the respective compliances of the mixture, and [y] = v2 =71, [B] = B2 — 1 are
their jumps. Note that the same two- and three-point statistical parameters (12),
that already showed up in (11), enter (28) as well; the only difference is that the
tensor E in their definitions (12) is to be replaced by the tensor X.
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The elementary (Reuss) lower bound on p* now follows from (28) at a = O

L§<1>:m+@,
© () P 2

Almost literally, the arguments that have led us to the inequality (20) are to
be repeated now — that is the estimate that results from (28) upon minimizing
with respect to « should be always more restrictive than the elementary Reuss’
one. The final result is another set of inequalities, similar to (21), namely,

1Ty Ty <mTy, (29a)
(mmX X+ 24 + KUp)? 9 4 8
- 15 -+ — —p XX
7’22 - Ny |Th + 3 + 15“ (771 2
1 . ,
—211(2Z1 + &Up) — 12 (222 + 5(2 — 8k — 4/&2)—[—2 +4kVy + f<;2U2>
1. . :

< 273 + 5(2 — 8k — 4% T3 + 4kVy + U3 (29b)

- M X

Z 3 Y 4271 + kUp)? . 4 8
(771772 1 K 1) + 1 [nf o <§ + 1—5K/> (Tll _7}2)772:\ ED)

1 . .
+ 219 <221 + KU1> +m <222 + 5(2 — 8k — 4k%)To + 46Vs + /-@ng> )
Next we employ (29) in the estimates that follow from (28) in order to exclude

the three-point parameters. The details are tedious and fully similar to those,
already performed when deriving the bounds (24). The final result reads

pr> () - if po <y and ko < ki,

if us >y and ko > ki,

(30)

W > () - if po < and ky >k,

2

2]
/L1(8[L1 + gkg) ’
6(211 + k2)

if pp > p1 and ko < K.
Mo + M2p +

The inequalities (24), combined with (30), are just the Walpole bounds on the
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effective shear modulus of a binary mixture, see [2] and also [15], which are a direct
generalization of the Hashin-Shtrikman result, with condition of “well-orderness”
removed. Here we have shown how these classical estimates show up simply and
naturally within the frame of the general method recently developed by one of the
authors [4] in the absorption and scalar conductivity contexts.
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AN EXPLICIT POLYNOMIAL SOLUTION OF THE
REPRESENTATIVE PROBLEM OF THE MECHANICS
OF FIBROUS COMPOSITES
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The paper is focused on an important aspect of the central problem of the mechanics of
the unidirectionally reinforced fibrous composites. This problem concerns the features
of the matrix-fibre load transfer phenomenon which, actually, provides by itself the
very reinforcing effect of the fibres. The paper illustrates that the successful analysis of
this problem definitely needs, first, the exact solution of a certain typical or, say, rep-
resentative axisymmetric boundary value problem of the elasticity theory and, second,
a representation of this solution in a form, which is convenient enough for additional
mathematical manipulations. Such an explicit with respect to the problem variables
polynomial representation is derived in the paper.

Keywords: fibrous composites, elasticity, special functions
MSC 2000: 74E30, 74B05, 33C90

1. INTRODUCTION

A specific feature of the present contribution is that the purely mathematical
result derived in it is, in practice, a useful and effective tool from the view point
of the mechanics, i.e. of the study of the mechanical properties and the mechanical
behaviour of an important for the engineering practice class of advanced struc-
tural materials, namely the unidirectionally reinforced fibrous composites. For this
reason the analysis of the mathematical problem considered is preceded by a rel-
atively extended preliminary section, the aim of which is to indicate at least the
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main problems associated with the mechano-mathematical modelling of the unidi-
rectional fibrous composites and to illustrate, at the same time, the necessity and
the practical value of the result obtained.

2. PRELIMINARIES

Composite materials consist, generally speaking, of a relatively weak and com-
pliant continuous phase within which inclusions of different, most often stiff and
strong materials, are discretely distributed and, as a rule, firmly bound to the
surrounding continuous matrix phase. Depending on the material, the shape, the
volume fraction and the geometry of the spatial distribution and mutual orientation
of the inclusions, composite properties and, especially, their mechanical properties
may differ considerably and even drastically from the respective properties of the
matrix material. The strong effect that such inclusions produce on the properties
of the matrix has been used since long in the fabrication of new structural materials
with desired in advance unique combinations of mechanical propertics. Basically,
the goal of the practical use of this effect is to create materials with high strength
and stiffness parameters, i.c. to reinforce the weak materials used as matrix phases.
For this reason the effect is commonly referred to as a reinforcing effect.

This effect is especially pronounced in the so-called fibre-reinforced composites.
The discrete reinforcing phase in these composites presents itself one or another
network of rods, wires or whiskers, which arc usually called fibres. An important
for the practice class of such composites is that of the unidirectionally reinforced
fibrous composites, i.e. of composites with straight parallelly aligned fibres. In most
of the cases the fibres have the form of circular cylinders with a specific for each
given composite radius-to-length ratio, which is often called fibre slenderness ratio.

The unidirectional composites are anisotropic or, speaking more precisely,
transversely isotropic materials. They may have high strength and stiffness in the
direction of the reinforcing fibres, but remain weak and compliant, as the matrix
is. in the transverse direction. The practice proves that the degree of anisotropy
or, which is the same, the strength of the very effect of the unidirectional fibrous
reinforcement, depends on two basic structural parameters, namely the fibre volume
fraction and the fibre slenderness ratio.

The strength and the stiffness of the unidirectional composites in their, say,
strong direction, which is the direction of the reinforcing fibres, appear to be almost
directly proportional to the fibre volume fraction. The simple “rule of mixtures”-
type relations, used in the engineering practice, prove to be reliable quantitative
approximations to the actual effect that the fibre volume fraction produces on the
degree of strengthening and stiffenning of the matrix material.

The fibre slenderness ratio influences the strength and stiffness characteristics
of the unidirectional composites in their strong direction in a more complicated
way. In composites, which differ only in the lengths of the reinforcing fibres, but
are otherwise identical in all remaining material and structural parameters, includ-
ing fibre radii, those with longer fibres, i.e. with smaller slenderness ratios, are
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stronger and stiffer. A distinct feature of the practically observed dependencies of
the strengthening effect on this ratio is that the decrease in the latter provides a
respective increase in this effect only over certain restricted and specific for each
composite structure ranges of increasing fibre lengths.

Briefly speaking, the unidirectional composites are characterized by specific
slenderness ratios or, at fixed fibre radii, by specific fibre lengths. When the value
of the specific for a given composite slenderness ratio is approached from above
by means, for example, of a continuous increase of the fibre lengths at fixed fibre
radil. the reinforcing cffect continuously increases up to a specific for the composite
maximum level and then, with further fibre lengths increase, this effect remains
practically unchanged. The specific or, say, the critical fibre length upon which
the reinforcing effect becomes insensitive to further fibre length increase, proves
to be a distinct inherent characteristic of the unidirectional composites. Practical
observations indicate that it is a complex and, as a matter of fact, still not quite
well known function of the material parameters of the composites. The existing
experimental data certify that the critical fibre lengths for different fibre-matrix
systems vary from a few to tens and even hundreds fibre radii. This fact is a clear
indication that the theoretical approaches to the problem of determining the critical
fibre lengths should not be based on rough initial physical models, neither should
involve, fron a mathematical view point, rough simplifications and approximations.

From its purely qualitative side the existence of such a critical fibre length
Is easily understandable. The point is that in composites loads are not directly
applied to the fibres, but to the matrix into which they are embedded. The role
of the matrix is, besides to serve as a binding medium, also to transfer loads from
composite surfaces, where the loads are applied, to the fibres. This matrix-fibre
load transfer is, in reality, the essence of the very mechanism of realization of the
reinforcing effect. Due to this mechanism the strong and stiff fibres take or absorb
and. respectively, carry most of the loads applied, as mentioned, to the matrix.
This actually explains the high load bearing capacities of the fibrous composites, i.e.
their potential to carry loads that considerably exceed the restricted load bearing
capacities of the weak matrix materials.

Obviously enough, the matrix transfers loads to the fibres through their end
and cylindrical surfaces. Due to a number of reasons the end fibre surfaces have
little effect on the overall load transfer pattern. One of these reasons is that the area
of the end fibre surfaces is much smaller than that of the cylindrical lateral surfaces.
Therefore, the contribution of fibre ends to the load transfer should not be expected
to be comparable to that of the cylindrical surfaces. The increase in the area of
fibre end surfaces, which is achievable by preparing fibres with oval instead of flat
ends, proves practically not to affect the load transfer features. This is due to the
fact that, mainly for technological reasons, the fibre-matrix bonds at fibre ends are
not of the same necessarily high quality as those over the cylindrical fibre surfaces.
Thus, irrespectively of whether fibre ends are flat or oval, the stresses developing
over the weak fibre ends-matrix interfaces prove to be simply small enough to play
a more or less decisive role in the load transfer processes. That is why in most of
the studies of the load transfer phenomena fibre ends are viewed as stress free.
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It would be probably instructive to note, before considering the load transfer
through the cylindrical fibre surfaces, that fibrous composites are designed mainly
to carry loads in the reinforcement direction, i.e. in the axial fibre direction. The
transfer of such loads is evidently due to the axial interfacial shear stresses de-
veloping as a result of the mechanical fibre-matrix interaction. To illustrate this,
it would be sufficient just to consider the equilibrium in the axial direction of an
arbitrary fibre portion and immediately to notice that these are exactly the axial
interfacial shear stresses that balance the axial loads acting at the ends of such a
fibre portion.This fact demonstrates that the study of the load transfer should be
first of all focused on the problem of determining the longitudinal (i.e. along the
fibre length) distribution of the axial interfacial shear stresses.

Coming closer to this problem, let us remind once more that the increase of
fibre lengths up to certain specific critical values results in higher load bearing
capacities or that, briefly speaking, longer fibres absorb and, respectively, carry
higher axial loads. In part, this effect is certainly due to the fact that since the
fibre length increase is also increase in the area of the cylindrical fibre surfaces,
then the axial interfacial shear stresses, when acting over increased areas, should
introduce into the fibres and, respectively, balance increased axial loads. At the
same time one should not exclude as a reasoun for this effect the eventual changes
and, in particular, the possible increase of the intensities of the same shear stresses.
Moreover, the very distribution along the fibre length of these stresses may change
and thus have also effect on the level of the axial loads transferred from the matrix
to the fibre.

It is hoped that the foregoing considerations reveal to a certain extent the
complex multiaspect nature of the load transfer problem. In fact, this central
for the mechanics of the unidirectional composites problem has been since long a
subject of extended research. The result of this research is the number of load
transfer models that the current composite materials literature offers. Without a
discussion on their positive and negative sides it will be mentioned here that all
these models are practically similar in a few basic aspects.

First, they are based on the experimentally observed fact that the mechan-
ical behaviour, mainly in the reinforcement direction, of a typical unidirectional
composite is very close to that of a representative composite element, say, unit
composite cell, which, being composed of a single fibre with a firmly bound coaxial
matrix coating, is stressed axisymmetrically and, in addition, symmetrically with
respect to its middle cross-section.

Second, the models reflect, but rather in a qualitative than in a more or less
satisfactory quantitative manner, the concentration of stresses close to the ends of
the fibres where, as a result and a manifestation of the stress concentration, local
failure phenomena, mainly in the form of fibre-matrix debonding (i.e. of interfacial
cracks), often take place. In this regard the similarity of the models lies in the fact
that they consider as a major reason for these phenomena mainly the concentration
of the interfacial axial shear stresses. Accordingly, they deal, basically, with the
problem of deriving the patterns of the shear stress concentration fields close to the
fibre ends.
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Third, the shear stress concentration patterns that the models provide are
derived from either simple strength of materials-type analyses or from too much
simplified axisymmetric boundary value problems of the elasticity (or plasticity)
theory. The simplifications concern both the mathematical treatments of the equa-
tions governing these problems and the mechano-mathematical models of the actual
physical boundary conditions, especially the conditions for the stresses at the fibre
ends. These conditions will be discussed below.

Finally, the models generally assume that no interfacial shear stresses develop
along most of the fibre lengths and suggest one or another specific monotonous
increase of the intensities of these stresses along the remaining relatively short
end fibre portions. But, strictly speaking, such simple distributions of stresses
are just inconsistent with the elasticity theory since the equations of the latter
are, as it is known, of elliptic type. Accordingly, the distributions of fibre stresses,
including the interfacial shear stresses, might be either uniform along the entire fibre
length or strictly non-uniform along each non-vanishingly short fibre portion. Thus,
from a quantitative view point, such simple axial stress distributions are acceptable
only in the sense of the Saint Venant’s principle and as approximations to certain
particular exact solutions of the general axisymmetric elasticity problem. Since
these solutions, i.e. the exact solutions of the particular boundary value problems
associated with the models, are not known, one could hardly derive estimates of
the errors that such approximations involve and decide, respectively, about the
reliability of the models.

Irrespectively of their roughness and simplicity, these models are widely used
in the practice of composites design and application since they provide quantitative
estimates of the load transfer parameters and, thus, of the load bearing potentials
of the fibrous composites, which, even if not realistic enough in the details, are
quite acceptable as mean or integral estimates.

Another positive side of the models is that they have revealed in part the
specific nature of the above mentioned nontrivial dependence of the reinforcing
effect on the lengths of the fibres. The models definitely indicate that the separation
of a fibre into a central uniformly stressed portion, which only carries axial load,
but does not take load directly from the surrounding matrix, and neighbouring this
portion with relatively short end portions, along which the matrix transfers load
to the fibre, are quite realistic. This separation of the fibre into a load bearing, or,
effective and load transfer, or, ineffective portions is commonly adopted today. In
view of these models the main problem of the load transfer analysis is to determine
the current load transfer fibre length as a function of both the fibre-matrix system
and the current load, applied to the composite, and, in addition, to specify the
characteristic for the composite critical maximum load transfer length, now as a
function of the fibre-matrix system only. If this critical length is specified, then, in
order to gain maximum load bearing effect from a given unidirectional fibre-matrix
system, one should use fibres of length which is greater than or at least equal to
twice the critical length. Such fibres are usually referred to as long fibres. Fibres
of lengths below the critical length are viewéd as short fibres. The respective
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composites arc usually called composites with long, or continuous and short, or
discontinuous fibres.

It is not surprising that the models suggest estimates of the critical load trans-
fer lengths which differ considerably. These estimates depend on the different in
their roughness approximations involved in each particular model. There is a num-
ber of reasons for which these estimates should not be viewed as sufficiently precise
though, as was mentioned above, they are acceptable in integral sense. In part,
this is due to the fact that, as was also mentioned, the very concept of specifying
effective and ineffective fibre portions is a matter of approximate interpretation of
an exact solution of the axisymmetric elasticity problem. This interpretation im-
plicitly assumes that the exactly determined interfacial shear stresses, acting along
the central (effective) fibre portion, are small, i.e. practically negligible, and that
they monotonously increase towards fibre ends along the load transfer (ineflective)
fibre portions. But such an interpretation, being, let us mention again, acceptable
on the whole, necessarily requires, first of all, to specify the level below which the
stresses in question could be viewed as negligible. The models do not suggest such
levels. Morcover, they can not specify the latter since such specifications require
by themselves as a reference basis the unknown exact stress distributions.

The basic limitation of the cxisting models is that they take practically no
account of the actual boundary conditions at the fibre ends. Generally, they assume
that high interfacial shear stresses develop close to fibre ends, but entirely ignore
the corresponding considerable drop that these stresses should necessarily undergo
along certain end fibre portions, adjacent to fibre ends, due to the fact that these
ends are practically almost free of shear stresses. The models simply ignore these
end portions as clements of the load transfer pattern.

Two remarks are due with respect to this fact. First, from the view point of
the pure load transfer, the ignorance of these portions is not an important disad-
vantage since, from most gencral considerations, the latter should be expected to
be short enough and thus not to cause considerable corrections in the estimates of
the load transfer lengths. Second and more important is that the models ignore
the entire complex interfacial stress field developing along these end fibre portions.
This specific stress field has been constructed in a recent author’s paper [1], where
some of the results of an extended author’s study in progress are briefly reported.
As it is shown in the paper, this field develops along end fibre portions, which are
really short. Their lengths do not exceed a few fibre radii, which proves that these
portions really could not contribute considerably to the overall load transfer. But
at the same time it is definitely proved in the paper that this stress concentration
field is the factor that actually governs the onset of the failure phenomena close
to the fibre ends. In fact, the paper illustrates, first of all, that these phenom-
ena are not governed, as the considered models suggest, by the interfacial shear
stress concentration, but by the much higher concentration of the interfacial radial
stresses. Moreover, as it is shown in the paper, the radial interfacial stress changes
its sign along the short end fibre portions. In other words, this high by itself stress
is always positive, i.e. tensile, along certain parts of these portions. Obviously, this
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high tensile interfacial radial stress is the factor dominating the critical conditions
of onset of failure phenomena close to the fibre ends.

The load trausfer model proposed in [1] could be referred to as a full fibre
length model since, in contrast to the models considered, it involves the very end
fibre portions which these models ignore. Being actually derived by means of sewing
of two exact axisymmetric solutions of the elasticity theory, the model is not only
free from the shortcomings of the existing simple models, but, in view of the consid-
erations of the present section, is a real reference basis on which one could estimate
the reliability of these approximate models.

It is hoped that this section clearly indicates that the general axisymmetric
problem of the theory of elasticity is of immediate relevance to the mechanics of
the unidirectional fibrous composites. The realistic modelling and prediction of
the properties and the behaviour of these composites definitely require not only
the derivation of exact solutions of certain particular, but similar on the whole
axisymmetric boundary value elasticity problems. In fact, it is equally important
to be easily able to manipulate further such solutions in order, for example, to con-
struct superpositions, to derive approximations with desired accuracy, to estimate
the accuracy of certain existing approximations or, as in [1], to sew such exact
solutions.

It would be very advantageous, for these reasons, to have at one’s disposal a
convenient, 1.e. an easy for mathematical manipulations, form of the exact solution
of a certain, say, representative problem of the mechanics of the unidirectional
fibrous composites. In what follows, this problem is first formulated and its solution
is then shown to be representable indeed in a really convenient explicit analytical
polynomial form.

3. THE REPRESENTATIVE AXISYMMETRIC PROBLEM

The commonly adopted representative model problem for a typically loaded
long reinforcing fibre assumes that the state of stress of the latter is, as was pointed
out above, axisymmetric and, in addition, symmetric with respect to its middle
cross section. Basing upon the superposition principle of the elasticity theory and
on the standard assumption that fibre ends arc flat and free from stresses, one
may further specify the fibre stress state as resulting from uniformly distributed
normal (tensile or compressive) stresses of intensity, say oo, applied to its ends
(or acting over its middle cross section), and from interfacial stresses, developing
along the lateral cylindrical fibre surface as a result of the mechanical fibre-matrix
interactions, caused by the mismatch of the mechanical properties of the fibre and
matrix materials.

The fibre, when referred to cylindrical coordinates {r, 8, z}, is assumed to oc-
cupy the domain {0 < r <1y, |2} < L, 0 < 8 < 27}, where, obviously, r; and L
are fibre radius and half length, respectively. Then the boundary conditions of the
representative problem could be specified as

72 (r,0) = 72 (1, £L) = 0, (1)
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o,(r,xL) =0q, (or o.(r,0) = 00), (2)

where 7,.(r, z) and o.(r, z) are the shear and the axial fibre stresses, respectively.
The notations o, (r, z) and w(r, z) will be used below for the radial fibre stress and
the axial displacement in the fibre.

Obviously, the remaining boundary conditions, concerning the stresses 7,.. (ry, z)
and o,(ry, z), acting over the cylindrical fibre surface r = r¢, could not be specified
in advance. In fact, to determine these unknown stresses is, as was highlighted
above, the sense of the central for the mechanics of the unidirectional composites
problem of the matrix-fibre load transfer.

The approach to this problem is based on the understanding, developed in
the mentioned author’s study in progress and briefly described in {1}, according to
which the role of the weak and compliant matrix is rather to conduct the applied
loads to the surface of the stiff and strong fibre than to influence considerably the
specific and in much independent manner in which the fibre absorbs these loads
through its surfaces, transforms them into internal stresses, and creates its own
stress distribution pattern of the above discussed type. Such understanding of the
dominant role of the fibre, or, of its more or less independent behaviour, suggests
that the actual fibre state could be interpreted as an optimum or, say, a natural
one, or, in other words, as a state corresponding to a solution of a certain variational
problem of the elasticity theory to which the interfacial stresses in question serve
as natural boundary conditions.

This understanding is further combined with the concept of the stress func-
tion (or, stress potential) as a function which, once introduced as a solution of the
general variational problem of the elasticity theory, provides full exact solutions of
each particular boundary value problem when subject to the respective boundary
conditions. Use is made of the known representations of the stresses and displace-
ments by means of the stress function for the general axisymmetric elasticity prob-
lem. For the quantities of interest in the present study these representations read,
of. [2],

o= 5 |2-na —g—q 3)
o= Ja-nae- 52, @

o= (v00-52). 5)
w= o 2= - = (6)

where o(r, z) is the stress function (A%p(r,z) = 0), A is the Laplace operator, v
and G are, respectively, the Poisson’s ratio and the shear modulus of the material
considered or, in our case, of the fibre material.

128



Finally, use is also made of the productive Timoshenko’s idea (cf.[{2]) of repre-
senting the particular solutions for the stress function in terms of Legendre poly-
nomials of the first kind Po(z), n =1,2,3,..., 2 = z/R, R = V7% + 22. According
to this representation each stress function of the form

P2pe1(1,2) = Aop 1 R 72 Pyp_s(2) + Bopy1 R 2Py _y(x), (7)

where p = 1,2,3,..., Ay,41 and B,y are constants to be determined from the
boundary conditions, provides an axisymmetric stress state with stresses a.(r,z;p)
and 7,.(r, z;p), which, as the representative problem requires, besides being ax-
isymmetric, are, respectively, even and odd functions of z, i.e. symmetric and an-
tisymmetric with respect to the middle cross-section of the fibre.

The practical realization of this approach to the representative model problem
considered implies the following forms of the quantities of interest:

etrizin =0 (B) " Py ato) ©

7r:(r:2ip) = — 09 (%) . { (p —(ff(;p?i 1) \/106——3;2

(9)
X [Pzp%(x)—ngp_g( :[ + —2-—:—1-\/1—.T2P2p 3 }
L R\ ( 2(p+1-v) 1
or(r,z,p) = —0p <Z> {(2]9 _ 1)(2]) _ 2) 1— 22 (ng(ill') - $ng_1(l'))
(10)
2 —
+4p 3 [(2p = 3)Paps(z) + 22P3p_5(2) ] +Z£—%S Pzp_2($)} 7

oL (R 2p—1 1
wlr, z;p) = 5 (Z‘) Cp-1)2p-2)4p+1)

. 4(2p - 1)?
X [(4}72 —8p+ 8pv + 2v + %) Py,_1(z) (11)

2p-1)(2p-2)(4p+1)
B, .
+ 4p -3 2p 3($)

In fact, the model proposed in [1] is a result of a procedure of sewing of two
solutions of the type presented by Eqs. (8) — (11) with their own appropriately
chosen p-indices. Each of these solutions satisfies a pair of boundary conditions of
the type of Egs. (1) and (2) and is thus a solution of the representative axisymmetric
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problem. Omne of the solutions concerns the central fibre portion, say |2} < /1,1 < L,
while the other one governs the end fibre portions [ < |z| < L, where, obviously,
L — [ is the length of the latter fibre portions. These two solutions are scwed over
the cross sections [z| =1 of the fibre.

The closed analytical form of the solution of the general representative problem,
Eqgs. (8) — (11), has its definite advantages, but, at the same time, this form is
ecasily seen to be not convenient for further mathematical manipulations which one
is necessarily forced to perform for one or another reason. Such manipulations
are. for example, unavoidable part of the further elastic analysis of the complete
problem of determining the stress-strain state of the entire unit composite cell (of
which the fibre is only an element). The difficulties, arising when this form is
ceventually subject to further manipulations, result, on the one hand, from the fact
that Eqs. (8) — (11) are implicit with respect of the problem variables 7 and z.
On the other hand, the known analytical forms of the Legendre polynomials are by
themselves complicated enough. To reduce to some extent these difficulties, most
of which the author met during his work on [1], was the author’'s motive to try
to derive a simpler representation of the latter equations, namely an explicit with
respect to the variables r and z polynomial representation.

It should be recognized that the work on [1] and, in particular, the analysis of
the axial fibre stress, Eq. (8), gave the author the hint for the form of the simple
representation derived below. Unexpectedly, it appeared that to prove the general-
ization of this form was not a trivial combinatorics problem. As the reminder part
of this contribution illustrates, the usc of some familiar special functions provides
a short and cffective way to this generalization.

4. AXIAL FIBRE STRESS

The desired simplification of the axial fibre stress representation concerns, ob-
viously, only the term o, (r,z : p)/oo in Eq. (8). Upon introducing dimensionless
coordinates p, ¢ this term takes, in accordance with one of the standard represen-
tations of the Legendre polynomials P, (z), cf. [3], the form

9\ K
o:(p CGip) _ (-2 )*(4p — 2k — 6)! p
oo N z:fv%dm k—3ﬂhwﬂk~$!1+@ o (12)

where (...)! stays, as usual, for the factorials of the numbers in brackets.
The sum in Eq. (12) is a polynomial of p?/¢?. Let this sum be denoted by .

and written in the form
m
}:Am<@> : (13)

m=0
Provided a more or less convenient representation of the coefficients A, m =
1,2,...,p— 2, is found, the axial fibre stress will take the explicit polynomial form

p—2

o-(p,(;p) = 0o Z /\mpszQp_Qm—g’ (14)

m=0
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which is definitely more informative and easier to deal with than the form suggested
by Eq. (12) suggests.

It will be mentioned, before deriving the A,,-presentation in question, that the
solutions of the representative problem, which are of interest both from a mechanical
view point and in the context of the present contribution, are those with relatively
large p-values. Solutions with small p-values are physically unacceptable for the
load bearing central fibre portion. As it is shown in [1], superpositions of such
solutions govern, in actual fact, the state of stress of the very end fibre portions, so
that they have their definite mechanical meaning. But, at the same time, as Eq.
(12) proves, their explicit polynomial presentation is a matter of trivial transforms.

According to Eq. (8), the term o, (p, (;p)/co here considered is

2p—3

e o e (1v ) e (145 1)

The general representation of the Legendre polynomials by means of the hyperge-
ometric function F(a,b; c;d) will be used below. According to this representation,

of 3],
(02)

where, in our case, a = —p +
are double factorials.
Now, in view of Eqgs. (12) — (16) and of the explicit form of F(a. b;c;d;) with

-3

2} — M(l + ﬁ>ﬁ : Fla,byc;d), (16)

Prp-s PR AREE

b=-p+2c=-2p+L d=1+"%, and (...l

wlw

negative mt(*frel variable b = —p 4+ 2 < 0, namely, cf. [4],
3 7 p?

P ep 22— 14
F<p+2, p+2 p+2,+<2>

B p+2> ﬂ2 k
Z %+)k' O+?)’

the coefficients Ap,, m=0,1,...,p— 2, take the form

Gl S <_p+ g>k T <"> (18)

Iy 1
(2p - 3)1t &= <_2p+z> N m
2 k

where the Pochhammer symbol (a); = ala+1)(a+2)...(a+i—1),1=1,2,...,is
used along with the binomial coefficients representation

m (k—m)! m!




Upon setting s = k — m Eq. (18) takes, due to the obvious relation (a);y; =
(a);(a +1);, the form
(4p—D (=p+ 3),, (=P + Y
(2p—3)!! (-2p+ %), m!

—m—

Am =

(20)
p+m+ ) (—p+m+2)s

x Z (-2p+m+1I), s

The sum in Eq. (20) is easily seen to be, by definition (cf. Eq. (17)), equal to
F(-p+m+ 2, —p4+m+2;-2p+m+ %; 1) and to be thus, due to the relation,
cf. [4], F(a,b;¢;d) = T(d)T(d — a — b)/T'(d — a)T'(d — b), representable as I'(~2p +
m+7/2)T(=m)/T(—p+ 2)T(~p+ 3/2), where I denotes the well-known Gamma-
function.

With the latter form and the known representations of the I'-function Eq. (20)
implies upon due transforms and manipulations the following compact expressions
for the A,-coefficients, m =0,1,2,...,p— 2:

@m-1)(2p—3
=S () o

Other equivalent representations of the \,,-coefficients become now available from
Eq. (21) as, for example,

Ao = (1) L <2,; - 3) <2p - 3>' 02

With Eq. (21) the final desired explicit in the {p, (}-variables polynomial repre-
sentation of the axial fibre stress becomes

=(p,(;p) = 00 Z M (2p 3) 2nzc2p—2m—2' (23)

2m
m=0

5. SHEAR FIBRE STRESS

The explicit polynomial representation of the shear fibre stress is, of course,
derivable in a way, similar to the one just used for the axial stress. But it would
be much simpler just to introduce Eq. (23) for the axial stress into the equilibrium
equation

Jdo, 10 -
By + ;6—(7‘7‘”) =0 (24)

and to get almost immediately, upon satisfying the axial symmetry condition
77:(0,¢;p) = 0, the form

1
T2 (P, G5p) = —UOZA pmmo e A S (25)

m=0

where \,, are the same coefficients as in Eq. (21) (or Eq. (22)).
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6. RADIAL FIBRE STRESS

As the structure of Eqgs. (5), (6) suggests, the derivation of the explicit poly-
nomial forms for the radial fibre stress o, and the axial displacement w is only a
matter of further, mainly technical manipulations and transforms of the type al-
ready considered for the axial fibre stress. Omitting the details they involve, these
manipulations reduce Eq. (10) to the form

7e(0.Gip) = ~00' Y MG (26)
m=0
where the coefficients u,,, m =1,2,...,p, read

= (—ym M= DY P+1—”)ﬂ<%)

emt (2p—1)p- 2m

2m—-3"2p—-2m+3(2p—2
@m -2 2p-2 \2m-2)

(27)

( l)Tll

a
Note that due to the standard convention <b> = 0, when b < 0, the term involving

2p — 2
the multiplier <2:; _9

the summation in Eq. (26) starts, practically, with m = 1.

) in o is zero, so that the coeflicient pg is itself zero and

7. AXTIAL DISPLACEMENT

In a similar manner the axial displacement could be reduced to the form

w(p, G;p) = —5‘4—17—3 Z W p* M (FPTEImL (28)

m=0

where
e B ()] )

16p% + 4(8v ~ 7)p? + 8(1 — 2v)p — 6v + 4
(2p-1)(2p-2)(4p+1)

and

b= (30)

- 2p-3
The terms (22‘0 32> in wy and ( ];m ) in wp_1 are zeros due to the above
m—

) a
mentioned convention for the binomial coefficients and the convention ( b) = ( for

b < a, respectively.

133



8. CONCLUDING REMARKS

The .. 7,-. and o, representations, derived above, when introduced into the
cquilibrium equation
do, 071 0, — 0y

or + Oz o T = (31)

and the Hooke’s law relation

P

m{go—V(UT-FO';)] (32)

u =

imply almost directly similar polynomial representations for the remaining basic
quantities of the considered problem, namely the circumferential stress og(p, (;p)
and the radial displacement u(p, (;p). The coeflicients in these representations are
lincar combinations of the coefficients A, and piy,.

The following remark is due with respect to the forms of the coefficients Ay,
pm and w,,. Obviously, Egs. (21) (or (22)), (27) and (29) arc only particular
and certainly not the optimum forms of the otherwise large varieties of cquivalent
and maybe even simpler and more compact forms in which these coefficients arc
representable. Each of the particular forms derived above should be actually viewed
as a basis for deriving other, eventually more convenient in one or another sense,
equivalent forms of the same coefficients.

It should be probably mentioned in addition that the stresses and displace-
ments in the fibre are not, as the first impression might be, independent of the
mechanical properties of the matrix, the geometry of the unit composite cell (i.e.
of the thickness of the matrix coating, or, which is the same, of the fibre volume
fraction), and of the current loading parameter. In fact, these parameters enter
the above derived expressions for the fibre stresses and displacements through the
multiplier 9. The latter specifics the boundary conditions for the representative
problem (cf. Eq. (2)) and presents itself the axial fibre stress in the trivial case of
uniformly stressed fibre, i.e. the case which corresponds, formally, to the solution
of the representative problem with p = 1. The coupling of this trivial fibre state
with that of the surrounding matrix implies the so-called plane cross sections-type
problems for the entire unit composite cell. The determination of the op-stress is
a basic element of the solution of these problems. References [5, 6] provide the oo-
values for two particular but typical problems of thermal and mechanical loading
of a unit composite cell, namely the problems of uniform cooling (heating) of the
matrix phase and of longitudinal extension (compression) of a unit composite cell.
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Scattering of acoustoelectric waves on an inhomogeneity is studied. The scatterer is a
circular continuous piezoelectric cylinder (fiber) embedded in the piezoelectric trans-
versely isotropic medium. Expressions are found for the scattering amplitudes and total
cross-sections of the three acoustoelectric waves propagating in the direction normal to
the fiber axis. In the long-wave limit these expressions are obtained explicitly.
Keywords: piezoelectric medium, acoustoelectric waves, scattering, cylindrical inho-
mogeneity
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1. INTRODUCTION

The problem of the scattering of elastic waves on a single inhomogeneity in an
elastic medium is of importance for several applications. First, such studies provide
an information about the scatterer and therefore are relevant for the nondestructive
evaluation of structural members. Another application is the investigation of the
attenuation and velocity of elastic waves propagating through a medium, consisting
of a set of noninteracting inhomogeneities. In recent years, significant progress has
been achieved in solving this problem for ideally elastic materials [1-6].

In the present paper, we consider the scattering of acoustoelectric waves on
a continuous cylindrical fiber embedded in a piezoelectric medium of hexagonal
(transversely isotropic) symmetry. The expressions for scattering amplitudes of
the acoustoelectric waves follow from the system of the integral equations for the
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clectroelastic fields in the medium with inhomogeneity. This system is obtained
in terms of Green’s function of the coupled dynamic electroelastic problem (sec
Section 2). In Section 3, cxplicit expressions are obtained for the components of
Green’s function and scattering amplitudes for the quasiplane dynamic problem
for the transversely isotropic piezoelectric medium. In Section 4, general formulae
are derived for the total cross-section of acoustoelectric waves propagating in the
direction normal to the fiber axis. Finally, explicit expressions are obtained for
scattering amplitudes and total cross sections of three acoustoelectric waves in the
long wave-length limit.

2. THE INTEGRAL EQUATIONS OF THE SCATTERING PROBLEM

We consider the piezoelectric medium obeying the following linear constitutive
equations:
oij = Cijuterl — €rij £k, 2.1)
Di = epicrs + ik Ex,
where o and ¢ are the stress and strain tensors, £ and D are the electric field inten-
sity and electric displacement, respectively, C' = C¥ is the tensor of elastic moduli
at fixed E, n = 1 is the permittivity tensor at fixed strain €, e is the piezoelectric
constants tensor, and the superscript ‘T denotes the transposed tensor.

The substitution of Egs. (2.1) into the equations of clastodynamics and Max-
well’s equations leads to a coupled system of equations of linear electroclasticity.
As usual, we disregard body sources of electrical nature. Hence, the equations of
motion have the same form as in the theory of uncoupled elasticity

ajO’ij - pﬂi = Qi, aj - 8/8@, (2.2)

where u; is the vector of elastic displacement, p is the material density, Q); is the
body force vector.

The solution of equation (2.2) together with Maxwell’s equations describes the
clastic-electromagnetic waves, i.e. elastic waves interacting with the electric field
and the electromagnetic waves accompanying the deformation. If the characteristic
velocity of the elastic waves is v, then the corresponding velocity of the electro-
magnetic waves has the order of 10°v. Therefore, we neglect the magnetic field
generated by the elastic field propagating with the velocity v. It follows, then, that
the magnetic effects can be neglected and the quasistatic approximation for the
electric field can be used.

An additional field equation is the conservation of free electric charges:

&;Di = —(q, (23)

where ¢ is the density of free electric charges and D; is the dielectric displacement.
Since

1
Ei = —8“,0, Eij = 5(8,‘,1@' + 6jui), (2.4)
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where ¢ is the electric potential, the constitutive equations can be rewritten in the
form
oij = CijrOruy + eijrory,
h (2.5)
Di = €40k — nir Ok p.

Substituting them into (2.2) and (2.3) yields a coupled system of linear differential

equations of electroelasticity for the piezoelectric medium:
0, CiirOuy + €54 Ok — pit; = — @, 2.6)
BieipOruy — amug 8k,99 = -

We consider now the harmonic oscillation of the medium with frequency w.
Since the dependence of quantities entering (2.6) on time is given by the multiplier
exp(—iwt), the system (2.6) takes the form

35C i O + pwu; + JjeijiOpp = —Qy, o
aie;ll;lakul_ dinikOrp = —q.

Let the body forces @; and electric charges g be distributed in some domain
}". The solution of the system (2.7) that vanishes at infinity can be represented as

) = [ Gule —2")Qp(z")de' + [ Ti(z — z')q(x") da’,
/ /
(2.8)

olz) = / il — o) Qu(e") da' + /gcz:—w’)q(x')da'

1% v

(the dependencies on frequency w are omitted). The substitution of these expres-
sions into the left-hand sides of (2.7)leads to a system of differential equations for
the kernels Gy (z), Ti(x), v, (x) and g(x) — the components of the clectroelastic
Green's function:

(9 Cijr Ok + p?8a)Gim () + Oj€ijkOhvm(x) = ~Fimd(a),
(0;Cijrk + p”8i)Ti(x) + Ojeiu0kg(z) = 0,

BielyOkGim(z) — OminOiym(z) =0,
BielyiTi(z) — Oimandrg(z) = —8(x),

where 8(z) is the Dirac function. Fourier transformation of these equations yields

Vi (R)Gj (k) + ha(k)y; (k) = by,

)+

hi (k)G (k) ~ A(k)y; (k) = 0, 2.10)
)
)=

Ay ()L (z)+ hi(k)g(k) =0,
hi (kK)Ti(k)= Mk)g(k) = 1,
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where

Ay = k;Cijrky — po?di,  hi(k) = ekiky,

r (2.11)
hi =eigkike,  Ak) = nukik.
The solution of the system (2.10) can be written in the form
1 —1
Gix = <Aik+ Xhih’?) v 9=~ +hlAG R
(2.12)
1
Vi = Xh{Gki’ I, = —Ai_klhkg.
One can show that v; = T';. Introducing the notation
Gik(ka w) Vi(ka w)
glk,w) = . (2.13)
T (kw)  g(k,w)

the z-presentation of Green’s function can be obtained via the inverse Fourier
transformation:

— 1 —ik-x
Glz,w) = E /Q(k,w)e dk. (2.14)
The equations of motion (2.7) can be written in the following symbolic form:
LOV) (@) =0, L(V,w)=T(V) +wpJ, (2.15)
where
Tik(v) t1(v) 61'}:, 0 uk(az)
V = = s o ,
=g @ " T 0 o 7| ow

(2.16)

T (V) = 0;Cijn 0y, (V) = 0je4510k, 7(V) = 0;nir Ok

Consider now an unbounded medium with the electroelastic characteristics £°
and density pg, where
0 0
Cijkl €ijk

L0 =
oT 0
€kt T

(2.17)

)

containing a region V' with different electroelastic characteristics £ and density p.

Let the harmonic vibrations of frequency w propagate in the medium with the
inhomogeneity. The electroelastic fields in such a medium satisfy equations (2.15)
in which C,e,n and p are functions of coordinates. We represent these functions in

the form
C(z) =C° +C'V(z), e(zx)=e+e'V(z),
(2.18)
n(z) =n° +n'V(x), ple)=po+pmV(z),
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where V(1) is the characteristic function of the region V', and the quantities with
the superscript ‘1’ denote the differences

C'=C-C% et=e-e€ pl=n-1° PL=p—Po- (2.19)

The problem of electroelastic fields determination in the medium with an in-
clusion can be then reduced to the following system of integral equations:

flz) = o) +/S(a: — )L F(z') da’ + wzpl/g(z —-2)Jf(z")dz', (2.20)
\% \%4

with f0(x) denoting the “incident” field. The latter satisfies the equation

[T°(V) +wpoJ] f2(z) =0 (2.21)
with the notations
et e . Girg(z)  7in(z)
L= elT ___771 ) S( )_ 7;;[:1(-7;) _g,k(l‘) |7
(2.22)
] el
Fla) = [ hon

Here G(z), v(xz) and g(z) are the respective z-representations of the functions
entering (2.13).

When z € V, Eg. (2.20) describes the electroelastic fields inside the inhomo-
geneity on which the fields outside of it can be constructed uniquely.

3. ELECTROELASTIC FIELDS IN THE TRANSVERSELY
ISOTROPIC PIEZOELECTRIC MEDIUM CONTAINING
A CONTINUOUS CYLINDRICAL FIBER

We consider an inhomogeneity having the shape of an infinite circular cylinder
(continuous fiber) with the axis parallel to zs-axis of the Cartesian coordinate
system. Let the plane wave propagate in the direction normal to z3-axis. Since
L(z) and p(z) are functions of z;,zs only, the functions fO(z), f(z), F(z) are
independent of x3. Taking into account the relation

U
5‘7—1’ e_k”B d$3 = 6(k3) ;
Eq. (2.20) transforms into the following one:
f6) = £+ St =)L PG+ [0y ~)T S, ()
S

S
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where S is the cylindrical cross-section, y = (21, %3) and

Gy - /) /E /9 exp(~ik-(y —y")do, F=(k k) (32)

(27 2

The expression for G(k) has to be obtained from G(k,w) , given by (2.13) by setting
A?g — 0

Let x5 be the axis of transverse isotropy. The material is characterized hy five
independent elastic moduli C® = {01170?77013 C95,C3,, Chs = 5(CYy — C].Z)},
threc piezoelectric constants €° = {eJ;, el5, €8, } and two permeability coefficients
" = {n,n35 }. Tosimplify the needed in the sequel tensorial operations (inversion,
contractions, etc), the tensors C° e and n° are expressed in the form

1 . 1.
= 5(C?l 4 CY,)T? + 209 (T] - 5T2>

+ C% (T 4+ T) + 4C9, T° + €3, T°, (3.3)

e = (zglUl + €?5U2 + e§3U3, n° =l th + nggtz.

The basic tensors Tl, Ce ,TG./ (J'1 s UZ, US, tl s t2 are defined here by means of their
Y
COIHI)OH(‘,I]tS as follows:

1
Tij’w‘

4 _ 5 _ 6 _ ,
T =mamibu, T = 0nwmymy, Ty = mamgmemy,

2 _ 3 __
L =0ibnr, T = 0500, Tijy = 0memu,

, (3.4)
Ul Lk =0;;my, U ik = 2m;0, Ufj-k = m;m;my,

L _g.. 2 o
ti; = iy, 1 =mimy,

in the Cartesian system whose x3-axis is along the unit vector m; the components
of the tensor 6,; are 8;; = &;; — mym; .

The appropriate formulae for the operations on these tensors are given in the
Appendix.

The fiber material possesses the transverse isotropy aligned with the one of
the matrix. The tensors of the elastic moduli, of the piezoelectric constants and of
the dielectric coefficients of the fibers can be expressed in the same tensorial basis,
similarly to (3.3) (without the superscript ‘0°).

Using (3.3), one obtains

A (—]5) = AT + As (B, — i) + Agmymy,
hi(k) = I (k) = E26?5mi, k) = EQU%,
where

SO0 - pow?, Ay =k O — pow?, Az = EZC& — pow”. (3.6)
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These expressions and (2.12) inply that

.- 1 1 1
GU\‘(}‘T,@U) = Elnlnl\ + E(gzk ﬁz—ﬁk) + E"nzml\a
—2
. 1 k~(80 )2 0
glk,w) = —— 1- e (3.7
kzr/?l [ A 1t A )
9 , 0. )2
Ay =k"Cly — po®, Ciy =Cy + ( 105)
Tt
Introducing the quantities
o? = /)OW2 32 — POW2 ﬁ2 . P0W2 (3 8)
IS o '
the expressions (3.7) are recast as
= 1 2
Gik(k,w):—o{_Qﬂ gik
pow? |k~ — g2
El‘E (67 2 2
+ _21\ = — _Qﬁ +mimy = L -
k kK —a? kK —p? k" —-p87
u . o 2 , (3.9)
— fo
g(k,w) = 5= - 9(% o
MikT PowT N\ /) k-2
_ 1 el 2
i) = — (&) AR
’ pow? \nt1) ' — g2

To determine the z-representation of functions G (k,w), vi(k,w) and g(k,w), ac-
cording to (2.14), we have to calculate the integral

1 T RaE T
I = - e &Y dg.
2m)2 ] 72 _ 4 /
@) % - p2 )
Since

27.r 2 g
/c*'fk'y d¢ :/e*'@“’w do = 2/cos(Ey cos ¢) do = 2nJy(ky),
0 0 0

where Jo(z) is the Bessel function, we have

1 /Jo(zym_ 1 hmf Jo(ky)kdk - _
E-pr 20 By tig)

NN
s

0
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Here, Hél)(z) is the Hankel function of the first kind. Hence, the z-representation
of these functions has the form

N 2
o) = g2l _ (1) “
Ginlrw) = o {91“3 1 (Br) = 5.0 [HO (qr)] 3+mmkﬁl mﬂ)}
_ _ i €15 g
) = - (52) 1Y B, (3.10)
1 i %\
rw) = Inr - —15> 2H(]) T},
atr.w) 27”7(1)1 4pow? (77?1 BLHe (Bur)
where

(f(an)] = flar) = f(Br), 7=yl (3.11)

Egs. (3.1), when written in detail, have the form

i) = )+ [ [ Tonn(Bemn(y) = bim(R)Em(v)
s (3.12)

+ o1 G (Ryur(y') | dy,

o) =W+ [ [Ban(BEnals) = om(REW ()
)

(3.13)
+ PlWQVk(R)uk(yl)} dy’,
where
mm(R) Gik l( )Cklmn + i, k(R)eifma
wzm(R) zk l( )eklm - ’Yi,k(R)nllcma
o (3.14)
(I)mn(R) = Pyk,l( )Cklmn g,k(R)ek'mn’
¢m(R) = 'Yk,l(R)eklm + g,k(R)nllcm’ R = |y - yl|'

Egs. (3.12) and (3.13) allow one to find the far-field asymptotics of the electroelastic
fields. Taking into account the asymptotic formulas at r — oo

R ~r™l, Rer—(n-y'), mi==, y=lyl

9 0 . \/’T . o
ah Hy '(gR Mgy - - 2 eilay=/4) gmiq(ny’)
8yk1 aykm (q ) ( ) ky Tk TqY

wi(y) =l () +ui(y), @ly) = ") + ¢ ), (3.15)

one has

144



and the “scattered” fields uf(y) and ¢®(y) are determined by the expressions

(1) = 44) St Bl e + Cofr) e
Ul = A;(n + Bi(n + Ci(n ,
! v VY VY
) (3.16)
etBLy
©*(y) = c(n

Here 4;(n), B;(n), Ci(n) and c(n) are the amplitudes of the three cylindrical waves
that can be represented in the form

Ai(n) = ning fr{an),  Bi(n) = (0w — ning) fr(Bn),
Ci(n) = mymy fr(Bin) +mif(Bin), (3.17)
0
e(n) = =2 [ fu(Bom) + F(Bum) |
1
with the notations

i q3 —ir .
fk(q71)=2powz\/ge /4 “]n/ CltmnEmn(Y')

S

—e,ldem(y’)]e‘iQ(n‘y’)dy/ +p1w2/uk(R)e—iq(n»y’) dy' S,
s

(g _ b fes 5¢ i 1T '
HBun) =523 (m) V 2r Figun, S/ {6‘6"”15’””(1/)

+ nlirnEnz(yl)]e_wl(n'yl) dy/7 g=0o,08,8..

(3.18)

4. SCATTERING CROSS-SECTION IN A PIEZOELECTRIC MEDIUM

We define the intensity vector I;, associated with a stress field o5, the electric
potential ¢ and the velocities @; and D; by the relation

Ii = O'ij’d]‘ + (PDl (41)

Similarly, we denote by I? the intensity vector associated with the scattered fields,
and by I? the intensity vector associated with the incident fields. The term “in-
tensity” refers to the rate of energy transfer per unit area in the direction normal

to the one of propagation, that is
I = Ii’fLi, (42)
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where n; is the unit vector in the direction of propagation. The power flux (the
rate of energy transfer across the surface S with unit normal n;) is

(2 :/[ini dS :/(UljuJ +QDL)7II dS (43)

For a given angular frequency corresponding to period T, the total cross section
(Q(w) is the ratio of the average power flux over all duechons to the average intensity
of the incident ficlds

Qw) = <[0>t’ : (4.4)

where (-); denotes the time averaging over the period T.

Having found the far-field asymptotics of the scattered electroelastic fields we
can now compute the total cross-section according to relation (4.4). Since the power
flux is a real number,

Q= 1 [ (o + 30 +85) + (o+ ) (D D)) mds,  (45)
S

where ‘%" denotes the complex conjugate. Since we assume the vibrations to be
harmonic,

w [ —2iwt * 21wt * *
N, = Z/(—a,;juie +ojuie’™t — ofiu; + o]

(4.6)
“@Dje_inf + p*D;e%wt _ (p*D] + @D;>t ny dS
Computing the time average yields
(@) = ——wIm/ oiu; — Djp*)n; dS. 4.7
Hence, the expression for the total cross-section takes the form
Qw) = [0 Im/ oju;® — D3¢™)n; dS,
(4.8)
1
0
<I >t— 2wIm( U D0 ) ?

where n is the normal to the front of the incident wave.

We appl; now the general formula (4.8) to the scattering of the acoustoelectric
waves on a continuous cylindrical surface of unit height and a radius » concentric
with the fiber. Taking into account that the contribution to the energy flux through
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two cross-sections of this surface by the plane wave propagating normally to the
fiber axis is zero, we have

2

Qw) = *ﬁv;—oxml/((f?j“?s = D™ )n;rdo, (4.9)
0

where @ is the angle between the wave normal n° and an arbitrary normal to the
fiber surface.

To compute @Q(w), we have to find (utilizing (3.16))
iy e’i,ﬁy

of; =iny {C’%H <Al(n)aeﬂ + Bi(n)3 7

eifLy]
Vil

Substituting the expressions for transversely isotropic tensors C?jk, and e?ik, we
obtain

oLy

\/g ) + e?jkc(n),[ﬁ

+Ci(n)sL

s Sl e 0 0 | et
oln; =i { [ 5(6” + Choning Ag(n) + Cgedi(n) | a 7

(4.10)

0 Ciﬂll , Qi’ﬁly
+Cos Bi(n)g—= + CyymimipCr(n) 5. } ,
VY Vi
where the relation

2

0
CYompCr(n) + el5eln) = <C,?4 + (cl(?) ) (my fr(Bin) + f(Bon)) = ClymiCr(n)

11

is taken into account with €}, determined by (3.7). Similarly,

elay ( 0 ( ) 0 eidiy
+ni(eismpCr(n) — nie(n))By
i\C15 11 \/g

1

DS = {eglmink"ﬂl/\-(n)a

This implies that

Ding =i(eY mC — Y e 4.11
ini = ilesmiCr(n) — nipe(n)) B \/37 (4.11)

Since
S Ce(n) = () = (mafulBn) + F(Bun)) (ed — €f5) = 0,
the sccond term in (4.9) does not contribute to the total scattering cross-section.
The substitution of these expressions, alongside with the relation
e-[oy ef'iﬁy Cfiﬁly

ur *(n) 7 + B} (n) 7 +C(n) N
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into (4.9) yields eventually:

Q) = 75—0)/ [COalAi? + Co%BIBi| + ClhaBLIC:l] do, (4.12)
0

where |4;]> = 4;A?.
We assume that the incident waves have the form

Wy, w) = Use®*Y, o0y, w) = eikn’y, (4.13)

where k is the wave number, n? is the wave normal (perpendicular to the fiber axis),
U, is the polarization vector and ® is the amplitude of the electric field. Since

9; e?klalu(l)c - 8]‘77?1@8%00 =0,

it follows that
o= ;%mkUk. (4.14)

Hence, the expression for (I°); can be represented in the form

111 ,
<[0>t - §wk 5(0?1 +C%)(U -n°) + Coe(U - U) + (Ciy — Cg)(U -m)
(4.15)

5. THE TOTAL SCATTERING CROSS-SECTION
IN THE LONG-WAVE LIMIT

As it follows from expressions (3.17) for the amplitudes A;(n), B;(n), C;(n) and
¢(n), the determination of vector f;(kn) and scalar f(8,.n) plays a key role in the
scattering problem. These quantities depend on the electroelastic fields u;, ¢ (and
the accompanying fields ¢;; and F;), inside the region occupied by the scatterer.
The mentioned fields have to be determined from the solution of the coupled elec-
troelastic dynamic problem for the medium with the inhomogeneity. If these fields
are found approximately, then the obtained formulae yield approximate expressions
for the scattering cross-sections. Several approximations have been suggested (see
the discussion of [4]), to mention only Born’s approximation, quasistatic approxima-
tion and extended quasistatic approximation. We use the quasistatic (long-wave)
approximation. The feature of this approximation is the replacement of the actual
strain and electric fields inside of the inclusion by those of the static (infinite wave-
length) problem. As it is well-known [7-11], if the external fields F* = [¢°, E%] in
the static limit (w = 0) are uniform in S, then the fields F' = [¢, E] inside this
region are also uniform and have, after [11], the form

Iijw O

F=AF°, A=(IZ+PLH™!, I=
0 i

v Tk = 06y, (5.1)
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where P° is an operator with constant components that can be represented in the
tensor basis (3.4) as

PO 0
P = 0 p0 )
p’ 7
1 ., 171 1 nd
P’ =~ {—Tz + = < ) (Tl T2> 1 TE’] (5.2
oo, T Tal\en e 20 )
efs . 9 ,
P= - U a0 T A=y C ot (e
Note that only the product
LYF=LYAF° = LAF°, A =CL'A (5.3)

enters the right-hand sides of Eqgs. (3.18). The components of the constant oper-
ator LA can be obtained by using tensorial operations in the basis (3.4), see the
Appendix. Then

CA eA

eTA _77A

LA =

?

1 1
cA = 5(0{} + Cy)T? +2C4% (Tl - 5T2>
(5.4)
+ CA(T? + T + 4CAT® + C TS,
e’ = e31U1 +efs U + 633U3 =it + ngst?,
with the notations

1 1 ol + oL\t
Lo+ o) = el o) (14 D)
cl /1 1\17"
66 e e
Gt = Cas [” 2 (c&*cgeﬂ !

C1l1+0112 - a_ L Clafm 12
Cly = Chy < Taco ) C44_A_f C44+2A0<C447711+(‘315)) .

Cl )‘2 Crl + Crl -1
A Cl . ( 13 1 11 12 5.
=iy~ 1B (1 S &)

0
€15

1
€15 = Z‘; [ €15 T oA 20q (Ciﬁhll + (6%5)2)} )

—1
A _ 1 Clsed, Ch +Chy
e 1+ 5 ,
207,
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Ciy + 0112)71
209, ’

3
S
Il
=
>
+
Q €
—=o
=
TN
—
+

1
Ap= [1 + 20 <e(1)56115 + Cz?ﬂ/%l)J [1 + 28, <‘»”(1)5€%5 + C41477?1>}

1

4A’ (0445’15 024615) (77?16}5 - 771116(1)5> :

In the foregoing expressions the quantities with superscript ‘1’ refer to the difference
between the inclusion and the matrix electroelastic constants.

The determination of amplitudes 4;(n), B;(n) and C;(n) utilizes the following
relations that hold in the long-wave approximation:

oY~ 1w =UY, ) =ikURnY,  (k=a,8.8L),
k k ki (kT
1 0 (5.6)
15 . els
P’ = , é (Uimy), E} =—ifin) z) (Udmy),
8! M

where UA(,) is the polarization vector, k is the wave number and n° is the normal to
the wave front.
In accordance with (3.18), we have

ima®
) ) — 717\'/4 , UO
fulam) = 5 el
0
-~ qu,f}pqnmgUg - qﬂlnT‘r’(Ukmk)eﬁpnmo}
11

ira? \/f173 ‘ ¢?
/ = — S—e /A >
f(Bin) 2002 V 27 °¢ (Ti(l)1> o

O
€15

|ik€l\pqn/\n 7 +ﬁ¢n P mk)nkpnkno} ,

i1

where C4, e and n* are defined in (5.4) and (5.5), respectively, and a is the fiber
radius.
We now consider several special cases.

5.1. LONGITUDINAL WAVES

In this case,
k=a, Ul=n) Udlmp=0 (5.8)
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and the expressions for fr(an) and fi(3n) read

oy p
1mTa e —in/4 2 0
frlan) = Spos? 5 ¢ in/ {plw np

5 |1
—a® {5(05} + CH) + +C5 (2cos ¢ — 1)} ny }

ira® |33 /4 5 0
fk(ﬂn):m %e {p]w“nk

1
—af b(cﬁ + Cf3)ny + Cgg(2n] cos ¢ — nw] }

According to (3.17), we find now

ma® [ad 1 J1
A0 = maz QT i/ {p—lcosgb - — {—(C{‘l +Cf‘2> +C cos?d)}}ni,

2 2 0o cY, 12
) ira® 33 p1 ca ‘ ,
Bl'”’ = - in /4 ——-42—6—6' Q._ 7 COS .
(8n) 5 5¢ {,00 cha cos ¢ | (n; — n; cos @), (5.10)
where
¢=a/p. (5.11)

Obviously, f(81n) = 0 and the vector fi(3,.n) lies in the zyxzz-plane. Therefore
fr(Binymy, =0 and Ci(n) = ¢(n) = 0.
Taking into account the relation

1
(I%; = —iwaCfl (5.12)

and substituting (5.10) into the right-hand side of (4.12), we obtain, after integra-
tion with respect to ¢,

2 1 1
QW) = alaa)’ { 773 {—(Cﬁ +Cf3)?
8 (POUL) 2
o (5.13)
E 1 ~1 - 1
+(Cg)? (1+?>} + (—) (1+—~)}, v =C% /po.
(Css) ¢l 2 g L 11/Po
5.2. SHEAR WAVES POLARIZED IN THE X1X9-PLANE
In this case,
U =¢e) (edn) =eim) =0), k=23,
1 (5.14)
<[O>t - §w/6Cg6
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The scalar f(3,.n) vanishes (as in the previous case) and

ira® fad —in/4 2.0 A0 0 .
filan) = Yo ¢ [prwiel — aBCss (2 cos ¢ + n sin ?)],
(5.15)
ima® [ —in/4 2 0 2,4 0 0
fre(Bn) = e 5-¢ [prwieq — B2Cét (el cos ¢ + n sing)] .
The amplitudes A;(n) and B;(n) of the scattered waves take the form
A ( ) ima® Oége~z7-r/4 < ing— C S 2¢)>
i(n) = — 1/ — s in T,
2 Vor Po Cge
ira? /33
. — Mo —im/4 0 __
B;(n) 5 5 ¢ [ p” (e n; sin cb) (5.16)

C.A

—pr =3 (e? cos ¢ +n? sin ¢ — n; sin 2¢) .
Chs

Hence, the total scattering cross-section of the waves, according to the general

expression (4.12), is

2

Qr(w) = Talso* | Lrs(ciba+ ¢

(POU%)
9 (5.17)
+ (35) (1+ CQ)} . v = Cgs/po.
Po

As it follows from (5.13) and (5.17), the total scattering cross-sections of the
longitudinal and shear waves polarized in the z;z-plane do not contain any di-
electric or piezoelectric constants. This was to be expected, since the z;z»-plane
is the plane of isotropy, so that the piezoelectric behaviour does not manifest it-
self. The situation, however, is quite different when shear waves, polarized in the
x3-direction, are considered.

5.3. SHEAR WAVES POLARIZED IN Z3-DIRECTION
Indeed, we have in this case,
0 0 1 1
Lk = mk, k‘:ﬂl, <I >t:_5wﬂLC44- (5.18)

Obviously, 4;(n) = B;i(n) = 0 and the vector fz(8.) and the scalar f(3,) become

ima? 8% —im/4 [Pl 1 ( A 6&&?5)]
—=e — = = | Ciy + —== ]| cos ¢,
f (ﬂ-‘- ) 2 o 20 04;4 44 77?1 ¢

B . (5.19)
f Bin)= - / _Le-l1r/4 15[ <€A + 15,,7A> cos .
(Bun) 2 2m 1 Cly iy




It follows, then, that

ita®> |8 _ix | ; 1 %\’ :
Ci(n) = —=eT 1 { — — C’ﬁ+(-}0§) niy | cosg ymi (5.20)

11

The total scattering cross-section for these waves is

. 2
2 1 9. \° f ?
Qriw) = 5 (Bra)’a —C“(ﬂ) f +2<_) ’
r1(w) 8( La) (pov2 )2 | ™ 9, G Po (5.21)

vy = Cu/po.

For the purely elastic behaviour (el = 0) this expression coincides with the one
obtained in [12].

6. CONCLUSIONS

The obtained results for the scattering amplitudes and cross-sections of a cir-
cular scatterer in a piezoelectric medium of hexagonal (transversely isotropic) sym-
metry may be useful for many future applications, e.g., for the determination of the
symmetry of the scatterer by measuring its scattering cross-section. The Green’s
function method, presented in Section 3, can be extended to scatterers of arbi-
trary symmetry. Here a similar amplitude equation as (3.16) occurs wherein the
scattering amplitudes reflect the symmetry of the scatterer. Thus the presented
method will hopefully stimulate further work in the treatment of the scattering of
acoustoelectric waves at inhomogeneities.
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APPENDIX

The needed formulae, concerning the tensorial basis (3.4) used in the paper, are

collected here. Their application, as already demonstrated, allows one to substan-
tially simplify and standardize the appropriate tensorial operations in the problem
under consideration.

If a certain tensor A is expressed in the T-basis as

9 1 4
A=A T + A4, (Tl - §T2> + AT + AT + AsT° + AgT®, (A1)

then the inverse tensor A~ is given by the expression

Al Aoy ] <T1—1T2> _As e A g

24 Ay 2 A A
(A.2)
+4T5+%T6 A =2(A1Ag — Az Ay)
A5 A 3 - 41116 {13414 -

If two tensors A and B are given in the T-basis, the contraction of these

tensors with respect to two pairs of indices reads

. 1 _.
AijiiBrimn = (2A1By + AsBy)T},,, + A2 Bo (T}jmn - 5Tfjmn)
+ (241 By + A3 Bo)TE .., + (24481 + AgB)T 0, (A.3)

1
+ §A5B5T5 + (AGBG + 2*44B3)Ti§‘mn'

ymn



Consider now two tensors C and D, presented in the U-basis,
IJA - Z C z]l\ ’ 1]/\ - ZD Uul\ ("X4)
r=1 s=1

The contraction of these tensors with respect to one index gives the tensor in T-
basis:

7/.7’77D771/\/ *( D }k1+C D J]\]‘i'c D TJL[+4C) J]‘1+CSD3 ijkl: (A‘Axg))

The contraction of the tensors C and D with respect to two pairs of indices gives
a tensor, which is presented in the t-basis as

ChiDj =20, Datl; + (201 Dy + C3D3)t};. (A.6)

It can be shown that the t-basis is orthogonal in the sense that if

Qi = a]tl}j + agt%j., ﬁlﬁj = ,[J)lt}j + ﬂgt;], (A?)
then
Qg 3“ = 01[3115 + a)th (Ag)
and 1 ]
-1 1 9
8! —t t:.. A9
& [a3] J + [6D) U ( )

The following formulae are also useful:

1 .
—-4502Ui2jk + (244C + AGCS)U%AW

‘41']'771,)10171111\‘ = (214101 + ‘4303)Ui1jk + 9

1
T
CimnAmnr = (2C1 41 + C3 44)le\ + 502445 l,;\ +(2C1 45 + C344)U; ”1“

T 17 27 37

aiﬂLCnlkl = (1201 Uikl + alGZUikl + OZZCB(JH»‘I 5 (AIO)
1 72 3

Cij,na,nk = ClO@Uijk +02albijk +C3a2Uijk.
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NUMERICAL APPROACH TO PATTERN SELECTION
IN A MODEL PROBLEM FOR BENARD CONVECTION
IN FINITE FLUID LAYER

J. PONTES, C. 1. CHRISTOV and M. G. VELARDE

Long wave-length pattern formation is studied by means of numerical integration of a
fourth-order in space nonlinear evolution equation subjected to Dirichlet lateral bound-
ary conditions. Computationally efficient implicit difference scheme and algorithm are
devised employing the method of operator splitting.

The case of Bénard convection in Boussinesq limit is considered. For different sets of
the parameters different convective planforms are found: a pattern of hexagons (H1)
with upward flow in their centers, hexagons (H ™) with downward flow in the centers,
coexisting hexagons and squares (S), and a case where the squares are selected. In the
case when the critical wave-number vanishes (the wave-length diverges) the pattern
selected is of a single cell which fills the whole domain under consideration.
Keywords: difference schemes, operator splitting, higher-order diffusion equations,
pattern selection, nonlinearity, surface-tension driven convection

MSC 2000: 35K55, 65M06, 74520, 65Z05

1. INTRODUCTION

Pattern formation in a thin layer of fluid heated from below occurs when the
vertical temperature gradient exceeds certain threshold [12, 20, 10, 6]. The nature
of the instability and the characteristics of the convective motion depend not only
on the fluid parameters but also on the geometric and physical properties of the
container. In sufficiently deep cells, or in cells in which the fluid is confined between
rigid horizontal boundaries, the convective motion settles when the buoyancy force
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overcome the viscous forces (Rayleigh-Bénard problem). In sufficiently shallow
layers with open surfaces, the inhomogeneities of the surface-tension distribution
arc responsible for the onset of the motion (Bénard-Marangoni problem) [3. 13].
Depending on whether the horizontal boundaries are good thermal conductors or
not, the characteristic wave-length of the convective structure is either comparable
to or is much larger than the depth of the cell.

In this work we deal with the problem of pattern selection and the long-term
cvolution of the planar field in horizontally limited systems, subject to rigid bound-
ary conditions at the sidewalls: u = du/dn = 0, where u is the temperature.

Different amplitude equations are derived in the literature as simplified models
for the convective motion in lieu of the full system of the compressible Navier-
Stokes (N-S) cquations. Herc belongs the Swift-Hohenberg (S-H) equation (see, for
instance, [6]) and its genecralizations [1], as well as the Knobloch equation {8, 9],
to mention a few. The main difference between these two models is that the S-H
cquation has a Lyapunov potential, while the Knobloch equation has not, being
thus physically much closer to the original model based on the full Navier-Stokes
equations.

Knobloch’s equation (1) is very similar to the 2D Navier-Stokes (N-S) system
not only as a physical model but as a mathematical structure as well. It is simpler
in the sense that it is a scalar equation containing no pressure, and hence no
incompressibility constraint has to be satisfied. On the other hand, Eq. (1) is more
complicated than the N-S one on the account of the numerous nonlinear terms
which make it a multi-parametric model with a rich phenomenology.

Following {5], we employ the method of operator splitting to construct an effi-
cient difference scheme and algorithm for solving the generalized diffusion equation
(1) which contains fourth-order spatial derivatives. This is the numerical objec-
tive of the present paper. The proximity of the solution to its asymptotic state
is assessed via monitoring the L;-norm of the difference between two consecutive
time steps; this norm is sensitive not only to the changes in the amplitude of the
structure but also to the evolution of its phase.

The second objective of the present paper is to obtain physically relevant re-
sults. In this instance, the emphasis is placed on three aspects. First, the pattern
sclection is examined and the results are compared to the existing ones, particularly
to those obtained in the framework of the Knobloch’s equation. Second, we find
numerically the possible non-stationary asymptotic states toward which the system
evolves. Third, the long-time evolution of the patterns is tracked. In all these cases
the wave-length and the spectral content of the patterns in terms of Fourier modes
are thoroughly examined.

2. POSING THE PROBLEM

Chapman & Proctor [4] and Sivashinsky[15, 16] introduced an equation to
describe the long wave-length pattern formation induced by buoyancy or by surface-
tension instabilities in a thin layer of fluid. This equation was later generalized by
Knobloch to the form

158



du . , .
a_u =au — pViu - Vi + &V - |[Vu|?Vu
f (1)

+ BV - ViuVu — 4V - uVu + SV Vul?.

Here, u(x,y,t) is the horizontal planform of the temperature deviation from the
conductive profile, z, y and ¢ are slow variables, u is the scaled bifurcation pa-
rameter, and a represents the effect of finite thermal conductivity of the horizontal
boundaries, or finite Biot number. When the boundary conditions at the top and
bottom of layer are not identical, then 5 # 0 and § # 0. Respectively, if non-
Boussinesq cffects are to be taken into account, one has v # 0. In the present
paper we do not deal with non-Boussinesq effects, hence, we set v = 0. The coef-
ficient s can always be set to %1, see [8], except for solidification in binary alloys,
where it vanishes. Specifically, in the case of Bénard’s convection, k = +1.

Knobloch considered modes forming square and hexagonal lattices, but he did
not address the question of relative stability between squares and hexagons, and
suggested that the problem should be studied numerically. He did not consider
the case in which k = —1, nor did he interrogate the non-stationary patterns that
could emerge due to the non-potential character of Eq. (1). Shtilman & Sivashinsky
[14] iutegrated Eq. (1) numerically in a square region of approximately 4 x 4 wave-
lengths, subjected to periodic boundary conditions. They set v+ = 0, 8 > § and
obtained a structure of positive hexagons quite in accordance with experimental
findings in Bénard-Marangoni convection and the analytical results of Knobloch
for this range of parameters. Recently, Skeldon & Silber [17] extended the stability
analysis performed by Knobloch and found some scenarios, where transition from
hexagons to rectangles may occur. In some cases, these authors found that near
onset some more exotic spatially periodic planforms are preferred to the usual rolls,
squares and hexagons.

The existing results, concerning pattern selection in the framework of the dy-
namics represented by Eq. (1), can be summarized as follows:

e Square lattices:

— Squares are stable if g =y =4 =0;
— Rolls are stable if 5 =6 # 0 and v # 0;
— Rolls are stable for § #0 and §— 6 #0if y= 0.

o Hexagonal lattices:

— Hexagons are stable if 5 =y =4 =0;

— I8 +~/q¢2 ~ 8 < |8, 18], 7] = O(1), the hexagons are stable at
low amplitudes, having upward (H™) or downward (H ) flows in their
centers depending on the sign of (3+7/¢> —§), while the rolls are stable
at larger amplitudes;

— H* and H™ coexist at large amplitudes if |§], {v], 0] < 1.
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In this study we consider the Bénard convection in Boussinesq approximation
when k£ = +1 and v = 0. Only in one of the calculations for the squared tessella-
tions we use K = —1 for the sake of comparison of the physical mechanisms. The
simulations are conducted in the above selected parameter range for a square box
with horizontal dimensions 150 x 150 (approximately 20 to 23 wave-lengths per
side). Eq. (1) is integrated numerically in the points of a square grid of 402 x 402
points, which means roughly 17.5 points per wave-length. This is a significant im-
provement of the resolution in comparison with the works from the literature. The
time-step used in our simulations is At = 0.1.

Section 4.1 presents the results concerning H+ or H~ hexagons. Section 4.2
discusses squared tessellations S, obtained both with k = +1 and x = —1. Section
4.3 deals with the problem of the coexistence between squares and hexagons. In
Section 4.4 the result of a simulation for & = 0 is presented. This is a case when
the critical wave-length diverges (zero critical wave-number).

3. NUMERICAL SCHEME

Following [5], we use here the idea of operator splitting to create efficient scheme
which will allow extensive numerical experiment. In order to secure the desired
properties of the operators to be inverted, we use a semi-implicit approximation of
the nonlinear terms. First we recast the original PDE to a form stemming from a
first order discrete representation of the time derivative:

un+1 —yn
—Qx " (AZ + A;‘) w4 (2)

or

[I - (A2 + AZ)] u™t = At (u™ + f1), (3)
where I is the identity operator, and u™, u™*! stand for the dependent variable on
the respective time stage. Respectively, the operators A7, A} and the function f"
are defined as follows:

. a 8 0 a2 0
AZ—E—%‘+K%<|VU| 5—:1—:),

n_a 84 8 nza
N =5 ity (T ).

4, n
Our pViu™ + BV - V2uVu" — 4V - uVau + 6V Va2

n _
1" =2 ay
Here it becomes clear why the scheme is called “semi-implicit”. The nonlinear
terms involving the third derivatives and proportional to the coefficient k are taken
in divergent form in which the coefficients are from the “old” time-stage, while the
derivatives itself are treated implicitly. Generally speaking, some more terms can
be approximated implicitly, but such an approximation will destroy the negative
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definiteness of the operators to be inverted at each time step. For this reason we
leave them on the “old” time stage.

Now the full inversion of the operator [I — (A} + A})] requires a consider-
able computational effort. We use here the operator-splitting scheme of stabilizing
correction. We split Eq. (3) into the following two half-time steps [5]:

(I-AtAD) @ = (T+AtAD)u™ + At fn (4)
(I-AtAD)u™! = 4— AtAT ™ (5)

Upon applying the operator (I — AtAZ7) to Eq. (5) and adding the result to
Eq. (4) one obtains

nan un+1 —yn"
(I + (AL?AZA}) ———

Al = (A: + Ag) Un+1 + fn,

which means that within the second order approximation in time, the splitting
scheme is equivalent to the original semi-explicit scheme (2). The advantage of
the splitting is twofold. The operator in the left-hand side of Egs. (4) and (5)
displays a penta-diagonal structure when the space operators are approximated
to second order on the difference level. The elements of these operators are just
numbers and not matrices, as in the case of Eq. (3). Second, Eq. (4) can be solved
line by line and Eq. (5) can be solved column by column, reducing considerably
the storage requirements. The five-diagonal systems were then solved by Gaussian
elimination with pivoting. The scheme (4), (5) generalizes for the fourth-order
diffusion operators the classical operator splitting scheme of stabilizing correction
[7, 21].

When a stationary pattern is investigated, the boundary conditions and coeffi-
cients of equation do not depend explicitly on the time ¢ and the computed transient
solution should converge to the steady solution unless a chaotic régime onsets. Of
prime importance for computing the steady solutions is the selection of the crite-
rion to judge whether the convergence is reached since the amplitude and the phase
dynamics of the pattern evolve on different time scales. The phase evolves much
slower than the amplitude does. Then the uniform norm of the difference between
two consecutive iterations will follow the rate with which the maximal amplitude
of the transient approaches the maximal amplitude of the steady solution. Using
an uniform norm would send a false signal that solution converges long before the
phase pattern reaches its stationary shape. Following [5], we track the time evo-
lution of patterns by monitoring an L;-type of norm which measures the rate of
change of the distance between two successive states of the system. The L;-norm
is sensitive to the evolution of both the amplitude and the phase:

1 Xl

Ll = )
At Y

(6)

where the sums are made over all interior points of the grid.
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4. NUMERICAL RESULTS

In this section we present the results of our numerical simulations of the
Knobloch equation (1). All simulations begin at ¢ = 0, from a random initial
condition. As already mentioned in the foregoing discussion, we focus our atten-
tion on the case k > 0. We choose without loosing the generality ¥ = 1. Only
in one of the runs we use k = —1 for the sake of comparison. More exhaustive
treatment of the non-Bénard case k < 0 is due elsewhere.

We consider only the cases when a < 0, which means that there is no energy
input proportional to the temperature u. For a < 0 the said term accounts for a
linear attenuation of the solution. Then for the dispersion relation for the Fourier
modes of the linear part of Eq. (1) in unbounded region and for the interval of
unstable wave-numbers we get

s=a+ug - ——\/——|a|<q< +\/——|a

where the negative sign of a is acknowledged.

One sees that there is a whole band of unstable modes. The fastest growing
mode (the largest positive s) is ¢n = \/u/2 with exponent s,, = a + %\/;7 In
most of the cases treated in the present work ¢,,, does not have much impact on
the results and cannot effectively serve as a representative critical number. For
this reason we propose a somewhat more elaborate definition of the critical wave
number q.. Namely, we find the value of y for which s,, = 0, i.e. the value for which
an unstable mode first appears. Clearly, this can happen only for ¢ = 2+/]a|. Then
we call “critical wave-number” the magnitude of g,, for this particular value of y,
gec = \/l—aT . As it will become clear in what follows, this critical wave-number is
rather relevant to the wave motions under consideration.

The hexagon pattern with an upward flow in the centers of hexagons is denoted
by H*. Respectively, H~ stands for the pattern in which the flow in the centers
of hexagons is downward. The grey shades of the plots are selected between white
(regions with the most rapid upward flow) and black (the fastest downward flow).
In order to gather more information about the motion, the Fourier transform of
the pattern is shown in the figures. To this end, we include also a panel in the
figures showing the sum of the amplitudes of all wave-numbers A in the interval
between ¢ and g + Ag, regardless to their orientation. Respectively, Agq is the grid
spacing of the discrete Fourier transform. The respective result is depicted in the
lowest panels of the figure as a function of (g/q.). The position gs of the peak
identifies the fundamental mode of the structure which is, in general, different from
the critical mode g.. :

4.1. FINITE WAVE-LENGTH HEXAGONS
The starting point of our simulations is the numerical work [14]. We adopt

the same values used by those authors for the coefficients of the quadratic terms,
namely 8 = —0.1257, a = —0.8 and p = 2.7.
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In the beginning, the small scales existing in the random initial condition are
rapidly attenuated due to the filtering action of the dissipative part & — V* of the
linear operator of Eq. (1). The most significant growth of the amplitude occurs
in this phase and the decrease of the L;-norm is very fast. The second phase is
essential for the pattern evolution. It is characterized by an irregular behaviour of
Ly which on average decays much slower than in the initial stage. As the structure
evolves, new cells are created or annihilated, dislocations move, and grains slide
relative to each other. The number of defects usually diminishes as longer space
correlations are created and the whole pattern moves. Tribelsky et al. show in [19)
that just before and after a cell is created or annihilated, the evolution accelerates
according to a power law. The peaks of the L;(t)-curve reflect the time moments
when qualitative changes occur in the pattern. Eventually, the system finds a
configuration where further qualitative changes become extremely difficult and then
the third stage of evolution begins characterized by a sustained exponential decay
of the L;-norm. We terminate the simulation after the L;-norm decreases another
order of magnitude since the moment of onset of the third phase of the evolution.

The pattern shown in the top-left panel of Fig. 1 contains three grains, the
first one being adjacent to the upper boundary and having one of the axis of the
lattice parallel to that wall. A second smaller grain of the same lattice orientation
occupies a part of the lower wall. The third (the biggest) grain occupies the central
part of the box and presents a lattice rotated by an angle of 7/6 with respect to the
other two. Several hepta-penta defects can be observed on the grain boundaries.

The third panel in the left column of Fig. 1 shows the core part of Fourier
modes of the pattern at the end of the simulation ¢ = 19050. Twelve peaks can
be observed in the ring of fundamental modes, reflecting the existence of lattices
with two orientations. In addition, this figure shows also the existence of secondary
peaks (the bottom-left panel in Fig. 1) which can be explained using the arguments
presented graphically in Fig. 2.

In order to identify the relative importance of the amplitude of the modes,
irrespective to their orientation, we computed the sum (denoted by A) of the am-
plitudes found in circular rings of the Fourier transform centered in ¢ = 0 and
limited by

nAg— Aq/2 < ¢ < nlAg+ Ag/2,

where Aq = 2n/l and n = 1,2,... The values of A, obtained as a function of ¢/g.
and normalized by max(A), are plotted in the bottom-left panel of Fig. 1. The
curve displays an absolute maximum in g/g. = 0.98, which we define as ¢y/qc,
with g being the fundamental wave-number of the pattern. There are also several
smaller peaks associated with modes \/ﬁqf, 2¢y, V7 gs and 2v3 gs. It is seen that
the fundamental wave-length of the pattern is smaller than the critical one. We also
outline by dashed vertical lines the limits on the band of linearly unstable modes. It
can be seen that there are secondary peaks out of that band, i.e. active modes with
negative eigenvalue. The next four relevant peaks are located in q/q. = V3, qf/4c,
2q7/4c, 2.65 ~ V/7,q5/q. and 2v/3g;/q.. The amplitude of the peaks diminishes
as ¢/q. increases due to the fact that the eigenvalue of a mode becomes more and
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more negative, as the distance to the band of linearly unstable modes increases.
This reveals an important signature of weakly-nonlinear systems: the interaction
between modes promoted by the nonlinear dynamics merely introduces corrections
to the fundamental modes, the latter being the most important in defining the
- essential features of the structure.

Thess & Bestehorn [18] found by direct integration of Navier-Stokes equations
that an H ~-structure appears in Bénard-Marangoni convection if the Prandtl num-
ber of the fluid is smaller than a critical value. We encounter negative hexagons
H~ for positive § = 0.75v/7. The size of the system and the values of the rest of
the parameters are the same as in the preceding case H, except for the coefficient
J, for which we took the opposite sign.

The pertinent drawings are shown in the right panels of Fig. 1. In this case the
end of the simulation appears at ¢ = 15990. Now the system develops a more com-
plex structure than in the H%-case, which is also reflected by the Fourier transform
of the pattern. Several dislocations and hepta-penta defects are observed. Yet,
the curve Li(t) displays the same qualitative features found in the previous case
and the time interval required to attain a sustained exponential decay of Li(t) is
also comparable (t = 15990 here and ¢ = 19050 in the previous configuration). The
higher level of disorder of the H ~-case is compatible with the higher forcing, applied
to the system, which is reflected by a somewhat wider band of linearly unstable
modes. The bottom-right panel of Fig. 1 shows that H~ contains the same struc-
ture of Fourier modes as the one found for H+. The fundamental wave-number of
the pattern is greater than the critical wave-number, namely g5 = 1.03 ¢..

Fig. 2 focuses on an extended area around the core part of the Fourier transform
of the Ht-pattern shown in the respective panels of Fig. 1. Fig. 2 is constructed
using a nonlinear scale of gray shades, in order to enhance the weaker peaks for
better observation. It is seen that the peaks fall in five concentric circumferences,
whose diameters follow the same relations found for the abscissa of the peaks shown
in the lowermost panels of Fig. 1. The first one (1) contains the fundamental modes
of the pattern, g;. Six directions (12 peaks) are observed on this circumference,
due to the existence of grains with two orientations in the pattern under consider-
ation. The second circumference (2) with radius g = \/qu contains wave-vectors
generated by the interaction of fundamental modes of the hexagonal lattice (see
also Fig. 2(b)). The third circumference (3) contains the second harmonic of the
structure 2 gs. The fourth circumference (4) with radius ¢ = v/7g; contains modes
generated by the interaction of q and 2 qy, forming an angle of 7/3. Two different
orientations are possible in each 7 /3 sector leading to the existence of 12 pairs of
peaks in this circumference, see Fig. 2(b) and Fig. 2(c). The fifth circumference
contains modes with wave-number q = 2v/3¢;. Fig. 2(d) displays a scheme of the
pattern in the physical space as contained in each cell.

Twelve peaks can be observed in circumferences # 2, 3 and 5, but circumference
# 4 contains twelve pairs of peaks. Fig. 2(b) and Fig. 2(c) clarify the origin of these
peaks.

Fig. 2(b) shows a hexagon in the Fourier space composed of fundamental
modes. The interaction of two aligned fundamental modes results in the second
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Fig. 2. HT in square geometry

harmonic, the interaction of two wave-vectors q¢, forming an angle of 7/3, gives
a mode with ¢ = v/3 gy, the interaction of the latter one with itself originates the
mode 2v/3 g5 and the interaction of a v/3 g;-mode with a fundamental one creates
a V7 gr-mode. In this case there are two possibilities in each 7/3 sector. This is
why twelve pairs of peaks appear in the circumference # 4.

Fig. 2(c) shows the hexagons in Fourier space, obtained by linking the peaks
associated to one of the lattices of the pattern. Fig. 2(d) shows a scheme of a
convective cell in the configurational space. Thus we compare the normalized fun-
damental mode gy/g. of the pattern, with the normalized average mode ¢,/q.,
where the average mode is defined as

[N
qa=27l' 'S',", (7)

where N is the number of cells in the pattern, and S, is the area of the box.
Due to the existence of empty spaces at the grain boundaries, close to the
sidewalls, the above estimate gives as a rule an average wave-number smaller than
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qs. In addition, the pattern contains some cells (like the heptagons) which are
larger than the average cell.

4.2. FINITE WAVE-LENGTH SQUARES

We turn now to the question of identifying the conditions leading to square
tessellations. Knobloch [9] shows that squares are stable when the system is a
Boussinesq fluid with symmetric horizontal boundaries (8 = v = § = 0). Shtilman
& Sivashinsky [14] obtain the same result by numerically integrating Eq. (1) in a
4 x 4 wave-length box assuming periodic boundary conditions. The squares can
also occur when § = § # 0. We consider two configurations of parameters, one of
them with k = +1 and the other one with x = —1.

The case kK = +1 evolves until ¢ = 41100. The high forcing, applied to the
system { — p. = 0.602), justifies the rather disordered structure obtained in this
case (see the left panels in Fig. 3). This behavior is captured also by the Fourier
transform. The most conspicuous feature of the pattern is the orientation of the
dominant lattice parallel to the diagonals of the box (note that it is parallel to the
sidewalls in the case k = —1). The normalized fundamental mode is qf/q. = 1.
The consecutive peaks are associated with the modes v2qy, 2g5, V5gy and 3¢;.

The pattern obtained for & = —1 (right column of panels in Fig. 3) displays
an almost perfect structure, possibly due to the lower forcing applied to the sys-
tem. It consists of essentially one grain with several defects (dislocations). The
almost perfect structure of the pattern is reflected by a very clear but rich Fourier
spectra. There is no circle of fundamental modes. The inner part of the transform
displays a squared geometry. Fundamental modes are found only in the directions
parallel to the sidewalls and — as observed in the early stages of evolution — a
second lattice, parallel to the diagonals of the box, coexists with the dominant
lattice. The secondary lattice of modes clearly stems from the interaction of two
orthogonal fundamental modes. The bottom-right panel of Fig. 3 shows that the
normalized fundamental mode is gf/g. = 1.01, and several subsequent peaks, lo-
cated at \/iqf/qc, 2q5/4c, 2.23q5/q. = \/gqf/qc and 3qs/q.. It is interesting to
mention that the modes with ¢ = 2v/2 gy, which have a wave-vector shorter than
3gs, do not survive.

Among the cases, discussed in the present work, this is the most demanding in
terms of computational effort, requiring 2 x 10° steps to attain the convergence to
the steady solution, t = 200000 with time increment A¢ = 0.1.

4.3. COEXISTENCE OF FINITE WAVE-LENGTH SQUARES AND HEXAGONS

The results from the previous sections show that hexagons are selected if 3
differs significantly from & and that squares appear when 8 = §. Then the natural
question is whether hexagons and squares can coexist if 8 differs slightly from 6.
The second question is of whether or not HT and H~ can coexist if |3|, |§] < 1.

The answer to the first question is affirmative. The hexagons and squares do
coexist when the value of 3 is in the vicinity of §. Furthermore, the hexagons are
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coexistence of both patterns appear to be much less robust than those that define
a single pattern. We find that the coexistence of patterns depends not only on
the coefficients of the quadratic terms of Eq. (1) but also on the magnitude of the
forcing applied and on the system size, as well. A change in one of these parameters
may lead to the collapse of one of the patterns. For instance, with the increase of
the forcing, the dominant pattern changes from hexagons to squares. This result
was also obtained in [2] by direct integration of the three-dimensional Navier-Stokes
equations. In [11] the competition between hexagons and squares in a generalized
Swift-Hohenberg equation was studied. It was found there that the front between
competing patterns must be perpendicular to their corresponding modes in order
to be stable.

The answer to the second question is negative. We do not find a coexistence of
positive and negative hexagons. Squares emerge in the neighbourhood of the point
where the transition H* — H ™ occurs, i.e. in the point where the sign of (3 — )
changes, and the transition occurs in the form H* — § — H~, or vice versa.
Besides, one of the hexagon types disappears before the onset of the other, and the
squares are the only stable pattern in the case when 8 = 4.

As in all of the previous figures the top panels of Fig. 4 show the state of the
system at the end of the simulation. The drawings corresponding to the evolution
of Li-norm are placed on the next row. The third row consists of the Fourier
transforms of the patterns. The last row shows the wave-number content of the
pattern.

In the first numerical experiment (the left column of panels in Fig. 4) we set
B to a value, slightly bigger than §, which is supposed to be a case in the interface
between the regions of H* and S. Indeed, our simulations show that the system
eventually evolves to a state of coexistence of both patterns (designated by SH).
Note that the system shows a tendency to develop squares close to the sidewalls.
There are lines along which the distance between hexagons, and in some cases
between squares, is larger than the average one. These lines are “fault lines” across
which the neighbouring domains with different patterns slide during the evolution
of the pattern towards a steady state. The orientations of the hexagonal and
the square lattices are rather deformed and in some regions the directions of the
dominant lattice keep rotating in time.

The Fourier transform indicates that the dominant modes fall in a circular ring
of nearly critical modes. The modes are somewhat more evenly distributed along
the ring than in the cases where the orientation of the lattice is less deformed.
The fundamental wave-number here is g5 = 1.01g.. However, the curve of the
wave content as a function of q/q. (bottom-left panel of Fig. 4) does not suggest
the existence of secondary modes, as it is the case in the above treated sets of
parameters.

For the second example of coexistence we set 3 and § so as to place the system
in the limit between the regions of H~ and S. Our results show that it evolves to a
coexistence of hexagons and squares, whose pattern is much more ordered than in
the previous case. Hexagons appear close to the upper, left and right sidewalls, and
also in the lower part of the box when the domain is larger. The squares occupy
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mostly the inner part of the system.

The Fourier transform displays a squared structure, which is in a sharp contrast
with the circular structure found in the previous case. Each corner of the square
contains a small peak. In addition, there are three other peaks along each side
of the square totaling twelve along the all four sides. The peak in the center of
each side is slightly off the square and the twelve peaks actually fall in a circular
ring of fundamental modes. These peaks define two hexagonal lattices rotated by
an angle of /6 with respect to each other. The hexagons, belonging to one of
the lattices, appear close to the left and the right sidewalls of the system. The
hexagons, belonging to the second lattice, appear closer to the upper sidewall. The
two lattices do not coexist in the same parts of the configurational space. Both
the image of the structure and the associated Fourier transform suggest that the
amplitudes of the hexagons, belonging to each lattice, are of the same order, because
they belong to the ring of fundamental modes.

The structure of squares results from the superposition of a lattice of funda-
mental modes with ¢ = ¢y and a second one, rotated by an angle of 7 /4 relatively
to the former and having ¢ = \/iqf.

A different situation occurs with the other two lattices which are associated
with the structure of squares. The first lattice is defined by two directions parallel
to the sidewalls and by modes falling in the ring of fundamental modes. The
four corresponding peaks in the Fourier transform coincide with those of the two
hexagonal lattices which, consequently, are the highest peaks. The second lattice is
rotated by an angle of 7 /4 with respect to the former, with modes v/2 ¢, generated
by the nonlinear interaction of the fundamental modes. Here, the two square lattices
do coexist in the same physical space.

In the last case the wave-number content of the pattern exhibits a maximum
at g5 = 1.07¢.. The average wave-number, measured according to Eq. (7), is also
larger than the critical one.

4.4. PATTERNS FOR VANISHING LINEAR ATTENUATION COEFFICIENT « = 0

In this section we discuss the numerical findings for & = 0 when, according
to dispersion equation, the lower limit of the unstable wave-number is zero. The
coefficients of the quadratic terms were selected to place the system in the H™-
régime. Then all scales with ¢ < /I are supposed to be linearly unstable while the
scales with ¢ > /i are damped.

The numerically obtained time evolution of the pattern is shown in Fig. 5.
Smaller cells are indeed damped first. The more important finding, however, is
that the cells increase with time and the system evolves towards a state where a
single cell eventually occupies the whole box. This is somewhat counter-intuitive
because one might expect in this case an onset of regular pattern with the most
unstable wave-number ¢, = \/p/2 = 1 for the selected value ¢ = 2. Moreover,
the box we have chosen is large enough to harbour more than 12 wave-lengths ¢,
and hence this is not an effect connected with the distortion of the fastest-growing
modes, due to the lack of space for their spatial extent.
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We found hexagonal tessellations H* (H~) for 8 > § (8 < &) and tessellations
of squares for § = §. By setting 3 to a value slightly larger than § we identified
states of coexistence between Ht and S. Similarly, we found coexisting H~ and S
patterns when choosing 3 to be slightly smaller than . These states of coexistence
are less robust than those of single patterns. They depend on the forcing applied
and on the horizontal dimensions of the system. A change in one of these parameters
may lead to the disappearance of one of the patterns.

Typically, the speed of evolution of the patterns shows a rapid decay in the
early stages. In the intermediate stages the speed is rather irregular because of the
creation or annihilation of cells, transport of dislocations, deformation of grains.
These are evolutions of the phase of the pattern in general. The last stage is a
sustained monotone decay of the Li-norm, suggesting that the system eventually
attains a stationary state. The onset of the sustained decay serves as a criterion to
terminate the computations.

The analysis of the spectral content of these patterns reveals that the fun-
damental wave-number of the structure is very close to the critical. The largest
discrepancy occurs in the case of coexistence of hexagons H~ and squares S, where
we find a fundamental mode which is 7% larger than the critical. The Fourier
analysis also shows the existence of active modes outside the band of linearly un-
stable modes. In the case of single-pattern tessellations, these modes are not merely
higher harmonics of the fundamental mode, but they can also originate from the
interactions between modes with different orientations and/or wave-numbers. The
ability of the system to generate and sustain secondary active modes leads in the
case of square patterns to the coexistence, in the same subdomain in the configu-
rational space, of a dominant lattice and a secondary one, the latter slanted by an
angle w/4 with respect to the former.

For @ = 0 our calculations indicate that all scales shorter than the measures
of the box are eliminated as the system evolves in time from a random initial
condition. A single-cell stationary pattern is eventually reached, having the largest
finite wave-length which is compatible with the dimensions of the box.

For k = +1 we observe onset of patterns with larger density of defects when in-
creasing the forcing, but no indication of the existence of possible unsteady asymp-
totic states. Our preliminary results for the regime k = —1 (not shown in the
present paper) suggest that at least in two cases there appear unsteady patterns of
irregular polygons at high forcing. The numerical interrogation of this case will be
published elsewhere. :
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