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FACTORIZATIONS OF SOME SIMPLE LINEAR GROUPS

ELENKA GENTCHEVA

In this paper we have considered finite simple groups G which can be represented as a
product G = AB of two of their proper non-Abelian simple subgroups A and B. Any
such representation is called a (simple) factorization of G. Supposing that G belongs
to the infinite series of linear groups with some restrictions to the dimension of the
natural vector space onto which G acts we have determined all the factorizations of G.

Keywords: Finite simple groups, groups of Lie type, factorizations of groups
2000 MSC: main 20D06, 20D40, secondary 20G40

1. INTRODUCTION

Let G be a finite (simple) group. We are interested in the factorizations of G
into the product of two simple subgroups. In the present work we suppose that G
is the simple linear group L, (¢) and start our investigation of this series of groups
in case that n is at most 7. The results obtained are included in the following

Theorem. Let G = L, (q) with 2 <n <7. Suppose G = AB where A, B are
proper non-Abelian simple subgroups of G. Then one of the following holds:

(1) n=2 qg=9and A~ B=X As;

(2) n=4, g=2 and A 13(2), B~ Ag or Ar;

(3) n=4, ¢>2,qg%1 (mod 3) and A= Ls(q), B = PSps(q);
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(4)  n=6,q9#1 (mod5) and A= Ls(q), B= PSps(q);
(5) n==6,¢g=2°>23s%£0 (mod4) and A= Ls(q), B~ Ga(q).

The factorizations of the groups Lo(g) have been determined in [7]. This
gives (1) in the theorem. The groups Ls(g) have no factorizations, see [2]. The
factorizations of the groups L4(2) = Ag and L4(q) (g odd, ¢ # 1 (mod 8)) have
been determined in [10]. This leads to the (2) and (3) (¢ odd, ¢ £ 1 (mod 8))
in the theorem. Some isolated linear groups as L4(4), L5(2) and Lg(2) have been
treated in [1]and [3]. It has been proved that the groups L4(4) and Ls(2) have no
factorizations whilst the group Lg(2) has one factorization listed in (4) (with ¢ = 2)
in the theorem.

The factorizations of all the classical simple groups into the product of two
maximal subgroups (so called maximal factorizations) have been determined in [9].
Particularly, an explicit list of the maximal factorizations of the groups L, (¢) have
also been given in [9]. We shall make use of this result here.

Note that,using the result of the above theorem especially for n = 4 (G =
L4(q)) and the results in previously published papers [4], [5] and [6], we have
finished determination of the factorizations (with two proper simple subgroups) of
all the finite simple groups of Lie type of Lie rank three. Indeed, only the groups
PSU;(q) and Py (g) of Lie rank three are not covered from the mentioned results;
but according to [9] these groups have no maximal factorizations and so it follows
they have no factorizations with any two proper factors A and B as well.

In our considerations we shall freely use the notation and basic information on
the finite (simple) classical groups given in [8]. Let V' be the n-dimensional vector
space over the finite field GF'(q) on which G = L,,(¢) acts naturally, and let Py be
the stabilizer in G of a k-dimensional subspace of V. From Proposition 4.1.17 in
[8] we can obtain the structure of Py. In particular, it follows that Py = P, =
{lg" 1) : GLn-1(9)}/Z(n 4—1y- From this it follows immediately that Py (= P,,_1)
contains a subgroup isomorphic to L, _1(¢) if and only if (n —1,g—1) = 1.

If a, b are positive integers and (a, b) = 1, then Ord, (b) denotes the multiplicative
order of b modulo a (i.e. the least positive integer n with 4™ =1 (mod a)).

The following lemma is needed in the proof of the theorem.

Lemma 1.1 (see [9]). Let q be a prime power and n a positive integer. Then
there exists a prime v such that Ord,(q) unlessn =6 and g=2 orn=2 and q a

Mersenne prime.

Such a prime r is called a primitive prime divisor of ¢™ — 1.

6 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 5-9.



2. PROOF OF THE THEOREM

Let G = L, (q), where ¢ = p® and p is a prime. In our assumptions here
2<n<7,and G = AB where A, B are proper non-Abelian simple subgroups of
G. According to the information about known factorizations of G provided above,
it remains to treat G in the cases n =4, 5, 6 and 7. If G = L4(q) we only suppose
g > 2 and no other restrictions on ¢ will be applied, as for G = Ls(q) or Lg(q) we
assume that ¢ > 2 as well. The list of maximal factorizations of G is given in [9]. In
case that G = L,,(¢q) with n = 5 or n = 7 only one maximal factorization appears
with one factor a (maximal) subgroup of G isomorphic to {Zgn_1/q_1.0}/Z(y g1
Obviously, there is no choice for one of the groups A and B to be a non-Abelian
simple subgroup of G. Now we proceed with the group G = L,,(¢) where n =4 or
n = 6 and choose (by Lemma 1.1) a primitive prime divisor of p*® — 1 (recall that
if n = 6 then g > 2) to be a divisor of |B|. Using the list of maximal factorizations
in [9], by order considerations, we come to the following possibilities:

Dn =4o0orn =6and A = L, 1(¢q) (in P1), B = PSp,(q) with

2)n==6and A~ Ls(q) (in Py), B2 Gs(q) with ¢ =2% > 2,5 0 (mod 4);
3)n==6and A= Ls(q) (in Py), B2 L3(¢*) with (5,¢q—1) = 1.
We consider these possibilities case by case.

Case 1. These are the factorizations in (3) and (4) of the theorem. It remains
to show that these factorizations actually exist. From Proposition 3.3 in [10] we
have

SLy(q) = SLn—1(q).Spn(q)

with natural embeddings of SL,,_1(g) and Sp,(q) in SL,(g). Moreover, the inter-
section of these naturally embedded subgroups SL,,_1(g) and Sp,(q) is a subgroup
isomorphic to Sp,_s(q) with natural embedding in SL,,(q), too. Factoring out by
Z(S8Ly(q)), we obtain the factorizations in (3) and (4), as SL,,—1(q) = Ln—1(q) (by
the condition (n —1,¢ —1) = 1).

Case 2. Here ¢ = 2% > 2, s £ 0 (mod 4), and from the previous case it follows
that G = A. By where A~ Ls(q), B1 = PSps(q), and AN By 22 PSpy(q). In [5] we
have proved that B; = (AN By).B where B = G4(q) with an explicit construction
in By; also (AN By)NB (= AN B) = Ls(g). This leads, by order considerations,
to the factorization G = A.B in (5) of the theorem.

Case 3. This case is similar to one of those considered in [4]. Denote D = ANB;
then |D| = q(¢* — 1).(6,q —1)/(3,¢> — 1) (recall (5,q —1) = 1). By the known
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subgroup structure of Lz(¢?), it follows that D is contained in a subgroup of B
isomorphic to

al b ¢

g={|° 4 |1abceGF@) Ae o), adetA=1 /(wE)
0

where w is an element of order (3,¢°> — 1) in GF(¢”?). Further, H = FK and
FaH, FNK =1 where

116 ¢
= g |bc€ GF(¢*) p 2 Ep,
0
al 0 0
K= b A |a € GF(¢?); A€ GLy(q?), a.det A =1 /(wE)
0

= GLQ(L]Z)/Z(&(F,D.

Suppose that T'= DN F # 1. Then TaD and T'= Ex where p < p* < ¢. The
centralizer of any non-identity p-element in L3(¢?) has order dividing ¢°(¢® — 1).
Hence |Cp(T7)| divides ¢(q*> —1).(6,¢ —1)/(3,¢> —1). Then |D/Cp(T)| is divisible
by ¢* + 1. However, D/Cp(T) is a subgroup of Aut(T) = G Ly (p), so

|GL(p)| = p" D2 (p—1) - (p* — 1)

must be divisible by ¢” + 1 which (in view of p* < ¢) contradicts Lemma 1.1.
Indeed,using this lemma we can choose a primitive prime divisor of p** —1 dividing
¢° + 1 but not dividing the order of G Ly (p), which is impossible.

Thus D N F = 1 and hence D is isomorphic to a subgroup of H/F =~ K. Of
course, K contains a subgroup L 2 SL(q?) of index (¢° —1)/(3,¢° — 1) and then
DN L is a proper subgroup of L of order divisible by ¢(¢” +1).(6, ¢ —1). It follows
that Lo(g?) has a proper subgroup of order divisible by ¢(¢® + 1) which (for ¢ > 3)
contradicts the structure of La(q?).

This completes the proof.

8 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 5-9.
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A NOTE ON THE SECTIONAL CURVATURE

STEFKA T. HINEVA

The type of the matrices of the second fundamental form of a submanifold M™ in
a Riemannian manifold N™TP is given, when the equalities in the estimates of the
sectional curvature Kjps(o) of M™ by means of its mean curvature H and length S
of the second fundamental form hold. It is shown that the equality in the upper
estimate of the sectional curvature Kps(o) of M™ in a space form N"TP(c) is achieved
when the normal bundle of M™ is flat and M™ is a product submanifold of the type
M?2x M2 or M?x E™~2 (cylinder), where M2, M"™~2 are umbilical manifolds, ™2
— Euclidean. It is also shown that among all the submanifolds in N*t?(c) which pass
through its point z and have at this point the same S(x), the product submanifold
M"™ = M? x E™2 has at x the biggest sectional curvature Kp(o)(z) = ¢+ %S(m)

Keywords: Sectional curvature, length of the second fundamental form, mean curva-
ture, product submanifold, eigenvalues

2000 MSC: 53B25, 53C40

1. PRELIMINARIES

Let M™ be an n-dimensional submanifold of an (n+p)-dimensional Riemannian

manifold N™*?. We choose a local frame of orthonormal fields ey, ..., e, in
N™P gsuch that, restricted to M™, the vectors eq,...,e, are tangent to M”™ and
the remaining vectors e,y 1, ..., eyt are normal to M™.

We shall use the following convention on the ranges of the indices:

1§Z7J7k7§n7 1§a7ﬁ7’77"'§p'

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20. 11



We denote the second fundamental form h: T, M™ x T, M™ — T,ILM" on M™
for z € M"™ where T, M" is the tangent space of M"™ at z and T;- M" is the normal

space to M™ at z, by its components h; with respect to the frame ey, ..., enqp.
We call

H=Y Thco,  H'= 5 Y (W, where ht =3 ()

the mean curvature vector of M™.
The square S of the length of the second fundamental form is given by:

S=> Do) (1.2)

(]

In general, for a matrix A = (a;;) we denote by N(A) the square of the norm of 4,
ie. N(A) = trace A. A" = > (a;;)? and

(2]
| trace A| < v/n.N(A). (1.3)

S and h® are independent of our choice of orthonormal basis.

Let X and Y be a pair of orthonormal vectors tangent to M"™ at a point
x € M™, and let us suppose that the local frame eq,..., e, (*) is so chosen that
X and Y coincide with two arbitrary vectors of that frame. Let X =¢,, 1, Y = ¢€,.
Then the sectional curvature Kys(o) of M™ at the point = for the plane ¢ spanned
by X and Y is written as follows:

KM(O) = FN(O) + Z [h;.:fl,nflh?:n - (h;.:fl,n)z] (14)

where K (o) is the sectional curvature of NP,

This paper is a continuation of the papers [1] and [2] where we proved that the
sectional curvature K (o) of a submanifold M™ in a Riemannian manifold NP
at a point z € M™ satisfies the following inequalities:

4— ~9 2(n —2
KM(O)SKN(0)+ TLH2+TL S+\/ (TL )HZ(S—TLHZ)7 (15)
2 2n n
n? 1 n?
Kuy(o) > Ky(o) + ——H? — =5  when H? -5 <0, (1.6);
2(n—1) 2 n—1
2
Ku(o) > Ky (o) when ”1H2_szo. (1.6)s

The purpose of this paper is to show for which submanifolds the equalities
in (1.5), (1.6); and (1.6), are fulfilled. For this purpose we will formulate Theo-
rem 1.1 from [2] more precisely describing the types of the matrices (hg;) of the

12 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.



second fundamental form of AM™ with respect to the suitably chosen orthonormal
basis €1, ...,€n; ..., ényp (*¥), When these equalities are achieved:

Theorem 1.1. Let M™ be an n-dimensional submanifold of an (n + p)-
dimensional Riemannian manifold N™TP. For the sectional curvature Ky(o) of
the 2-plane section o spanned by the two orthonormal vectors X and Y tangent to
M™ at a non-totally geodesic point x € M™ we have (1.5), (1.6)1 and (1.6)2, where
Ky(o) denotes the sectional curvature of N™TP.

The equality in (1.5) hold only when either n = 2 or if n > 3 all the ma-
trices (hf‘j) of the second fundamental form with respect to the orthonormal basis

e1,...,en1=X,en =Y, ... enip (%) are of the form
A2 0 0 0
0 ... AF 0 0 (1.7)
0 0 A2 0
0 0 0 A2
where
o Y1 [2[nS™ — (h*)?] o R 1 (n—2)nSY — (h*)?]
i =—F A ——— 3 Aa=—=%— ~
n n n—2 n n 2

The equalities in (1.6)1 and (1.6)9 are fulfilled if and only if either n = 2 or when
n > 3 the corresponding matrices (hf‘j) are the following

af 0 0 0
0 af 0 0 (18)
o o 8)1
o ... 0 4 jc a
a4 :I: (a4
0 0 az,, “Z°
7 2
where
~h® o Se (8 —on)(h™ )
1 — TL—17 anfl,n = 9 4(%—1)2 ’
1
¢ = —— /(3= 20)(h*)? + 2(n = 1)2[5° - 2(a_, )],
n— :
and
h(fl h(fZ s infl {fn
h?Z th e hg,nfl hgn
.................................. . (1.8)9
hl n—1 h%,nfl 0 0
h, hs., 0 0

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20. 13



To find the view (1.7), (1.8)1 and (1.8)2 of the matrices (h;) we apply for them
the basic Lemma 2.1 from [1] and obtain that with respect to the suitably chosen
orthonormal basis (x) the upper and the lower bounds of the functions

hgfl,nflh?:n _( g71,n)27 = 1727~~~p7 (19)

appearing in the expression (1.4) for the sectional curvature K (o), namely,

o b — (b1, < 2= {4 =n)(h*)* + n(n — 2)S”
(1.10);
+2|h%[v/2(n — 2)[nS> — (h)?]},
%717n71h%7n - (hgfl n)2 2 Q(n—lfl)(ha)z - %Sa7 if ﬁ(ha)z — 8 g 07 (1 10)
10)2
ntnethnn = (Pa_1,)? 20, if L-(h*)? =8> >0

are achieved only when (h¢;) have the forms (1.7), (1.8); and (1.8)s, respectively.
We shall formulate some corollaries from this theorem.

Corollary 1.1. The sectional curvature Kp(o) of M™ at a point z for all
2-planes o € T,M" is non-negative (Kpr(c) > 0) if

Kno)s ts— " pen g g (1.11)
a - — —— wnen X
M =52 T o —1) n—1 ’
or
TL2
Ky(o) >0 when S < 1Hz. (1.12)
=

Corollary 1.2. Ky (o) > Kn(o) for the plane o € T, M™ at a point x € M™

when
"

S5 <

&, (1.13)

n—1

Corollary 1.3. K(o) <0 for the plane o € T, M™ al a point x € M™ when

Ky(o) < — (4;nH2+n_2S+\/MH2(S—nH2)>7 (1.14)

2n n
(1.14) is possible only when Ky (o) is negative as the right side of (1.14) is negative.

Next we will give other estimates of the sectional curvature K s (o), depending
only on the length S of the second fundamental form.

14 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.



We need the following

Proposition 1.2. Let M™ be a submanifold in a Riemannian manifold N™ TP,
then at a point x € M™ the functions (1.9) satisfy

1
hgfl,nflh%n _( %71,71)2 < 55(17 (115)1
1
eyt = (P1 ) 2 —§5a~ (1.15)9

The equality in (1.15)1 holds when the matrices (hg;) with respect to the basis (*)
have the view

0 0 ... 0 0
..................... Sa
e T B (1.16)
00 ... h% 0
00 ... 0 b
The equality in (1.15)2 is valid when h® = 0 and (h;) are

0 0 0 0
0 0 0 0 (1.17)
0 0 b2,
0 0 he,, -

where

o 1 o o 1 o
(1) < 587 ¢ =3,/208% = 2(hg_y ).

The proof of this proposition follows from Lemma 2.2 from [1], applied to the
matrices (hg).

From these estimates of the functions (1.9) and the expression (1.4) for the
sectional curvature Ks (o) we obtain the following

Theorem 1.3. The sectional curvature Kp(o) of M™ in a Riemannian man-
ifold N" TP at a point x € M"™ satisfies the following inequalities:

KM(O) SKN(O)+%S7 (118)1
KM(O) SKN(U)—%S (118)2

The equalities in (1.18)1 and (1.18)9 are satisfied only when (hg;) with respect to
a suitable basis (*) have the forms (1.16) and (1.17), respectively.

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20. 15



2. THE EQUALITY CASES IN THE ESTIMATES

Let the ambient space N™"T?(c) be a space of constant curvature ¢, then (1.5),
(1.6)1 and (1.6)9 take view, respectively:

A—n_, n—2 %%n—%
< 2 _ 2 !
Ky(o) <c+ 5 H* + . S+ - H?(S —nH?), (2.1)
Kul(o) > b g Le hen < m? _ s <0 (2.2)
M) = €T 50 1) 2 n—1 7 N
2
Ku(o) > ¢ when nIHQ—SZO. (2.2)

We’ll show when the equality in (2.1) holds. From the form (1.7) of the ma-
trices (h%) corresponding to this bound we see that all they are simultaneously
diagonalized with respect to the chosen basis e1,...,en_1 = X, ey = Y, ... enqp
(). Each one of them has exactly n — 2 eigenvalues equal to the corresponding
A and two equal to the corresponding A\ from (1.7) and the vectors X and Y
on which the 2-plane ¢ is spanned are their common eigenvectors corresponding to
their 2-multiple eigenvalue AY. Then, taking in view the fact that every two of the
matrices (1.7) are commutative as they can be simultaneously diagonalized, from
the Ricci equation

Ry = b b — bishl, (2.3)

where R%,, is the curvature tensor of the normal bundle T-M™, it follows that
R%y =0, (2.4)

i.e. the normal bundle of M™ is flat. The converse is also true.
Thus we prove the following

Theorem 2.1. Let M™ be a non-totally geodesic submanifold in a space form
N"™T2(c). The equality

n

_ d-n_, n-—2 %%n—% ) )
Uer%jj)\%nKM(a)—ch 5 H* + o S+ - H2(S —nH?) (2.5)

when o runs over all 2-plane sections tangent to M™ at a point x € M™, holds for
all points x € M™, if and only if:

i. the normal bundle of M™ is flat,

i. each one of the matrices (h$;) has eractly (n — 2) eigenvalues equal to the
corresponding X§ and two equal to XS from (1.7) with respect to the basis (x),

iti. the vectors X andY on which the 2-plane o is spanned for which max K (o) is
achieved are their common eigenvectors corresponding to their double eigen-
value A5,

16 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.



With the next theorem two examples of submanifolds satisfying the conditions
of the above theorem will be given.

Theorem 2.2. [f the submanifold M™ (n > 4) of N"P(c) satisfies the fol-

lowing conditions:
i. the normal bundle of M™ is flat,
. M™ is a product submanifold of the type M™ = M? x M" 2 or M™ = M? x
Er=2 where M?, M™ 2 and E™~? are 2-dimensional umbilical submanifold of

N™TP(¢), (n—2)-dimensional umbilical submanifold of N"VP(c), and (n—2)-
dimensional Buclidean submanifold of N"TP(c), respectively,

then the equality in (2.1) (or (2.5)) is achieved at a point x € M™ for a 2-plane o,
which belongs to T, M?.

Next, from Theorems 1.3 and 2.1 we obtain the following

Theorem 2.3. From all n-dimensional submanifolds of N™VP(c) which pass
through a point x € N"TP(c) and have at x the same S(x), only the submanifold
M™ which satisfies the following conditions:

i. the normal bundle of M™ is flat;

. each one of the matrices (hf‘j) has exactly n — 2 eigenvalues equal to zero and

SO&
two equal to A& = +4/ 5 with respect to the basis (x),

1
has the biggest max K (og)(z) = ¢+ 55(95) achieved for og spanned by the common

eigenvectors X and Y of all (h%), corresponding to their 2-multiple eigenvalue
ol 1
AZ =4y 5 The mean curvature of this submanifold is H(z) = £—+/25(x).
n

The following theorem gives an example of a submanifold satisfying the con-
ditions of Theorem 2.3.

Theorem 2.4. The product submanifold M™ = M? x E"? (cylinder) of
N"tP(c) with flat normal bundle, where M? and E"~? are 2-dimensional umbilical
submanifold of N"*P(c) and (n—2)-dimensional Buclidean submanifold of N" P (c),

respectively, has at x € M™ sectional curvature K(og)(z) = ¢+ 55(1) for og €
1 1

V/25(x) or H(z) = —E\/2S($).

Let us now see what we can say for the equality case in the lower bound
in (2.2);.

T, M?. The mean curvature of M™ is: H(x)

n
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The only thing which can be said for the equality case in (2.2); is formulated
in the following theorem and follows from Theorems 1.1 and 1.3.

Theorem 2.5. From all n-dimensional submanifolds of N™VP(c) which pass
through a point x € N"P(c) and have at z the same S(z), only the minimal
submanifold M™ which second fundamental tensors with respect to an orthonormal

basis e1,...,en_1 = X,en =Y, ..., €nip, have matrices
0 0 0 0
0 0 0 0
0 ... 0 b,
0 0 hy_y, -
where

o 1 o o 1 o
( nfl,n)2 < 55 y €= :I:i\/2[5a - 2(hn71,n)2]7

has the smallest min K(og)(z) = ¢ — %S(x) for oo spanned on X = e,_1 and
Y —e€,.

The mean curvature H(z) of M™ is zero, the sectional curvature of M™ is
negative if the ambient space is Fuclidean or Hyperbolic.

Example of Theorem 2.1. The hyperellipsoid M2 € E*
M3 gt i taitmal=1, 0<m<l.

The principal curvatures of M2 are:

A\ A\ 1 1 \ m m
1=A2 = = —] 3= 7 = s
1+ (m2 —m)z] VaQ ( 1+(m2_m)xi) (\/@)
A 0 0
hij: 0 X O s 0 < A3 < A=A
0 0 X3
92 92 2 2
BH=h=2 fhg= 2T ooz =20t g
(V@) “

1 1
min A\ < Kpps(0) <max Ay = Ao = A = — = Kjp = — = max K3 (0).

Q Q

On the other hand, according to (2.5) and taking in view (2.6) for the
max K (o) we have:

1, 1 2 |
max K s (o) = 5 H? + S+ THA(S = 3H?) = (h2 35+ 2h/2(35 = h2)) 7

18 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 11-20.



1
which is exactly equal to @ = Kys.

3. CHARACTERIZATION OF SOME SUBMANIFOLDS IN NV +7

Theorem 3.1. A complete simply connected n-dimensional submanifold M™
in a Riemannian manifold N™1P of negative sectional curvature is diffeomorphic
to R™ if the second fundamental tensor of M™ satisfies (1.14).

The proof follows from Corollary 1.3 and the theorem of Hadamard-Cartan.
Corollary 3.1. If the second fundamental tensor of an n-dimensional complete

simply connected submanifold M™ in an (n+ p)-dimensional Riemannian manifold
N™TP of constant negative curvature (¢ < 0) satisfies

4—n n—2
2
2 + 2n

then M™ is diffeomorphic to R™.

S+\/@H2(S—n1{2) < —c (3.1)

Theorem 3.2. A complete connected n-dimensional submanifold M™ in an
(n+p)-dimentional Riemannian manifold N™P of positive curvature bounded below

F
by a constant ¢ > 0 is compact with diameter < — if its second fundamental form

\/E
satisfies (1.13).

Remark. Another proof of this theorem in the case when N™TP is of constant
positive curvature is given by M. Okumura [7].

Theorem 3.3. Let M™ be an n-dimensional non-compact complete connected
submanifold in an (n + p)-dimensional Riemannian manifold N™ 2. If at each
2 2

n
— _H?i
n—1)
fulfilled or if at each point x for which S < 1H2 the inequality K (o) > 0 holds,
n
then there exists in M™ a compact totally geodesic and totally conver submanifold
Q pr without boundary such that M™ is diffeomorphic to the normal bundle of Q.
In the case when N™VP is of positive curvature which is not bounded bellow by a

1
point x € M™ for which n—1H2 < S the inequality Kn(o) > 55 —
" —

n2

2
n

positive constant then M™ is diffeomorphic to R™ if S < —1H2.
P

We prove this theorem using Corollary 3.1 and the theorems of Cheeger and
Gromoll [5] and Gromoll and Meyer [6].
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ON THE DIVISIBILITY OF ARCS WITH MULTIPLE POINTS?

IVAN N. LANDJEV, ASSIA P. ROUSSEVA

In this paper, we generalize a result by Ball, Hill, Landjev and Ward on plane arcs to
arcs with multiple points in spaces of arbitrary dimension. This result is further ap-
plied to the characterization of some non-Griesmer arcs in the 3-dimensional projective
geometry over [Fy.

Keywords: Divisible arcs, divisible codes, the polynomial method, the Griesmer
bound, Griesmer codes, Griesmer arcs
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1. INTRODUCTION

In a series of papers in the mid-nineties H. N. Ward introduced and investigated
the so-called divisibility property of linear codes over finite fields. It turns out
that many important classes of codes are divisible. A celebrated result by Ward
establishes the divisibility of Griesmer codes of minimum weight divisible by some
power of the field order [7].

By the equivalence of the linear codes of full length and the arcs in PG(r, ¢),
divisibility can be translated into geometric language. This makes it possible to use
a geometric technique, the so-called polynomial method [1, 2], in the investigation
of divisibility properties for arcs and codes. For instance, the condition on the
arc in question being a Griesmer arc can be replaced by a milder condition on the
number of points of maximal multiplicity. A result of this type has been obtained

1This research has been supported by the Scientific Research Fund of Sofia University under
Contract No 192/2010.
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in [3] for arcs with parameters (¢> +¢+2, ¢-+2) in the projective plane PG(2, ¢). In
what follows, we generalize this result to arcs in projective geometries of arbitrary
dimension.

The paper is organized as follows. In Section 2, we give some basic defini-
tions and results on arcs and codes. Section 3 contains the main theorem which
establishes the divisibility of non-Griesmer arcs having some additional properties.
Section 4 contains a characterization of non-Griesmer arcs in PG(3,4) with enough
maximal points.

2. PRELIMINARIES

Let TT = PG(r,q) be the r-dimensional projective geometry of order ¢q. A
multiset of points is a mapping £ : P — Ny from the pointset P of II into the
nonnegative integers. This mapping is extended trivially to the power set of P
by K(Q) = > .-0K(z), @ € P. The integer K(z) is called the multiplicity of
the point z. Similarly, we define multiplicities of lines, planes, hyperplanes etc. A
multiset K is called a (n, w)-arcif (1) K(P) =n, (2) K(H) < w for any hyperplane
H, (3) K(Hp) = w for at least one hyperplane Hy. Denote by a; the number of
hyperplanes in II of multiplicity exactly ¢ and by A; — the number of points of
multiplicity 4. The sequence (a;);>0 is called the spectrum of K.

Let Fy be the vector space of all n-tuples over the finite field F,. Any k-
dimensional subspace C' of Fy is called a linear code of length rn and dimension k.
If, in addition, the minimum Hamming distance between different codewords of C
is d the code is referred to as an [n, k, d|g-code. It is well-known that with every
linear [n, k, d]g-code of full length, i.e. a code in which no coordinate is identically
zero, one can associate an (n,n — d)-arc in PG(k — 1, ¢) so that isomorphic codes
lead to equivalent arcs and vice versa. This means that linear codes and arcs are
in some sense equivalent objects.

A fundamental bound on the parameters of a linear code is the so-called Gries-
mer bound [4]. It says that if C is an [n, k, d];-code then

nz’:gé[g] o

A linear code meeting the Griesmer bound is called a Griesmer code. An arc
associated with a Griesmer code is called a Griesmer arc.

A divisible linear code is defined as a code whose word weights have a nontrivial
common divisor [6]. It has been proved in [7] that every [n, k, d]4-code meeting the
Griesmer bound with minimum weight divisible by some power of ¢ is also divisible.
Using the equivalence between linear codes and arcs in the projective geometries
PG(k — 1, ¢q), we can translate this in geometric language. An (n,w)-arc K is said
to be divisible if there exists an integer A > 1 such that X(H) = n (mod A) for
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any hyperplane H. Ward’s divisibility result from [7] can be restated for Griesmer
arcs as follows [5].

Theorem 1. Let K be a Griesmer (n,w)-arc in PG(k — 1,p) with w = n
(mod p%), p — a prime, ¢ > 1. Then K(H) = n (mod p®) for every hyperplane H
in PG(k —1,p).

This result can be generalized to arcs and codes over non-prime fields. How-
ever the condition on the arc of meeting the Griesmer bound remains essential.
Interestingly, some non-Griesmer arcs and codes also exhibit divisibility properties.
In their investigation of arcs with parameters (¢° 4+ ¢+ 2, ¢ +2) in PG(2, ¢) Ball et
al. [3] observed that the presence of many double points implies divisibility of the
arc. In the next section, we extend this observation to get a divisibility result for
non-Griesmer arcs in finite projective geometries of arbitrary dimension.

3. THE MAIN THEOREM

Consider the projective geometry PG(r, ¢) and fix a hyperplane H,. Clearly,
PG(r, q)\ Hoo can be regarded as the r-dimensional affine geometry AG(r, q). The
finite field Fy- is an r-dimensional vector space over I, and can be identified by
the points of AG(r, q) = PG(r,q) \ Heo. The line through the points X,Y € Fy is
given parametrically by

L={(X,Y)={X +(1—0)Y |t €F,} CFp.

Let X,Y, X" Y € Fyr be four points from AG(r,¢) such that (X,Y) N He =
(XYY N Hy. If Fgr = Fy(x), we can write the above four points as

X=z0+zia+...+z_10" Y, Y=ystyia+...+y_1a" '
X' =zgh+aiat.. . +z. 0", Y=yh+tylat.. . +y. ot

where z;, y;, 2, y; € Fq. In PG(r, ¢), the four points can be viewed as
s g o 0 3 BT s Ko 90 6 g e D Ny 22 g O ML A0, w2 e Dl
The common point of (X, Y} and (X', Y”), which lies in H, is
(0,20 — Y0, 21 — Y1, -+, Tr—1 —Yr—1) = (0,25 — Y0, T4 — Y1, -+, Trq1 — Yr_1)

where ¢ € IF;‘. Hence

r—1 r—1
(X-Y)= Z(%‘ —yi)a' = tZ(xQ —yat =X —-Y")
i=0 i=0

and (X —Y)9 1 =11 X/ —Y")? ! = (X' —Y")9" 1. Therefore the points on H,
can be identified with the %—st roots of unity in Fg-. Denote by G the subgroup
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of F7. that contains the %—st roots of unity. The element of G identified with
the intersecting point of the line L from AG(r,q) and H is denoted by (;,. The
above argument shows that L and L’ are parallel if and only if {;, = {r.

The next theorem is an application of the so-called polynomial method in finite
geometry.

Theorem 2. Let K be a (n,w)-arc in PG(r,q), r > 2, ¢ = p", p — a prime.
Let all lines through a point of maximal multiplicity m have the same multiplicity.
If Ay > (g — D)p' 1, wheret < (r — 1)h, then for every hyperplane H

K(H)=n (mod p").

Proof. Denote by s the multiplicity of a line through a maximal point and set,
as usual, v; = %. Then n = m + (s — m)v,, and the multiplicity of a hyperplane
H containing a maximal point is (H) = m + (s — m)v,—_1. Then

n—KH)=(s—m)(vy —v, 1) =(s—m)g" 1 =0 (mod ¢" ).

Now consider a hyperplane which is not incident with points of maximal mul-
tiplicity. We can assume with no loss of generality that 0 € - is not a point of

maximal multiplicity (otherwise, we translate the points of the affine geometry to
ensure this). Consider the polynomial

Fley) = [] (1-0—Poyr i) T - cat1y)M

PeF,r CeG

= > E(2)y
=0

Let Q € F,» be a point of maximal multiplicity and set z = Q. Note that Q # 0.
When P #£ Q we have

1-PRQH=(@Q-P) Q" =(Q"Y,
where L = (P, Q). Collecting the factors in the product above, we get
FQ 'y = [ -¢ iyt X
e

where L is a line incident with @) and such that LN H, is identified with (. Further,
we have

@y = [[[a-¢@'y
Ceq
= (1—yr)y ™

S—m S—m
= 1-— s W s
) ()
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Therefore F;(Q~') =0 for i = 1,...,v, — 1. The polynomial Fj(x) is of degree at
most i(q — 1) and since A,,, > (¢ — 1)p'~!, we have Fy(z) =0 for all i < p'~'. On
the other hand,

F0,y) = (1—g)" =)
L () ()

This implies in particular that

()=

for 7 =0,...,t — 1. Now by Lucas theorem, n — K(Hs) =0 (mod p?). O

4. ONE EXAMPLE

As an illustration of Theorem 2, consider the non-Griesmer arcs with parame-
ters (86,22) in PG(3,4). Clearly, every line through a 2-point has multiplicity of 6.
Assume t = 2 and Ay > (g —1)p*~! = 6. Recall the classification of the (22, 6)-arcs
in PG(2,4) from [3]. There exist six equivalence classes of such arcs:

(1) arcs with one 2-point and no 0-points;

(2) arcs with two 2-points and one 0-point, which are collinear;

(3) arcs with three 2-points and two 0-points, which are collinear;

(4) arcs with four 2-points and three collinear 0-points, which form a Baer sub-

plane; the 0-points are collinear in the Baer subplane;

(5) arcs with six 2-points and five O-points; the 2-points form a hyperoval and
the O-points form an external line to the hyperoval;

(6) arcs with seven 2-points and six O-points, which are represented as a sum of
two copies of a hypeoval plus the sum of two external lines to it.

By Theorem 2, the possible multiplicities of hyperplanes are: 2, 6, 10, 14,
18, 22. Planes of multiplicity 2 are impossible by a counting argument since 22-
and 18-planes do not have 1-lines; 10-planes are ruled out by the nonexistence of
(10, 3)-arcs in PG(2,4). In order to rule out 6-planes, assume such a plane 7 exists
and consider a projection ¢ from an arbitrary 0-point in 7. The planes through
an arbitrary 2-line in 7 are all 22-planes. Their image under ¢ is a line of type
(6,6,6,2,2) or (6,6,4,4,2). In all cases, we get a line in the projection plane of
multiplicity larger than 22, which is impossible.
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It is easily checked that a 14-plane cannot be the complement of a line and

two further points. So, it is the complement of a Baer subplane. If a plane of this
size does not exist, the (86,22)-arc is a sum of a plane (22, 6)-arc of type (6) and
AG(3,4). Assume there is a 14-plane. Then there is exactly one 14-plane which is
easily proved by considering the projection from a O-point in this plane. But then
an easy counting gives Ao = 8 Ay =70, Aq = 7. Such an arc is obtained by taking
the 2- and O-points to form a PG(3, 2), where the 0-points are coplanar (all of them
are on the 14-plane).

As a matter of fact, all (86,22)-arcs with A2 < 7 are obtained as the sum of a

plane (22, 6)-arc and AG(3,4).
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NON-EXISTENCE OF FLAT PARACONTACT METRIC
STRUCTURES IN DIMENSION GREATER THAN OR
EQUAL TO FIVE !

SIMEON ZAMKOVOY, VASSIL TZANOV

An example of a three dimensional flat paracontact metric manifold with respect to
Levi-Civita connection is constructed. It is shown that no such manifold exists for odd
dimensions greater than or equal to five.

Keywords: paracontact metric manifold, integral submanifold, maximal integral sub-
manifold
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1. INTRODUCTION

The almost paracontact structure on pseudo-Riemannian manifold M of di-
mension (2n+ 1) is defined in [7]. An almost paracomplex structure on M ®* 1 xR
is constructed in [5]. Some properties of an almost paracontact metric manifold
and the gauge (conformal) transformations of a paracontact metric manifold, i.e.,
transformations preserving the paracontact structure, are studied in [8]. Further-
more, in this paper a canonical paracontact connection on a paracontact metric
manifold is defined. This connection is the paracontact analogue of the (gener-
alized) Tanaka-Webster connection. It is shown that the torsion of the canonical

1Simeon Zamkovoy acknowledges support from the European Operational programm HRD
through contract BGO051P0001,/07/3.3-02/53 with the Bulgarian Ministry of Education. He also
was partially supported by Contract 082/2009 with the University of Sofia “St. Kl. Ohridski”.
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paracontact connection vanishes exactly when the structure is para-Sasakian and
the gauge transformation of its scalar curvature is computed.

An example of a paracontact structure of flat canonical connection is the hy-
perbolic Heisenberg group [3]. The paraconformal tensor gives a necessary and
sufficient condition for a (2n + 1)-dimensional paracontact manifold to be locally
paracontact conformal to the hyperbolic Heisenberg group [3].

In this paper, we show that there is no flat, with respect to Levi-Civita con-
nection, paracontact metric structures in dimension greater than or equal to five,
whereas in dimension equal to three there is.

2. PRELIMINARIES

A (2n+1)-dimensional smooth manifold A"t has an almost paracontact
structure (p, &, n) if it admits a tensor field ¢ of type (1, 1), a vector field £, and a
1-form 7 satisfying the following compatibility conditions

(1) 9§ =0, nop=0,
(ZZ) 77(5):1 <P2:id—77®§7 (21)

(4i4) the tensor field ¢ induces an almost paracomplex structure (see [4])
on each fibre on the horizontal distribution D = Ker .

Recall that an almost paracomplex structure on a 2n-dimensional manifold is a
(1,1)-tensor J such that J? = 1 and the eigensubbundles T, T~ corresponding to
the eigenvalues 1, —1 of J respectively, have dimensions equal to n. The Nijenhuis
tensor N of J, given by N;(X,Y) = [JX, JY| - JJX, Y] - J X, JY]+ [X,Y], is
the obstruction for the integrability of the eigensubbundles T, T—. If N = 0 then
the almost paracomplex structure is called paracomplex or integrable.

An immediate consequence of the definition of the almost paracontact structure
is that the endomorphism ¢ has rank 2n, € = 0 and o ¢ = 0, (see [1, 2] for the
almost contact case).

If a manifold M@+t with (¢, &, n)-structure admits a pseudo-Riemannian
metric g such that

g(pX,Y) = —g(X,Y) +n(X)n(Y), (2.2)

then we say that A"t has an almost paracontact metric structure and g is
called compatible metric. Any compatible metric g of a given almost paracontact
structure is necessarily of signature (n+ 1,n).

Setting Y = £, we have (X ) = ¢(X,£). From here and (2.2) follows

9(pX,Y) = —g(X, 9Y).
The fundamental 2-form

F(X,Y)=g(X,¢Y) (2.3)
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is non-degenerate on the horizontal distribution I and n A '™ £ 0.

Definition 2.1. If g(X,¢Y) = dn(X,Y) (where dp(X,Y) = 1(Xn(Y) -
Yn(X)—n([X,Y]), thenn is a paracontact form and the almost paracontact metric
manifold (M, ¢, n, g) is said to be paracontact metric manifold.

Definition 2.2. An r-dimensional submanifold N of M"Y is said to be an
integral submanifold (of the horizontal distribution D) if and only if every tangent
vector of N at every point p of N belongs to .

Definition 2.3. An integral submanifold of dimension r in M"Y 4s said to
be a maximal integral submanifold if it is not a proper subset of any other integral
submanifold of dimension r.

Similarly to the contact metric case [6], we may obtain the following

Proposition 2.4. Let (M?" 1 o n, g) be a paracontact metric manifold. Then
the highest dimension of integral submanifolds of the horizontal distribution D) is
equal to n.

The tensors N, N N®) and N@ are defined [8] by
NW(X,Y) = No(X,Y) = 2dn(X, Y )£,

NOX,Y) = (LoxmY — (Loyn) X,
NO(X) = (£eg)X,
NW(X) = (£en)X,

where Ny (X,Y) = [pX, oY ] — 0[pX, Y] — o[ X, Y] + ¢*[X, Y].

The tensors N, N3 NG and N® are analogs of the tensors denoted in
the same way in the almost contact case [1, 2].

They have the following propositions [8].

Proposition 2.5. For an almost paracontact structure (p,&,n) the vanishing
of N implies the vanishing N, N®) and N4 ;

For a paracontact structure (¢,€,1,9), N and NW wvanish. Moreover N3
vanishes if and only if £ is a Killing vector field.

Proposition 2.6. For an almost paracontact metric structure (p,€, 1, g), the
covariant derwative Vo of p with respect to the Levi- Civita connection V is given

by

20((Vx@)V, Z) = —dF(X,Y, Z) — dF(X,¢Y,0Z) — g(ND(Y, Z),0X)  (24)
TN, Z(X) - 2dn(Z, X )n(Y) + 2dn(Y, X)n(Z).
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For a paracontact metric structure (,£,n,g), the formula (2.4) simplifies to
20((Vx@)Y, Z) = —g(NW(Y, Z), X)) = 2dn(Z, X )n(Y) + 2dn(Y, X)n(Z) (2.5)

Lemma 2.7. On a paracontact metric manifold, h = %N(S) is a symmetric
operator,

Vx€ = —¢X + phX, (2.6)
h anti-commutes with ¢ ;and trh = h&§ = 0.

3. NON-EXISTENCE OF FLAT PARACONTACT METRIC STRUCTURES IN
DIMENSION GREATER THAN OR EQUAL TO FIVE

In this section we shall show that every paracontact metric manifold of dimen-
sion greater than or equal to five must have some curvature, though not necessarily
in the plane sections containing &.

Theorem 3.1. Let M1 be a manifold of dimension greater than or equal
to five. Then M*™ 1 cannot admit a paracontact structure of vanishing curvature.

Proof. The proof will be by contradiction. We let (¢, &, 7, g) denote the struc-
ture tensors of a paracontact metric structure and assume that ¢ is flat. From [§]
we have, for a paracontact metric structure,

LR X6+ oG 9X)) — X 12X

where h = %Egap. Thus if ¢ is flat, h? = ¢?, and hence h¢ = 0 and rank(h) = 2n.
The eigenvectors corresponding to the non-zero eigenvalues of h are orthogonal to
¢ and the non-zero eigenvalues are £1. Recall that dn(X,Y) = 2(g(Vx&,Y) —
g(Vy¢, X)) and that for a paracontact metric structure

Vx&=—¢X + phX. (3.1)

From Lemma 2.7 follows that whenever X is an eigenvector of eigenvalue +1, ¢ X
is an eigenvector of —1 and vice-versa. Thus the paracontact distribution D is
decomposed into the orthogonal eigenspaces of 1 which we denote by [+1] and
[—1].

We now show that the distribution [+1] is integrable. If X and Y are vector
fields belonging to [+1], equation (3.1) gives Vx¢ = 0 and Vy & = 0. Thus since
M2t is flat:

0=R(X,Y)§ = -Vixy)§ = ¢[X, Y] — oh[X,Y];

but n([X,Y]) = —2dn(X,Y) = —2¢(X, pY) = 0, so that h[X,Y] = [X,Y]. Apply-
ing the same argument to { and X € [+1] we see that the distribution [+1] & [¢]
spanned by [+1] and ¢ is also integrable.
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Since [+1] @ [¢] is integrable, we can choose local coordinates (u”,u?, ... u®")
such that 5%, 525, ..., 3% € [+1] @ [¢]. For i = 1...n the vector 5-2 can be
uniquely presented as 52— = v, +v5.,; + v 1; where o1, € [+1], v5_; € [¢],
vty € [-1], and v, |, # 0. Let ol e, = -> o f75%. We define local

vector fields X;, i = 1,...,nby X; = -2+ + Z;‘L:o fij%7 ie. X; = v;ii so that

ynte
X; € [-1]. Note X4, ..., X,, are n linearly independent vector fields spanning [—1].
Clearly [%7 X;] € [+1]@[¢] for k =0,...,n and hence £ is parallel along [%7 Xl
Therefore using (3.1) and the vanishing curvature

OZV[%J(%]gzv king_invauikgz —ZVM%%DXi

a
a Au
from which we have
Vex,pX; = 0. (3.2)

In particular Ve X; = 0. Furthermore, from equation (3.1) we obtain V,x,§ =0
and hence [pX;, £] = 0.
Similarly, noting that [X;, X;] € [+1],

0= R(X“Xj)g = invXjf — vvaXig — v[Xi,Xj]g = —2inLpXj -+ 2VXJ.L,0X¢
giving
inLpXj = VXijXi7 (3.3)

or equivalently
el X, Xj] = = (Vxi0)X; + (Vx,; 0) X (3.4)

Using equations (3.1) and (3.2) we obtain
0 = R(X;, SDXj)g = —V[Xz-,goxj]g = [ X, WXj] — ph[Xi, WXj]
from which
9(1Xe, X5, Xi) = —g(0lXs, X5, 0Xk) = (b X, 9X;], Xi) =

= g([X¢7 LPXjL th) - _g([Xi7 LPXjL Xk)

and hence
9([Xs, pX;], Xi) = 0. (3.5)

Using formula (2.5) and equations (3.2), (3.4) and (3.5) we have

20((Vx,0) X5, Xi) = —g(ND (X5, X)), 0X3) = —g([X;, X, 0 Xi) =

—g9((Vx,;0) Xk, Xi) + a((Vx,0) X5, Xs).

From F' = dn, we obtain dF' = 0 and hence o; ; ,9((Vx,¢)X;, Xi) = 0. Thus our
computation yields g((Vx,¢)X;, Xi) = 0. Similarly

20((Vx,0) X5, 0Xp) = —g(NV(X;, X3), 0 X;) =
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= —9(Vx; Xk — Vox, Xj — Vx, 0 X5 + Vox,; Xk, pXi)
which vanishes by equations (3.2) and (3.3). Finally
= —g(#*[X;, €], 0Xi) + 2dn(pX;, Xi) = —4g(Xi, X;).

Thus for any vector fields X and Y in [—1] on a paracontact metric manifold such
that £ is annihilated by the curvature transformation

(Vxp)Y = —29(X,Y)E. (3.6)

Note that equation (3.4) now gives [X;, X;] = 0.
Analogously, we obtain

29(Vox, Xj, Xir) = 29((Vox,0) X, X)) = 0. (3.7)
Therefore by equation (3.5), we get
9(Vx, X5, 0Xw) = —9(X;, Vx,0X) = —g9(Xj, [ Xy, 9Xi]) = 0.

It is trivial that g(Vx,X;, &) = 0 and hence we obtain Vx, X, € [-1].
Differentiating equation (3.6), we have

Vx,.Vx,0X; — (Vx,0)Vx, X; —¢Vx, Vx, X; =

= —2X5(g(Xs, X;))€ + 49( Xy, Xi)pXs.

Taking the inner product with ¢X;, having in mind equation (3.6) and Vx, X; €
[—1], we obtain

9(Vx, Vx,0X5,0X0) + 9(Vx, Vx, X;, Xi) = —49(X;, Xi)g( Xk, X1) (3.8)
Interchanging ¢ and k, ¢ £ k and subtracting, we have
9(Xs, X5)9( Xk, Xi) — 9( X, X;5)g(Xs, Xi) =0

by virtue of the flatness and [X;, X;] = 0.
Setting i = j and k = [, we have

contradicting the linear independence of X; and Xj. [l

Note that in the proof of our theorem, the vanishing of R(X,Y)¢ is enough
to obtain the decomposition of the paracontact distribution into £1 eigenspaces of
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the operator h = $L¢p. Moreover, R(X,Y)¢ =0 for X and Y in [+1] is sufficient
for the integrability of [+1]. Thus we have the following

Theorem 3.2. Let M?™1 be a paracontact manifold with paracontact metric
structure (¢,&,1,9). If the sectional curvatures of all plane sections containing &
vanish, then the operator h has rank 2n and the paracontact distribution is decom-
posed into the +1 eigenspaces of h. Moreover, if R(X,Y)¢ =0 for X,Y € [+1],
M admits a foliation by n—dimensional integral submanifolds of the paracontact
distribution along which & is parallel.

From Theorem 3.1 and Theorem 3.2 we obtain following

Theorem 3.3. Let M1 be a paracontact metric manifold and suppose that
R(X,Y)¢ = 0 for all vector fields X and Y. Then locally M>"t! is the product of a
flat (n+ 1)-dimensional manifold and n-dimensional manifold of negative constant
curvature equal to —4.

Proof. We noted in Theorem 3.1 proof that [X;, X;] = 0 so that the distribution
[—1] is also integrable and hence we may take X; = #. Moreover, locally
M? 1 is the product of an integral submanifold M™*+! of [+1]@ [¢] and an integral
submanifold M™ of [—1]. Since {pX;, £} is a local basis of tangent vector fields on
M" 1 equation (3.2) and R(X, Y )¢ = 0 show that Mt is flat.

Now Vex,X; = 0 since g(V,x,X;, Xi) = 0 by equation (3.7). Moreover,
9(Vox, X;,0Xr) = 0 by equation (3.2) and g(V,x,X;,&) = 0 which is trivial.
Interchanging 7 and k in equation (3.8) and subtracting, we have

R( Xk, Xo, X, 0 Xi1) + R( Xy, X4, X, Xi) =

= —4(g(Xs, X;)9( X, Xo) — 9( X, X;5)g(Xi, X))
Using Vex, X; =0 and [¢X;, o X;] = 0 we see that R(Xy, X;, 0 X;, X)) =
= R(pX;, ¢X;, X1, X;) = 0, and hence
R(Xy, X3, Xj, Xi) = —4(9( X, X;)9( X, Xi) — 9( Xy, X;)9(Xi, Xi))

completing the proof. Il

4. FLAT ASSOCIATED METRICS ON R?

In dimension 3 it is easy to construct flat paracontact structures. For example,
consider R} with coordinates (z!, 2%, 23). The 1-formn = 1(ch(z®)dz!+sh(2%)dz?)
is a paracontact form. In this case £ = 2(ch(953)5i1 - sh(xg)a%) and the metric
g whose components are g1 = —goo = g3z = I gives flat paracontact metric
structure. Following the proof of the Theorem 3.1, we see that % spans the
distribution [—1], and sh(2*)32r + ch(2*) 52> spans the distribution [+1].
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We can now find a flat associated metric on R for the standard paracontact
form 1y = %(dz — ydz). Consider the diffeomorphism f : R — R$ given by

z! = zch(z) — ysh(zx)

2?2 = zsh(z) — ych(x)
T = —g

Then ny = f*n, and the pseudo-Riemannian metric gg = f*g is a flat associated
metric for the paracontact form 7ng.
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1. INTRODUCTION

In [1] Lacombe and in [2] Moschovakis have defined different kinds of com-
putability in abstract structure. The first one uses enumerations of the structure
and the second one, called search computability, uses only the functions and pred-
icates in the structure. Mosckovakis [3] has proved that both computabilities are
equivalent in the case when the equality is among the basic predicates. Soskov [4]
has proved that both computabilities coincide in the general case.

Skordev has defined an “effective” version of Lacombe’s computability as fol-
lows: It is said ¢ is effective in {ag, Bo) iff ¢ has a partial recursive “associate”. It
is said ¢ is e-admissible iff ¢ is effective in all effective enumerations of the structure
2. Skordev has stated a conjecture in the case when the structure has at most a
denumerable domain, and it admits an effective enumeration. Skordev’s conjecture

1This paper is partially supported by Sofia University Science Fund, Contract No 134/2008
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is that e-admissibility coincides with search computability. Attempts were made to
prove Skordev’s conjecture [5, 6, 7, 8]. They were successful for some special cases,
but not for the general one. As Manasse, Chisholm, Vencov [9, 10, 11] showed, the
above mentioned conjecture wasn’t true. Nevertheless, it is interesting to know for
what kind of structures Skordev’s conjecture is valid. The author puts the question:
Which are the structures 2 for which we could find effective enumeration (g, Bo)
such that, for every function ¢, ¢ is effective in {ag, ) iff ¢ is e-admissible. Such
kind of enumeration we shall call an exact effective enumeration. In his master
thesis Stoyan Atanasov showed that there exist exact effective enumerations for
the structures with only unary total functions and no predicates. It is natural to
expect that this kind of enumerations have to have some minimal(maximal) prop-
erties. In this paper we investigate exact enumerations for the structures with only
total functions and no predicates. Different partial orders can be taken in the set
of enumerations. Here we choose a partial order in the set of enumerations as the
one in [12]. We prove that for total structures there exist exact enumerations. Fur-
thermore, there exist infinitely many mutually incomparable exact enumerations.
It is shown that above (in the considered partial order) every strongly effective
enumeration there exists an exact enumeration.

2. PRELIMINARIES

In this paper we use w to denote the set of all natural numbers. We shall recall
some definitions from [4, 7].

Let & = (B;601,...,0,;%1,..., %) be a partial structure, where B is an arbi-
trary most denumerable set, 01, ..., 0, are partial functions of many arguments on
B, and >,..., % are partial predicates of many arguments on B. The relational
type of 2 is the order pair {({(k1,...,kn), {l1,..., )}, where each 6; is k;-ary and
each ¥, is [;-ary. We identify the partial predicates with partial mapping taking
values in {0, 1}, writing 0 for true and 1 for false. We use also Dom(f) and Ran(f)
to denote the domain and the range of the function f respectively.

An effective enumeration of the structure 2 is any ordered pair {«, B) where
B = (w;¥1,...,¢n;01,...,0k) is a partial structure of the same relational type as
2, and « is a surjective mapping of w onto B such that the following conditions
hold:

a) ¢1,...,pn are partial recursive (p.r.) and oy,...,0, are recursively enu-
merable (r.e.);

b) alei(z1, ..., zk,)) = 0:;(alz1),.. ., azy,)) for every natural numbers zq, . . .
Tp, 1 <1< n;

c) aj(xy, ..., x,) = Nj(alzr),. .., alx,)) for all natural numbers

S DI 1 Sj S/ﬂ

If 6 is a partial function of m variables on B, then we say @ is effective in the
enumeration {(a, B) iff Dom(8) # 0 and there exists such p.r. function f that for
all natural numbers ¢, ..., 4m,

0(a(51), - .., alim)) = a(F(i1, ..., im))-
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We exclude the trivial case of an empty function because it doesn’t depend on any
enumeration.

It is said that 0 is e-admissible in the enumeration («, B) iff 0 is effective in
every effective enumeration of the structure 2.

We say that (o, Bg) is an exact effective enumeration if it is an effective enu-
meration, and for every partial function 6, # is e-admissible iff 6 is effective in
(oz7 %o>

It is well known that there are structures which don’t have effective enumer-
ations [13].The above definitions don’t make good sense in all those cases. We’ll
consider those definitions only in case when the structure admits an effective enu-
meration. Actually, when the structure has only total functions and no predicates
it admits an effective enumeration.

There isn’t an established definition for partial order of the set of enumera-
tions. There are different possibilities to define partial order, depending on different
reducibilities in the set of all sets of natural numbers and aims of research. Here
we shall take one of the possibilities, connected with m-reducibility.

Definition 1. It is said that (oo, Bo) < (o, B) iff there exist partial recursive
function f such that for all natural numbers n,

It is said that {cp,Bg), (@, B) are incomparable iff neither {ag, Bo) < {a, B) nor
(oz7 %> S <a07 %o>

Let £ be the first order language corresponding to the structure 2, i.e. L
consists of n functional symbols fy,...,f, and k predicate symbols Tyq,..., Tk,
where fj is k;-ary and T; is [;-ary. We add a new unary predicate symbol Tg which
will represent the unary total predicate Yo, where ¥(s) = 0 for all s € B.

Let us have a denumerable set of variables. We shall use capital letters X, Y, Z
and the same letters by indexes to denote variables.

If 7 is a term in the language £, then we write 7(X4, ..., X)) to denote that
all the variables in the term 7 are among Xy,..., X;. If s1,..., s are elements of
B and 7(X4,..., X;) is a term, then by 79(X1/s1,..., Xi/s;) we denote the value
of the term 7 in the structure 2 over the elements s1, ..., s;, if it exists.

We intend to show that all structures with total functions and no predicates
have effective exact enumerations. Let from now on 20 = (B;0y,...,6,) be an
arbitrary structure, where 64, ...,6, are total functions and B is a denumerable
set. The case when B is a finite set is analogous. As in [7] we shall construct a
special kind of enumerations. Later this kind of enumerations is generalized and
called normal enumerations [4].

Let {p1,...,pn)be some fixed coding function of all finite sequences of natural
numbers.

Define fi(p17' 7pkz) - <Z - 17p17' "7pkz'>7 i = 17 R L4 and
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No =w\ (Ran(f1) U --URan(fx,)). It is obvious that Ny is a recursive set. For
every surjective mapping o of Ng onto B(called basis) we define a partial mapping
of w onto B by the following inductive clauses:

(i) If p € Ny, then a(p) = a°(p);

(i) If p = fiq1, - - -, qws)s @lg1) = 81,0, algr,) = sk, and O;(s1, ..., s8,) = ¢,
then a(p) = ¢.

It is well known that « is well defined and let B = (w; f1,..., fn). We shall
recall some obvious propositions for such kind {a, B). The proofs are the same as
in the case of normal enumerations [4].

Proposition 1. For every 1 <i <n and p1,...,pr, € w,

a(fi(ph cee 7]91@@')) - Oi(a(p1)7 EERE a(pki))'

Corollary 1. Let 7(Y1,...,Yy,) be a term and p1,...,pm € w. Then

a3 (Y1/p1, -, Y /Pm)) = Ta(a(p1), - - -, a(pm)).

Corollary 2. {(a,B) is an effective enumeration.

Proposition 2. There exists an effective way to define for every p of w ele-
ments qi, ..., qm € No and term 7(Y1, ..., Y.m) such that

pP= T%(Yl/ph .. 7Ym/pm)

A term 7 which we define by the above proposition from the natural number
p we will denote by 7P.

We can define the just mentioned enumerations also in the following way. Let
B = {ag, aq, ...}, where ag,ay,... are different. Let Ag, Ay,... be a sequence of
disjoint subsets of Ny such that |, A;. We define [Ag], [A1], ... as follows:

(a) If p € A;, then p € [A;];

(b) 1 <i<mandps€[A;],...,pk €[4y, ] and ag = O;(ay,, ..., a;, ), then
filp1s .- pk;) € [Ag].

Taking a”(A;) = a; we have the basis and then we have a~!(a;) = [4;]. From
now on if we define some sequence [Aq], [41], ... of disjoint subsets of Ny we shall
have in mind the above mentioned enumeration.

iCw

Corollary 3. Let Ag, A1,... be a sequence of disjoint nonemply subsets of
Ny. Then {a,B) is an effective enumeration of the structure 2.
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3. THE MAIN RESULTS

Theorem 1. Let A = (B;0y,...,80,) be a structure, where 01, ...,0, are total
functions. Then there erisls an exact effective enumeration {(c,B).

Proof. First we shall recall that in [7] it is shown that all e-admissible functions
in the structure 2, which are defined at least in one point, are exactly all search
computable functions, which in this case are all superpositions of the functions

01, ...,0,, projecting and constant functions of many variables.
We will build an effective enumeration (o, B) of the structure 2 building a
sequence Ag, Aq, ... by steps. In each step s we will define a sequence Ap s, A1, . ..

of Ny such that:

(i) A; s is a finite subset of Ny, i, s € w;

(11) Ai,S Q Ai,s+17 i7 s € w.

At the end we will take A; = Uj:C’SAi7S and o([4;]) = a;, 1 € w. With the
even steps we shall ensure that there is no subset of some Cartesian product of B
different of that Cartesian product of B which is a domain of some e-admissible
function. With the odd steps we shall ensure that the only e-admissible functions
are all superpositions of the functions 64, ...,60,.

Let Lp(()k)7 Lp(lk)7 ... be the standard enumeration of all partial recursive func-

tions on k variables, I/Vo(k)7 I/Vl(k)7 ... be the standard enumeration of all recursively
enumerable subsets of w* and B = {ao, a1, ...}, where ag, a1, ... are different.
Step s =0. Set A; s =0,i € w.
Step s = 2{e, k) + 1. We check if there exist different elements pi, ..., px,
iy o of No\ (Aos—1 UA1.-1U...)such that:

(i) <p§"“>(p17 ...,pr) and <p§"“>(p/17 ..., p}) are defined;

(i) o (p1, .., p) =p =
T%(Xl/ph...7Xk/pk7Y1/q17...7Y2/ql7Z1/7”17...7Zm/7”m)7

ety ph) =g =
T (X100 L XY Y @, Za s 2 ),
where ¢1,...,q € No\ (AO7S,1 U Al,sfl U---Udpy,... 7pk7p/17 18 7]9;{}) and ri, €
Ath,l? oy Tm € Ajm“g,l;

(iii) There exist a;y, ..., , Gn,- .., an, € B such that
T X O 5 5 A s YA s 5 000 . X0 By 3 B0 5 05 55 B 5, )

o (X{/ s, ... X} an . Y1/an,, ... Y1 an,, Zi]aj, ..., Zm/ag,,).

It it is so we set A;, « = Ay o1 U{p,Ph}, . A s = Aips—1 U {pr, 0L},
Anl,s = Anl’sfl U {q1}7 . ~~7Anl,s = Anl’sfl U {ql} and A@S = A@S,l for all ¢ Q
{i1, .o ig,na, ..., mg b Otherwise set A; ; = A; 51 forall i € w.

Step s = 2{e, j) + 2. Let p be the least element of No\ (Ag.—1 UA1.,1U...)
and p € I/Ve(l)7 if such elements p exist. Set A;, = A; 1 U{p} and A; s = A; s1
for all ¢ # j, if such elements exist. Otherwise set A; , = A; s—1 for all i € w.
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We fix A; = Ujﬁ%ALw a([A;]) = a;, i € w and construction is completed.
Lemma 1. For every natural number s, Ag o1 U A1 1 U... is finile.

Proof. For every step s we add only finitely many numbers to
AO7S,1UA17S,1U.... O

Lemma 2. Let e be such that Wg(l) is infinite. Then for every j € w there
exists p € Wg(l), such that p € A;.

Proof. Let j be an arbitrary element of w. Then on step s = 2(e, j) + 2 we find
pe Wg(l) such that p € No. Then weset p e A;, C Aj. O

Corollary 4. For every natural i, A; is infinite and immune and [A;] is not
recursively enumerable.

Proof. Indeed, for every infinite r.e. subset Wg(l) of Np and every element
a; € B there exists an element p € Wg(l) such that p € A;. Therefore, A; is infinite
and W n (No\4;) = wn (UjA;) # 0, ie. A; is immune and not recursively
enumerable. |

Analogously one can prove the following

Corollary 5. For every nonempty subset L of w, L # w, Uscp A; is infinite
and immune and U;cr[A;] is not recursively enumerable.

Corollary 6. For every natural m > 1 and every nonempty subset L of w™
such that L £ W™ the set

M=U{(p1,....pm)|Fj1 .. - Tml(1, ..., Jm) € L&p1 € A;,& .. . &pm € 45,1}

is not recursively enumerable.

Proof. First we claim: there exist coordinate 4, 1 < i < m, and j1,...,75;_1,
j’i+17 v 7jm such that the set L' = {j|(jl7 v 7ji717j7j’i+17 e 7Jm) € L}? which
is an ¢-th projection of L for the fixed j1,...,5i—1,Ji41,--;Jm, i Nnonempty and

L’ # w. For the sake of simplicity let m = 2. Since L # 0, there exists (51, j%)
such that (51,45) € L. Analogously, L # w” and there exists (i1,i2) such that
(i1,10) & L. If (j1,i2) € L, then fix i = 1 and jy = iy and the claim is true;
otherwise (j1,42) & L, (41,75) € L, fix i = 2 and j; = j;. Thus the claim is true
again.

Let us assume that M ist.e. Then for some fixed ¢ and j1,. .., 5i—1,Jit1, - - -, Jm
the set

L/ - {j|(j17 . ~7ji717j7j’i+17' 7,]771) S L} # @ and L/ #w Let
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A =Aapl(aj,, ... a5, ax, a5, ..., a5, ) € A}. Then

M’ = {p|3jlp € Aj&a; € A'l} = UjersA;. According to the previous corollary,
M’ is not r.e. On the other hand, if we fix

PLE A, . ..,pi1 €A 1, pir1 €Ay, Pm €A, then

M= {p|Fjlp € Aj&(j1, .- s Jim1: 5, Jit1, -, Im) € L]} =

{p|5|pj1 ¢z Hpjiflapjiﬁ»l ¢z Elpjm [(pju BN L TERRY Y L R R 7pjm) & M]} is r.e.
The obtained contradiction shows that the assumption is wrong. [l

It is easy to check the following

Corollary 7. For every natural m > 1 and every nonempty subset L of w™,

such that L # w™
U@t o pm)|Fd1 - Fim[(F1s - - -, dm) € L&py € [A4]& .. . &pm € [A;, 1]}

is not recursively enumerable.

Corollary 8. For every natural m > 1 and every nonemply subset A of B™
such that A + B™

U{(p1, .o em)|F1 - Timllayy, ... a5,,) € Akpr € Ay, .. &pm € A4j, ]}

is not recursively enumerable.

Corollary 9. For every function 6 such that Dom(8) C B™ and 6 is effective
in the enumeration (o, B, the equality Dom(8) = B™ holds.

Proof. Tt is an immediate corollary of the previous one. Il
Lemma 3. Ny C Dom(a).

Proof. Let us assume that N \ Dom(a) # 0 and pg is the least element
of Ny \ Dom(e). Then there exists a step s = 2{e, j) + 2 such that py is the

least element of Ny \ (Aps—1UA1.1U...)and Wg(l) = w. At that step s we
have to put pg in some A; C Dom(a). The contradiction obtained shows that
Ny C Dom(a). O

Now it is obvious that
Corollary 10. Dom(a) = w.

Let 6 be effective in {(a, B) and Dom(#) C B* for some natural k > 1. Then
Dom(f#) = B* and there exists p.r. function f such that for all natural numbers
Z'17 £ 5, ik7

9(&(2’1)7 ceey a(zk)) = oz(f(ih ceey Zk))
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Therefore f is a total function and f = <p§"“> for some natural e. Let us consider

step s = 2{e, k) + 1.

First assume there are different elements pq,...,pg,p4,...,p; of
No\ (Aos—1UA 1 U...) satisfying the conditions (i)—(iii) at step s = 2{e, k) +
1 and fix such elements p1,...,px,p1,...,p,. Then according to Corollary 1,

A f(prs- o)) = e (1, ... pi)) =

(T%(Xl/ph...7Xk/pk7Y1/q17...7Y2/ql7Z1/7”17...7Zm/7”m)):
(Xl/a(Pl) o Xe/odpr), Yi/eday), ... Yi/edar), Z1/odry), - . ., Zm/ a(rm)
= TR 5y 5w ¢ 5 ] By Pt By o 52 3 P G L[ B 55 2 3 o ) T2
(Xl/a“7.. XL, Y1 o Y an, Ziag,, . D] ag,,) =
(Xl/a(p1)7...7X,Q/a(p§f)7Y1/a(q1)7...7Yl/a(ql)7Z1/a(r1)7...7Zm/a(rm))

AT (X1 /P, - X4 P Yi) Qs - Vil @t 21 )71, - s o Tm)) =
k
Ao Dl pl)) = a(f(Phs - 1})).

On the other hand, a(f(p1,...,pr)) = 0(alp1), ..., alpr)) = 0(aiy, ..., a;) =
lalpl),...,alpy)) = a(fpl,...,pL)). That contradiction shows this case isn’t
possible. Therefore, there aren’t different elements p1,...,pg,ph, ..., 0, of No\
(Aos—1U Aq o1 U...) satisfying the conditions (i) — (iii)

Let us fix different py,...,pr € No\ (Ao s—1 UA1.-1U...). Then

Fotyem) =P (o1, o) =p =

e (X1/p1, - X/ Yi/av, .- Yo ai, Z1fr, - .o, Zon /Tm), Where
qi,...,q1 € No \ (AO7S,1 U Al,sfl Uy {p17 R 7pk})7 P & Ath,l? R <
Aj.. s—1. Furthermore, for every different p’,...,pj. € No\ (Aos—1UA1 1 U---U

P1, o))y FPhs ) = @ Wl p) =g =

7'%()({/]9/17 o Xe /oY d L Y 2, 2 [T, Whete
q/17...7ql// S ]\fo\(1407571U1417571U~~~U{]917...7]9167]9/17...7]9;6})7
r1,€ Ay s—1,...,Tm € A; 1 and for every
iy oo oy Gy Ay -y gy Ol Oyt eB
7'5[()(1/6%17 ces XS, Y1 an,, . Y ang, Z1)ag,, . Zmfag,) =
Ty (X g 5« o K i, ] ittt Y aw,, Z1fag, .. Zm/ag,,).

Therefore7 O(alp)),...,alpy)) =alfP),....pk)) =
a( (Xl/p17 s 7X]/€/p;€7 Yl//qi7 Bk Y;/ql//? Z1/7”17 Bity Zm/rm)) -
TQqL(Xl/a(pl) 7X]/{:/a(p;{:)7 Yl//a(q/l)7 » oy Yii/a(ql//)? Zl/aju sy Zm/ajm) -
T (X1/a®1); -, Xu/alpy), Yi/olaqr), .., Yifala), Zi/ajy, . .y Zm/ay,,).

Let ¢ € Am? ..., q € Ay, and @' be the function
9/(517 . 7bk) = Tgp[(Xl/bh v .7Xk/bk7Y1/an17 ot » .7Y2/an“ Zl/CLj17 o .7Zm/ajm) for
fixed any, ..., G0, G5, ..., a5, . We'll prove that 8§ = 8. Let (b1,...,by) be an ar-
bitrary k-tuple of B¥. Take pi,...,p} € No\ (Ao s—1U A1 s 1U---U{pi,....,p6})
such that a(p)) = b1, ..., a(p)) = bi. 1t is possible because every element of B has
infinitely many numbers. Then 0(a(p)), ..., a(p,)) = mh(X1/a(ph), ..., Xi/a(p},),
Yi/alq),....Yi/alq), Z1/aj,, ..., Zm/aj, ) = 0(b1,...,b,) and @ is a superposi-
tion of the function @4,...,0,, projecting and constant functions of many
variables. |

‘39%

A H QQQQ

42 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 35-46.



Theorem 2. Let % = (B;0y,...,0,) be a structure, where 01, ...,0, are total
Junctions. If (g, Bo) is an effective enumeration in U, then there exists an exact
effective enumeration (o, B) such that (oo, Bo) < (o, B).

Proof. We shall give only the construction of the effective enumeration. The
proof that it has the required properties is analogous to the previous one.

Let {ag,Bo) be an effective enumeration in 2, Ny the same as in the proof
of the previous Theorem and Ny = Nj U NY/, where N}, N are infinite recursive
sets. Take recursive f(¢) = pl/, where N}/ = {p{,p{,... }, pi <p{,<.... Asin the
proof of the previous theorem we will build an effective enumeration {(«, B) of the
structure 21 building a sequence Ag, A1, ... by steps. In each step s we will define
a sequence Ag s, A1 s, ... of No such that:

(i) A; s NNy is a finite subset of N§, i, s € w;

(11) Ai,S Q Ai,s+17 i7 s € w.

At the end we will take A; = Uj:C’SAi7S and a([4;]) = a;, 1 € w.

(k) (k)

Let g7, %i ", ... be the standard enumeration of all partial recursive func-
tions of k variables, I/Vo(k)7 fk)7 ... be the standard enumeration of all recursively
enumerable subsets of w* and B = {ao, ay, ...} where ag,ay, ... are different.

Step s =0. Set A; , = {plp € Ni&3q[f(q) = p&aol(q) = a;]}, i € w.
Step s = 2{e, kY + 1. We check if there exist different elements py, ..., pg,
phy. o of Ni\ (Aos—1 UA1.-1U...) such that:

(i) <p§"“>(p17 ...,pr) and L,ogk)(p/17 ..., p}) are defined;

v (k)

(ii) e’ (P1,- .., k) =P =
T%(Xl/ph...7Xk/pk7Y1/q17...7Y2/ql7Z1/7”17...7Zm/7”m)7

P (. ph) =g =
T (X1/P% - XL e Y, Y L, Za e T f ),
where q1,...,q € Nj\ (Aos—1 UA1s_1U---U{p1,....pe, P, ..., pk}) and ri, €
Ath,l? semy T © Ajm“g,l;

(iii) There exist a;,, ..., i, n,, ..., an, € B such that
o (X1/ai ... Xifay, Yi/an,, .., Y an, Z1fag,, ..., Zm /] ag,,) 7
T (X i 55 w4 gl By YL g 555 5 0. 20 Oy 3 DL 0 3+ 5 55 Lorre) B 3

If it is so we set A;, o = Ay o—1 U{p1,p1 ), A s = Aips—1 U {p,pit,
Anl,s = Anl’sfl U {q1}7 : ~~7Anl,s — Anl’sfl U {ql} and A@S — A@S,l for all ¢ Q
{i1, .. ik, n1, ..., my}. Otherwise set A; ; = A; 51 for all i € w.

Step s = 2(e, j) + 2. Let p be the least element of Nj\ (Ao -1 UA1.1U...)
and p € I/Ve(l)7 if such elements p exist. Set A;, = A, 1 U{p} and A; s = A4; ;1
for all ¢ # j, if such elements exist. Otherwise set A; , = A; s—1 for all i € w.

We fix A; = Ujﬁ%ALw a([A;]) = a;, 4 € w and construction is completed. [

Theorem 3. There exist infinitely many mutually incomparable exact effective
enumerations.

Proof. We will build effective enumerations (o, B;), 7 € w of the structure
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2l building a sequence A%7 AJL ..., J € w, by steps. In each step s we will define a
sequence A} , Af ..., of subsets of Ny, j € w, such that:
(i) A? _is a finite subset of N, i, 4, s € w;

4,5

(H) Az,s g Az,s+17 i7j7 sEcw.

With the steps of the kind 3k + 1 we shall ensure for every j that there isn’t
a subset of some Cartesian product of B different of that Cartesian product of B
which is a domain of some e-admissible function for the enumeration (o, B;). With
the steps of the kind 3k + 2 we shall ensure that the only e-admissible functions for
the enumeration (c;,B;) are all superpositions of the functions @4, ...,6,. With
the steps of the kind 3%k + 3 we shall ensure that (a;,B;) € (o, By) for j # k,
5k Ew.

As above, Lp(()k)7 Lp(lk)7 ... is the standard enumeration of all partial recursive
functions on k variables, I/Vo(k)7 I/Vl(k)7 ... is the standard enumeration of all re-
cursively enumerable subsets of w® and B = {ao,ay,...}, where ag,aq,... are
different.

Step s = 0. Set AJ _=10,i,7 € w.

Step s = 3{e, k, 7} 1. We check if there exist different elements
Py 7]9k7]9/17 Bid 7p;{: of NO \ (A(j),sfl U Ajl,sfl U.. )
such that:

() ™ (p1, .. px) and @l (pf, ., pf) are defined;

(i) ¢ (o1, p0) =p=
T%(Xl/ph...7Xk/pk7Y1/q17...7Y2/ql7Z1/7”17...7Zm/7”m)7

A (o) = =
T%(X{/p/h .. .7)(',/6/]9;“5/1/(]417 .. .7Yl/ql7Z1/7"17 ey L] P )
where q1,...,q0 € No\ (A), UA], ; U---U{p1,...,pk,pl,-..,pi}) and 71, €
Al gserm €AY

(iii) There exist aj,, ..., , Gn;,- .., an, € B such that
o ( X1/ s, . Xifas, , Yi/an,, ..., Y an, Z1/ag, ... Zm ] ag,.) 7
g LK Xl Yifan,, Vi an, Zy]ag, o Zimfag,).

If it is so we set A7 = Al . U {p,,pi},. ., AL , = Al .1 U {pk, 2L}
AL =A Vi) A=A U{g}and Al = Al forallig
{it, .. sig, nay .. m}. Otherwise set A = A] | for all i € w.

Step s = 3{e, k, 7) +2. Let p be the least element of Ng\ (A%’Sf1 UAJLF1 U...)
and p € WY if such elements p exist. Set Ai,s = Ai,sfl U {p} and Ais = Az7571
for all i #£ k, if such elements exist. Otherwise set Ais = Aikl

Step s = 3{e, k, 7} + 3.

Let first k #£ 7, <p§1> be a total function. Let p be the least element of Ny \
(A, JUAT, JU...),

Lpgl)(p) =q= T%(X/p7 Yi/ar, .., Yi/qi, Z1/71, ..., Zin/Tm), Where 4
qr, -, € No\ (A, ;UA]  JU---U{phandri € A , 4,...,rm €A} . ;.
Fix A=A}, U{p,q1,...,q}and A] = A] | fori#j,icw.

for all 7 € w.
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We check if 7(X/a;,Y1/a;,....Yi/a;,Z1/a;,, ..., Zm/a;,) = a;. If so, fix
AZS = A’,;SA U {p} and A}, = A}, for i # k, i € w; otherwise fix A’,jfLS —
Af o U{pyand Af = AF,  fori#k—1icw

Fix Al = AV, | fori,i' € w, i' & {j,k}.

In case either k = j or <p§1>

i ¢ {s5,k}. , , ,

At the end we fix A7 = U5 AL o ([A]]) = a;, i,j € w, and construction is
completed.

The proof that («;,%B,), j € w, is an exact effective enumeration is analogous
to the previous ones. We'll concentrate on the proof that («;,B;) and (ay,By)
are incomparable.

Let us assume that (o, Br) < (a;,B;). Then there exists a total recursive
function f such that for all natural p, ag(p) = a(f(p)). Let f = 4,097 consider the
step s = 3{e, k, 7)+3 and let p be the element belonging to No\(A’g7571UA’f7571U. )
chosen on that step.

Then Lpgl)(p) =g= T%(X/p7 Yi/qu, .- Yo/, Z1/71,. .., Zin/Ti), Where
q1,---,q € No \ (A(j),sfl U Ajl,sfl U-u {p})7 L€ A;LS*V :

Ais — A;7571 Uip,q1,...,q}

We have to consider two cases. We’ll consider only the first one:
B X g W08+ < e 3 YO B ] Gy 5 5 5 2 3 B ) = B
Then A’,is — A’,;SA U {p}, arlp) =ar # a; =

aj(rg(X/az, Y1/ az, ..., Y1 a5, Z1]aj,, ..., Zm]a;,,) =

Ta (X[ (), Yi/ei(ar), .., YiJas(a), Z1/cy(r1), - oo Zim/ i (rm)) =

o (rh (X/p Yo/ a1, Yi/ @1 Zafras oy o)) = 05(q) = oy (o) (p) =

a;(f(p))-

The contradiction obtained shows the assumption is not true. Il

. 5 o7 ./ ..
is not a total function, fix A} , = AL, fori,i € w,

J
csTm € A7 54 and
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MODAL OPERATORS FOR RATIONAL GRADING!

TINKO TINCHEV, MITKO YANCHEV

A generalization of the majority operator based on a rational degree of grading is
introduced. In the natural semantics of the language, Kripke frames such that any
world can see finitely many worlds, the set of all valid formulae is a non-normal modal
logic, RGML. Decidability of RGML and its completeness with respect to the class of
all finite tree-like Kripke frames are the main results of the paper.

Keywords: Graded modal logic, majority logic
2000 MSC: main 03B45, secondary 68T27

1. INTRODUCTION

The language of modal logic is widely used to formalize notions like knowledge,
possibility and necessity. The modal logics for grading formalize our ability to
express assertions about quantity, number or a part of the whole and there are
well known results in the integer grading. In this paper we examine grading with
rational values. We start with a brief review of two distinctive modal logics for
grading.

1.1. GRADED MODAL LOGIC GML

The Graded modal logic formalizes the reasonings about a finite number of
objects, i.e. it is connected with integer “grading” of the number of objects.

1This paper is partially supported by Sofia University Science Fund, Contract No 27/2006.
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Graded modal logic (GML) was introduced for the first time by Kit Fine [2].
Some important results were obtained by Fattorosi-Barnaba and Cerrato [3] and
by Caro [4]. We introduce briefly the language of GML, its interpretation and the
main results known.

The language of GML contains a countable set of propositional variables P =
{p1,p2,...}, the Boolean connectives — and V, and a countable set of modal
operators ¢y, n € N,

A formula o of GML has the following syntactic form:

a:=p|-a|aVa|dya,

where p € P and n € N.

The “integer” modal operators ¢, extend in a natural way the language of
normal modal logics, in which Q«a says that “a is true in at least one accessible
world”. The meaning of ¢, « is that “a is true in (strictly) more than n accessible
worlds”.

The GML formulae are interpreted in the usual Kripke structures. Let 9 =
(U,R,V) be a Kripke model, where U is a non-empty set of worlds, R C U?
is an accessibility relation in / and V : P — 2V is a valuation function. The
propositional variables and the Boolean connectives are evaluated as usual. The
evaluation of modal operators is defined in the following way:

M,z = Ona < {ylzRy and M,y | a}| > n.

A formula « is wvalid in o model M iff o is true in any world of the model. « is valid
iff it is valid in all models (based on a certain class of frames?). We will also use the
following notation throughout this paper: R(z) := {y|xRy} and for an arbitrary
formula « (of the corresponding language) R,(z) := {y| 2Ry and y = a}. So for
the definition above we get the alternative notation:

M,z = Ona & |Ry(z)| > n.

GML is shown to be sound and complete with respect to the class of all frames.
GML is shown also to be decidable as it has the finite model property. It is
proven that the decidability problem for GML is PSPAC E-complete.

1.2. MAJORITY LOGIC MJL

The Majority logic was introduced by Eric Pacuit and Samer Salame [5] with
the aim to model the concept of majority, i.e. to formalize the reasoning how far a
given number of objects is a majority (part) of the whole. The concept of majority
plays an important role in different social situations — from taking a decision of
a group of friends how to spend the evening, to determining the result of a given

2Unless otherwise stated we assume the models, based on the class of all frames.
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vote. MJL axiomatizes that concept. Now we give in this section a brief overview
of basic ideas, formulations and results from [5].

As an example of the type of reasoning, captured in MJL, a variant of the
muddy children puzzle is considered. Suppose that there are n > 1 children who
have been playing outside and k£ > 1 of them have mud on their forehead. (At that
we assume that the children are perfect reasoners, honest, and cannot see the mud
on their forehead.) After a while an adult comes and announces: “strictly more
than half of you have mud on your forehead”. The man then proceeds to ask the
children to say if they have mud on their forehead. It is not too hard to see that
the (k — L%J)th time the children are asked, the dirty ones will correctly respond.

The language of MJL extends GML with a new unary modal operator W,
where W a has the meaning “o: is true in more than or equal to half of the accessible
worlds” (Weak majority). Hence the dual M« means « is true in more than half
of the accessible worlds (strict Majority). It is shown that the operator W cannot
be defined from the standard modal operators (OO and ¢), the same is true for
the operator ¢,,. Furthermore, the modal operator M cannot be expressed by the
operators of GML. Hence as in GML, in MJL more expressive power of the language
is achieved with the new modal operators.

The intuitive semantics of W and M, described above, makes sense only when
the half of a finite set “is measured”. The key problem is what is the majority
(ie. > % or at least 50%) of an infinite set. As a decision the so called majority
systems, which generalize the concept of the ultrafilters, are introduced. Having in
mind the majority systems, the valid formulae are axiomatized and soundness and
completeness are proven.

1. Syntax and semantics of MJL. A formula o of MJL has the syntactic
form:

a=p|-a|laVal|da|Wa,

where p € P, P = {py,po,...} is a countable set of propositional variables, and
neN, Ma:=-W-a.

MIJL formulae are interpreted in the usual Kripke models [1]. If for any
accessible world z the set R(z) is a finite set then the natural semantics is the
following:

M,z =Wa e |Ry(z)| > %|R(x)|

But in the common case the set R(z) can be infinite (and that is the case in
proving the completeness, for example). The solution of the problem is found
by giving to any set R(z) the opportunity to determine which of its subsets are
majority ones. That is achieved by defining for each R(z) a family of subsets,
called a majority system, members of which satisfy properties in accordance with
our intuition of majority subset. For the finite sets this definition completely agrees
with the well-known properties of the majority subsets. For the infinite sets it
was proven that these properties also hold. The connection between the majority
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systems and ultrafilters, is also proven: namely every non-principal ultrafilter is a
majority system; the reverse is not true. Next, the majority models are defined by
adding to the definition of a standard Kripke model a majority function, comparing
to any set of accessible worlds R(z), = € U, its majority system.

2. The main results, stated and proven in [5], are: Soundness theorem,
saying that MJL is sound with respect to the class of all majority models, and
canonical model theorem, proving completeness of MJL by means of canonical
majority model.

It is pointed out that the main question remains open — the decidability of
MJL — with the expectation MJL to possess the finite model property, already
proven for GML.

Finally, a possible application of logics for grading is noted and in particular
of MJL, in the so called social software, for example in the voting systems.

Now we shall proceed to presenting the modal logic, suggested by us, which
introduces modal operators for rational grading and which thus develops modal
grading, moving the things forward as in comparison with GML, so with MJL. At
that we shall follow the semantic approach — we define the language of the new
logic and we give the appropriate semantics without axiomatizing the system. Also,
we shall consider finite sets of admissible worlds only, i.e. we want the set R(z) to
be finite for any z € U. The main results we shall present are: the finite model
property with respect to the class of tree-like models, and the decidability of the
new logic. The basic idea of the proofs originates in [6] and uses a variant of a
theorem from [7].

2. MODAL LOGIC FOR RATIONAL GRADING

2.1. SYNTAX

We define a modal language Ly, containing a countable set of propositional
variables P = {p1,p2, ...}, the Boolean connectives -, A and V, and the modal
operator MP9 where p and g are relatively prime integers and 1 < p < q.

Formulae in Ly are defined inductively:

1. The elements of P are formulae;

2. If ¢ and ¢ are formulae, then =@, ¢ A, ©V ¢, MP1p are also formulae.

In what follows a formula will mean a formula in L.

We define, in addition, in the standard manner the rest of the usual Boolean
connectives — and «», and the dual to MP% modal operator WP 4 := - MP 4=, We
also denote: T := ¢ — ¢, L:= =T, where ¢ is an arbitrary formula.
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2.2. SEMANTICS

A frame for Ly is a tuple (U, R), where U is a non-empty set, called universe,
consisting of points or (possible) worlds; the elements of U we denote: z, y, dots,
eventually with indices. R C U? is an accessibility relation in U, and we want
for any x € U the set R(z) := {y|(x,y) € R} to be finite. For (z,y) € R we
use the notation R(z,y), also zRy and we say that y is an (R-)successor of a or
(R-)accessible from z.

A model for Ly is a triplet (U, R, V), where (U, R) is a frame for £y, and
V . P — 2V is a waluation of the variables. We call the model (U, R, V) a model
based on the frame (U, R). We denote models by 9T, 9.

Truth: The valuation V from a model 9 is inductively extended for an
arbitrary formula; so we obtain a valuation of all the formulae in the model. For
z € V(yp), z € U, we say that ¢ is true in a world x and we denote also MM,z | ¢
or simply « |= ¢, when that makes no confusion.

The set of successors of the world x in which the formula ¢ is true, i.e. the set
{y|(z,y) € R and y = ¢}, we denote by R,(z).

For the Boolean connectives the inductive definition is standard:

Vimp) = U\V(p)
VieAd) :=Vip)NV(e)
VieVve) =Vip)uV(e)
For the modal operator we define:
p
V(MPp) =Lz |Ry(z)] > 5|R(x)|}
or, with the equivalent notation,

M,z = MPp & |Ry(z)] > §|R<x>|7

i.e. MP9p is true in a world z if ¢ is true in a (strict) greater than g part of the
successors of z. About the dual modal operator we obtain

M,z = Whip & |Roy(@)] < 2R (& [Ro@)] 2 L2 R@)),
q q

i.e. WPy is true in a world z if ¢ is refused in not greater than g part of the
successors of z.
A formula ¢ is valid in a model M = (U, R, V), notation I E ¢, if ¢ is true

in any world of the model, i.e.
MEp o VMeeU)M,zE o).

A formula ¢ is wvalid in a frame § =(U, R), denoted by § F ¢, if ¢ is valid in any
model on the frame. A formula ¢ is valid (or tautology), if ¢ is valid in any frame
(from a given class), notation F ¢.
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A formula @ is satisfiable in a model if it is true in some world of the model. A
formula ¢ is satisfiable in a frame if it is valid in some model, based on the frame.
A formula ¢ satisfiable if it is satisfiable in some model.

Definition 1. The logic RGML is the set of all formulae, valid in the class of
all frames.

2.3. MODAL ELEMENTARY CONJUNCTIONS

Definition 2. We define by induction modal depth (md) of a formula:
md(p) =0
md(—p) = md(p)
d(e & o) = maz(md(p), md(¢)), & = A,V
md(MP9p) = md(p) + 1, hence:
(
(

=

2

d(pOvy) = mazx(md(yp ) md()), 0 =—, «
md(WP4p) = md(p) +

Using induction on the complexity of formula, it is easy to prove the following
properties of the formulae:

Fact 1. md(p) = 0 iff ¢ is a Boolean formula.
Fact 2. md(p) > md(x), for any subformula x of .

Definition 3. Modal elementary conjunction is a formula of the kind:
O=pT A ADEPAMP Yo A AMP Yo, A\WPAehy A AWP Ty (2.1)
where 5,1 = 1,...,n, are 0 or 1 and for any formula ¢ we use the notation @ :—

@, ¢¥ =

Proposition 1. There exists an algorithm N, acting on an arbitrary formula
, which terminates in a finite number of steps and the result N'(¢) is a (finite)
disjunction of modal elementary conjunctions (i.e. N transforms an arbitrary
formula in a modal equivalent of DNF) and the following holds:

1. For arbitrary model MM and world = from it

M,z = ¢ = N(p),

2. md(p) 2 md(N ().

The role of N can play any algorithm, transforming a Boolean formula in DNF,
just treating the subformulae with a modal operator on the outer level as variables.
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For 2. it is sufficient to note that the transformation in modal DNF cannot increase
the modal depth, while a modal operator can be reduced in case of exclusion in
disjunction, if a subformula occurs both in positive and negative form.

From Proposition 1 and Fact 2 follows:

Fact 3. Any modal elementary conjunction from N'(¢) has depth, not exceeding
the depth of ¢, i.e. md(0) < md(p), for any 8 — a modal elementary conjunction
from N ().

From Proposition 1 it also follows that the question for the satisfiability of a
formula can be reduced to the one for the satisfiability of a finite number of modal
elementary conjunctions, each of which with modal depth, not exceeding a constant
— the modal depth of the formula itself.

Let us consider one such modal elementary conjunction # and its satisfiability.

Cuase 1. The Boolean part of 8, we denote it by Bg := p{* A ... Apj, is not
satisfiable (when for some i # j < n it holds p; = p; and g; # ;).

Then 6 is not satisfiable.

Case 2. By is satisfiable.

Then we examine the rest (modal) part of # — the satisfiability of the whole
6 depends on it:

MPAo AL A MPUp, AP A L. A TPy,

m >0, 1>0.

Case 2.1. m = 0.

Then the modal part is true in any one-world model. Really, let 9 be a model
with a single world z. From the valuation of W4 for any formula ¢ holds:

M,z | WPy | Ry(z)| > %m(xn.

As z has no successors, Ry (x) = R(xz) = @ and the inequality on the right is
fulfilled as the equality 0 = 0. Hence 2,z | WP 4.

Therefore, as every modal conjunct, so the whole modal part of € are true in
every one-world model, and particularly in every one-world model for By, and such
a model exists. Hence 6 is satisfiable.

Case 2.2. m > 0, i.e. at least one conjunct of the form MP9p participates in

Let some model 9t and a world z from the model fulfil 9, « |= 6, then M, = |=
MPp. If we assume that R(z) = @, from the evaluation of MP9 we obtain
0= |Ry(z)| > L|R(x)| = 0 — a contradiction.

Hence, if € is true in the world z, then = has a > 0 successors.

We will formulate and prove a proposition connected with the satisfiability of
# in Case 2.2. First we will give a definition.
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Let us consider a model 9t and a world zg from the model, having a > 0
successors (i.e. |R(zg)| = a > 0), and examine the truth of  in zo.
We consider all the conjunctions of the form:

OTPA LA AP AL AT, (2.2)

where g5, 7 =1,...,m+ 1, are 0 or 1 and let 71, ..., 7; are all of them, which are
satisfiable, 0 <t < 2mH je.

o= Qi AL AR AT AL A

T = O AL A @S AT A L AT

where €;; is short for g; ; and g5, i = 1,...,¢,7=1,...,m+{, are O or 1.

We denote T := {7y,..., 7}

Let 9’ = (U’, R', V') be an arbitrary model. For all formulae in 0, ¢;, j =
L...,m, ¥j_m, j=m+1,...,m+I consider the corresponding sets V'(¢;), and
V'(4pj—m). For 2’ € U’, we define

1, =’ eV'(yp;)
& =
j 07 x/gv/(ij)7 j:17"'7m7

L~

L, 2’ € V'(Yjm)
o =
! 07 x/év/(wj,ij:erl??erl

L~

We consider 7/ = ¢" A ... A @ AT AL AW, ™. Then 2/ }= 7/ and hence
7 eET 4 @andt>0,ie 1<t <M,

Suppose 7; is satisfiable in a; worlds from R(zg), i.e. |R,,(z0)] = a;, 0 < a; <
a, 1=1,...,t. We form the following system of m + [ linear inequalities, in which
we consider ai,...,a; as unknowns:

i
ZEijai>§(CL1+"'+at>7 j:17~~'7m
7=,
(5) (2.3)
i
ZEz‘jaiZ%(er“'JratL j=m+1....m+l
i=1

Definition 4. We call the above system of linear inequalities corresponding
to the modal elementary conjunction €.

We also define a system of linear inequalities, corresponding to a modal elemen-
tary conjunction 6, consisting just of a (satisfiable!) Boolean part, i.e. we define a
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system of linear inequalities, corresponding to a satisfiable Boolean formula B, in
the following way:

(o) |a>a

Note 1. In the condition of Case 2.2 (m > 0), if (o) has a solution, then this
solution is not zero, as (op) contains at least one strict inequality.

Note 2. In Case 2.1 (m = 0) we can also consider a system (op), corresponding
to 0, but that system has always the zero solution as a system of non-strict
homogeneous linear inequalities. This exactly corresponds to the fact that the
modal part of @ is always satisfiable, but we already know that. That is why the
interesting case is when (op) has (only) non-zero solution.

Now we formulate a proposition related to the satisfiability of # in Case 2.2.

Proposition 2. For any modal elementary conjunction 0 with a satisfiable
Boolean part and a modal part which is either empty or has at least one conjunct
with modal operator MP1, the following three statements are equivalent:

(i) 0 is satisfiable;

(i) 8 is satisfiable in the rootl of a finite tree-like model;

(#4) the system of linear inequalities (oy), corresponding to 8, has non-negative
(non-zero) integer solution.

Proof. We use induction on the modal depth of 9.

1. For md(8) = 0, 0 is a Boolean formula. Then 8 is satisfiable iff it is satisfiable
in a single-world model. As it is satisfiable under the terms of the proposition, it
is also satisfiable in a single-world (tree-like) model. (op) has (a trivial) solution 1.
So (i), (ii) and (iii) are fulfilled, and hence are equivalent.

2. (ih) Let, for any modal elementary conjunction 8 with md(8) < n, (i), (ii)
and (iii) be equivalent.

3. Consider #: md(8) =n+ 1.

3.1. (ii) = (i) is always (trivially) fulfilled;

3.2. (i) = (i)

Let # be satisfiable. Then there exist a model 2 and a world zo from the
model in which @ is true and let the number of successors of zo, |R(x0)|, is a” > 0.

Let 7q,...,7 be all the conjunctions from 7' (as defined above), and let 7;
be true in a in number worlds from R(zo), i.e. |R;(z0)| = af, 0 < a) < a°,
i=1,... 1t

For any = € R(xp) there exists 7 € T « |= 7, i.e. € R-(x0), (7 can be
constructed as in the proof of 1" # @), i.e. x € R, (xo) for some ¢, 1 < ¢ < ¢.
Hence R(xzo) C Ule R;.(xz0). The reverse inclusion obviously holds, so R(xq) =
UL, R, (z0). Then

t
aO:|R(xO)|:|URTZ(xO)|SZ|RTZ(L"EO)|:G?++at0
i i=1
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Let o’ € R, (z0). As for i # j, 7; differs from 7; at least in one conjunct,

' & R. (x0). Hence R, (z0) N Ry (z0) = @, for all 4 # j, i,j € {1,...,t}, and
t t
| Uizt Bra(@o)l = 25—y [ R (wo)|. Hence
aO:a?+~~~+atO >0

Now, as 6 is true in zo, any of MP9p;, 7 = 1,...,m, and any of WP, _,,,
J=m+1,...,m+1 is also true in x5. Now consider any of the sets R, (z0),
7 =1,...,m. From the truth definition for A?? follows:

P a0 P, o 0
|Rp;(zo)| > =a” = =(aj + -+ a;) (2.4)
q q
But R, (x0) is a union of sets R, (zo) for those 7; in which ¢; is in positive form.
As these sets are pairwise disjoint and taking into account how the coefficients &;;
are defined, we get that the following holds:

i i
Ry, (z0)l =Y _ei|Re,(z0)l = Y £550] (2.5)
i=1 i=1

From (2.4) and (2.5) we obtain that |R. (z0)] = a?, i = 1,...,¢, satisfy the
inequalities from the system (op), corresponding to 8, for j =1,...,m.
In the same way, considering any of the sets Ry,  (20), 7 =m+1,...,m+1,

from the truth definition for WP, we get

Zw fZ%iRn (@0)| = |Ry,_, (x0)] > qqp a® = q;p<a?+~~+a?> (2.6)

From (2.6) we obtain that |R,,(x)| = a2, i = 1,...,t, satisfy also the inequalities
from (op) for j=m+1,...,m+ L

It follows that (|R, (z0)l,...,|R+(z0)|) is a solution of (op), moreover non-
negative (non-zero) integer one, i.e. (iii) holds.

3.3, (iil) = (ii)

Let (0p) be the system, corresponding to 6 (i.e. it is formed in the way,
described above), and let it have at least one non-negative (non-zero) integer
solution, i.e. there exist numbers af,...,a?, a? €N, i=1,....¢, a° := Zle ad >
0, and (a},...,a)) is a solution of (og).

So, there exist just ¢ different conjunctions of form (2) — we denote them
by 71,...,7 — which are got from 6 and which are satisfiable. As md(r;) <
md(0) — 1 = n, by (ih) the proposition holds for =, i = 1,...,4. Hence any 7;
is satisfiable in the root of a finite tree-like model. For any 7; we consider a!
finite tree-like models My, = (Ui, Rax, Viz), k = 1,..., a2, with roots, denoted
by zi,. .., Tiq0 respectively, in each of which 7; is true In addition, we want the
universes of the models My, i = 1,...,¢, k=1,...,a, to be pairwise disjoint (we

can obtain these models by some procedure of “copying” or “colouring”).
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Let the Boolean part of 8, By, be true in a single-world model 9y = (Uy, Ry, Vo),
where Uy = {zo}, Ro = @ and Vp is an evaluation in 9y for which z¢ = Bp; such
a model exists as By is satisfiable. We define a model 9t = (U, R, V) as a natural
union of the above models in the following way:

My Lo

aq ayt

t af
U:{ZE()}UU U Uik,

i=1k=1
t a)
R = {(xo,zi), 1<i<t, 1<k<al}ul]J ] R,
i=1k=1

o~

v = VulJ U Vi
i=1 k=1

(2

and the definition of V' is extended to the set of all formulae.
From the definition of 991 follow:

Fact 4. 9 is a finite tree-like model with a root — the world xy, which has
a®=al + -+ a? > 0 successors.

Fact 5. For any Boolean formula A: xg € V(A) < xo € Vp(4), i.e.
93?,1‘0 ‘I A<:>93?0,x0 |: A
So for the modal part By of 8 holds:
SDT, i) }: Bg (2.7)
Fact 6. For any world x € U, x # xq, there exist 1 <i <t, 1 <k < a? such

that x € Uy, and for any formula ¢: x € V(¢) < x € Vik(p), i.e.
Mz Mg,z E @
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so that

Maw =7, i=1,...,t, k=1,...,a0. (2.8)
Now we examine the truth of ¢; from 6, 7 = 1,...,m. Any ; is true just
in those worlds, in which are true these 7, ¢+ = 1,...,%, in which ¢; takes part in

positive form, i.e. €;; = 1. For the number of E-successors of o, in which ¢; is
true, we have:

t

i
from (09
(o) |fZg”|R (o) |7Z% %Z - —|R z).  (2.9)

From (2.9), using the truth definition for M?9, we get:
M, w0 = MP%;, j=1,...,m. (2.10)

In the same way, for the number of R-successors of xo, in which ¢;_,,, j =
m-+1,...,m+1, are true, holds:

t
Ry, (@)l =>_ 5| Rr, (20)]

i=1
= E :Ew a4

From (2.11), using the truth definition for W#4, we get:

from (09

i
Y %|R($o)|~ (2.11)
i=1

M,y w0 EWPYY;_p, j=m+1,... , m+1L (2.12)
From (2.7), (2.10) and (2.12) we get:
9)?7 xo ': 97

which, taking into account Fact 4, means that @ is satisfiable in the root of a finite
tree-like model, i.e. (ii) holds. O

The equivalence of (i) and (ii) from the Proposition 2 gives, as an immediate
corollary, the following proposition:

Proposition 3. The logic RGML coincides with the set of formulae, valid in
the finite trees.

Later on we will use Proposition 2 to prove that the logic RGML is decidable.

But first we state briefly some elements from the theory of systems of linear
inequalities and we prove a proposition connected with them.
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3. SYSTEMS OF LINEAR INEQUALITTES

3.1. A METHOD OF SOLVING OF SYSTEMS OF LINEAR INEQUALITIES BY
CONSECUTIVE REDUCTION OF THE NUMBER OF UNKNOWNS

Here we present a modified version of the method stated in [7]. Consider a
system of linear inequalities (o):
apxy + -+ amey +ag 20
(0) | : (3.1)
11+ -+ Gmn@n, + am 20

where the sign > stands for > or >.

We associate with (o) a system (o'), called attendant on (o), which has just
one unknown less than (o) and for definiteness let it be the one with the greatest
index — xz,,. Let

bizg + -+ bpxy, +b20 (3.2)

be an arbitrary inequality from (o). The following possibilities for b,, exist:

1) b,, = 0 — in that case we do not change the inequality (3.2);

2) b, > 0 — in that case we divide (3.2) by b,, and take all the members except
z, from the right side; we get the inequality

Ty 2 @1+ Fcp1Tp1+c (3.3)

3) b, < 0 — in that case we take the member with x,, on the right side and
divide (3.2) by —b,,, so we get:

bt oot ey 4 d 3 (34

Applying this procedure to every inequality from (o), we get (with possible
change in the order of the inequalities) the system (¢*), equivalent to (o) and
having the form

Pl >xn

P, 22,

xn>Q1

xn)Qq
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R, >0

The first block of (¢*) includes the inequalities from (o), falling in case 3), the
second — in case 2 and the third — in case 1, and obviously F,, 1 < a < p, Qg,
1<pB<qgand Ry, 1 <y <r, are linear functions of 1, ..., z,_1, not containing
Do

(c*) can be written shortly:

Pa>xn>Qﬂ7 a:17p76:17q
Ry >0, y=1,r
We consider the system (o”):
Pa)Qﬂ7 a:17p7ﬁ:17q
(0")
R, 20, y=1,7

Definition 5. The system (¢) considered as derived from system (o*) is called
attendant on the system (o).

Obviously (¢/) has n — 1 unknowns z1,...,Z, 1.

Note. If there is no inequality in (o), falling in case 1, then the second group
of inequalities in (¢”) is missing. If there is no inequality in (o), falling in case 2 or
if there is no inequality in (o), falling in case 3, then the first group of inequalities
in (¢’) is missing.

The following theorem about the systems above holds:

Theorem 1. For any solution (1, ...,2,) of (0), (x1,...,2n_1) is a solulion
of (¢7). Conversely, for any solution (x1,...,xn,—1) of (¢’) there is a number z,
such that (zq,...,Zn_1,Ty) is a solution of (¢), i.e. any solution of the altendant

system can be extended to a solution of the initial one.

Proof. The proof follows the steps of the one stated in [7], with just one
additional check to ensure that everything goes well in both cases — in a non-strict
as well as in a strict inequality. Il

The next proposition is an immediate corollary of Theorem 1.

Proposition 4. The system (o) has a solution iff the system (o') has a
solution.

Definition 6. Admissible vector for the first k unknowns of (o) is the vector
of numbers (29, ...,2%), if it can be extended to a solution of (), i.e. if there exist
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numbers x2+17 oy 22 such that (29, ..., 2%, x2+17 ..., 20 is a solution of (o).

Now we denote with ¢’ the algorithm which, for a given system of linear
inequalities, constructs (in a finite number of steps) its attendant system, excluding
the unknown with the greatest index. So C'((¢)) = (¢'), and if (¢) has unknowns
Z1,...,Zn, then (¢’) has unknowns z,...,z,_1. We can use again ¢’ to act on
(¢'). After n—1 usages of C' we get C"!((0)) = (6™~ 1), where (6" 1) is a system
of linear inequalities with just one unknown x.

Using Proposition 4 n — 1 times we get that (o) is compatible iff (¢"~!) is
compatible. In case that (0" 1) is compatible, we can easily find a solution z{ of
(o™~1), which is also an admissible vector for (¢”~2). Substituting z{ for =; in
(o and solving (0™ ~?) regarding xo, we get 3. (2, 2J) is a solution of (¢"~?)
and an admissible vector for (6™ ~2). Continuing in that reverse way for n — 1 steps
we get a solution (z9,...,2)) of (o).

n72)

3.2. ALGORITHM FOR SYSTEMS OF LINEAR HOMOGENEOUS INEQUALITIES WITH
RATIONAL COEFFICIENTS

Proposition 5. There exists an algorithm, acting on systems of linear homo-
geneous inequalities with rational coefficients, which terminates for any such a
system (o) in a finite number of steps, giving a result yes if (o) has a non-negative
non-zero integer solution, and no in the opposite case.

Let, for definiteness, (¢) has n unknowns z1,...,z,. We expand the system
with the inequalities

z1+ -ty >0

Note. If at least one of the inequalities in (o) is strict, the last one of the upper
inequalities is redundant and we do not add it.

We denote the expanded system by (7). Obviously the system (o) has a
non-negative non-zero solution iff (¢%) has a solution.

Let D be an algorithm, acting on systems of linear homogeneous inequalities
with just one unknown, which terminates in a finite number of steps with a result
yes if the system is compatible, and no in the opposite case. It is easy to see that
such an algorithm exists and it can be easily constructed.

Then we put C((0)) = D(C™ (o)) and state that C is the algorithm we ask
for.
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Proof of Proposition 5.
1. C((o)) is well defined and terminates in a finite number of steps.

Really, (¢T) is a system of linear (homogeneous) inequalities with n unknowns,
so C'((01)) is defined and, after being applied n — 1 times, ¢ transforms (in a
finite number of steps) (o) into a system (o+"~1) with just one unknown (from
subsection ). Then the algorithm D(C" 1(o")) is also defined and in a finite
number of steps gives a result yes or no.

2. C((0)) = no = (o) has no non-negative non-zero integer solution.

Let D(C"1(o1)) = D((¢7™ 1)) = no. Then (¢ !) is incompatible and by
Proposition 4 (¢7) is also incompatible, i.e. has no solution. Hence (o) has no
non-negative non-zero (integer) solution.

3. C((0)) = yes = (o) has non-negative non-zero integer solution.

Let D(C" Y(ot)) = D((67" 1)) = yes. Then (67" 1) has a solution and by
Proposition 4 (¢1) is also has a solution.
Now consider the system (o+"~1). It contains the inequality

z, > 0 (3.6)

and (eventually) other inequalities of that kind and of the following kinds:

@ > 0 (3.7)
—zy > 0 (3.8)
—z; > 0 (3.9)

As (07 71) has a solution, it has no inequalities of the kind (3.9) and also it has no
together inequalities of kinds (3.7) and (3.8), i.e. it contains, except the inequality
(3.6), (eventually) inequalities of kind (3.7) or inequalities of kind (3.8). Hence the
set of solutions of (o7~ 1) is either the point z{ = 0 or a positive half-line with
the beginning at the point 0 (eventually not including the point 0 itself). In the
second case we can chose z{ = 1 (or arbitrary rational number). Thus obtained z{
is an admissible vector for (o+"2). Substituting it for z1 in (¢7~?) we can get
29, by Theorem 1. Besides, as all the coefficients in (¢7), and finally consecutively
obtained from it attendant systems, are rational and z{ is also rational, we can get

x5 also to be rational. (z,29) is an admissible vector for (¢7"~3) and, continuing

in that way, we get (in n—1 steps) X° = (29,...,22) — a (non-negative, non-zero)

'

rational solution of (7). Hence X' is a non-negative non-zero rational solution of

(o).

Let k be the lowest common denominator of the integers z{,...,z. Then
kX0 = (k2?,...,kxY) is also a solution of (o), moreover £X° is a non-negative
non-zero integer solution of (o). O
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4. DECIDABILITY OF THE LOGIC RGML

Theorem 2. There exists an algorithm A, acting on formulae, which, applied
on an arbitrary formula ¢, terminates in a finite number of steps with result yes
or no such that

Alp) = yes iff ¢ is satisfiable. (4.1)

Proof. We construct A by induction on the modal depth of the formulae,
namely we build a sequence of algorithms Ag, Ajy,... such that the algorithm A,
acts only on formulae with modal depth not greater than n and for these formulae
it carries out the equivalence (4.1).

1. Ag is an algorithm, acting on the Boolean formulae.

2. (ih) Let Ap, A4, ..., A, be defined and let the assertion of the theorem hold
for them.

3. We define A, 11 in the following way:

3.1. Let ¢ be such that md(p) < n. We put A,,11(¢) := A,(p).

3.2. Let ¢ be such that md(p) = n+ 1. We present ¢ in the form \/f:1 8,
where 0;, t = 1, ..., k, are modal elementary conjunctions. By Proposition 1 there
exists an algorithm A, transforming ¢ in this form in a finite number of steps, and
md(8;) <n+1,i=1,... k.

We define the algorithm B,,. 1, acting on modal elementary conjunctions with
md < n+ 1, which, for § — a modal elementary conjunction with md(8) < n -+ 1,
gives the result yes, if @ is satisfiable, or no in the opposite case.

3.2.a. md(0) <n, B,11(0) := A,(0).

3.2.b. md(0) = n+ 1. Let By is the Boolean part of 8. Then:

b.1. If Ag(Bp) = no, i.e. if By is not satisfiable, then @ is not satisfiable also,
and we put B,,41(0) = no.

b.2. Let Ay(Bp) = yes, i.e. By is satisfiable, and the modal part of # contains
only conjuncts with W?4 on the outer level. Then the whole @ is satisfiable (in a
single-world model), so we put B,,41(8) = yes.

b.3. Let Ay(Bp) = yes, i.e. By is satisfiable, and the modal part of 8 contains
at least one conjunct with MP?? on the outer level. Then we consider all the
conjunctions of the form (2.2) for #. They are with modal depth not greater than n
and the algorithm A,, acts on them. We implement 4,, on any of them consecutively
and pick out which of them are satisfiable: let these be 74,..., 7, 1 <t < 2mt,

Then we consider the system (oy), attendant on # and having the form (2.3).
By Proposition 2 the formula € is satisfiable iff (oy) has non-negative (non-zero)
integer solution. Let C be the algorithm from Proposition 5 (which for any system
of the above kind tells if the system has non-negative non-zero integer solution or
not). In this case we put B,+1(0) := C((09)).
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Now we proceed with A,; in case 3.2. Having the algorithm B, 1 just
defined, we define A, 1 as an implementation of the algorithm A/, followed the
implementations of B, on each of the modal elementary conjunctions 6;, ¢+ =
1,...,k, of o. If for some i, 1 <i <k, B,r1(0;) = yes, we put A, 1(p) = yes; in
the opposite case, i.e. if all the results are no, we put A,,11(¢) = no.

Thus the inductive definition of A4, for any natural number r is finished. Let
M be an algorithm, calculating the modal depth of the formulae, i.e. M acts on
an arbitrary formula and gives (in a finite number of steps) as a result a natural
number, so that M(y) = n iff md(p) = n. It is easy to see that, as the formulae
are of finite length and the modal depth is inductively defined, such an algorithm
exists.

Now we define the algorithm A for an arbitrary formula ¢ in the following
way: first we implement the algorithm M on ¢, next we implement the algorithm
Ap(p) on @, and then we put

Alp) == Are) ()

It is clear from the above definitions that A always terminates in a finite number
of steps and satisfies the equivalence (4.1). O

As a corollary of Theorem 2 we obtain the main theorem of this paper:
Theorem 3. The logic RGML is decidable.

Proof. Let us use the notation 7es := no and no = yes. We define the
algorithm R, acting on formulae, in the following way: R(p) := A(—¢). We state
that R is a decision method for RGML and the formula ¢ belongs to RGML iff
Rip) — yes.

Indeed, for an arbitrary formula ¢ the algorithm R terminates in a finite
number of steps and R(¢) = yes iff A(—¢p) = no, i.e. just when =y is not satisfiable.
But that holds iff ¢ is valid or — what is the same — ¢ belongs to RGML. |

5. SOME EXTENSIONS OF THE LANGUAGE

We extend the language £j3; with additional “rational” modal operators.

1. We consider n fractions %7 ey 2—: and the corresponding to them modal
operators MP=:% 1 < pp < qi, pr and g are relatively prime integers, k =1,...,n,
with the interpretation in a model

M,z = MPETp & |Ry(2)] > 22|R()|, k=1,...,n.
qk
We consider also the dual modal operators WPk:%  respectively with the interpretation

M,z WP o & |Ry(2)] < Z‘Z'R(”“ k=1,...,n.
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The logic, consisting of all valid formulae, we denote by RGML™.
The common form of a modal elementary conjunction is:

mi M
0=BAN\MPTpn. A N\ MPpn
g=1 Jj=mn-1+1

I In

AW A A N WEgy

g=1 j=ln—1+1

For the system of linear inequality, attendant on 6, we get:

12 2

k
) eigai > B 5 aj,
i=1 i=1

kil?"'7n7j:17"'7m1+"'+mn

t t
9k —Pk
> Eijai > LB S ay,
i=1 i=1

k=1,....,n, j=mi+--4+mp+1,....om+-4+my+l+--+1,

Besides, the tree-like model which we build in Proposition 2, is still finite and all
the propositions from the case with just one modality hold.

2. If we consider all fractions £ with relatively prime integers p, ¢ with 1 <
p < g, we obtain the logic RGML¥.

As in the language under consideration there are only finite formulae, any
modal elementary conjunction @ is finite and therefore contains only finitely many
modal operators. Hence we can consider the attendant on it (finite) system (op).
The tree-like frame and model are finite again, and all the propositions from the
case with a single modality, including the decidability, hold.

The following proposition holds for the above defined logics:

Theorem 4. The logic RGML" (RGML” ) is decidable. It coincides with the

set of formulae, valid in the finite trees.
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MODEL REPRESENTATIONS OF THE LIE-GEIZENBERG
ALGEBRA OF THREE LINEAR NON-SELFADJOINT
OPERATORS

VICTORIYA A. KUZNETSOVA

This work is dedicated to the study of Lie algebra of linear non-selfadjoint operators
{A1, A2, Az} given by the relations [A1, A2] = 1A3; [A1, Az] = 0; [A2, Az] = 0, besides,
we assume that none of the operators A;, As, Az is dissipative. For Lie algebra
{A1, A2, Az} such that {A1, A2, A3} given by the relations [A1, Az] = 1As; [A1, As3] =
0; [Ag, As] = 0, take place, and when one of the operators is dissipative, the functional
models were constructed earlier.

In Paragraph 1 it is shown that the open system corresponding to this Lie algebra
{A1, A2, Az}, [A1, Az] = 1As; [A1, A3] = 0; [A2, A3] = 0, should be considered on the
Lie — Geizenberg group H(3). Paragraph 2 is dedicated to the construction of triangu-
lar model for this Lie algebra, A1, As in which are bounded, and A> is an unbounded
operator. Note that even in the dissipative case such dissipative models haven’t been
constructed. Using the models from Paragraph 2, in the following Paragraph 3 func-
tional models for the Lie algebra [A1, As| = 4A43; [A1, As] = 0; [Ag, A3] = 0, of the
special form and acting in the L. de Branges Hilbert space of whole functions are
listed. In Paragraph 4 the special class of Lie algebras [A1, As] = iAs; [A1, A3] = 0;
[A2, A3] = 0, having the reasonable model representations in L. de Branges spaces on
Riemann surfaces is displayed.

Keywords: Functional models, L. de Branges transform, Lie algebra
2000 MSC: 47A48

1. LIE-GEIZENBERG GROUP

I. Following the works [4, 6] for the study of Lie algebra of linear non-selfadjoint
operators { Ay, Ay, A3} given by the commutation relations [A;, As] = iAs; [A1, A3]
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= 0; [A2, A3] = 0, we ought to find such Lie group G, the Lie algebra {9, &, 93} of
which is such that [0y, ds] = 03, [01, 03] = 0; [02,F3] = 0. Let z, y, = € R. Consider
the Lie — Geizenberg group G = H(3) formed by the elements g = g(z,y, 2), the
multiplication law in G is given by [8, 9]
def
9(z1,91,21) 0 g (22,92, 22) = g(T1 +T2,y1 +y2, 21 + 22+ T1y2) . (1.1)
Hence it follows that every subgroup

G = {g(x7070) € G}7 Gy = {9(07y70) € G}7 Gs = {9(0707 Z) € G}7 (12)

is equivalent to the additive group of real numbers R.
It is easy to prove that the group G is isomorphic to the following group of
matrices of the third order

1
By=| 0
0

S = 8
— @ w

This immediately follows from the equality

1z =z 1 29 = 1z +20 21+ 29+ 2199
Bg, Bgy =10 1 0 1 y|=]0 1 Y1 +y2 =
0 1 1 0 0 1 0 0 1
- Bglogz'

Consider a complex-valued function f(g) on the group G, which means that we
have a function f(z, y, 2) on R®. Define one-parameter subgroup in G corresponding
to G17 G27 Gg (12)7

91(t) = (£,0,0) € G1;  ga(t) = (0,¢,0) € Ga;  ga(t) = (0,0,¢) € G3.  (1.3)
Find the vector fields corresponding to these subgroups

Ff = f(q1(t) o g(x,y,2)) = flz +t,y, 2+ ty).
Therefore the derivative by ¢ at the identity e = (0, 0,0) of group G of this function

ipl

at ! =of

t=0

3] d .
where 9; = . + Yoy Since

F? = f(g(t) o glz,y,2)) = flz,y +1,2),

it is obvious that
i 2

dt t :82f7

t=0
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besides,

Finally, taking into account

th :f(gg(t)og(x7y7z)) :f($7y721+t)

we obtain

d
_FS - 83f7
',

0

where 03 = 5 Thus the Lie algebra of vector fields h(3) corresponding to G =
%

H(3) is generated by the differential operators of first order

a a a a
81*%+y£7 8278_y7 ag—g (14)

Obviously, for this Lie algebra h(3) the commutation relations
[02,01] = 03;  [01,03] =0; [D2,05] =0 (1.5)

take place. It is well-known [8, 9] that the simply connected Lie group G = H(3)
“uniquely” corresponds to this Lie algebra of differential operators (1.4).

II. Consider in a Hilbert space H the Lie algebra of linear operators { Ay, Ao, A3}
satisfying the relations

[A17A2] = iAg; [A17 Ag] = O; [A27 Ag] =0. (16)

Note that the operators A1, As, A3 cannot be bounded simultaneously. Otherwise,
(1.6) yields

[AT Ay] = inAT "1 As
and thus 2 ||A%] - ||Az2]] > n || As]| ‘ A’fle (Vn € Z4). In connection with this it is
sensible to rewrite the relations (1.6) in terms of resolvents,

R(w) [Ri(N)Ra(2) — Ra(2)Ri(N)] = iRT(\) R} (2) Ra(w)w + iRT (N B3 (2);

[Ri(A), Ra(w)] = 0;  [Ra(z), Ra(w)] =0 (1.7)

where Ri(A\) = (A; — M) % Ro(2) = (As — 2I) 1 Ra(w) = (As —wl) '; and A,
z, w are regularity points of the operators A, A, As, respectively.

IIT1. For the given Lie algebra {4, Ay, A3} (1.6) of non-selfadjoint operators
construct the colligation of Lie algebra [4, 5, 6].
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Definition 1.1. A family

A= <{A17A27A3};H;<p; E; {ak}f;{vm}?;{ﬁs}D (1.8)

is said to be the colligation of Lie algebra if
1) [A1, Ag] = iAs;  [A1, A3] =0;  [Ag, A3] =0;

2) 2Im (Agh, h) = {orph, oh); Vh € 9 (Ar); (1.9)
3) okpAs —oupAr =0 W= v '
4) Yoo =VWs Tilospp*or —orpp*as);
for allk and s (1 <k, s <3).
Relations (3.6) (§1.3) imply
’Yfg = (’st)* ! 72%3 = (’Yzjfs)* ! ’Yfz - (’Yfz)* = i03. (1.10)
Consider the differential operators
0 7] 0 0
01 =—; 0y =— —: O3 = —; 1.11
1= 5 & 8y+x82’ 3= 55 (1.11)

coinciding with operators (1.4) after the substitution z — y, y — z. It is obvious
that the commutation relations (1.5) now are written in the following way:

[01,02] = 03;  [01,03] =0; [da,05] = 0. (1.12)
Equations of the open system (3.13), (3.14) (§1.3) are given by
Zakh($7 Y, Z) + Akh($7 Y, Z) - w*aku(x7 Y, Z)7
BO)=hy (1<k<3) (z,4,2) € (1.13)
1}(:[7 Y, Z) - U($7 Y, Z) - Z‘Ph(x7 Y, Z)
It is easy to show that uw(x,y, z) is the solution of the equation system
{akias — 0540 + '71;5} w(x,y,z) =0 (1 <k, s<3), (1.14)
and the function v(z, y, 2) also satisfies the equation system
{akias — 010 +'yk+s}v(x7y7z) =0 (1<k,s<3). (1.15)

If o1 is invertible, then relations eliminating the overdetermination of equation
system (1,14) are given by

1. [af1027af103] =0;

2. [af1027af17£3] — [af1037af17£2] = iaflagaflag; (1.16)

P e B | —y
3. [01 1,201 ’71,3] =101 0301 M13-
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Moreover,
- 1 — 1 —
Y2,3 = 0201 Y13 — 0301 Vi2- (1.17)

3
Similar relations also take place for the family {’y,js}

v

So, we assume that the operators v, 5, vy 3, for which (1.10) takes place, are
specified and the operator v, 5 is specified by formula (1.17). Note that the self-
adjointness of , 5 automatically follows from 2. (1.16) and corresponding relations

(1.10) for v, 5 and 7y 5.

2. TRIANGULAR MODEL

I. Consider the colligation A (1.8) corresponding to the Lie algebra of linear
operators { Ay, As, A3} given by the commutation relations 1) (1.9) assuming that

dimF =r < o0 and o1 = J is an involution in F. Let the characteristic function
Si(N) =1 —ip(Ay — M) ¢*J be given by

N
i JdF
51()\):/‘3XPZ \ :
0

where F, is a non-decreasing function on [0,!] such that trf, = z. Besides, we
assume that measure dF}, is absolutely continuous, dF, = a,dz (tra, = 1). Define
the Hilbert space L2, (I;) [1, 3]. Specify in this space the operator system

!
(ffl f) —; / foapJdt:

!
(As f) :fzJ’Yz,eri/ftatUsdt;

!
(Az f) = fiby + fodVa2 Jri/ftatUzdt% (2.1)

where by, ¥s.3, V2,2 are some operator-functions in £ specified on [0, ] and o2, o3
are selfadjoint operators in £. The domain of definition D (As) is formed by the
linear span of smooth functions in Lg , (Fy) such that A;, A3 are bounded and A,
is unbounded non-selfadjoint operatof . Find the necessary and sufficient conditions
ON ag, ba, Va3, Ya,2, 02, 03 for this operator system (2.1) to form the Lie algebra,

|:fi17 fig:| = O; |:fi27 fig:| = O; |:fi17 12{2:| = fig % (22)
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It is easy to see [4] that the commutativity of operators {Ah A3:| = 0 signifies that

the operator-function «, 3 satisfies the relations

Yoz =i (Jagos — 03azJ); Y03 =15 (2.3)
Jaz'Yz,S - ’YI,SGIJ' .
Hence it follows [4] that
A —At=ig" J @, A3 —Ab—ig* a3 (2.4)
and, moreover,
J $A3 —o3 PAI= 715 ¥;
'Yig = ’thg + 4 (Ug vt J—Jpp* Ug) (2.5)

where v, 3 = v,,3| _, and the operator @ from L2, (F,) into FE is given by

!
(6r) = / f.dF,. (2.6)
0

Note that (2.4), (2.5) coincide, respectively, with the conditions of colligation 1),
3) 4) (1.9).

II. Find the conditions on ag, by, V.3, Va2 for the relation

to hold. It is easy to see that

l

! ! !
(filfig f) :z'/fgbtatdtjﬂ'/ftjmatdtj—/dt/dsfsasazatjz

T 2

l

! ! !
— —ifzbzazj—i/ft (btat)/dtJJri/ftJ'thatdtJ—/clt/dsfsasagatj7

45 t

in view of the fact that f; = 0. Similarly,

! ! !
(ﬁzﬁl f) - —ifzaszIJri/ftatdt'yzg —/dt/dsfsasjatag.
v & x i
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Consider the vector-function ®, in L2, (F,),

def

1
3, { {fih fiz} 8 jg} o= =it lbetnd = an b+ Teal =i [ fihiar) deT v

l l

! ! I
+i/ftJ'yt72atdtJ—i/ftatdt'yz@—iz/ftatdtag—/dt/dsfsas (ooard — Jayos) .

T t

Suppose
boagJ — azJby + Jys3=0 (2.8)

and let vy, » be differentiable, then it is easy to see that the derivative of function
b, is
q); - Zfz (bzaz)/ J - ifzJ'Yz,ZazJ + ifzaz'Yz,Z + ifzazUS_

! !
—i/ftatdt'yéﬂ + /ftatdt (o9a,J — Jayos).

Hence it follows that ®/, = 0 if

(bzaz)/ J— J'Yz,ZazJ + GxYx,2 + iazUS = 07
i'y!,qz = ooa,J — Ja,os.

Thus, ¢/, = 0, and since $; = 0, then ¢, = 0.

Lemma 2.1. Suppose that (2.8), (2.9) take place, then the operator system
{fihz‘ig?fig} (2.1) satisfies the commutation relation (2.7).

II1. Prove that condition 3) (1.9) is true for fih fig (2.1). To do this, calculate

! !
(J Ay —0g <OPA1> o / Flbot fodran + / Finrts | aprien?—
0 x

l

!
—/i/ftatdtjazdxag =
0 T

l z

:/fz J'ngazJ—(bzaz)/JJriaz/(agatJ—Jatag)dt dx.
0 0

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 67-92. 73



The second equality in (2.9) implies

Voo = '71+,2 — 403 + i/(Jatag —oqayJ)dl. (2.11)
0

Here we use the equality
v — () =ios (2.12)
taking place in virtue of (1.10) §3.1. Thus

(J 42142 —a9 4OPA1> fo=
I
— /fz {J’yz@azJ — (bpay) J + az’71+,2 — 14,03 — az'y%g} de =
0

l
= /fzazdx')/ftz - 'YIL,Z (L‘D f)z
x

in virtue of the first condition in (2.9) and definition (2.6) of the operator 2.

Lemma 2.2. Let the family {aq, by, V2 2,vVa3,J, 02,03} be such that (2.8),
(2.9) are true and, moreover, vy o, solution of the second equation in (2.9) satisfies
the initial condition v 2 = ('yfz)*, besides, v, — ('71+2)* = io3 (2.12). Then the
colligation relation 3) (1.9)

J Ay —03 PPAI= 1, ¢ (2.13)

18 lrue.

IV. Study when the colligation relation 2) (1.9) takes place for the operator
fig (2.1). Calculate the expression

1 1
o 1
2Im<A2 f7f> - ?/ f;:bz‘f’fzJ'Yz,Z‘f’i/ftatdtUZ azf;dx_
0 T

l l

1 : *
—+ [ detuas (V082 4ot st =i [ saniit| -

0 z

| =

!
- / [Fbataft — Fotabs (F2) + fudVeatalt — faturt o d £3] dot
0
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l

I I
+/ /ftatagdtazf; +fzaz/agatft*dt dx.
0

€T x

Obviously, the second integral after the transfer of the order of integration is

l

i
Fattzd frdt={o2 ¢ f,¢ f
O/ a xag/att <02§0 w >

0

in virtue of the definition of operator @ (2.6). So, for the colligation relation 2)

(1.9) to hold for As, one has to ascertain when the first integral vanishes.
The integrand of this integral equals

v, &f f;;bzazf; - fzazb; (f;)/ + fzj'yz,Zazf; — fzz ('71,2 + iUS) ke

in virtue of 7} 5 — vz,2 = i03. This easily follows from (2.11). Thus,

v, = f;;bzazf; — foazby (f;)/ + fa (azbz)/ frs

we took into account the first equality in (2.9).
Let the condition
azbl = bya, (2.14)

hold, then ¥, = (fbya,f*) and thus

!
/\Iltdt: 0
0

since fo = fi = 0 for f, € D(As).

Lemma 2.3. Suppose that for the family {aq,bs, Va2, Vo3, J, 02,03} (2.8),
(2.9) are true and vy, 2 as the solution of the second equation in (2.9) is such that
Yoo = '71+,2 and (2.12) takes place. Then, if (2.14) holds ¥ f, € D (As), the colliga-

tion relation
2Im <A2 f7f> - <02 ¢ f,@ f> (2.15)

18 lrue.

V. Study the interchangeability (2.2) of operators Ay, Az (2.1). It is easy to
see that

/

l l
AgAs fo= fzJ'YZ,S + Z'/ftatdtUS by + fzJ'YZ,S +i/ftatdt03 J'Yz,Z‘f’
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l l
+i/ Jedves + i/fsasdsas aroadt = foJ vz 3be + fod ¥y sbe — ifsaz03bs+
£

€T

! ! o
+fzj’7z,3J’Yz,2+i/ftatdtUSJ’Yz,z+i/ftJ’Yt,satUth—/dt/dsasUsat02~

T t

Similarly,
!
Asdy fo= | flbo b fodyon +i / Syifliny | P

! !
i / IR / Fotigelirs, | main= PP 8 -1~ Pt et
t

€T

l

! ! ! !
+i/ftatdtagj'yz73 —i/ft (btat)/agdt+i/ftJ'ymgatagdt—/dt/dsasagatag.

T 12

Thus function G, from L%l (F) is

G, % {A%Ag} fo = £ U mabe — badrea] +

I
+fz {J'Y;/E73bz - iazUsz + J'YZ,ZJ'Y:E,S - ibza103}+i / ftatdt [USJ'YZ,Z - UZJ'Y:E,S] +

! ! !
+i/ft [Jvezarog — Jy sapos] dt — /dt/dsas (o3a109 — 09a,03) .

%X £

Suppose that the equalities

J'Yz,sz = sz')/z,:%;
J'Y;;73bz + ibzazUS - iazUsz o+ J'YZ,SJ'Y:E,Z - J'YZ,ZJ'Y:E,S

hold. Then, taking into account smoothness of v, 2 and v, 3, we obtain

G = —ifp{az0370 — agoa g s + Jvu 30000 — vz 0az03} +

]
+/ftatdt {ilosJVe 2 — 09y 3] + 03,02 — 020,03} .
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Requirement G/, = 0 leads to the equalities

03 Ve 0 — JVp 00,03 + Jvp 30,09 — azoo vy, 3 = 0;
{ 34 Yz,2 Va2 3 Vx,3 2 24 Yx,3 (2.17)

/ / 2
USJ’Yz,z - UZJ’Yz,S =i (030,09 — 02a,03).

Since GG; = 0, hence it follows that G, = 0. As a result, we obtain the statement.

Lemma 2.4. If relations (2.16), (2.17) hold for the family {az, be, Yo 2, Va3, J;

?

0903}, then the operators As and As commule,

{L?Xg} —0. (2.18)

Observation 2.1. Last equality in (2.17) is the obvious corollary of equations
for vz o (2.9) and vy 3 (2.3) since

o3di(Jayoy — o9ay,J) — o9Ji(Jayos — 03a,J) = i (030,09 — 09a,,03)
in virtue of 1. (1.6). Note that this fact is completely coordinated with (1.17).

VI. Summarizing considerations of previous clauses, we obtain the following

Theorem 2.1. Suppose operators {ag, by, Yo 2, Vo 3,02, 03} in B are such that:

1) a3 satisfies relations (2.3);

)
2) Va3 =JagJby, — JbyayJ;
(2.19)
)
)

w

( zaz)/ — J'Yz,Zaz - az'Yz,ZJ - iazUSJ;

4) L =1i(Jagor —o2a,J); o2 = (’Yﬁz)*%

and 12 — 'yiz = i03. Moreover,
5) J'Yz,sz = sz')/z,37
6) J'Y;:,sz = [JVa,2, JV2,3] + i lazos, byl (2.20)
7) [CL1037 J'YZ,Z] - [CL1027 J’YZ,S] =0

take place. Then the family

A= ({filw‘izw‘is} (L2 (Fo) 103 By {on}] {kas}? ; {ﬁs}g> (2.21)

is the colligation of Lie algebra (1.8)—(1.9) where fil, fig, fig are gwen by (2.1) and

40,0, respectively, by (2.6), besides, v, , = Ya,k|,_, (k= 2,3), the operators 'y,;ts when
s £ 1 are given by formula (1.17) and o1 = J is an involution.
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Now use the theorem on unitary equivalence [1, 2].
Theorem 2.2. Let A, simple colligation of Lie algebra (1.8), (1.9), be given

by (1.16), (1.17). If the spectrum of operator Ay is concentrated at zero and the
characteristic function S1(X) =1 —ip(Ay — M)~ ' *J is given by

/ szFt
0

besides, dI, is absolutely continuous, dF, = a,dzr, and a, is such that for the
family {az, be, Yo 2, Va3, J, 02,03} (2.19), (2.20) take place, then the colligation A

is unitarily equivalent to the simple part of colligation & (2.21).

3. FUNCTIONAL MODEL OF LIE ALGEBRA

I. Consider the triangular model (2.1) of Lie algebra of linear operators

{fih fi% fig} (2.2) assuming that dim F = 2 and J = Jy is given by
0
we[9 0] -
Under the action of the L. de Branges transform [3, 7], the operator fil (2.1) turns

into the shift operator in B(A, B) since

{

L (ﬁl ft> :—/ /deFJ dF, Lt (2 /ftdFt{L* 7) - Li(0 )}*
0

and thus operator A; after the transform Bj, turns into 12117

A = w7 (3.1)
z
where F'(z ) Br, (fi). To calculate By, <fig ft> and By, <fig ft>7 note that
o\ —1
Li(z) = (I =2 A’{) $*(1,0). (3.2)

Since
By, (Ak ft) = <Ak Jo Lt (Z)> = <ft7AZ Ly (Z)>
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(k =2, 3), then using (3.2) we ought to find the expressions

sl

o o —1 o o
A (I—zA’{) F*(1,0); A} (I—zA’{) 7 (1,0). (3.3)

Commutativity of {Ah A3:| , the colligation relation Jp As= o3p Ay +'71+734,57 and

the self-adjointness of ’Y1+,3 = (71+73)* (1.10) yields

o o -1 o -1 o o -
Aj (I — 2 A’{) PF = (I— z A’{) Al §rosd + (I —3 A’{) 95*'71+,3J =

z

|
(I —z A’{) -1 o N\ 1
= progd + (I -z A’{) @*yigl
Thus, expression (3.3) for the operator As is given by

-1 -1
o o 1 o
A3 (I —z A’{) $*(1,0) = - { (I —z A’{) P — ¢*}03J(170)+
z
o\ —1
+ (I —z A’{) ¢ 1 3J(1,0). (3.4)
Expand o3.J(1,0) and ’Y1+73J(17 0) in terms of the basis {(1,0),(0,1)} in E?,

03J(1,0) = a3(1,0) + B5(0,1);

3 (1,0) = f3(1,0) + J5(0,1); (3.5)
where
_ 1 - 0
Qg = (170)03J< 0 > ! ﬁg = (170)03J< 1 > !
= + 1N, 5. + 0
H3 = (170)’71,3‘] 0 ; Uz = (170)’71,3‘] 1 : (36)

As a result, we obtain that expression (3.4) can be written in the following form:

o o o -1
A (1_ P A’{) F(1,0) — Ggs { (1_ ZA*;> 7 _¢*} (1,0)+

z
1 o\ —1 o\ !
+ﬁ3;{<1_zA’{> ¢*—¢*}(071)+u3<1—2f1’{> 71,00+
” -1
95 (I —z A’{) $*(0,1). (3.7)
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Along with the integral equation
L.(2) +iz/Lt(z)dFtJ = (1,0) (3.8)
0
for L.(z), consider the integral equation
N.(z) +iz/Nt(z)dFtJ =(0,1) (3.9)
0

for the row vector N,(z) [3, 7].
Thus expression (3.7) can be written as

ALy (2) = PG - L:(0) + Bs N: () - N:(0) + giaLs (2) + 93N (). (3.10)

z

Construct the L. de Branges space B(C, D) [3, 7] by the row vector N,(z) =
[Cy(2), Dy(2)] and specify the L. de Branges space Bj, from L%l (F,) onto B(C, D)
using the formula

!
Gl2) = By (f) — %/ftdFtNt* (3). (3.11)
0

A function G(z) € B(C, D) is said to be dual to F'(z) € B(A, B) if
F(2) =Br(fi), G(z)=Bn(fi). (3.12)

Using these notations and (3.10), we obtain that the operator As after the L. de
Branges transform equals

_ agF(Z) —+ ﬁgG(Z) s agF(O) = ﬁgG(O)

z

AgF(Z)

+ psF'(z) + 93G(2) (3.13)

where the complex numbers a3, 33, ps, ¥3 are given by (3.6) and functions F'(z)
and G(z), respectively, equal (3.12).

Observation 3.1. Generally speaking, function G(z) (3.12) does not belong to
the space B(A, B) but, nevertheless, there exist such numbers as, 3, pa, 93 (3.6)
from C that the expressions

agF(Z) —+ ﬁgG(Z) - agF(O) s ﬁgG(O)

z

psF(2) + 93G(2);

belong to the space B(A, B). Besides, numbers as, 33, ps, U3 do not depend on
F(2)B(A,B).
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To obtain the formula similar to (3.13) for Ay, it is necessary, in virtue of (3.3),
—1

to calculate the expression A% (I —z A’{) &*(1,0).

The commutation relation {Ah A2:| =4 As implies

o o =1 o =1 o o
A (I—zA’{) - (I—zA’{) AS=4z A%,
therefore

o o —1 o -1 o o —2 o
A3 (I—zA’{) = (I—zA’{) A5 —iz (I—zA’{) A3

in virtue of {A&Al} = 0. Taking into account the colligation relation J@ Ay=

0@ A= 099 A1 47 4@, J As= 03p A1 +7{ 3% 3) from (1.9), we obtain
o o -1 o -1 o o —1
Al (I—zA’{) o= (I—zA’{) 1 @road + (I—zA’{) 95('71+,Z) J—

o -2 o & "
—iz ([ —z A’{) Al Grosd —iz (I —z A’{) Lﬁ*vigl

Use an obvious equality

o —1 o o —1
z([—zA’{) ’{(I—zA’{) —1,
o o 1 1 o =l
A (I—zA’{) @*—{(I—zA’{) @*—aﬁ*}angr
z

2

o

o =i o
+<I—ZA’{> & ('ylfz)*J—iz (I—zA’{) T @ro3J—

then

o =2 o o -1
—iz? (I —g A’{) A} Gyl + iz (I — 5 A’{) & 1 s (3.14)

Similar to (3.5), expand the vectors o9.J(1,0) and (71+,2)* J(1,0) in terms of the
basis {(1,0), (0,1)} in E?,

09.J(1,0) = as(1,0) + $2(0,1);

(v5)" J(1,0) = fin(1,0) + F2(0, 1); (3.15)
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where

oo (1) o ()

i = (1,0) (ﬁz)*J( (1) ); Uy = (1,0) (ﬁz)*J( (1) > . (3.16)

Then we obtain that expression (3.14) equals
o o —1 1 o —1
A (1-24t) #00)-arl {(I— Sdt) - @*} (1,0}t
z

1 - —1 o —1
+ﬁ2;{<l—zA’{> ¢*—¢*}(071)+M2<I—ZA’{> 7(1,0)+

o —1 o —1
+99 (I -z A’{) #'(0,1) — izdgdi (I -z A’{) @*(1,0)—

2
. = d " o - .o d Y o "
—zzﬁgg (I—z A1> $*(1,0) — iz fiz g (I—z A1> P'1,0)—
_d o\ 1L o\ 1L
—izzﬁgg (I—zA’{) $*(1,0) + izp3 (I—zA’{) $*(1,0)+

5 —1
+izDs (I—zA’{) $*(1,0). (3.17)

Using the definition of F'(z) and G(2) (3.12), we obtain that the operator Ay after
the L. de Branges transform turns into the operator As,

_ dgF(Z) —+ ﬁQG(Z) — CMQF(O) — ﬁQG(O)

z

Ay F(2) + 112 F (2) + 92G(2)—
iz {03 F(2) + BC(E)} — i (s F () +95G(2)} + iz {sF () + 05G(2))

(3.18)
which in elementary way follows from (3.17).

Observation 3.2. The dual function G(z) to F(z) does notl necessarily belong
to the space B(A, B) bui, nevertheless, there always exist such constants ag, s,
B2, B3, pa, pa, 92, 93 from C (not depending on F(z)) that the expressions

CMQF(Z) —+ ﬁQG(Z) — O{QF(O) — ﬁQG(O)

z

i F(2) (pa+izus) + G(2) (99 + 1293) ;

03P () 4 G} 2o (s F(2) + 95G(2))
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already belong to B(A, B).

Define the operator ¢ from B(A, B) into E? by the formula

PF(2) (F(2),e1(2)) (1,0) + (F(2), e2(2)) (0,1) (3.19)
where -
ei(z) = lz(z) Cea(z) = 1— Al(2)z. (3.20)

Theorem 3.1. Let A be the simple colligation of Lie algebra (1.8), (1.9),
spectrum of the operator Ay be concentrated at zero and the characteristic function

Si(N) =1 —ip (AL — AL o*J be given by

i
i JdF;
Sl()\):/expZ ; L
0

Besides, measure dF, is absolutely continuous, dF, = aydx, ay >0, a, is matriz-
function in E*, and J is given by (3.0). And, moreover, let the selfadjoint operators
o9, 03, ’71+73 be given in E?, the operator '71+,2 be such that 'Y1+,2 — ('71+72)* = io3, and
(1.16), (1.7) take place. Then the colligation A (1.8) is unitarily equivalent to the
functional model

A= <{A17A27A3} s B(A, B); @ {J, 09,03} ; {%;fs}? ; {m}?) (3.21)

where the operators A1, Ay, As are given by (3.1), (3.13), (3.18) respectively; oper-
ator ¢ equals (3.19); the numbers {ay, Bk, to, ﬁk}g are given by the formulas (3.6),
(3.15); and, finally, {ek(z)}i are given by (3.20).

4. FUNCTIONAL MODELS ON RIEMANN SURFACE
I. Let dim F = r < o0, and o1 = J be an involution, then the relation [4, 5, 6]
J (ag + 2z (Viz)*) J (o3 + Z’yig) = J (o3 + Z’Yf:g) J (o2 + Z'ylfz) (4.1)
is true Vz € C. We used the fact that ’Y1+,2 = ('71+,2)* -+ io3 in virtue of (1.16) §3.1.
Suppose that dimF = r = 2n is even and the matrix-function in I specified on

[0, ] equals
a, = I, ® G, (4.2)
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where I, is the unit operator in E™, &, is the non-negative (2 x 2) matrix-function
such that tra, = n~!. Knowing dF, = a,dz, define the Hilbert space L%ml (F.)
formed by the vector-functions f(z) = (fi(x), ..., fu(z)) such that

l

/fk(ﬂﬂ)&zf,f(x)dx < 0

0

Vk (1 < k < n), besides, fx(x) is a row vector from E? (z € [0,1]).
Let the operators oy (= J), 09, 03 and ’Y1+,37 71,2 be given by

o1=J=1,Jy; o9o=02®Jn; 03=03R% Jy;
Na=BRJIN; Ya=%®JIn (4.3)
where 9, 03, 3 are selfadjoint operators in E™, and 7s is such that
Y2 — Y3 = i03. (4.4)

Then the conditions (1.10) §1 hold. Equality (4.1) in terms of {&x, Y% }‘? is written
in the following way:

(62 +273) (63 + 273) = (03 + 273) (2 + 272) - (4.5)

The L. de Branges transform By, [3, 7] of a vector-function f(z) from L%ml (F.)
associates each of its components fi(z) € L%,z (azdz) (here dF, = azdx and a, is
given by (4.2)) with the function

!
Fula) By () = 5 [ filw)in L (2)de (4.6)

0

from the L. de Branges B(A, B), besides, L,(z) is the solution of the integral equa-
tion (3.8) by the measure d,dz. As a result, we obtain the Hilbert space B"(A, B) =
E™ ® B(A, B) formed by the vector-functions F(z) = (Fy(z2),..., F.(2)),

BY(A, B) = {F(2) = (Fi(2), ..., Fa(2)): Fo(2) € BA,B)(1 <k <n)}. (47)

Scalar product in B™(A, B) is given by

M=

(F(2), G(2))Br(a.B) = D _ (Fi(2), Gr(2))5(a,B) -

o
Il

1

Taking into account the form of the matrix-function a, (4.2) and the operator
oy (4.3), it is easy to show that the L. de Branges transform (4.6) translates the

triangular model A; (2.1) in the shift operator

(A4iF) () = S(F(z) = F(0)), (48)

z
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VI(z) € B"(A, B). To obtain the model representation for fig in the space B"(A, B),

use that . .
A§<I—2A’{> ¢*<1_ZA;) Avg -

—1 —1
1 1 ok ~ i ~ok &4
;{<I—ZA’{> LpUgJ—LpUgJ}+<I—ZA1> %) (’71+73) J

in virtue of (2.5), §3.2, |:fi17fig:| =0 (2.2), §2 and selfadjointness of ’Y1+,3~

The form of the operators J, o3, ’Y1+,3 (4.3) yields
o3J =03 ® Is; ’)/IL’SJ:’S/S(@IQ. (49)

Taking into account that L, (z) = (I — ZA’{)il #*(1,0), we obtain that the operator
As (2.1) after the L. de Branges transform By, (4.6) is given by

(ASF) () = S(F(2) = F(0))os + F(2)3s. (4.10)

z

Thus
A3F(z) = % {F(2) (63 + 273) — F(2) (63 + 273) o} (4.11)

where, as always, F(z) (g3 + z’yg)|o = F(0)&5
To ﬁnd the representatlon for Ag (2.1) in B™(A, B) similar to (4.8), (4.11), note
that A*A* A*Azf i AS (in virtue of (2.2), §2), therefore

e} =l o o e} =l o -2 o
(I—zA’{) Ay — A (I—zA’{) =1 (I—zA’{) A% (4.12)

Taking into account (2.5) and (2.13), §2, we obtain

o o\ 1 oL o o\ 72 o
A (I—zA’{) 4,5*([—214’{) A;@*—W(I—ZA’{) A ¢ =
1 o\
= - {(I—z A’{) @*UQJ—L,Z*UQJ}Jr
z

o n =i
—iz (I—zA’{) o ('71+,2)*J_

o e o —d o o
—iz (I—zA’{) {(I—zA’{) Al gfosd + (I—zA’{) 95*'71+,3J}'
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o -1 o -1,
In connection with (I —z A’{) = g (I —z A’{) At —1I, we have

=i =i
o o 1 o
Al (I—zA’{) ¢*—{<I—ZAT> ¢*02J—¢*02J}+
z

o =l o -2 o
+ (I —z A’{) @* ('71+,2)* J—iz (I -z A’{) Al proszJ—

o -2 o o —1
—iz? (I -z A’{) AY 95*'71+,3J —iz (I -z A’{) @*yigl
Since
03] =G ® Iy v =52 ® I, (4.13)

d o —1 o -2
then using (4.9) and e (I — 2 A’{) — (I —z A’{) A7, we obtain that the
2

operator Ay (2.1) after the L. de Branges transform (4.6) in the space B™(A, B) is
given by

i 1 . . 5 . . d ” -
(42F) (2) = 2 {F(2) @2 + #70) = F(2) (52 + 23n)lo} + iz F(2) (Bs + 23)
(4.14)
besides, F(z) (62 + 272)|, = F(0)o.
Now define the colligation of Lie algebra (1.8), (1.9)
3 3
A A. A A LR s S T s = s 2
A= ({AhA%As}ﬁ (4, BY 3 B {on}; {70, } ,{vk,s}J (4.15)

1

3
assuming that the operators {0k7'71+k} are given by (4.3), the operator v, is
kS ;

3
given by formula (1.17), and {’y,;s}l are found by the formulas 4) (1.9) where ¢

on every component acts in a standard way (3.19), (3.20).

Theorem 4.1. Suppose that the simple colligation A of Lie algebra (1.8), (1.9)
3

is given, besides, dim E¥ = 2n, and the operators {a;m 'yfk} in F are giwen by (4.3)
l

and condition (4.4) is true. And lel the spectrum of operator Ay lie atl zero, and
the characteristic function S1(\) of operator Ay be given by

7
i JdF
Sl()\):/expZ 3 t7
0

and be such that the measure dF, is absolutely continuous, dF, = a,dx and a,
equals (4.1). Then the colligation A is unitarily equivalent to the simple part of
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functional model A (4.15) where the operators Ay, Ay, As are given by (4.8), (4.11),
(4.14) respectively.

I1. Consider the linear operator bundle
a3+ =3

which is a selfadjoint operator when z € R. Denote by h(z,w) eigenvectors of the
given bundle,
B(P) (G5 + 23s) — wh(P), (4.17)

where P = (z,w) belongs to the algebraic curve @,
Q={P=(zw) €C?:Q(z,w) =0}, (4.18)

specified by the polynomial

Q(z,w) %' det (55 + 273 — wl,,) . (4.19)

Suppose that the curve Q is nonsingular [4], then z = 2(P) and w = w(P) are
correspondingly ’l-valued’” and ’n-valued’ functions on @ (I = rank?s). Norm the
rational function h(P) (4.17) using the condition h, (P) = 1 where h,(P) is the
'nth’ component of vector h(P). It is easy to show [4] that the quantity of poles
(subject to multiplicity) of vector-function h(P) equals N = g+n—1 where g is type
of the Riemann surface @ (4.18). Isolate on @ (4.18) analogues of the semi-planes
C4 and real axis R,

Qs ={P = (z,w) €Q: £Imz(P) > 0}; Q°=0Q.. (4.20)

Roots w¥(z) of the polynomial Q, (z,w"(2)) = 0, (4.19) are different when z € R in
virtue of non-singularity of the curve @ (4.18) (excluding the points of branching).
Therefore the eigenvectors h(P;) (4.17) corresponding to P, = (z,w*(2)) € Q
(4.18) are orthogonal. Therefore we can expand every vector-function F(z) €
B™(A, B) in terms of the orthogonal basis {h (Py)}],

=S g (POIh PO h (P, (4.21)
k=1

where g (Py) = (F(2),h(Py))p (1 <k < n). It is easy to see that w"(z), h(P)
and g (P) represent branches of the 'n-valued’ algebraic functions w(P), h(P) and
g(P), respectively. In view of this, we can rewrite the last equality in the following
form:

F(P) = F(2(P)) = g(P) - [|M(P)|| 5*h(P). (4.22)

Since the basis A(P) in E™ is fixed, the function F'(P) is defined by the scalar
component g(P). Note that ¢g(P) is meromorphic on Q (4.18) and its poles can
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lie only at the poles of h(P) (4.17), besides, their aggregate multiplicity does not
exceed N =g+n—1.

Construct the L. de Branges space Bg(A, B, h) corresponding to the Riemann
surface @ (4.18). Operator A; (4.8) in the space Bo(A, B, h) is given by

i _9(P) =¥ (P, Ro) g (Fo)
(Alg) (P) = 2(P) — z((jDo) : (423)
where
¥ (P, Po) = (h(Po), h(P)) gn - [I(P)ll n, (4.24)

besides, Py = (0,w) € Q. Similarly, operator As (4.11) in the space Bo(A, B, h) is
given by the formula

besides, ¢ (P, Py) is given by (4.24).
Now consider the operator Ay (4.14). Let {h (P%)}} be the orthogonal basis of
eigenvectors (4.17),

h(Py) (63 + 273) = w"(2)h (Py) (4.26)
where P, = (2,w"(2)) € Q (4.18) and z € R. Then (4.5) implies
w*(2)h (Py) (62 + 272) = h (Py) (52 + 293) (63 + 273) -
Taking into account (4.4), we can rewrite this equality in the following form:
w*(2)h (Pr) (62 + 272) =
= h(Py) (G2 + 29) (63 + 273) — izh (Py) 03 (03 + 273) =
= h(Pg) (02 + 272) (63 + 273) +
iz (2)h (Py) 75 (63 + 273) — iz (wh(2))” b (Py) .

(4.27)

To simplify the last summand in this sum, differentiate equality (4.26) by z,

h(Po)Fs + b (Pe) (63 + 273) = (wF(2)) b (Py) +wk(2) (P) (4.28)

where prime signifies the derivative by z. Expand vector b’/ (P}) in terms of the
basis {h (Ps)}]:

"(Pe) =Y a(Pe, P) IR (PG - h(PL) (4.29)
s=1
where
a(Pr, Ps) = (W (Py),h(Ps)) g - (4.30)

Then (4.28) implies

h(P)As = (wb(2)) h (P + 3 a(Pi, B) (w*(2) — w0 (2)) |h (Pl - b (Py).
s=1
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Now realize the expansion of vector h(Py) (62 + 2%2) from (4.27) in terms of the
basis {h (Ps)}}:

n

h(Py) (52 + 292) = D b (Pe, P) | (Po)llg" - b (Ps) (4.31)
s=1
where
a(Pk7Ps):<h/(Pk)7h(Ps)> (430)

Then (4.28) yields
% / a s .
h(Pi)As = (w*(2) h(Pe) + Y a(Pe, Py) (w(z) = (2)) [h (Pl 5" - b (P).
s=1
Now realize expansion of the vector h(Py) (62 + 2%2) from (4.27) in terms of the

basis {h (Ps)}}:

n

h(Pe) (52 + 252) = 3 _b (P, Po) [|h(Po)ll" - h(Py) (4.31)
s=1
where
b(Pr, Ps) = (W (Pr) (62 + 2%2) , h (Ps)) s - (4.32)

Then equality (4.27) has the form

n

D b(Pe, Po) (wh(2) = (2)) [ (Pl - h(Ps) = =iz (w¥(2))" h (P) +

s=1
+iz (wk(z))/ wk(z)h (Pe)+

n

+i223 " a (P, By) (wh(z) — w (=) w (=) |5 (P52 B (P).

s=1

Linear independence of {h (Ps)}] vields

(4.33)

{b(Pk7PS)iza(Pk7Ps)wS(z) (s £ k);
wk(z):z(wk(z))/ (s =k).

Using (4.27), it is easy to show that b (P, P;) = 0.

Thus knowing the function a (Py, Ps) (4.30) defined by the vector-functions
h(Py) (4.25), we can construct b (P, Ps) and find expansion of the vector h (Py) x
X (52 —+ 2’3/2)1

h(Py) (69 + 272) zzZa Py, Ps) - ||k ( S)||Ez~h(PS). (4.34)
s=1
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This implies that action of the bundle &9 + 2%2 on F(z) (4.21) in terms of the
components g (P;) appears as follows:

n

g(Pe) — izw(2) Y g (P)a(Pi, Po) - [h (P 5" - b (Py). (4.35)
s=1

Now consider the second summand in (4.14), use (4.21), then

2 () (35 + 235) = iz {Zg (Pe) ||h<Pk>||E2wk<z>h<Pk>} =
k=1

ZZZ (Pr)w(2)) R (POl 5" -
=1

h(Pe) —2i2 Y g (P)wk(2) - |h (Pl I (POl b (Ps) +
k=1

n

+Zzzg (Pe)wk(2) - [h (Pl - Y a (P P) - | (PG b (Py).

s=1

d
Thus action of the expression d_F (2) (63 + 273) in terms of the scalar component
=

g (P) can be written as

g (Pe) — iz (wh(2)g (P)) — 2izw(2)g (o) [|h (Pi)ll 5" - 1k (Pl +

+zzzg a (P, Py) - b (P)lI5" - (4.36)

To rewrite the formulas (4.35), (4.36) in a compact form, consider the kernel

a(P',P) = <dilzh(P/) 7 h(P)> (4.37)

E

coinciding with (4.30) as P’ = Py, P = P,. Define action of this kernel on the
function g(P) in the following way:

(axg)(P) =N g (PYa(P,P)- (P (4.38)
-

where P’ varies over all the values (branches) of the function g (P’).
~ Now taking into account (4.35) and (4.36), we can write form of the operator
As, which, in view of (4.14), is given by

([lgg) () iz(P)w(P)(a * g)(P) ;Z;g@%%w ¥ (P, Py) (axg)(Pp)

+
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+iz(P)%(w(P)g(P)) — 2iz(P)w(P)b(P)g(P) + iz(P)(a* g)(P) (4.39)

where
b(P) = ||h(P) 5" - d%llh(P)lh (4.40)

Construct colligation of the Lie algebra (1.8), (1.9)

A= ({flh [127213} :Bo(A, B, h); &, B; {ox}] , {7,;5}? 7 {'y,js}D (4.41)

3
where the operators {a;m 'yfk} are given by (4.3), 74 5 is defined by formula (1.17),
kS .

3
and the operators {'Yl;s} are defined from 4) (1.9), ¢ is given by
]

2
gg(P) =Y {g(P), ex(2(P)))gy(a,m,m - €k (4.42)
k=1
ey are given by
l—az_, . 71—&2 .
@) =SB @ el =T 0-AE:
€1 = (170); €y = (07 1)

Theorem 4.2. Suppose that for the colligation A of Lie algebra (1.8), (1.9)
requirements of Theorem 4.1 hold and let curve Q (4.18) be non-singular, besides,
zw' = w(z). Then colligation A (1.8), (1.9) is unitarily equivalent to the simple

part of colligation A (4.41) where operators Ay, Ay and Az are given by (4.23),
(4.25) and (4.39), respectively.

In this work for a Lie algebra of linear non-selfadjoint operators {A;, As, A3}
([A1, As] = iAs, [Ay, A3] =0, [Ag, As] = 0) are obtained the following results.

1) The triangular model (2.1) for this Lie algebra in the space L%l (F) is
constructed.

2) In §3 using the triangular model from §2, the functional model (Theorem
3.1) for the studied in this chapter Lie algebra {A1, Ao, As} is stated.

3) For special classes of Lie algebra {A;, As, A3}, the functional model on
Riemann surface in special L. de Branges spaces (Theorem 4.1 and Theorem 4.2)
is constructed.
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MODEL REPRESENTATIONS OF THE LIE ALGEBRA
[A2, A] = iA; OF LINEAR NON-SELFADJOINT OPERATORS

VICTORIYA A. KUZNETSOVA

Construction of functional models of Lie algebra {A1, A2} (|42, A1] = ¢A1), one of
which is dissipative, was realized earlier. The question of construction of model real-
izations for the given Lie algebra not containing dissipative operator remained open.

This work is dedicated to the construction of model representation of the Lie alge-
bra {A1, A2} of linear non-selfadjoint operators not containing a dissipative operator
which is generated by the commutation relation [As, A1] = ¢A;. In Paragraph 1 the
preliminary information is stated, the definitions of colligation of Lie algebra and cor-
responding open system on Lie group of affine transformations of the line M(1) are
given. Paragraph 2 is dedicated to the construction of triangular model for the Lie

algebra [As, A1] = 441 in the case of finite dimension of the general space of non-
hermicity of operator system {A1, Az}. In Paragraph 3 functional model of the Lie
algebra [Ag, A1] = A1 is presented, it is realized in L. de Branges spaces of whole

functions. In the last paragraph of this paper, functional model of the Lie algebra
[A2, A1] = iA1 on Riemann surface is constructed.

Keywords: Functional models, L. de Branges transform, Lie algebra
2000 MSC: 47A48

1. LIE GROUP OF AFFINE TRANSFORMATIONS OF LINE AND
COLLIGATION OF LIE ALGEBRA

I. To study a Lie algebra of linear non-selfadjoint operators specified by the
commutation relation [Ay, A1] = 141, one has [4] to find such Lie group G, vector
{01, 09} Lie algebra of which is such that

[0a, 01] = 0.
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Let R be the real line. Define G = M(1) [7, 8] the group of transformations of R
preserving the orientation. Associate with each £ € R number nn = y€ + z (y > 0,
z € R). Denote a group element by g = g(z,v). If n = y1&+ 21 and { = yan + 29
then

¢ =wy1y2§ +z1y2 + 2.
Therefore the group operation on G is given by
g(x2,y2) 0 g (x1,91) = g (z1y2 + 22, 9291) - (1.1)

Hence it follows that the elements g(z, 1) form the subgroup in G, isomorphic to
the additive group of real numbers R.

g(z2,1)og(z1,1) =g (z1 +22,1).

And the elements ¢(0,y) form the subgroup in G equivalent to the multiplicative
group of positive numbers in R .

g(0,y2)09(0,y1) =g (0,y2y1) .

The group G is isomorphic to the group of matrices of the second order given by

Yy T
BQ{O 1]

This fact immediately follows from the equality

Y2 T2 Y1 T Yay1  Yox1 + X2
BQ2'Bgl|:O 1:|{0 1:|{ 0 1 :Bglogz'

Specify two subgroups in G,
G, ={g(x,1)eq}; Gy ={g(y,0) € G}; (1.2)

as is stated above, they are isomorphic to R and R, respectively. To specify a
function f(g) on the group G = M(1), f: G — C, signifies that we define complex-
valued function f(z,y) in the upper half-plane R x Ry. Calculate vector fields
corresponding to the one-parametric semigroups (1.2) [8]. Let g, = (t,1) € G} in
(1.2). Then

Iy = flgiog(a,y) = flalty +=,9) = fty + =,y).
Therefore the derivative by ¢ at unit, e = ¢(0, 1) € G, of the given function equals

d
iy —3
e . 1f

7]
where 91 = Uy Similarly, consider the functions
73
Fy = f(giog(z,y)) = f(z,ty)
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where g, = (0,¢) € G2 in (1.2). Then

d

Eﬁt =Oof

to=0
0 .

where 0y = e Thus we construct the Lie algebra of vector fields m(1) of the
Y

group M (1) specified by the differential operators of the first order

e, 12,
01 = 9%7 0y = ya_y (13)

It is easy to see that the Lie algebra {d,,0;} is specified by the commutation
relation

[02,01] = 01 (1.4)

It is well-known that the simply connected Lie group M (1) is “uniquely” restored
by the Lie algebra m(1) of differential operators (1.3) [7, 8].

II. Consider in a Hilbert space H the Lie algebra of linear operators {41, Ay}
satisfying the relation

[As, Ay] = iAy. (1.5)

Note that Ay and As cannot be bounded simultaneously, since otherwise (1.5)
implies

[Ag, AT] = in A}

which results in the inequality 2||As|| > n (Vn € Z¢).

It seems natural to write relation (1.5) in the “integral form” similarly to the
Weyl identity in Quantum Mechanics [4]. Let Z, (tx) = exp (itx Ar) k=1, 2. (1.5)
implies

Z1 (tl)AQ — (A2 +t1A1)Z1 (tl). (16)

Indeed, it is easy to see that f'(¢1) = ¢A1f(¢1) and f(0) = O where f(t1) =
Zy (t1) Ay — (Ag + 11 A1) Z1 (1). Therefore it is obvious that

A (tl) Zo (tz) — exp {itz (A2 +t1A1)} VAl (tl) ; (17)

III. Construct the colligation of Lie algebra for the given Lie algebra (1.5) of
linear non-selfadjoint operators.

Definition 1.1. Family

A= <{A17A2};H;<p; E; {ak}f;{v’m*})7 (1.8)
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where p: H — E, o, v*: E — E (0} = oy, k=1, 2), 4s said to be the colligation
of the Lie algebra (1.5), if

1) [Ao, Al =iAq;
2) 2Im {Agh, h) = (oxph,h); VYh e 9 (Ag);
3) o1pAy —oapAr =Ty
4) v~ =9 +i(oappoL —o1pptos).

(1.9)

It is obvious that v* are non-selfadjoint operators [4] and
= ()" = —ion. (1.10)
Equations of the open system [2, 3, 4, 5] are given by
Oph(a,y) + Ach(z,y) = propu(z,y)  (k=1,2)
hle)=hy (k=1,2); (z,y)€G; (1.11)
o(w,y) = uw,y) —iph(z,y).
Besides, 9 in (1.11) are equal to (1.11). It is not hard to show [2, 4, 5] that

{0110y — 09id + 7~ }u(z,y) = 0;

{01262 — 09101 ‘f"Y;L} W(:E7y) =0.

2. TRIANGULAR MODEL OF LIE ALGEBRA

I. Consider the colligation A (1.8) corresponding to the Lie algebra of linear
operators { A1, As } assuming that (1.9), (1.10) take place, besides, dim F = r < o0,
operator o1 = .J is involution, and let oy = o. Define the Hilbert space L2, (I,) [1,
3] assuming that the measure dF), is absolutely continuous, dF, = azdx; ar; <0,
tra, = 1. Specify in this space the operator system

!
(ﬁl f) 1 / fots T

1
(152 f) :f;:bz‘f’fzj')/z‘f’i/ftatdta (21)

(fz € L%l (Fz)) where b,, v, are some operator-functions in £ specified on [0, (].

Linear span of continuously differentiable functions from L% , (Fy) such that flb, €
L%J (F,) and fp = f; = 0 is the domain D (A4,). Note that the structure of A; (2.2)
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coincides with the triangular model [1, 3] when the spectrum o (A1) = 0. Find the
necessary and sufficient conditions on a,, b., v, J, o for this operator system (2.1)
to form the Lie algebra,

{L? fil} — i A . (2.2)

It is easy to see that

! !
AgAy fo = —ifpagJby +i / e, — / / oy Bl | wpcedds.
x i

€T

Similarly,
! ! ! !
A A fz:i/ft/btatjdtJr/ftJ'ytatJdt—/ /fsasads azJdt =
x x x i

l

! ! !
= —ifpbyay,J —i/ft (btat)/ Jdt + i/ftJ'ytatJdt — / /fsasads agJdt
x x i

x

by virtue of f; = 0. Suppose that
agJby, = bya,J. (2.3)
Then

1 1 1
g, & ({2{272{1} _ile) fom i/ftatdt'yz —/ /fsasjds arodt—
T x t

l

l l l
—Z/ft {J'ytatj—(btat)/J} dt+/ /fsasads atjdt+/ftatjdt.

€T

Supposing that -, is continuously differentiable operator-function, calculate deriv-
ative of the function V¥ ,:

I I
Vo= _ifzaz'szri/ftatdt'y;Jr/ftatdtJazaqL

!
tify { Jwapd — (byag) T} — /ftatdtaazj— futg.
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Hence it follows that ¥/ =0, if

iy, = oagJ — Jayo;

Gy Yod = JVpay — (bzaz)/ 4 iay,.
Thus ¥, = 0 since ¥; = 0.

Lemma 2.1. Suppose that there erists a family {ay, vz, bs, J, 0} such that
(2.3) and (2.4) take place. Then the operalor system {fihfig} (2.1) satisfies the

commatation relation (2.2).

II. In order to include the operator system {A17A2} (2.1) in the colligation
A (1.8), it is necessary to verify that the colligation relations (1.9) are true. It is

easy [1, 3] to show that Ay — Aj=1i¢* J ¢ where the operator @ L:,(F,) - E
is given by

1
¢ fo= [ fudt. (2.5)
/

Calculate 2Im <fi2 7 f> where f € D <fig> Then

l

l
st (Aa £,7) =1 [ | Sovact oot [ fiwo | dton -

0

l l

1
—T/iﬁmzbyﬁY+ﬁhaw/k%ﬁﬁ —
1

0 z

ER N

!
:./um%ﬁ—h%@my+hw%%—%ﬁﬂﬁww—
0

i

! !
4 / / frasodtanf? + fots / canf; | dt.
0

x T
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It is easy to see that the second integral after the change of order of integration
equals

l

!
/ftatdta/atft*dt: (opf,f)E.
0

0

Therefore in order to the colligation relation 2) for A, (2.1) take place, it is necessary
to ascertain under which conditions the first integral vanishes. The integrand of
this integral equals

def

P, = f;;bzazf; _fzazb; (f;)/JFfz {JVz0s _az'Y;J}f; =

= f;;azjszf; - fzazb; (f;)/ + fa {az'Y:EJJF (bzaz)/ — iy — az'Y;J} f;

in virtue of (2.3) and the second equation in (2.4). It is obvious that the solution
v, of equation (2.4) is given by

€T

Yo = Y0+ i/(Jata —oaJ)dl. (2.6)
0

Choose the initial condition vy = (y*)". Since the second summand in (2.6) is a
selfadjoint operator, then taking into account 4+ — (y7)* = —i.J (1.10) we obtain

* .
Yo=Y =% =0") -1 =il (2.7)
So vi = v, — 4J. Substituting this expression in the formula for ®,, we obtain

®, = flag by Jfr—foasblh (£2) '+ fo {auvad + (boas) — iay — az (v — iJ) T} fo =

= faaudbad £ + foaz (=b3) f2 + fo(aadbad) f3
in virtue of (2.3). Let
bt = —Jb,,J. (2.8)
Then ®, = { fya,Jb,Jf}', and hence

!
/q)zdx =0
0

since fo= fias feD <fig>

Lemma 2.2. Let the family {a,, Vs, bs, J, 0} be such that the relations (2.3),
(2.4) are true and, moreover, v, the solution of the first equation in (2.4), satisfies
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the initial condition vo = (y1)*, besides, vT — (yvF)" = —iJ (1.9). Then, if (2.8)
takes place, Vf € D (fig) the colligation relation

21m<2i2 f7f> = (=00 1% 1)
where [ is given by (2.5).

Verify that the colligation condition 3) (1.9) also is true. Really, find the
function ¥,

I

!
¥, < <J PAy —0 DA, - 40,0) fa :/ s+ Fods +i/ftatdta apdaJ—
0 T

l l 1
_/i/ftatjdtazd—/fzazdx'ﬁ.
0 z 0

Integrating by parts and changing the order of integration, we obtain

l z

v, :/d:E _fz (bzaz)/J+fzJ'YzazJ+fzaz Z'/(UCLtJ_ Jata) dt _fzaz'7+
0 0

Now taking into account (2.6) and the second equality in (2.4), we have

1
v, :/{fzaz')/z - fzj')/zazj —iagJ + fzj')/zazj‘f’ fzaz (’70 - 'Yz) - fzaz')ﬂL}dx =
0

[
- /fzazdx (o =T =iJ)=0
0

in virtue of 7o = (y7)* and condition (1.10). So ¥, = 0 and relation 3) (1.9) is
proved. If one takes into account (2.5), then (2.6) yields

!
'yl'yoJri/(Jata—aatJ)dt'yo+i<J4OP<p*a—a4OP<p* J>7
0

therefore

’77’7++i<J<OP<p*a—a<opap* J>.
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And we obtain the colligation relation 4) (1.9) where v/ =~

Theorem 2.1. Suppose that an operator family {a, vz, bz, J, 0} is such that

—_

g by = bptpd,;
bt = —Jb,J;
i, =ocazd — Jago; o= ('y+)* :

x

Do

(2.9)

=~ w

)
)
)
) (bzaz)/ = Jvypay — apved +tag;
besides, v — (v T)" = —iJ. Then the set

A= ({fihfiz} (L3 (Fo); @5 By {005 {vnﬁ}) (2.10)

is the colligation of Lie algebra (1.8)—(1.9) where fil, fig are given by (2.1), the

*

operator @ equals (2.5) and v~ = ~7.
Now use the Theorem on unitary equivalence [1, 3, 4].
Theorem 2.2. Let A be a simple colligation (1.8), (1.9). If the spectrum

of operator Ay is concentrated at zero and the characteristic function S1(A) =
I —ip (A — M) T *J is given by

T
s JdF,
Sl()\):/expZ \ t7
0

besides, dF,, = a,dz and a, is such that for the family {ay, vy, be, J,0} (01 = J
is tnwolution and o = o*) the equation system 1) —4) (2.9) is solvable. Then the

colligation A is unitary equivalent to the simple part of colligation & (2.10).

Observation 2.1. 1), 2) (2.9) imply
agbt + bya, =0, (2.11)
Vo € [0,{].

3. FUNCTIONAL MODEL IN L. DE BRANGES SPACE

This section is concerned with the construction of functional model of the
studied in this paper Lie algebra in L.. de Branges space [3]. Consider the triangular
model of the colligation of Lie algebra (2.10) assuming that » = 2 and .J is given by
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J = jn (2.1). Under the action of L. de Branges transformation [3], the operator
fil (2.1) changes into the shift operator since
! !
&(&ﬁ)%/i JedFod b dF,L; (2) =

us
t

z

!
1 L) - L)
WZME{ }

and thus

B, (ﬁl f1> _ Flg) ~ 0 (3.1)

z

where F(z) € By, (f). In order to find By, (fil ft>7 first of all note that

Li(z) = (1_2};)1 o* (1,0), (3.2)

By, (z‘iz ft) = <z‘iz Jo, Ly (Z)> = <ft7fi§ Ly (Z)>7

then, taking into account (3.2), we have to calculate the expression

Since

o o —1 o
A (I—zA’{) o (1,0). (3.3)

(2.2) implies
therefore

Thus

o o -1 o o o o -2

A3 (I — zA’{) — (I— 2 A’{) Ai= —iz A} (I — zA’{) . (34)
Using (3.4), we obtain

o o —1 o o -1 o o o o -2 o
A (I—zA’{) Pr= (I—zA’{) Asp* +iz AY (I—zA’{) o
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The colligation relation J 40,02{2: o 40,014;1 ot 40,0 yields
o o il o o 1 o o o el o
A (I—zA’{) = (I—zA’{) Ajp* od + (I—zA’{) o (7+)*J+

o o =2
+iz A] (I—zA’{) "

1 —71,
o o 1 [¢]
Now taking into account (I -z A’{) Af= — {(I -z A’{) — 1}7 we finally
z

—1 —,
o o o 1 o o o
Al (I—zA’{) @*—{(I—zA’{) Lp*UJ—Lp*UJ}+
z

o 710 o o 720
+<I—2Aﬂ wwyﬂ*J+qu<1_zAﬂ o

obtain

Thus expression (3.3) has the form
o o —1 ° 1 o -1 o
A3 (I—zA’{) %0(170)—{(]—214’{) " - *}JJ(LO)Jr
z

—2

o]

o -1 5 o o
+ (I —z A’{) " (v1)"J(1,0) +iz At (I —z A’{) ©* (1,0). (3.5)
Expand the vectors o.J(1,0) and (v)" J(1,0) by the basis (1,0) and (0,1) in E?.
0J(1,0) = a(1,0) + 5(0, 1);

()" J(1,0) = 5(1,0) + 50, 1) (36)
where
aupwj<é) ﬁuﬁwj<?>
=06 ()i r=0069 (). (37)

As a result, we obtain that expression (3.5) is written in the following form:
o o -1 o 1 o —1 o o
A (I—zA’{) ©* (1,0) = a=- {(I—zA’{) o* = @*} (1,0)+
z
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_1 o -1 o o -1
+ﬁ;{(1—zAﬂ wﬂ—w}uxn+u(1—zAﬂ & L0yt

o -1 o o o —2 o
v (I—zA’{) o (0,1)+iz A (I—zA’{) o (1,0). (3.8)

Along with the integral equation for L,(z)

x

Lo(2) + iz/Lt(z)dFtJ — (1,0), (3.9)
0

consider [3] the integral equation for N,(z)
N.(2) +iz/Nt(z)dFtJ: (0,1). (3.10)
0

So we can rewrite expression (3.8) as

AL Lo(5) = gD = L(0) | 5N (2) ; N (0)

z

. d
+aly () + N, (2) — zéth (2).
(3.11)
By the vector-row N,(z) = [C.(2); D.(2)], similar to [3], construct the L. de

Branges space B(C, D) and specify the L. de Branges transform from L%J (F.)
on B(C, D) by the formula

!
G(:) By (1) = 5 [ fdFuy (2). (3.12)
0

A function G(z) € B(C, D) is said to be the dual to F(z) € B(A, B) if
F(z) =B (fi), G(2)=Bn(fi). (3.13)
Using the notation (3.11) and (3.13), we obtain

B (ig ft> L VR G(O)+uF(z)+uG(z)—izdiZF(z). (3.14)

z z

Thus the Lie algebra (2.2) of linear operators § A1, Ay } (2.1) after the L. de Branges
transform By, changes into the following operator system

Aup(z) = TR0,
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AQF(Z) _ alF(z)+ BG(z) — aF(0) — ﬁG(O)Jr

z

+ul(z) +vG(z) — zzdiF(z) (3.15)

z

where the numbers «, 3, u, v are given by (3.7) and the functions F'(2) and G(z)
are equal to(3.13).

Observation 3.1. The dual function G(2) (3.13) does not necessarily belong
to the space B(A, B), nevertheless, under such selection of o, 3, p, v (3.7), the
eTpPressions

aF(2) + BG(z) — aF(0) — BG(0)

already belong to B(A, B). Note that the numbers o, 3, u, v do not depend on

HF () + vG(z);

Specify now the operator ¢ from B(A, B) into E? using the formula

PF(2) = (F(2), e1(2)) (1,0) + (F(2), e2(2)) (0, 1) (3.16)
where
éx(2) = Bl*z(z); () = 212 ), (3.17)

Theorem 3.1. Let A be the simple colligation of Lie algebra (1.8), (1.9),
besides, the spectrum of operator A is concentrated al zero and the characteristic

function S{(N\) =T — i (Ay — M)~ o*J is given by

&(A)/lexp{”th}

0

besides, the measure dF, is absolutely continuous, dI, = aydx, ay > 0, a, is a
matriz-function in E? and J is given by (2.1) [3]. And, moreover, a selfadjoint
operator o and operators ¥* are given in E* such that v+ — (v5)" = iJ. Then the
colligation A (1.8) is unitary equivalent to the functional model

A= ({An Ao} sBA, By, B {0, 0% (" 77 }) (3.18)
where 1211, As are given by (3.15); the operator ¢ equals (3.16); the numbers a, 3,

w, v € C are given by the formulas (3.7); G(z) is the dual function of F(z), and,
finally, {ek(z)}f are given by (3.17).
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4. FUNCTIONAL MODELS ON RIEMANN SURFACE

I. Let r = 2n be even, and let a, be given by
W = iy Xl (4.1)

where [, is the unit operator in K™ and &, is such non-negative matrix (2 x 2) that
tra, — n L. It is obvious that the Hilbert space L%ml (Fy) [1, 3] is formed by the
vector-functions f(z) = (f1(x),. .., fn(z)) such that

l

/fk(ﬂﬂ)&zf;;(x)dx < 0

0

for all £ (1 > k > n) where fi(z) € E? for every z € [0,1].
Suppose that the operators oy = .J, 0y = o, v* are given by

or=J=0,®Jy;, c=6®Jy;, Y =7xJn (4.2)
where & is a selfadjoint operator in E™ and 7 is such operator in E™ that

¥ =) =il (4.3)
Realize the L. de Branges transform By, [3] of each component fi(z) € L%,z (azdz)

of the vector-function f(z) from L2, (F,) assuming that a, is given by (4.1),

!
Fula) ™ 81 () = 5 [ filw)ia L (2)do (4.4)
0

where L. (z) is the solution of the integral equation (3.9) by the measure a,dx.
As a result, we obtain the Hilbert space B"(A, B) = E"™ @ B(A, B) which is
formed by the vector-functions F'(z) = (Fi(2), ..., F,.(2)),

BY(A, B) = {F(2) = (Fi(),..., Fa(2)) : Fu(2) € B, B) (1 <k <m)}, (45)

besides, the scalar product in B"(A, B) is given by

M=

(F(2), G(2))Br(a.B) = D _ (Fi(2), Gr(2))5(a, ) - (4.6)

o~
Il

1
Taking into account the form of a, (4.1) and J (4.2), we obtain that the L. de

Branges transform By, [3] translates the triangular model A; (2.1) into the shift
operator

@Jj:éw@mem;vm@egwABy (4.7)
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To obtain the model representation fig (2.1), use the formula
o o -1 1 o -1 5
A (I—zA’{) @*—{(I—zA’{) LP*UJ}+
z

o -1 o o o —2 o
+- (I—zA’{) ot (v T4z AL (I—zA’{) o (4.8)

and the fact that L% () = ( -z A > . Taking into account the con-

*
1
crete form of the operators J, o, v (4.2), we obtain

oJ=60hL, () J=4cL. (4.9)

Therefore, after the L. de Branges transform (2.24), the operator A, (2.1) is given
by

(AQF) (2) = %(F(z) — F(0))6 + F(2)7 — izdile(z). (4.10)

Thus

AF() = T{F() 6 +29) — F(2) (5 + A} + iz (2) (4.11)

dz

where F(z) (6 4 27)|, = F(0)o.
Now define the colligation of Lie algebra

A-— ({Ahﬁz} L B(A, B);¢7E2";J7a77+77*)7 (4.12)

besides, J, o, ¥ are given by (4.2), v~ = 4T, and the operator ¢ on each compo-
nent of Fy(z) acts in a standard way [1, 3].

Theorem 4.1. Let A (1.8) be the simple colligation of Lie algebra such that
dimE =2n, 0y = J, 01 = 0, ¥ are given by (4.2), spectrum of the operator Ay lies
at zero, and the characteristic function of operator Ay is such that the measure dF,
in multiplicative representation of S1(\) (see Theorem 3.1) is absolutely continuous,
dF, = aydx and a, equals (4.1). Then the colligation A is unstarily equivalent to
the simple part of the functional model A (4.12) where the operators Ay and Ay are
given by the formulas (4.7) and (4.11), respectively.

II. Consider the linear bundle

5+z7y:a+z7yR—%zIn (4.13)

¥+

Do | —

in view of (4.3) where 4 = 4% =
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Denote by h(z,w) the eigenvectors of selfadjoint (when z € R) bundle ¢+ 29k,
W(P) (& + 27x) = wh(P) (4.14)
where P = (z,w) belongs to the algebraic curve
Q={P=(2w) €C?:Q(z,w) =0} (4.15)
specified by the polynomial
Q(z,w) =det (6 + 29r —wTy). (4.16)

Suppose that the curve @ (4.15) is nonsingular [4, 9], then 2z = 2(P) and w = w(P)
are “l-valued” and, respectively, “n-valued” functions on @ (I = rankyg). We
normalize the rational function h(P) (4.14) using the condition h,, (P) = 1 where
by, (P) is the nth component of the vector h(P).

It is easy to see [4] that the quantity of poles, taking into account the multiplic-
ity, of vector-function h(P), equals N = g +n — 1 where g is the type of Riemann
surface Q (4.15). Specify on Q analogues of halfplanes CL and R,

Qi = {P=(z,w) €Q: +Imz(P) >0}; Q°=0Q.. (4.17)
Expand every function F(z) € B"(A, B) by the basis h (P) (z € R),

n

F(z) =3 g(Po) |7 (Pl g b (Pe)
k=1

where P, = (z,w"(z)) € Q and w"(z) are different roots of the polynomial
Qz,w) = 0 (4.16); g(Pr) = (F(2),h(Pr))g. (1 < k < n). It is obvious that
wk(P), along with h (Py,), g (Py), represents branches of “n-valued” algebraic func-
tions w(P), h(P), g(P). Therefore the last equality signifies that

F(P) = F(2(P)) = g(P)|h(P)l g2 h(P). (4.18)

And since the basis h(P) in £™ is constant, the vector-function F'(P) is defined by
the scalar component g(P). The function ¢g(P) is a meromorphic function on Q
(4.15), the poles of which may lay only in the poles of h(P) (4.14), and their joint
multiplicity could not exceed N =g+ n — 1.

Define [3] the L. de Branges space Bo(A, B, h) on the Riemann surface Q (4.15).
It is easy to see that the operator A; (4.7) in L. de Branges space Bp(A, B, h) acts
in the following way:

(Aig) (P) =~ (P)Zz;)b) (ii)j[),og) ) (4.19)

where ¢ (P, Py) is given by
¢ (P, Po) = (h(Po), A(P)) g R(P)l| =, (4.20)
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besides, Py = (0,w) € Q. )
Now study how the operator Ay (4.11) acts in the space Bp(A, B, h). (4.11),
(4.13) imply

(42F) (P) = = {8 [wP) + 527 - WP~

—g () {w (Po) + %z (Po)} IR (Po) e h(Po)} -

~is(P) { Zo(P) - INPIEH(P) = 20(P) WP g2 Pl P+

+P)- [P h(P)

Therefore we arrive at the following structure of the operator A in L. de Branges
space Bo(A, B, h):

(29) (P) =~y {P) [P + 3| -

—0 (P B g () [0 () + 52 ()] | = i) o(P) - ix(PPIg(P) (421

where the function b(P) equals

P = (HPLIPY) TP~ 2P P (422

En

Now construct the colligation of Lie algebra
A= ({flhflz} i Bo(A, B, h); ¢, E*; J, 0, «yt«y*) (4.23)

where the operators A; and A, are given by (4.19), (4.21); the functions ¢ (P, Py)
and b(P) are given by the formulas (4.20) and (4.22); the operators J, o, vT are
represented by (4.2), ¥~ = vT; and the operator ¢ acts on the function g(P) in the
following way:

2
2a(P) = (a(P),en(=(P))yam.m) - €h
k=1

besides, ey (z) are given by

71—&2 1 —az

eilz) = ———B"(2); ez)=——(1-A"(2)); er=(L0); ex=(0,1).
(4.24)
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Theorem 4.2. Let there be given such simple colligation A (1.8) of Lie al-
gebra that dimE = 2n, o1 = J, 0y = o, v1 is given by (4.2), spectrum of Ay is
concentrated at zero, and the characteristic function of operator Ay is such that
the measure dF, in the multiplicative representation of S1(A) (see Theorem 3.1) is
absolutely continuous, dF, = a,dz, besides, a, equals (4.1). Then the colligation
A (1.8) is unitarily equivalent to the simple part of functional model A (4.23).

ITI. Consider the following example. Let dim £ = 6, the operators ¢ and 7 in
E? be equal

1 1
-~ 0 0 —— 0 a
k 2
=1 0 1 b d=1 0 -5 0 | (4.25)
1
0 b ——2 o _r
2

where a > 0; k € (0,1); b= /2 (% — 1). In this case the curve Q is given by the
polynomial

Ea®2 (1 —w) = (1 +w) (1 — k*w?). (4.26)
Assuming that £ = kaA(1 — w), we obtain the Legendre algebraic curve

€ = (1-w?) (1 -k?). (4.27)

The two-sheeted Riemann surface (4.27) has the genus ¢ = 1 and is formed by the
“crosswise” gluing of two w planes along the cut | —oc, —H U[-1,]uU (%7 oo).
The imaginary part

1
kalmz — Im\/ﬂ (1 — k2w?)
1—w

changes its sign on the cuts, therefore @7 and Q™ (4.17) are sheets of the Riemann
surface (4.15) and Q" = Q™ coincides with the mentioned cuts. On surface (4.27)
there exists the Abelian differential of genus one [9],
d
5= = . (4.28)
V(I —w?) (1 — k2w?)

Using the elliptic integral

P
u(P) = /w (P=(\w)€Q), (4.29)
Py
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specify the conform map [9] between (4.27) and the rectangle
I'={u € C: Reu € [-2k, 2k];Imu € [k, k|} (4.30)

where Py = (0, 1) and the numbers 4k and 2:k’ are the periods of the closed differ-
ential w (4.28). Inversion of the elliptic integral (4.29) results in the uniformization
of curve (4.27) in terms of the elliptic Jacobi functions [9]. Therefore for (4.26) we
obtain
sn'u
] = . 4.31

() = s lu) = s (4.31)
The eigenvectors h(P) = h(u) of linear bundle h(P) (¢ + 24r) = wh(P) are given
by

kaz b sn’u b
h(P) = — 1|5 hlu) = 1. (4.32
(P) 1+ kw’ w—1" }7 (u) |:(1—SHU)(1+/€SHU)7SHU,—17 } eI

It is easy to show that the function ¢ (P, Py) (4.20) equals 1, ¢ (P, Py) = 1. The
function b(P) (4.22) is given by

2 2622
b(P) = [|(P)|| m {(w - 2 (1k+ LN } |

Thus in this case the functional model of Lie algebra is

p g(P)—g(P).
<A19) (P)ZWZ(PSY

(4.33)

oP) [lP) 4 3212 =0 () [0 () 4 ()

(Azg) (P) = 2(P) — 2 (D)) - 43y

~i2(P) L o(P) — i=(P)H(P)g(P).

z

Thus,

1) for the Lie algebra {A1, Ao} ([42, A1] = i44), the triangular model (2.1) in
the space of functions L%l (F,) is constructed (see Theorem 2.2);

2) functional model (3.15) for the studied in this paper Lie algebra {41, Ao}
in spaces of entire L. de Branges functions is determined (Theorem 3.1);

3) model realization of the given Lie algebra on Riemann surface is presented
(Theorem 4.1 and Theorem 4.2).
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SYMMETRIES OF THE HERGLOTZ VARIATIONAL PRINCIPLE
IN THE CASE OF ONE INDEPENDENT VARIABLE!

BOGDANA A. GEORGIEVA

This paper provides a method for calculating the symmetry groups of the functional
defined by the generalized variational principle of Herglotz in the case of one indepen-
dent variable. A variational description is found for several named ordinary differential
equations. Variational symmetry groups are calculated for a Liouville’s equation and
a Lane-Emden equation.

Keywords: variational symmeties, Herglotz variational principle, invariant functional,
Herglotz

2000 MSC: 49

1. INTRODUCTION

It is well known that a variational description of a differential equation or
a system of such equations is very desirable both from mathematical and from
physical point of view. The classical variational principle, although far-reaching
and very powerful, can not describe many important differential equations. In 1930
Gustav Herglotz proposed a generalized variational principle with one independent
variable, which generalizes the classical variational principle by defining the func-
tional, whose extrema are sought, by a certain differential equation, see Herglotz
[7] and Guenther et al. [5]. Herglotz variational principle contains the classical
variational principle as a special case. His original idea was published in 1979 in

1This research was supported in part by grant 288/09 from the Science Research Fund of Sofia
University, Sofia, Bulgaria.
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his collected works, Herglotz [6] and [8]. This variational principle can describe
not only all physical processes with one independent variable which the classical
variational principle can, but also many others for which the classical variational
principle is not applicable. For example, it can give a variational description of
nonconservative processes even when the Lagrangian is not dependent on time,
something which can not be done with the classical variational principle. It is also
related to contact transformations.

The generalized variational principle of Herglotz defines the functional z, whose
extrema are sought, by the differential equation

% = L(t,(0), d”;it)7z) (1.1)

where ¢ is the independent variable, and z(t) = (z1(¢),...,z,(t)) stands for the
argument functions. In order for the equation (1.1) to define a functional z = z[z]
of z(t) equation (1.1) must be solved with the same fixed initial condition z(0) for
all argument functions x(¢), and the solution z(¢) must be evaluated at the same
fixed final time ¢ = T for all argument functions z(¢).

The equations whose solutions produce the extrema of this functional are

oL d L 8L AL

oL 4oL oLOL ., 12
bzr  HDan B2 0 7 1.2

PIRIRI

where i, denotes day/dt. Herglotz called them the generalized Fuler-Lagrange
equations. See Guenther et al. [5] for a derivation of this system. The solutions
of these equations, when written in terms of the dependent variables z; and the
associated momenta p, = 9L/, determine a family of contact transformations.
See Guenther et al. [5].

For equations which can be obtained from Herglotz variational principle as
(1.2) one can systematically derive conserved quantities, as shown in Georgieva et
al. [2], by applying the first Noether-type theorem formulated and proven in the
same paper. For convenience of the reader we state this result here. Consider the
one-parameter group of transformations

F=d(t,,€), (13)
Tk :¢k(t7$75)7 k:17"'7n
t

where ¢ is the parameter, ¢(¢,2,0) =, and ¢y(t,2,0) = xy, with infinitesimal

generator
7] g
t,x)— t,x)—
v T(7x)at+£k(7x)axk
where i "
_ a9 ok
7(t, x) =l and &(t, x) = |0 (1.4)
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Throughout this paper we assume that the summation convention on repeated
indices holds and that - denotes differentiation with respect to t.

Theorem 1.1 (First Noether-type theorem for the generalized variational
principle). If the functional z = z[xz(t)] defined by the differential equation

2 = L(t,z,2,2) is invariant under the one-parameler group of transformations
(1.3) then the quantity
L AL oL oL
— [ —db (L —d —) — 1.5
eXp( /0 92 )( S a¢k5k> (15)

is conserved along the solutions of the generalized Fuler-Lagrange equations (1.2).

The present paper shows how a group of transformations can be found under
which the functional of a given Herglotz variational principle is invariant. The
importance of this problem is that once such a group of symmetries is found,
conserved quantities for the corresponding system of generalized Euler-Lagrange
equations can be written down directly, applying the first Noether-type theorem.
The symmetry group generators are obtained from a system of first order partial
differential equations as shown in section 3. In section 2 a variational description
is found for several named ordinary differential equations. Several examples of
calculating variational symmetry groups, and from them the corresponding first
integrals, are given in section 4.

The interested reader can find a generalization of the Herglotz variational prin-
ciple to one with several independent variables in Georgieva et al. [3]. There a the-
orem of Noether-type is formulated and proven, for the case of finite-dimensional
symmetry groups of the functional, and applications are given. That paper also
contains a proposition characterizing the variational symmetry groups of differential
equations describing physical fields.

Historically, the question of calculating the symmetries of a given Lagrangian
functional was answered by W. Killing [9] in 1892 in the context of describing the
motions of a n-dimensional manifold of fundamental form given by

k.l

1
Lo sk

29kl$ z
(see Eisenhart [1] and Logan [10]). In the case of a classical variational functional,
some authors refer to the system of partial differential equations for the unknown
symmetry group generators as the generalized Killing equations. For the derivation

of these equations in the case of the classical variational principle, see Logan [10].

2. VARIATIONAL DESCRIPTION VIA HERGLOTZ VARIATTIONAL
PRINCIPLE

In this section we use the generalized variational principle of Herglotz to give
a variational description of several named ordinary differential equations.
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First we show that the class of ordinary differential equations
&+ f@)@? + gt)d + h(z) =0 (2.1)

for the function z = z(¢) can be given a variational description via the Herglotz
variational principle, by letting L in the defining equation (1.1) be

b= %gﬁ - (2f(@)2 + g(t))z — Ul(z) (2.2)

where U(z) is any solution of the ODE

au
@) | 2 f @)U () = hia).
dz
Indeed,
oL oL oLoL
oz  dt 0 0z H¢
. du df d /. . .
S 295%2 - E(x —2fz) —(2fz+g)(@—2fz)

U |
--= —¢+2f(§¢2 — D P — g — U) —9fi? + 4f% % — ig+2f g2
X
U
= —&— fi? — gi — 2fU — = = —(&+ fi* + gz + h).

Equation (2.1) contains several well known named equations as special cases:
a. When h(z) = ka, with k = constant, f(z) =0 and g(t) = a = constant, (2.1)
is the equation of the damped harmonic oscillator

i+ ad + kx = 0. (2.3)

The corresponding Lagrangian is

L= %(12 — k2?) — az. (2.4)

b. In the special case when h(z) = kz, k = constant and f(z) = 0, equation (2.1)
becomes the Lienard’s equation

Z+gt)d+ kx =0. (2.5)
The corresponding Lagrangian is
1
L= 5(952 — kz?) — g(t)=. (2.6)

c. In the case when h(z) = 2™ , f(z) =0 and g(t) = 2/t, equation (2.1) becomes
the Lane-Emden equation

2
4 Zéta" =0, n# -l (2.7)

116 Ann. Sofia Unidv., Fac. Math and Inf., 100, 2010, 113—-122.



In that case the Lagrangian is

l .5 xn+1

L—=—-2*-
2 n—+1

_ % (2.8)

d. As a final example consider the special case when h(z) = 0. Then equation
(2.1) is the Liouville’s equation

&+ flz)i? +gt)E=0. (2.9)
The Lagrangian for it is
f = %gﬁ — (2f(2)% + g(t)) . (2.10)

3. THE FUNDAMENTAL INVARIANCE IDENTITY
AND THE GENERALIZED KILLING EQUATIONS

Let the functional z be defined by the ordinary differential equation (1.1).
Consider the one-parameter group of transformations (1.3) with the coefficients of
its generator given in (1.4).

Lemma 3.1. The following identity holds

Fal g @)
provided Ty, and 1 are defined by the transformation
t=t+7(t,z)e
Ty =z + (L, x) e | (3.2)
corresponding to (1.3) and (1.4).
Proof. We have
EE T e Fa=E G o9
Setting € = 0 yields B
dd% . Shiy, = . (3.4)
Differentiate (3.3) with respect to £ and expand both sides
dox, . dox, dxpz,dot . d ot ot ot N\ ddzxy
o T @ Ew t E e T w amt E a6
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We set £ = 0 in this equation, substitute in it (3.4) and use the following relations:

de Ot 5:07 ot ’ de 8xh 5:07 8xh ’ de Ot 5:07 ot ’ de 8xh 5:07 8xh
AR TR
Otle=o Oxp le=0

Then equation (3.5) becomes

Pk | Ok ,~<&+9_T~) d dg
ot Bzt T T\t Tz ) T de &

5:0.

Observe that the total derivatives of & and 7, with respect to ¢, appear in the last
equation. Solving for the last term in it yields the statement of the lemma. O

The following theorem gives a method for finding symmetry groups of the
Herglotz functional.

Theorem 3.2. The coefficients 7(t, x) and (L, x) of the infinitesimal genera-
tor of a one-parameter group of transformations which preserve the value of the
Junctional z = z[z(t)], defined by the differential equation (1.1), are solutions of the
system of partial differential equations obtained from the identity

oL aL oL 0& 0& . . or . . Or ar oOr .
ey Ty D (OSk Ok s s VL[ T Y =0 (3.6
at”axk&“*a@(at*axﬁj kD ’E’“xﬂaxj)* (aﬁaxﬁﬂ) L

by equating to zero the coefficients of the powers of z and &y and of products of
such powers.

In analogy with the classical case, we call this identity the fundamental inva-
riance identity and the resulting partial differential equations for the coefficients
of the infinitesimal generator of the variational symmetry group the generalized
Killing equations.

Proof. Apply the transformation (3.2)
t=t+7(t,z)e
Ty =z +&k(t ) e,
corresponding to (1.3) and (1.4), to the differential equation (1.1). The result is

the defining equation

dz . dz(t) _

T L<t7$®7 R Z)
for the transformed functional z = z[z(?)]. Since dz/dt = (dz/dt) (dt/dt), we have
da(t)

- L(E@(E)? 775)% (3.7)

dz
dt
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Differentiate (3.7) with respect to £ and set £ = 0 to obtain

d sdz d rdz dL dt d ¢dt
gl e — e e g — s L—{— ; 3.8
de (dt) =0 dt (dE) =0 de le=0 dt le=0 N de (dt) =0 ( )
From ¢(t, z,0) =t it follows that
dt
il
dt le=0

Similarly, we have

d ¢dt dysd

& (@)oo~ a(Fot=9)
Denote by ¢ = {(t) the total variation of the functional z = z[z] produced by the
transformation (3.2), i.e.

d
= ET(L T).

d
()= 2 olwel|
Thus, equation (3.8) becomes
e 4k i
dt  dele=o dt’

Expanding the derivative dL/de and setting £ = 0, we obtain

oL dr
— E—. 3.9
* 0z ¢t dt (3.9)

d¢ 9L 0L oL d
o _ gk +—£k+——(

d:fk)
= T
dt ot 8xk 8xk de

dt

e=

We now use the assertion of lemma 3.1 and insert expression (3.1) in equation (3.9)
to obtain the linear differential equation

E:ETjLa—xk&jLa—gbk E“FEC (3.10)

¢ oL oL oL ¢d&, . dr dr 9L
(G o) +L

for the variation ¢ of the functional z. For clarity we denote by A(s) the expression

oL oL oL rd

dr dr
o £
Js Oxy, )

T ds ds’

The solution {(¢) of (3.10) is given by

eXp(—/Ot g—fd@)C—C(O)/Otexp<—/os %d@)A(s) ds.

Notice that {(0) = 0. Indeed, as explained earlier, in order to have a well-defined
functional 2z of z(t), we must evaluate the solution z(t) of the equation (1.1) with
the same fixed initial condition z(0), independently of the function z(¢). Then z(0)
is independent of . Hence, the variation of z evaluated at ¢t = 0 is zero.
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Since by hypothesis the one-parameter group of transformations (1.3) leaves
the functional z = z[z(t)] stationary, we have ((¢) = 0. Thus, it follows that

/Otexp (—/OS g—fcw)A(s) ds = 0. (3.11)

Taking in consideration the fact that equation (3.11) is valid for all values of ¢, and
that the exponent is always positive, we obtain the identity A(¢) = 0 which, after
writing the total derivatives explicitly, becomes (3.6).

Equation (3.6) is an identity in (¢, zy) for arbitrary directional arguments 2.
Therefore, we can regard this identity as a set of partial differential equations in the
unknowns 7 and & . Due to the arbitrariness of 5 and the fact that z depends on
Zy, we can further reduce (3.6) to obtain a system of first order partial differential
equations in 7 and &, by equating to zero the coefficients of the powers of i, the
powers of z, as well as the coefficients of products of such powers. The solution
of this system, if it exists, determines a group of transformations under which the
functional defined by equation (1.1) is invariant. O

4. APPLICATIONS

In this section we calculate variational symmetries of several ordinary differen-
tial equations and use the first Noether-type theorem 1.1 to find the corresponding
conserved quantities.

We start with the equation for the damped harmonic oscillator &+ az+kz = 0,
where a and k are constants. The Lagrangian is L = %(952 — kxz) —az. The
fundamental invariance identity (3.6) of theorem 3.2 assumes the form

—/m§+¢(% + %55 —ig—z —#%) (%xz - gxz - az) (g—z + %9’5) —0.

The system of partial differential equations for 7 and £ is obtained by equating to
zero the coefficients in front of z, 2z, and powers of . The solution of this system

is 7 = constant and £ = 0. Without loss of generality, we take 7 = 1. Applying the
first Noether-type theorem 1.1 we obtain the corresponding conserved quantity

Q= —edt (% (gb2 e ka) + az).

It will be nice to express the conserved quantity in terms of x and & only, and for

this we need to express z in terms of x and #. The reader can check that z = %xx
satisfies the defining equation for z, namely z = %(952 — kxz) — az , with z being a

solution of the damped harmonic oscillator. Thus, the conserved quantity is

& (552 + azd + kxz) = constant. (4.1)
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This method produces no non-trivial variational symmetries of the Lienard’s
equation (2.5), except in the case when ¢(t) = constant, which is the case of the
damped harmonic oscillator presented above.

As another application we calculate a variational symmetry group of the Liou-
ville’s equation # + f(z)#? 4 g(t) = 0 with a specific choice of the coefficient

functions, namely
h c

- 1) =
J@) = e 9= 3
where a,b, ¢, h, and k are arbitrary constants (if £ = 0 then « and b must be non-
zero). As noted in section 1, this equation can be given a variational description via
the Herglotz variational principle if the functional z is defined by the differential
equation

(4.2)

f= %gﬂ — (2f(2) + g(t))=.

The fundamental invariance identity (3.6) takes the form

dg df . . o¢ 0. Ot ,0T
~ 2 B et (x_2f(x)z)<at T 9" F T ax)

+(%5g2 —2f(a)iz — g(t)?) (g—z + %i) —0.

With the specific choices (4.2) for f(z) and g¢(t) the system of partial differential
equations obtained from this identity after equating to zero the proper coefficients
has the solutions £ = kx+a and 7 = 2kt +b. Thus, the variational symmetry of
the Liouville’s equation produced by this method is

z=x+ (kxr+a)e, t=t+ (2kt +b)e. (4.3)

The corresponding conserved quantity of the Liouville’s equation is obtained through
an application of theorem 1.1, and is
j:Z

)c/zk (ko +a) = 2kt +0)5 = 2+ )2). (44)

Q- (kx(t) +a)2h/’f<2kt+b
- \kz(0) +a b
As a last application, we calculate a variational symmetry for the equation
o 2, 1
In this case the functional z is defined by the equation

. 1o, n 1 2
TRt e Ty
and the fundamental invariance identity (3.6) assumes the form
o¢ o0&, ot 87’)

| |
0" g7 — '(— he PRI bt
2T B Tt e T a
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(g - B )

The system of PDE’s for the coefficients 7(¢,z) and £(¢,z) of the infinitesimal
generator of the variational symmetry group has the solution 7 = 2kt & = kux,
where k is an arbitrary constant. The corresponding conserved quantity is

Q= —kz—z ((gﬂ . xiz)t — it 4z>. (4.5)
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Some versions of the notion of operative space with storage operation were used previous-
ly [10, 11] for uniform treatment of both theories of operative and combinatory spaces
[2, 7]. In this paper we show that the scope of this notion is essentially greater than
that considered in [10]. Formally, we describe a general categorical model of operative
spaces with storage operation and specify some particular cases of this model, which
cannot be directly treated by operative and combinatory spaces. On the other hand,
these examples arise naturally in an attempt to comprise in the sense of algebraic
recursion theory some important kinds of nondeterministic computing notions like that
of quantum (and more generally reversible) one, which were not treated before in the
last theory.

Keywords: Algebraic recursion theory, combinatory space, operative space, coherence
space

2000 MSC: 03D75

1. INTRODUCTION

Combinatory spaces of Skordev [6, 7] were the first system of algebraic recursion
theory, a branch of abstract recursion theory based on a specific algebraic treatment
of least fixed points. Later on, the same approach was employed for other algebraic
systems by L. Ivanov and the present author, in a search for the best such system for
which the approach in question works. Among these systems, the operative spaces
of Ivanov [2] are the most remarkable. They are natural and simple objects with a
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huge variety of models, being in a sense very near to practically arising ideas and
universes for computation. There is, however, a practically important operation
which can not be directly treated by operative spaces; that is the operation of
encoding a pair of data objects into one such object. This operation can be viewed
as a computable retraction of the set X of data objects on its cartesian square
X x X, and in this sense the notion of operative space does not directly handle
the cartesian product x. That is why the notions of computability like that of
Moschovakis are difficult to comprise immediately by operative spaces. The notion
of combinatory space, however, can handle in this sense the cartesian product,
while, on the other hand, it does not work well (or does not work at all) with more
general kinds of products, and in particular with the tensor product of Hilbert
spaces which has to be used, instead, for the corresponding treatment of quantum
computing. In the present paper we show how the notion of combinatory space
can be modified (or rather generalized) in order to avoid this difficulty. For that
purpose we use the categorical language, and thus indicate also that there is a large
variety of natural models for the notion of storage operation in an operative space
besides those given by the operation of translation in an iterative one, as well as
by other inductively definable operations of similar kind.

In this way we propose a revision of the notion of combinatory space, replacing
it by another one called regular OSS below. The last notion almost coincides
with the notion of operative space with strong storage operation from [11] and is a
special case of that of intensional combinatory space from [10]. It avoids some basic
algebraic disadvantages of the notion of combinatory space like using constants for
data objects, and the projection objects I and R, which obstructs the treatment
of reversible computing notions, retaining in the same time its capacity to express
various possible forms of (tensor) product operations.

2. OPERATIVE SPACES AND STORAGE OPERATIONS

We shall remind the basic notions of operative space and storage operation in
such spaces. Detailed information about these notions and their role in algebraic
recursion theory is available in the book [2] and the papers [9, 10]. By protoring we
shall mean a set R with two binary operations and three constants I, T, I such
that:

1) R is a monoid with unit I w.r.t. one of the operations called multiplication
and denoted by juxtaposition;

2) the other operation denoted by [—,—] satisfies the identities x[p,¢] =
[xe, x¥], [, ¥]T" = ¢, and [, Y|F = ¢ for all elements ¢, ¢, x of R.

A storage operation in a protoring R is a quadruple ($, D, P, Q) consisting
of a unary operation $ and three constants D, P, Q in R such that the following
equalities hold for all ¢, € R:
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S(p) = $(2)8(¥); (2.1)

$([, ¥]) = [8(0), $()] D; (2.2)
5(3() = Q8(p)P; (2.3)
[T$(I), F$(1)|D = D$(I). (2.4)

Below we shall often use the shorthand ¢ for $(¢). A storage operation in a
protoring R will be called regular, iff it satisfies the equalities

$(p)T =Ty, $(p)F = F$(p) (2.5)

for all ¢ € R.

An operative space (shortly OS) is a partially ordered protoring, i.e. protoring
with a partial order < in the set of its elements, such that the basic binary
operations of this algebra are increasing w.r.t. < in both arguments. Similarly,
by operative space with storage (OSS) we mean operative space in which a storage
operation (3, D, P, Q) with increasing first component $ is given, and when the last
operation is regular we shall say that the OSS in question is regular.

An OSS F is called iterative, iff for every ¢ € F the inequality [I,£]e < £ has
least solution I(¢) w.r.t. £ in F, such that for every a € F the element al(y) is
the least solution of [a, £]¢ < &, and the equality

$(I(¢)) = I(D$(¥))
holds for every ¢ € JF. The iterative regular OSS are special case of iterative
intensional combinatory spaces from [10]. Hence the results of [10] imply that
the basic theorems of algebraic recursion theory (inductive completeness and the
normal form theorem) hold in all iterative regular OSS F in which the following
condition is fulfilled:

(S7) For all elements a,3,p of F, s.t. the inequalities ¥ < [I,a$(9)]5 and ¢ <
[1, %] imply [1,9]¢ < [I,o$([1,9]p)] for all ¥ € F, we have the inequality
I(¢) < [1,a8(I(«))] 5.

The last condition is rather weak, and is fulfilled in all cases in which the existence
of the operation I can be established by the usual methods. (The normal form
theorem holds even without (S7)).

Iterative operative spaces of Ivanov [2] provide a general and natural model
for iterative regular OSS, the operation $ being interpreted as translation. Weakly
iterative combinatory spaces ([11]) in which (L, R) = I are also a special case of
iterative regular OSS.
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3. CATEGORICAL MODELS OF REGULAR 0SS

As mentioned in [9], protorings can be described categorically as follows. Con-
sider a category C, an object X of C for which the coproduct X 4+ X exists, and
a retraction r : X — X 4+ X with section s : X + X — X in C. Then we have
a protoring R(C, X, r) whose elements are the C-morphisms ¢ : X — X with the
composition in C as multiplication, the identity 1x of X in C as unit, and the
second binary operation and the constants T', I defined by [p, ¢¥] = [p, Y]+ o7,
T = solyand F' = s ol respectively, where Iy and Iy are the canonical injections
X — X + X of the last sum and [¢,¢]+ : X + X — X is the unique arrow in C
such that [¢, ¥]1 o Iy = ¢ and [p, ¢¥]1 o Iy = 4. Conversely, every protoring R can
be regarded as one-object category with the multiplication in R as composition law
and the unit I as the identity arrow; the Karoubi envelope K of the last category
consists of all elements £ € R such that €2 = ¢ as objects, and all elements ¢ € R
such that npe = ¢ as arrows ¢ : £ — 5. The category K has binary coproducts
e+n = [Te, F'y] with canonical injections Ts : ¢ — [I'e, F'n] and F'p:n — [Te, Fiy].
In particular, we have a retraction [T, F] : I — I + I in the last category with
section [T, F|; and the protoring R(K, I, [T, F]) coincides with the original one R.
Thus all protorings are of the form R(C, X, r); and working with categories enriched
over the category of posets we get a similar description of operative spaces.

Below we shall extend this observation to obtain a large class of models for
regular OSS. Let C be a category with binary coproducts. We denote by Iy =
1o(Xo, X1) and 17 = I;(Xo, Xy) the canonical injections I; : X; — Xo + X3 of the
coproduct Xy + X5 in C; they are natural in X, X1 € C. We shall use to omit the
arguments Xo, X1 in Iy and Iy, as well as in all natural transformations occurring
below; this can not create confusion since these arguments can be obviously restored
in every expression involving such transformations in order to make this expression
meaningful. Similarly, we shall write 1x for the identity arrow of an object X € C,
often omitting the subscript X. For every two arrows f; : X; — X in C we denote
by [fo, f1]+ the unique arrow f : Xo + Xy — X for which f o I; = f; for both
¢+ = 0,1. Suppose there are a bi-endofunctor ® and two, natural in XY, Z € C,
transformations

a4y  (XOY)®Z > X® (Y ®Z) (3.1)

and
de XY +2) = XY +X®7Z

in C such that

i) ag is a retraction with section ag : X ® (Y ® Z) — (X ®Y)® Z also natural
in X,Y, Z;

ii) the arrow

de=1®I 1L XY+ X®Z-X® (Y +2)
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is a retraction with section dg), i.e. dg o de = 1.
Then given an object X of C and two retractions ry : X — X 4+ X and
g 1 X — X ® X with sections sy and sg respectively, we have the following:

Proposition 1. There is a storage operation ($, D, P, Q) in the protoring
R(C, X, ry) defined by

$p) = sgpo(l®yp)org
D = si0(sg+tsglodgo(l®ry)org
P = sgo(sg®l)oago(l®rg)org
Q@ = seo(l®sg)oago(re®l)org.

Proof. A direct calculation. Here are the details for the identities (2.2)—(2.4),
the identity (2.1) being obvious. For (2.2):

$([, ¥1)

1
N o(1® (et 8)o(l®r)ores

) odgo(l®p+1@¢)odgo(1®ry)org
INyo[l®ly,1® 1]+
o(rgoposg+reoosglodso(l®ry)org
spo[1®1,1”1]; 0(rg o +rgot)o(se+ sp)
odgo(l1®7ry)org
spo[(1®1)orgop, (1®1)org o]y ory oD

[$0 0Tg © P, 86 0Tg 0|0 D

A~

[¢, ] o D;

sgo(l®sgo(l®yp)org)org
sp0(l®sg)o(1®(1®y))o(l®rg)ore
sp0(1®sg)oago((1®1)®¢))oago(l®rg)org
s 0(l®sg)oago((rgosg)®yp))oago(l®rg)ore
$0(1®sg)oago(re®1)o(1®yp)o(se®1)
cago(l®rg)org

Qosgo(l®plorgolP

Q%(p)P;
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for (2.4):

[TS(T), F$(D]D — [s1 01088 07s,s5: 011085 07g|s 010D
= [syolposgorg,syoliosgorgly o(se + se)
odgo(l®ry)org
= [syo0lposg, s 0liosgliodgo(l1®r.)org
= siollo, i+ o(sg +sg)odgo(l1®ry)org
= D=Dosgorg = D). O

Let C be a category with a bi-endofunctor ® : C?> — C and associativity
transformation (3.1) which is a natural isomorphism with inverse ag, and with a
unit w.r.t. ®, i.e. an object 1 of C such that the isomorphisms X ® 1>~ X 21 X
hold naturally in X € C. We shall call such categories premonoidal (the usual
definition of monoidal category requiring some coherence conditions to be fulfilled,
which are not supposed for a premonoidal one), and we shall denote by és and ey,
the canonical isomorphism X — 1 ® X and its inverse respectively, omitting the
argument X as usual. All categories occurring below, for which the opposite is not

especially stated, will be supposed to have w-coproducts, i.e. all coproducts > X,
ncA
of families of objects X,, indexed by a set A of natural numbers. The canonical

injections X; — > X,, of such coproducts will be denoted by I,,; they are natural
ncA

in (X,) € C* and as usual we shall omit to write the arguments of the natural
transformations I,,. A premonoidal category C with such coproducts will be called
preclosed, iff the canonical natural transformations

Y (XoY)—-Xe) Y, §&:) YieX)—(D Y)eX (3.2)
determined by the condition that o l; = 1® I; and & o I; = I; ® 1 for all 4,
respectively, are isomorphisms. We shall say that an object X of a preclosed
category C is strictly reflerive, iff it satisfies the isomorphisms X ® X &~ X =
X+ X =1+ X, and X will be called reflerive iff X ® X =2 X and both X + X
and 1+ X are retracts of X in C.

It is very easy to construct reflexive objects in this sense in preclosed categories.
In fact, every object of such category can be extended to a strictly reflexive one in
the following sense:

Proposition 2. In every preclosed category C there is an endofunctor R and

a natural in X transformation X — R(X) such that the object R(X) is strictly
reflexive for every object X € C.
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Proof. The isomorphisms (3.2) imply the isomorphism
IET)RTED 3P LIA
i=0 3=0 n=0i=0

for all sequences X; and Y; of objects. On the other hand, for every object X the
coproduct X, =1+ X + 1+ X + --- satisfies the isomorphisms

Xw ng +Xw & 1+Xw7
whence for the progression

RX)=1+X,+ X, 02X, + X, X, ® X, +---

we have
RX)+RX) = 14+14+X,+Xo+Xo® Xy +Xo@ X, +---
=~ 14+ X, +Xo® (X +Xo)+ - = R(X)
and
RX)®R(X) =2 1+X,+X,0Xu+ )01+ X,+Xo®Xu+--)
~ 1+ X, + X,
+ (X @ X+ X0 X, + X, ® Xo) + - =2 R(X). O

Note that the morphism X — R(X) in the last Proposition is a canonical
injection of certain coproduct, and hence a monomorphism (even section of a
retraction) in very general suppositions for the category C and the object X. (For
instance, it suffices to assume that the category C has terminal object t and a
morphism t — X.)

Theorem 1. FEvery reflerive object X in a preclosed category C canonically
determines a protoring F(C, X) with reqular storage operation.

Proof. Consider the protoring R = R(C,X,r;),where r4 : X — X + X
is the retraction given with X as reflexive object, together with a section s, of
it. Similarly, let rg and sg be the isomorphism X — X ® X and its inverse,
respectively, and let 1 : X — 1+ X be the retraction with a section s, which are
given with X. We have a natural in Y € C transformation

IY)=((s10l)®1ly)oeg: Y - X®Y.
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Indeed, for every C-arrow ¢ : Y — Z we have
(Ix®p)od(Y) = (Ix®p)o((siol)®ly)oeg
= ((siolp)®1z)o(li®y)oey
= ((s1olp)®@1z)oégop=1Y(Z)op.
Denote by d® and d® the canonical natural in Y, Z, W € C isomorphism
=L, [®l]  YOIWH+ZOW = (Y +Z)0W
and its inverse respectively, and define an arrow
G=sy0(egt+sg)od®o(ri®l)org : X - X
as the obvious composition of the string
X=X X->14+X)2X =10 X+ X0 X->X+X—-X.
Similarly, define the arrows TV, F' : X — X by
T =sg09(X), F =sg90((®1)org,

where ( = syo0ly : X — X. The arrows GG, T” and F" are elements of the protoring
R satisfying in it the equalities GT" =T and GF’ = F'. Indeed, we have

GI' = sjo(egtre)o ®o(r1®1)or®os®o19(X)
o(rm®l)o((s1oly)®1)oeg
o(lp®1)oeg
od”

&

( )
= spo(egtre)o
= syolegtre)o

= spo(egtrg)od® olpoég =s;0(eg+rg)olooeg

= syolpoegoeg=s,0lp=T
and

GF' = sy0(eg+sg)od?o(ri®l)orgosgo(si®1)o(lj ®1)org
od®o (1 ®1)org

(eo
= 8+O(6®+8®
( 0d®od® ol org

)
= spo(eg+se)
= syo(egt+sg)oliorg
= syoljosgorg =syo0lj=F
Then we have a protoring F with the same set of elements, multiplication operation
and unit as R; the second binary operation defined by

[4)07 ¢]/ —def [4)07 QMG?
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where [—, —] is the corresponding operation of R; and the elements 1" and F" as
the basic constants T and F', respectively. Indeed,

[0, ¥1'T" = [0, YIGT" = [0, YIT = ¢p,
and similarly [, ¢]'F" = 4 for all ¢,¢ € F. By Proposition 1, there is a storage
operation ($,D,P,Q) in R. Defining D’ = [T, F'|D$(G), we have a storage
operation ($, D', P,Q) in F, because
$(le, ¥1') = $([ee, ¥1G) = [5(0), $()| DS(G) = [$(¢0), S()'[17, F'IDS(G)
for all p,¢ € F, and

[T'$(1), F'$(D)]'D' =

The storage operation ($, D', P, @) is regular since

PT' =sgo(l@p)orgosgod=sgo(l®@p)od=sgodop=Typ

and
PF' = sgo(l®yp)orgosgo((®1l)org=sgo(l®@yp)o((®1)org
= sgo((®1)o(l®p)org=sgo((®1)orgosgo(l®yp)org
= F'$
for all p € F. O

Definition. We say that a preclosed category is partially ordered, iff a partial
order is given in every hom-set such that the composition, ® and the w-coproduct
functors are increasing (in all arguments together) w.r.t. this partial order. For a
partially ordered preclosed category we say that it is continuous, iff in every hom-
set there is least element o such that p o o = o for every suitable arrow ¢ and
Y ® o = o for every arrow , and in every hom-set the suprema of increasing
sequences exist and are preserved in each argument by the composition, ® and the
coproducts. If in each hom-set of a partially ordered preclosed category every chain
C has least upper bound sup C such thatl the equalities ¢ o sup C = sup(p o C) and
Y @sup C = sup(v @ C) hold for all suitable arrows ¢ and 1, we shall say that this
category is semicontinuous. Finally, if the last condition holds for the composition
(not necessarily for ®) and the element 1 is a ®-generator for the category in
question (in the following sense: for every pair of arrows f,g: X ® Y — Z such
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that fo(z ®y) =go(x®y) for all arrows z : 1 — X andy : 1 — Y, we have
the equality f = g, then we shall say that this partially ordered preclosed category
s quasisemicontinuous.

Theorem 2. Let C be a partially ordered preclosed cateqory. Then for every
reflezive object X of C the canonically generated protoring F(C, X) is an iterative
reqular OSS satisfying (ST) provided someone of the following three conditions holds:

i) C is continuous;

ii) C is semicontinuous and the morphism rg satisfies the equality
(supC)org =sup(Corg)

for every chain C in every suitable hom-set of C;

iii) C is quasisemicontinuous.

Proof. The set of elements of F(C, X) is the hom-set C(X, X), whence it is
partially ordered by the partial order of C, and F = F(C, X) obviously forms a
regular OSS w.r.t. this partial order. If C is continuous, then there is least element
o € F such that o = o for all ¢ € F. Moreover all increasing sequences have
suprema in F which is preserved in each argument by the multiplication and the
operations [—, —] and $§. Therefore for every ¢ € F the element I(¢) = sup ¢y,
where ¢,, is the sequence defined by ¢g = o and ¢,+1 = [I, vn]p, is the least
solution of the inequality [I,&]e < € wr.t. € in F. For arbitrary @ € F the
sequence ¥, = aup,, satisfies g = o and ¥, 11 = [a, ¥, ] for all n, whence the least
solution of [a, &]e < € is sup v, = al(p). Moreover the sequence x,, = ¢, satisfies
the equalities xo = 0 and xn41 = [I, xn]D¥, and therefore

I(D¢) = suppn, = $(sup pn) = 3(I(¢)).

Suppose C satisfies condition ii). Then for all ¢, & € F we have a transfinite
increasing sequence ¥;(«a, ) € F uniquely determined by the condition

Pila, p) = Sj@[m Vi(a, o)lp (3.3)

and (e, @) < [, ¥i(o, p)]p for all 4 < k where k is a cardinal number greater
than the power of F. Then the element ;(c, ¢) is the least solution of o, £ <&,
where j < k is any ordinal number among those for which ¥;(a, ¢) = ¥, 11(e, @).
In particular, for o« = I denote this least solution by I(¢). Then the supposition
of semicontunuity of C implies ¢;(«, ¢) = aw; (1, ¢) for all i < k, which shows that
al(yp) is the least solution of [a, €] < £. Similarly, applying $ to (3.3) and using the
supposition for rg we obtain , $(¢;(1,¢)) = ¢;(I, Dp) whence $(I(¢)) = I(Dp).
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Now, when C is quasisemicontinuous, we see in the same way that oI(y) is the
least solution of [a, {]¢ < €. Hence, also, the inequality

I(Dg) < $(I(¢)),

because [1,$(I(p)] D¢ = $([1,I(v)]¢) = $(I(w)). For arbitrary C-arrow z:1 — X
the arrow
Yy(z)=(z®1ly)oeg: Y - XY

is a natural in Y € C transformation such that ¢z* = z*¢ for all p € F where
z* : X — X is the arrow z* = sg 0 9x (). Then for all ¢, ¢ € F the following will
be true: if pz* = ¢z* for every z : 1 — X, then ¢ = ¢ = Indeed, for arbitrary
arrow y : 1 — X we have

z'y=sgo(z®1)oegoy=sg0(z®1)o(1Ry)oesg =sg0(zRy)oey;
therefore wz* = ¢pz* implies p 0 sg 0 (xR y) 0 égy = Y 0 sg 0 (2 ®y) 0 Eg, Whence
posgo(z®y)=vYosgo(z®y).

By the supposition that 1 is a ®-generator this shows that when pz* = ¢2* holds
for all z we have p 0 sg = 1 0 sg, and therefore ¢ = ) since I = sg 0 rg.

Denote by [—, —]o, 1o, Fo and Dg the operation [—, —] and the constants T,
F and D in the protoring R(C, X,r), respectively (see Proposition 1). Then we
have

Doz* = sio0(sg+sg)lodgo(l1®r)orgosgo(z®1)oég
s5¢ +8g)odgo(z®1)o(l®ry)oés
s tsglo(z®l+z®1)odgoégory

(
= S+O(
= S+O(
= s;0(sgo(z®1)+sgo(r®1))odgobgors.
But
dgo(eg tég) = [L®l,1®11]0(ég +ég)
= [(l®l)oég,(1®11)oég]t
= [é@ oly, ég 011]+ =€ég © [Io7ll]+ = €ég,
whence dg 0 €g = €g + €g. Therefore
Doz* = sio(sgo(z®1)+sgo(z®1))o(ég+ég)ory

= syo(a*+az¥)ory =sro[lpox®, [yox*]sory

[spolgoz* sy ol oz ory = [Toz", Foz*]o.
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Then in the protoring F we have:
D:E* = [T7 F]0D0$(G)ZE* - [T7 F]oDox*G - [T7 F]o[Tox*7 Fox*]oG
= [Tz*, Fz*]oG = [Tz*, Fa*].

Hence for all ¢ € F and all arrows =z : 1 — X we have the following equalities in
the protoring F:

=% I(D@)e"lp = [LI(D )][ o = [LI(D@)| Dz
= [LID@)| D¢z = I(Dg)a”
which implies $(I(y))z* = 2*I(¢) < I(D
[z*, €] < €. Then the inequality I(D¢)
$(L(p))a" = L(Dg)z”

for all z : 1 — X. This, as we have already seen, implies $(I()) = I(D¢).
The condition (S7) follows from Proposition 3 in [10] in all of the cases
)-iii). O

p)x* since z*I(p) is the least solution of
< $(I()) shows that

4. COHERENCE SPACES

Coherence spaces ([1], sometimes called Girard domains) are well known objects
used for semantical treatment of linear logic and other systems of typed lambda
calculus. We shall note here that they form a continuous preclosed category w.r.t.
so called linear maps, thus giving by Theorem 2 various models for iterative regular
OSS. It is essential to stress the intuitive interpretation of these models in terms of
some kind of data processing which preserves information, indicating in this way
their naturalness, and hence importance for abstract recursion theory.

In detail, we define coherence spaces as pairs (X, ~) consisting of a set X and a
binary reflexive and symmetric relation ~ in X. (We shall write also X for (X, ~)
and ~x for ~.) A linear map f : X — Y of coherence spaces X = (X, ~x) and
(Y, ~y) is a multivalued mapping f : X — 2¥ such that:

1) f is coherently injective in the sense that y € f(z) N f(2’) and z ~x 2’
imply z =z’ for all z,z’ € X andy € Y

2) f preserves ~ in the sense that z ~x 2/, y € f(z) and ¢’ € f(2’) imply
y~yy forallz,z’ € X and y, 9y’ €Y.

The following Theorem is a (special case of a) well known result.

Theorem 3. LCoh is a continuous preclosed category.

Proof. We remind only the definitions of the components of the structure of
continuous preclosed category in LCoh, omitting the straightforward details. The
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category LCoh has coproducts for all families X; € LCoh of objects X; = (X;, ~;)
defined by 3. X; = (X, ~) where X =4 | J,({7} x X;) and

(4, 2) ~ (4,v) Sger 1t =&z ~; .

The canonical injections I; : X; — X of these coproducts are I;(z) = {(4,2)}. The
tensor product of two coherence spaces X = (X,~x) and Y = (Y, ~y) is defined
by X®Y = (X x Y, ~) where

(z,y) ~ (2,y) Saep z~x 2 &y ~y y;

and the tensor product of two arrows f : X — X' and g: Y — Y’ in LCohis (f®
9)(x,y) =qey f(x) x g(y). The associativity maps ap 1 (X®Y)®7Z - X ®(Y®Z)
and its inverse are ag ((z,v), 2) =der 1(2, (y,2))} and ag (2, (y, 2) =qer {((z,9), 2)},
respectively. The object 1 is defined as the one-element coherence space, and the
natural isomorphisms ¢ and ez are obvious. The distributivity map

de: Y (Z®X)—Z® Y X;

4

is the unique arrow for which dg o I; = 17 ® I; ie. dg(i,(z,2)) = {(2,(4,2))};
and its inverse is defined by dg(z, (i,2)) = {(4,(2,2))}. LCoh is a symmetric
premonoidal category in the sense that the isomorphism X ® ¥ =2 Y ® X holds
naturally in X, Y € LCoh. The partial order for parallel arrows f,g: X — Y in
LCoh is defined by

F<g ©4ep Yz e X(f(z) C g(z)).

The least element o : X — Y in a hom-set is the empty multivalued map, i.e.
o(z) = D for all z € X. The least upper bound of an increasing sequence f,, : X — Y

is given by (sup f)(z) = U, —q fu(2). O

Thus every reflexive coherence space X canonically gives rise, according to
Theorems 1 and 2, to an iterative regular OSS F = F(LCoh, X ) whose elements
are the linear mappings ¢ : X — X. Intuitively, the elements of X can be
regarded as data units considered not as quite separate entities, but rather in a
context of some ‘internal’ information which connects them with a set of other such
units, the connection relation thus arising being represented by ~. Accordingly,
the elements of F are regarded as a mathematical idealization describing a kind
of nondeterministic processing of those units which takes care not to annihilate
internal information by identifying (transforming to identical) units which are
connected with ~, and, on the other hand, preserves the ‘external’ information
of connectedness of these units with each other. This is the intuitive interpretation
meant above.

On the other hand, no reasonable way is seen to treat these models or, more
precisely, the notion of computability associated with the OSS F(LCoh, X), by
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means of combinatory spaces. The abstract notion of combinatory space requires
the data objects z,v,... to be presented as elements of the abstract structure in
question, as well as a pairing operation z,y — (z,y) and projections L and R
restoring the components of pairs in the sense of the equalities L(z,y) = x and
R(z,y) = y. This is incompatible with the idea of nondistinctness of the elements
of a coherence space; formally, the interpretation of L and R is obstructed by the
fact that the set-theoretical projections X ® Y — X and X ® Y — Y of coherence
spaces are generally not coherently injective.

5. MODELS OF OSS INVOLVING THE IDEA OF IMPLEMENTATION

Implementation of computations, which practically means physical simulation
(theoretically or philosophically other nonphysical realizations may be possible),
is an important issue, being fundamental for the modern computer development.
It is even hard to separate the theoretical notion of computability from the idea
of implementation, as it is seen, for instance, in the notion of Turing machine;
and one of the aims of abstract theory of computation is to find a mathematical
idealization which characterizes this notion in its pure form, independently of
concrete realizations. In the present section we shall indicate how the idea of
implementation suggests some natural and mathematically interesting models of
iterative regular OSS.

The physical simulation of a computational process requires the data object to
be encoded into the state of a physical system (which may generally depend on this
object), the time evolution of which is used for modeling the process in question.
The keeping of the information conveyed by such object = into the physical system
has some energy cost e(x) measured by the energy which will be dissipated into
the environments if the information in question is erased; and the cost e(z) is
to be supposed proportional to the quantity of information conveyed by = ([5]).
This cost has to remain unchanged during the process of computation, which is a
basic requirement of the so called reversible computing. Thus the computational
process in question may be characterized by a partial function f defined exactly
for those data objects x for which the process terminates and satisfying in this
case the equality e(f(z)) = e(x). This suggests to consider the category E(M)
defined below. Note that formally it is not essential that e(a) is just this energy
cost; one may conceive of any physical invariant of the state encoding the data
into the physical system in question. It suffices to suppose that the values of e can
be operated algebraically by some operation called addition and having the usual
properties, except the commutativity law.

Now let M be a monoid (not necessarily commutative) with basic operations
written additively, and denote by E(M) the category with objects the functions
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e: X — M and arrows with source e : X — M and target ¢/ : X’ — M the partial
mappings f: X — X’ such that ¢/(f(z)) = e(z) whenever f(z) is defined.

Theorem 4. The category BE(M) can be naturally provided with a structure of
continuous preclosed one.

Proof. The details being quite straightforward, we shall indicate only the
required structure. The category E(M) has coproducts for all families of objects
¢; : X; — M defined as follows. Consider the coproduct X = |J,{i} x X; of the
family X; in Set with canonical injections I;(z) = (4,z) for all z € X; and all 4.
Then the unique mapping e : | J,{i} x X; — M such that e(i,z) = e;(x) for all
z € X; and all 7 is an object of E(M) which is coproduct of the family e; with
canonical injections I; (the same as in Set). For arbitrary family of E(M )-arrows
fi  ei — ¢ with target the object ¢/ : X' — M of E(M) the unique E(M)-arrow
f e — ¢ suchthat fol;, = f; for all ¢ is the partial mapping f : X — X’ for which
f;(z)) is defined and equals f;(z) when f;(x) is defined and f(/;(z)) is undefined
otherwise.

For every two objects ¢g : Xg — M and e; : X1 — M of E(M) define an object
eo®ey: Xox Xy — M by

(60 X 61)(9507 351) = eo(xo) + 61(951).

Given a pair of morphisms fy : eg — €}, and f1 : e; — €} in E(M) with targets
e, X — M, i=0,1, define the morphism fo® fi : eg®e; — ef,® e} as the partial
mapping fo ® fi: Xo x Xy — X{§ x X{ such that (fy ® f1)(zo,x1) is defined for a
pair (zg,21) € Xo x Xy iff both fo(x0) and fi(z1) are, and in the last case

(fo® f1)(@o, z1) = (folo), fi(z1)).

This defines a bi-endofunctor in E(M ) which is naturally associative, the associativi-
ty isomorphisms ag being the same as in Set. The object 1 is defined as the function
1:{0} — M which sends the element 0 into the neutral element of the monoid M.
For arbitrary object ¢ : X — M of E(M) the projections ¢® : X x {0} — X and
€p 1 {0} x X — X define isomorphisms ¢ ® 1 — ¢ and 1 ® ¢ — ¢ in E(M) which
are natural in e. Given a sequence of objects e : X — M, ¢; : X; — M (i € N) of
E(M), the distributivity isomorphisms

dg e®(egtei+-) = e®Regt+e®ey +---

and
d® :(egt+e1+ - )®e—eRete et

are defined by dg (=, (i,y)) = (i, (z,v)) and d®((i,y), =) = (i, (y, z)) respectively for
all z € X,y € X; and 7 € N. If the monoid M is commutative, then the category
E(M) is a symmetric premonoidal one. The partial order in a hom-set of E(M ) is
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the relation of extension of partial functions, the least element is the function with
empty domain, and the suprema of increasing sequences of morphisms is the union
of the corresponding partial functions. Il

A reflexive object ¢ : X — M of E(M) has necessarily (as a consequence of
the isomorphism e ® e 2 ¢) to have a binary operation z,y — (z,y) in X which
maps X x X bijectively on X and satisfies the equality

e((z,9)) = e(z) +ey),

in accordance with the requirement that the energy cost e(x) is proportional to the
quantity of information contained in . The elements of the iterative regular OSS
F = F(E(M), e) arising canonically from e are the partial functions f : X — X
preserving the energy cost in the sense that e( f(x)) = e(x) whenever f(z) is defined.
As in the case with coherence spaces in the previous section, the treatment of
the OSS F by means of combinatory spaces is obstructed by the fact that the
projections L({z,vy)) = x and R({z,y)) = y do not generally preserve the energy
cost.

Another idea is to describe the physical simulation of a computational process
by a mathematical idealization involving the time evolution operator of the physical
system through which the process is simulated. This operator can be conceived,
in accordance with the requirement of reversibility, as an isomorphism in a certain
category. For instance, in the case of quantum computation, the physical system
in question is mathematically a Hilbert space, mostly finite dimensional; and we
shall use for the mentioned category that one which has finite dimensional Hilbert
spaces as objects and isometrical linear operators as morphisms. In the case of
‘classical” computation we use the category of finite sets instead (or rather finite
sets of special kind — the sets of subsets of finite sets — the usual registers being
representable as sets of units which can have two possible states).

To detail this idea consider a premonoidal category X with tensor product bi-
endomorphism ®g and unit-object 1g, not necessarily having w-coproducts. Let
P(K) be the category with objects the pairs (B, K) consisting of a set B and a
mapping K which assigns to every element b € B an object K(b) of K, and with
arrows (B, K) — (B’, K’) the pairs (f, ¢) of two partial functions with the same
domain Dy C B such that the values of f are in B’ and for every b € Dy the value
() is an isomorphism ¢(b) : K(b) — K'(f(b)). The composition of two arrows
(fyp): (B,K)— (B,K’) and (g,¢) : (B, K') = (B",K’") in P(K) is

(97 ¢) o (f? %D) —def (g o f7¢(f)§0)7

where go f : B — B’ is the composition of partial functions and

(P (Fe)(b) = (£ (b)) 0 p(b) : K(b) = K'(g(£(b)))

138 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 123-142.



for all b € B such that (go f)(b) is defined. The identity 1 g k) of an object (B, K)
is the pair (15, tx) of the identity map 15 of B and the mapping assigning to each
b € B the identity 15 (b) = 1 gy of K(b) in K.

Theorem 5. The category P(KC) can be naturally provided with a structure of
continuous preclosed one.

Proof. The proof is straightforward and similar to that of Theorem 4. As
before, we shall indicate the components of the required structure. Let (B,,, K,,) €
P(K) be a countable family of objects. The coproduct of this family in P(KC) is
defined as the pair (B, K) € P(K) where B = Y ° | B, is the coproduct in Set
and K (i, (b)) = K, (b) for all b € B,, and all n, and 4,, : B, — B are the canonical
injections of the coproduct in Set so that B is the disjoint union of the sets 4,,(B,,).
The canonical injections I,, : (B,, K,,) — (B, K) of the coproduct in question are
the pairs I, = (in, trn) Where v, (b) : K,,(b) — K(i,(b)) is the identity arrow for all
n and all b € B,,. Given a family

(frson) : (Bn, Kn) — (B, K')
of arrows in P(XC), the unique arrow (f,¢) : (B, K) — (B’, K’) such that

(f? SD) OI’ﬂ - (fm‘Pn)

for all n is the pair of partial functions such that f(i, (b)) and ¢(i, (b)) are defied
whenever f,,(b) is, and in this case f(i,(b)) = f.(b) and

@lin (b)) = @n(b) : K(in(b)) = Kn(b) — K'(fu(b))
for all b € B,, and all n.

The tensor product (Bg, Ko) ® (B1, K1) of two objects of P(K) is defined as
the pair (By x By, Ko® K1) where (Ko ® K1)(bo, b1) = Ko(by) ®k Ki(by) for every
pair (bo, b1) € Bg x By. The tensor product (fo, v0) ® (f1,¢1) of two morphisms

(fj74pj):(Bj7Kj)_>(B;‘7Kj/')7 J=U;l

is the pair (f, ») where f and ¢ are the partial mappings defined for those (bg, b1) €
By x By for which both f;(b;) are defined with values the pair

f(bo,b1) = (fo(bo), f1(b1)) € B x By
and the isomorphism
@(bo, b1) = po(bo) ®k w1(b1) : Ko(bo) ®x Ki1(b1) — Kq(fo(bo)) @K Ki(f1(b1))

respectively. The associativity isomorphisms ag : Xo ® (X1 ® Xo) — (Xog® X1) ®
Xs), where X; = (B;, K;) € P(K) for all j =0,1,2 are ag =4cf (ax,dg) Where
ax is the usual associativity isomorphism for the cartesian product x in Set, and

d®(507 (517 bg)) : Ko(bo) ®K(K1(bl) ®KK2(52)) — (Ko(bo) ®KK1(51)) ®KK2(52)
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is the corresponding associativity isomorphism for @ in K for all b; € Bj;, 7 =
1,2. The object 1 of P(K) is defined as ({0}, «) where u(0) = 1. The natural
isomorphism ey, : 1 ® (B,K) — (B, K) is e, = (p,g) where p : {0} x B — B
is the projection and £(0,b) = ex (K (b)) : 1x ®x K(b) — K(b) is the natural
isomorphism given in K; and similarly is defined the other natural in the object
(B, K) isomorphism ¢® : (B, K) ® 1 — (B, K). The distributivity isomorphisms

iX@Y —>X®ZY
n=0 n=0
and -
d®: ) (Ve X)— ZY ® X
n=0

are the unique morphisms d, and d® such that dgol, = 1®1I, and d®ol, = I,®1
respectively for all n. The morphism dg has the form (d,,ts) where d, is the
corresponding distributivity isomorphism in Set and .y at every argument is the
identity map of certain object of K; hence d, is invertible, and similarly for d%.
Note that the category P(K) is symmetric w.r.t. ® if K is such w.r.t. ®. The
partial order in a hom-set of P(KC) is defined as the relation of extension of functions,
e. (f,¢) <(g,v)iff g is extension of f and ¢» — of ¢. The least element is the pair
of partial functions with empty domain, and the suprema of increasing sequences
are the pairwise unions of the corresponding sequences of partial functions. [l
Asin the case with the category E(M ), for every reflexive object X = (B, K) of
P(X) there is a binary operation b, ¢ +— (b, ¢} in B, obtained from the isomorphism
X ® X = X, which maps B x B bijectively on B and satisfies the isomorphism
K({b,c)) = K(b)® K(c) for all b,c € B. Hence the projections po(({b, c}) = b and
p1({b, ¢)) = ¢ cannot be reasonably expected to satisfy

K(po(b)) = K(b) = K(pa(b)).

This, as in the case with E(M ), obstructs the treatment of (the notion of computabi-
lity definable by) the OSS F = F(P(K), X) through a combinatory space.

6. FINAL REMARKS

The notion of regular OSS in its previous version from [11] was a subject of
some polemic since it does not comprise formally that of combinatory space in full
generality. Instead of regular OSS one can use intensional combinatory spaces,
of which the combinatory ones are special case ([10]). But the former spaces are
somewhat complicated notion, and this complication seems not to be justified by
the gain in generality it provides. The polemic started with a remark formulated
in [11], which expressed this view. The last remark was objected in [8], but in some
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misleading way'. The real situation can be described as follows. The regular OSS
do not comprise all combinatory spaces up to isomorphism in the usual algebraic
sense, in which the basic operations are required to be preserved exactly. This is
obvious since the equality (L, R) = I is to be preserved by such isomorphisms of
combinatory spaces, and it is not clear how we can treat the combinatory spaces in
which this equality is violated as regular OSS. On the other hand, from the view
point of recursion theory it is more natural to consider another kind of morphisms of
iterative combinatory spaces and other similar objects of algebraic recursion theory,
namely those which preserve all operations, including the inductively definable ones
only up to explicit expressibility. These are the morphisms preserving the notion
of computability, expressed by the given space, hence it is natural to call them
recursive morphisms. So a natural question is whether the notion of iterative regular
OSS can comprise that of iterative combinatory space up to recursive isomorphism.
Generally, the question is open, but the works of Ivanov [3, 4] strongly suggest that
the answer is positive. What is shown in [8] is that if we consider another kind of
morphisms of combinatory spaces of hybrid nature, namely those which preserve
one of the basic operations (multiplication) exactly, and the other ones only up to
expressibility, then there is an example of iterative combinatory space (expressing
a degenerate version of Moschovakis computability), which is not isomorphic in the
hybrid sense to one in which (L, R) = I holds, thus retaining the difficulty to be
treated as regular OSS up to such isomorphism.
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