
1 Ш Н И К
НА

С О Ф И Й СКИ Я  УН И ВЕРСИ ТЕТ 

„СВ. К ЛИ М Е Н Т О ХРИ Д С КИ “

VC

Ф А К УЛ ТЕ Т  П О  М АТЕМ АТИ КА 

И И Н Ф О РМ АТИ К А
КНИГА 1 -  МАТЕМАТИКА И МЕХАНИКА 
КНИГА 2 -  ПРИЛОЖНА МАТЕМАТИКА И 

ИНФОРМАТИКА

Том 89

В *

Гг! ***

A N N U A I R E
DE

L’UNIVERSITE DE SOFIA 
„ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES 
ET INFORMATIQUE

LIVRE 1 -  MATHEMATIQUES ET MECANIQUE 
LIVRE 2 -  MATHEMATIQUES APPLIQUEE ET 

INFORMATIQUE

Tome 89



годишник
НА

СОФИЙСКИЯ УНИВЕРСИТЕТ 
„СВ. КЛИМЕНТ ОХРИДСКИ“ 

ФАКУЛТЕТ 
ПО М АТЕМАТИКА И ИНФОРМАТИКА

Книга 1 —  М А Т Е М А Т И К А  И М ЕХ АН И К А

Т о м  89 

1995

ANNUAIRE
DE

L’UNIVERSITE DE SOFIA 
“ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE

Livre 1 — MATHEMATIQUES ET MECANIQUE

Tom e 89 

1995

С О Ф И Я  • 1998 • S O F IA  
У Н И В Е Р С И Т Е Т С К О  И З Д А Т Е Л С Т В О  „С В . К Л И М Е Н Т  О Х Р И Д С К И “ 

PRESSES U N IV E R S IT A IR E S  “ST. K L IM E N T  O H R ID S K I”



Annuaire de P Université de Sofia “St. K lim ent Ohridski”
Faculté de Mathématiques et Informatique

Годиш ник на Софийския уни верси тет „С в . К ли м ен т О хр и д ск и “ 
Ф ак ултет  по м атем атика и информатика

E d ito r - in -C h ie f :  K . Z. Markov 

A s s o c ia te  E d ito rs : R. L evy  (M athem atics and Mechanics)

P. A za lov  (A pp lied  Mathematics and Inform atics)

A s s is ta n t E d ito r :  T . T inchev

E d ito r ia l  B o a rd

B. Bojanov P. Binev J. Denev E. Horozov
I. Soskov D. Vandev K . Tchakerian V . Tsanov

Address for correspondence:

Faculty o f M athem atics and Informatics
“St. K lim ent Ohridski” University o f Sofia Fax xx(359 2) 687 180
5 Blvd J. Bourchier, P .O . Box 48 electronic mail:
B G -1164 Sofia, Bulgaria a n n u a ir e e fm i.u n i- s o f ia .b g

A im s  a n d  S co p e . The Annuaire  is the oldest Bulgarian journal, founded in 1904, 
devoted to pure and applied mathematics, mechanics and computer sciences. It is 
reviewed by Zentralblati  f u r  Mathematik,  Mathematical  Reviews and the Russian 
Referativni i  Jurnal. Th e  Annuaire  publishes significant and original research pa
pers o f authors both from  Bulgaria and abroad in some selected areas that comply 
with the traditional scientific interests o f  the Faculty o f Mathematics and Infor
matics at the “St. K lim ent Ohridski” University o f Sofia, i.e., algebra, geom etry 
and topology, analysis, mathematical logic, theory o f approximations, numerical 
methods, computer sciences, classical, fluid and solid mechanics, and their funda
mental applications.

©  “St. Klim ent Ohridski” University of Sofia 
Faculty of M athem atics and Informatics 
1998
ISSN 0205-0808



N i k o l a  O b r e s h k o f f  (1896 -1963 )

On A pril 19 and 20, 1996, a special scientific Session com m em orating the 
centenary o f the birth o f the great Bulgarian mathematician N ikola Obreshkoff 
(1896-1963) took place in Sofia. Th e  Session was organized by the Faculty o f 
Mathematics and Inform atics at the “St. K lim ent Ohridski” University o f Sofia, 
the Institute o f  M athem atics and Informatics o f the Bulgarian Academ y o f Sciences



and the Union o f  Mathematicians in Bulgaria. The Scientific Com m ittee o f the 
session comprised B. Penkov, L. Davidov, T . Genchev (C hair) and D. Skordev. 
The Scientific Program m e included six invited general lectures, devoted to the main 
research interests and achievements o f Obreshkoff. Tw enty three contributions were 
presented as well, most o f them touching or connected to Obreshkoff’s works. The 
full-length texts o f those o f the lectures, duly submitted to the Editors, are included 
in this volume.

The Editoria l Board uses the opportunity to dedicate this volume to N ikola 
Obreshkoff. We think that it is the least that we can do to express, to a certain 
small extent, our deep appreciation for his profound influence to Bulgarian, and 
not only Bulgarian, mathematics. It is far beyond our ability and aims to give 
here a proper survey and account o f  Obreshkoff’s numerous and deep contributions 
in many areas o f mathematics —  a glimpse o f some o f them can be caught from 
the papers that follow. W e can only add that N ikola Obreshkoff is, in our view, a 
spectacular exam ple o f the fact that in the realm o f spirit and creativity there exist 
no small and no big nations.

Editorial Board
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N I K O L A  O B R E S H K O F F  (1 8 9 6 -1 9 6 3 )

B o rn : March 6, 1896, Varna, Bulgaria.
U n iv e r s ity  E d u ca tio n : 1915-1920, University o f Sofia.
U n iv e r s ity  P o s it io n s  (University of Sofia):

Assistant professor: 1920—1921;
Associated professor: 1922-1927;
Full professor: 1928;
Head o f the Chair o f Algebra: 192S-1963.

S c ien tific  D eg rees :
D octor o f Mathematics of Palermo University (Ita ly ): 1932;
Doctor o f Sciences o f Paris University (Sorbonne): 1933.

A c a d e m ic  P os it ion s :
Member o f the Bulgarian Academy o f Sciences: 1945;
Director o f the Institute o f Mathematics at the Bulgarian Academy o f Sciences: 1951-1963. 

S e le c ted  A d d resses :
Hamburg University, Berlin University, Geneva University, Rom e University, Palermo Uni
versity, Paris University (Sorbonne), Leipzig University, Dresden University.

In v ite d  S peak er:
W orld Congresses of Mathematicians (Oslo 1936, Edinburgh 1958); First Congress o f Slav 
Mathematicians (Warsaw, 1929); Congress o f Balkan Mathematicians (Athens 1935); Con
gresses o f Hungarian Mathematicians (Budapest 1950, 1960); Conference (Tagung) on Proba
bility and Statistics (Berlin  1954); International Colloquium on Numerical Analysis (Dresden 
1955).

S C IE N T IF IC  H E R IT A G E  

P a p e rs : more than 250.
M on o g ra p h s :

Zeros o f  po lynom ia ls , Sofia 1963, Publishing House of the Bulgarian Academy of Sciences, 
289 p. (Bulgarian);

Verle iluntj und Berechnuny dev N u l ls ic l l c n  rec l ler  P o ly n o m e , Berlin 1963, VEB  Deutscher 
Verlag der Wissenschaften, 298 p.;

La statis t ique m athém at iques , Paris 1938, Herman, 66 p.;
Quelques classes de f o n d io n s  entières l im ites de polynômes et de f o n c t io n s  m érom orphes  

l im ites  de f rac t io ns  rationelles, Paris 1941, Herman, 49 p.
R esea rch  A rea s :

Location o f Zeros, Summability o f Divergent Series, Theory o f Numbers, Real and Complex 
Analysis, Differential Equations, Numerical Analysis, Integral Geometry, Probability and 
Statistics, Mechanics.

M a in  C o n tr ib u t io n s :
—  generalization o f Budan-Fourier theorem and Descartes rule for complex zeros o f algebraic 

polynomials;
—  generalization o f Laguerre, Poulain-Hermite and Malo theorems;
—  summation o f the differentiated Fourier series;
—  summation o f the ultraspherical series by arithmetical means;
—  absolute summation by typical means;
—  generalizations of M ittag-Leffler and Borel methods of summation;
—  characterization o f entire and meromorphic functions as lim its of classes o f polynomials and 

rational functions;
—  generalization o f the classical Laplace transform;
—  asymptotic properties o f the derivatives o f functions defined on a ray o f the real axis;
—  solution o f the problem  for the exact value of the Borel constant;
—  approximation o f irrational numbers by continuous fractions;
—  asymptotics o f probability densities;
—  integral geom etry in the hyperbolic plane;
—  generalization o f Taylor formula;
—  numerical methods for solution o f algebraic equations.
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S C I E N T I F I C  P R O G R A M M E

o f the Session, dedicated to the centenary o f the birth o f 
N ikola Obreshkoff (1896-1963), Sofia, A pril 19-20, 1996

Invited Lectures

B. B o j a n o v . On a formula o f Obreshkoff.

T .  GENCHEV. On the investigations o f Nikola Obreshkoff connected with the regularly monotonic 
functions.

I. DlMOVSKY. Integral transforms in the late works o f Obreshkoff.

A . OBRETENOV. The works o f Obreshkoff on probability theory and mathematical statistics.

P. R u s s e v . Zeros o f polynomials and entire functions in the works o f N ikola Obreshkoff.
T .  TONKOV. The theory o f diophantine approximations and the contribution to it o f Nikola 

Obreshkoff.

Contributed Lectures

Sv. Bl LCHEV .  Existence and uniqueness o f the stationary solution o f a nonlinear partial differential 
equations.

T s .  DONCHEV, I. S l a v o v . T ikhonov ’s theorem for functional-differential inclusions.
M. G a v r i l o v . A  proof o f the Gauss reciprocity law.

V . H a d JIISKI.  Distributions o f the zeros o f a sequence o f the best rational approximations.
G. KARATOPRAKLIEV. On a nonlocal boundary-value problem for elliptic equations.
P. KENDEROV, V . MOORS. Fragmentability and a-fragmentability o f topological spaces.

V . KlRJAKOVA. From the integral transform o f Obreshkoff to the generalized fractional calculus 
and the special functions.

M . M a NEV. Contact conformal transformations o f general type o f  almost contact manifolds with 
B-metrics. Applications.

M .  M l T R E V A ,  T . STO JA NO V .  On certain problems o f Obreshkoff.
S. M ih o v s k Y. Isomorphisms and automorpliisms o f cross products of up-groups.

N. N a c m e v . Invariants of the Silov p-subgroup o f the group o f normalized units o f a commutative 
group ring with characteristics p.

N .  N a c HEV, T .  M o L L O V .  M ultiplicative groups o f semi-simple group algebras o f Abcllian 
p-groups over a field.

J. P a n e v a - K o n o v s k  a . Complete systems o f Bessel and inversed Bessel polynomials in spaces o f 
holomorphic functions.

T z .  R a SHKOVA. On the m inimal degree o f ^-identities o f antisymmetric variables in the matrix 
algebra o f an arbitrary order with a symplectic involution *.

D. SKORDEV. An  algorithm ic approach to some problems about the representation of natural 
numbers as sums without repetitions.

I. So s k o v . Constructing minimal pairs o f degrees.

P. T o d o r o v . A simple p roof o f a coincidence theorem of Rubinstein and Walsh and generaliza
tions.

A . T o m o v a . Weakened Tchebyshcv's m ethod o f second order for investigating trajectories of 
associated dynamical systems by means o f coloured fractal im age’s technique.

T . T on'KOV. On certain properties o f K losterm an’s sums.
V . ViDEV. On the geometry o f 4-dimensional Osserman manifolds.
N .  Y a n e v , K .  M l T O V .  Asym ptotical laws in the theory o f “recovery” connected with “some 

particular kinds o f integral equations" considered by Obreshkoff.

S. Z l a t e v , I. M a KRELOV. Iterative solution o f operator equations in Banach spaces using 
Obreshkoff’s method.
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Слово, произнесено от проф. Т. Генчев 
при откриването на юбилейната научна сесия, 
посветена на стогодишнината от рождението на 

академик Никола Обрешков

Was du ererbt von deinen Vätern  hast, 

erwirb es, um es zu besitzen.

Goetke

У важ аем и  колеги , скъпи гости !

Д н ес  сме се с ъ б р а л и  тук  за  д а  изразим  наш ата почит към  ж ивота и 

творческото  д е л о  на акад. Н . О бреш ков —  един от най-крупните предста 
ви тели  на б ъ л га р ск а т а  научна м и съ л , и по този  начин към  съзиданието  и 

творческото  н а ч ало  въобщ е. З а д ъ лбоч ен и те  изследвания на О бреш ков в 
различните клонове  на ан али за  и в теори ята  на чи сла та  обо га ти ха  наш а

та  наука и м у дон есоха  м еж дународно признание. П о л у ч и л  почти  всички 
отли чия , на които мож е д а  се радва истинският учен , О бреш ков запа

зи своята  неп осредственост и не изневери на своето призвание. Н е само 
неговият талант, но и неговото  послови чно тр уд олю би е , подхранвано от 
чи стата  радост, която м у носеш е твор чеството , го  направиха аналитик от 
европейски м ащ аб. Т о й  ненавиж даш е пом позността  и празната  ф р азеоло 

гия, а сам ореклам ата  и лам теж ъ т  за  административни постове м у бяха  
органически чуж ди . В поведението м у ясно личеш е известно дистанцира

не от текущ ия момент, то лк ова  характерно за  учените по призвание.

Н аучн ата  кари ера  на О бреш ков е впечатляващ а: на двадесет и ш ест 

години е доцент, на двадесет  и д евет  —  извънреден  проф есор, а на тр и де

сет и две —  редовен  проф есор и рък оводи тел  на катедра. Н а  тр и десет  и 
ш ест годиш на в ъ зр а ст  защ итава док торат в С орбон ата , а на чети ридесет 
и осем  е академик. О бреш ков  е първият бъ л гар ск и  математик, док азал  че 
и тук, на наша, б ъ л га р ск а  почва, даж е и без специализация в чуж бина, 

м огат  да  се правят сериозни  научни открития. Академ ик Надж аков ни 
е оставил жив спом ен за  си лн ото  впечатлени е, което О бреш ков е напра
вил на пр еп одаватели  и колеги , получавай ки  ощ е като студ ен т  собствени  
научни р езултати .

Х в ъ р ля й к и  п о гл е д  назад, ние с очудване констатирам е, че тв ъ р д е  
м алко знаем  за  научната  м ла д о ст  на О бреш ков, за  хор ата  и за  книги

те, които са  м у п ом огн али  д а  се ф ормира като математик. С кром ен и 
сдърж ан, той  не е остави л  спомени, на които д а  се опре евен туални ят 
му научен биограф . Н априм ер  ф актът, че като м ла д  доцент О бреш ков е 

п о л у ч и л  рокф елерова  стипендия и през уч ебн ата  1922/1923 г. е специа
ли зи р ал  в Б ер ли н  (в ероятн о  при LLIyp), си остава  почти неизвестен.
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П оради  някои р еебен ости  на своя характер  акад. О бреш ков не съ з 
даде научна ш кола. Т о й  обаче  ни остави богато  твор чество , което ние, 
неговите духовни  наследници, трябва  да  и зучавам е и развиваме, за  да  не 
позволи м  на забр авата  да  зали чи  неговите следи . П ъ р в а та  важ на крачка 
вече е направена. О т  1981 г. им аме неговия двутомник, а вчера  научих, 
че тр ети ят том  от  неговите съчинения се нам ира в печатницата. Днеш ни
ят св е тъ л  академичен празник е нова, макар и скромиа стъпка в същ ата  
посока.

К ато  изразявам  съж алени ето  на организационния комитет, че едно 

внезапно, теж ко заболяван е  попречи на проф. Ив. Ч обан ов  д а  б ъ д е  меж
д у  нас и да  направи обзор  на постиж енията на О бреш ков в теори ята  на 
разходящ ите редове, обявявам  ю би лей н ата  научна сесия за  открита.

София, 19 април 1996 г.
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Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В . К Л И М Е Н Т  О Х Р И Д С К И “

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И И Н Ф О Р М А Т И К А  
Книга. 1 —  М атем ати ка и механика 

Т о м  89, 1995

A N N U A IR E  D E  L ’U N IV E R S IT E  DE S O F IA  „S T . K L IM E N T  O H R ID S K I'1

FA C U LT E  DE M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre 1 —  Mathématiques et Mécanique 
Tom e 89, 1995

NIKOLA OBRESHKOFF (1896-1963) 

E N C O M IU M *

B O Y A N  P E N K O V

It is a honouring and pleasant duty to express my thanks to the organizers o f 

this memorial m eeting for having invited me to hold an introductory encomium on 

the occasion o f  the centenary o f  N ikola Obreshkoff, who was and continues to be a 

significant phenomenon in Bulgarian mathematics.

Please do not interprète my first words as an attem pt to justify  m yself before

hand when confessing that I  was confronted w ith obstacles, most o f which pleasing 

but difficult to overcome. The first obstacle has been formulated by Goethe in the 

words o f Faust:

Ach, die Erscheinung war so liesengross, 

dass ich mich recht als Zwerg empfinden sollte.

The Bulgarian translation from  1905 o f the seventeen years older colleague 

and friend A lexander Balabanov (another great phenomenon at the then Bulgarian 

horizon) o f Goethes lines is as follows:

В идението  бе до  небеса , 

а аз пред него бях играчка  само.

Invited address at the memorial meeting on the occasion o f the 100th anniversary o f N. 

Obreshkoff held at the Bulgarian Academy o f Sciences on April 18, 1996. The original talk was 

held in Bulgarian. This is an English translation o f the author.
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Goethe has grasped fairly deep how difficult it is to keep the distance to some
body excelling you and yet to try to get knowing him better. So much about the 
first obstacle.

The second obstacle is related to tim e —  more precisely, the tim e that has 
passed. And this kind o f time is always long enough but also insufficient. Some 
things languish in oblivion, some others have not yet settled down to be declared 
history. It  is now 33 years that Obreshkoff is not among us. He suddenly passed 

away in the late summer o f 1963 and just a month later was followed by Lyubom ir 
Tchakalov. Some colleagues called it the “black autumn” o f Bulgarian mathematics. 
33 years equals the age o f Jesus and the span o f a generation. The number o f 
colleagues having seen Obreshkoff live can be counted today on the fingers o f your 
hands.

And last the third obstacle. W e live in a country deprived o f memory. How 
many are our citizens who can cite the birthdates o f their grandparents, how many 
family, municipal or institutional archives are being preserved? To  commemorate 
people like Obreshkoff would be quite easier i f  there were in this country profes
sional historians o f mathematics, i f  such a subject was part o f the curricula o f the 

now so many m ath departments and was not only taught but was also an object 
o f research. The fragm entary and pale efforts in this direction cannot fill the in
stitutional gap. Lonely enthusiasts have repeatedly tried to change the situation 
(it  suffices to recall the name o f the late Boyan Petkantchin) but their voices faded 
away in the wilderness.

Obreshkoff’s creative activ ity  spans over a 40 year period, from  the beginning o f 
the twenties till the beginning o f the sixties. The life o f a genuine mathematician —  
Obreshkoff was such one par excellence —  consists o f his research results. They have 
been announced in about 250 publications. The average number o f papers published 
by Obreshkoff yearly is 6 or 7, the minimum o f 2 papers falls at W W 2  years 1944 
and 1945 and the m axim a —  in 1938 (10 works) and 1949 (12 works). 74 o f these 
papers are by now collected in the first two volumes o f Obreshkoff’s Col lected Works  
that started to appear in 1977 and stopped without any arguments in 1981, when 
the third volume, ready to be printed, did not reach the Publishing house o f the 
Academ y o f Sciences. There is one more mystery around this edition. The first 
volume, out o f print for a long time, was republished by the renowned editing house 
Birkhduser  in Basel together w ith an announcement for several further volumes. 
The Bulgarian mathem atical community has not seen this republished volume.

Before starting the risky adventure to cast a b ird ’s eye view over the mathe
matical problems that Obreshkoff has dealt w ith —  they w ill be discussed in detail 
tomorrow at a special session at the mathematical department —  let me remind 

you the main points o f his CV .
N ikola D im itrov Obreshkoff was born in the town o f Varna on A pril 18th., 

1896 as one o f the last children in a large and bright family. The father, born 
in 1858, was a m ilitary officer, achieving later the rank o f a colonel. The mother 
o f ten children K itza  Obreshkova —  a music lover and fluent in French, was the 
moral and intellectual force o f the family. W ith  the beginning o f this century the 
fam ily moved to the capital Sofia, where N ikola graduated in 1915 from the Second
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Sofia Boys High-school. Three years earlier the 16 years old high-school student 
published in Vol. 8 o f the Journal  o f  ike Bulgarian Physico-mathematical  Society 
a paper entitled Expressing funct ions o f  h a lf angles through functions o f  whole 
angles."In the fa ll o f 1915 N ikola was adm itted student in mathematics and physics 
at the Physico-m athem atical Department o f Sofia University. The First W orld  W ar 

interrupted his studies tem porarily and he served as private and later as officer in 
a field engineering unit. Im m ediately after graduating in 1920 he was appointed 
assistant at the Chair o f Calculus. In this position he was conducting practical 
works with the students not only in calculus but in other subjects too, that was 

something common for the time, but not for nowadays. Even 25 years later most 
o f the assistants were multipresent and worked on many different math courses, at 
least on two. A t that time the Chair was not an organisational unit but. an area 
for which an Ordinarius (fu ll-tim e professor) was responsible. Let me leave it to 
you to decide what kind o f progress is the todays almost impossibility to ask an 
assistant from  the Chair o f A lgebra to conduct practical work in calculus for, say, 
freshmen. Reflecting on the works o f Obreshkoff, a difficult question arises: was he 
an algebraist or an analyst or, say, a probabilist. He was all o f this together.

A fter two years o f  assistantship Obreshkoff got his ‘ H abilitation ’ in 1922 as an 
‘ordinary docent’ ( =  assistant professor) w ith his papers on distribution o f  zeros o f 
polynomials, his first love to which he remained faithful to his last gasp. One o f 
the reviewers was K yrill Popolf. His review reads as follow's:

“Delighted by the results [o f Obreshkoff] I communicated them to Prof.
Dr. Issai Schur, Ordinarius for higher algebra at Berlin University. Here are 
his impressions and his opinion on the value o f the paper considered [the 
Habilitation schrift] expressed in a letter, urhich I am citing here w ith his 
kind permission:

Berlin, den 13 September 1921

Sehr geehrter Herr Kollege!
Die A rbe it des Herrn N. Obreschkoff “ Uber die Verteilung der Wurzeln 

der algebraischen Gleichungen” , die Sie die Freundlichkeit hatten, m ir zu 
überbringen, hat mich sehr interessiert. D ie von Herrn Obreschkoff angegebene 
Erweiterung des Budan-Fourierschen Theorem s auf das Kom plexe Gebiet ist 
von bemerkenswerter Eleganz und Einfachheit. Bedarf die Beweisführung 
auch noch einer erheblichen Kürzung, so zeugt die A rbeit doch von dem 
Scharfsinn des Verfassers und sein Resultat stellt einen wertvollen Beitrag 
zur Theorie der algebraischen Gleichungen dar.

M it hochachtungsvollen Grüßen Ihr sehr ergebener

Prof. Dr. I. Schur.”

And Popo lf continues:

“The Habilitation schrift o f Mr. Obreschkoff is a valuable contribution to 
the field o f H igher A lgebra, revealing his big talent and assuring him a leading 
position among the young mathematicians. It shows original thought, g ift to
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see by himself the fundamental issues and to achieve the solution by his own 
efforts. A ll this is demonstrated also by his paper on series, though not 
solving problems o f the same importance as the above mentioned, it shows a 
formed mathem atical insight and an outright individuality.

I do recommend warm ly Mr. Obreshkoff for the position o f assistant 
professor at the Chair o f Higher algebra.

Dr. K yrill PopofF 
Associate Professor o f 
Differential and Integral Calculus.”

In 1925 Obreshkoff was promoted an associate professor and in 1928 —  a fu ll
time professor and Head o f the A lgebra  Chair. He remained at this position for 35 
years.

As a young lecturer he had different courses. According to the then term i
nology, some ‘basic’ ones: Higher algebra (in two parts), Infinite series, Theory 
o f probability, and some ‘ tem porary ’ : Spherical and practical astronomy, Plane 
analytic geometry, D ifferential geometry.

Obreshkoff has never been abroad for a long time as a postgraduate. His two 
Ph.D. degrees —  from  Palerm o and Paris, he got in 1932 and 1933, being yet a 
full-tim e professor and author o f more than th irty publications.

In order to accomplish this dry recording o f facts, allow me, please, a digression. 
I cited above the report o f Popoff, the other reviewer was Emanuel Ivanoff, the 
then Head o f the A lgebra  Chair. Both reports are printed in vol. 19 (1922) o f the 
Annuaire de l ’Université de Sofia and thus were im m ediately made open to the 
public, together w ith the inaugural lecture o f the newly elected professor, entitled: 
Character and Prob lems o f  Algebra.  Grace to such a publicity, it is not a secret to us 
today who did recommend and w ith what arguments Obreshkoff’s promotion. The 
responsibility which Ivanoff and Popo ff assumed in 1921 we count today to their 
merits. In later times, especially after the forties, unfortunately things became 
anonimous, the reports o f the reviewers being available only to a restricted circle o f 
scholars and the original documents sinking into the archives ( i f  not destroyed) and 
not made known to the general public. T ry  nowadays to discover who proposed 
whom for a certain academic position! Let us hope that the Bulgarian Academ ic 
society w ill realize the necessity o f such a publicity, lost half a century ago.

In January 1945 Obreshkoff was elected directly as an Ordinary member o f 
the Bulgarian Academ y o f  Sciences and Arts, as it was called at that time. The 
usual path was through becom ing first Corresponding member, but Obreshkoff was 
elected directly Ordinary member. Earlier members were Ivan T zen o ff (elected in 
1929) and Lyubom ir Tchakaloff (elected in 1930). I do not count here the m ath
ematicians Vassil Vassilieff, Ivan Gyuzeleff, Emanuel Ivanoff and Georgi K irkoff, 
who were members o f the Bulgarian L iterary Society, the ancestor o f the Academy.

A fter the soviétisation o f the Academ y through the Acts o f 1947 and 1949 
and the foundation o f some research institutes in the framework o f the Acade
my Obreshkoff was appointed in 1950 as the first director o f the recently created 
M athem atical Institute. The death overtook him after 13 years in this position at a
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crucial moment o f the institu te’s development. As Marshall Stone has formulated 
it, mathematics has turned to be not only a vocation, but a profession. Some times 
earlier cybernetics (as the computer sciences were called) was declared sane and 

removed from  the ‘ index scientiarum prohibitorum ’ . M athem atical methods in the 
social sciences and in the humanities were accepted. The application o f mathe
matics in industry, even the intention to go in this direction, became fashionable. 
Obreshkoff was not allowed to participate in this ‘taw ’ development. I have remem
bered his directorship (up to 1955) by two main characteristics —  at first place his 
absolute intolerance o f low quality research, and second, his highly developed sense 
o f responsibility concerning public affairs. And all this accompanied by an inborn 
allergy towards bureaucracy. It was the essence, not the form  that did matter for 
him. He often repeated that this country is small and poor and we have to econo
mize in everything and everywhere, and that in the field o f research the then loudly 
proclaimed law that ‘ quantity develops into (o f  course better) quality ’ was false.

Dear colleagues and esteemed audience! To  discuss here, even m inim izing the 
details, the rich and diverse works o f Obreshkoff is not possible and beyond my 
scope.

Let me try to present a very brief and general sketch. K yrille  Popo ff used to say 
that one is working during all his life on his dissertation, literally on his ‘ thesis’ . 
To  some extent this applies to Obreshkoff, too. He impressed the mathematical 
community w ith his very first paper on the distribution o f zeros o f polynomials. 
His beautiful generalization o f the theorem o f Budan and Fourier was achieved by 
generalizing a lem m a o f Johann von Segner from  the midst o f the 18th century. In 
Segner’s original proposition the factor is linear, but Obreshkoff used a quadratic 
one, thus generalizing Descartes’ rule o f signs to complex valued zeros. During the 
twenties and thirties o f this century the distribution o f values o f polynom ials was 
a busy research area and Obreshkoff was one o f the prominent dramatis personae, 
along with Dieudonné, Faber, Féjér, Fujiwara, Kakeya, Marden, Montel, Polya, 
Schoenberg, Schur, Szokefalvi-Nagy, Szego, Turan, Walsh et al. As yet mentioned, 
Obreshkoff did not abandon these problems until his last days. Only few months 
before his unexpected death two monographs were published: Zeros o f  Polynomials  
(in Bulgarian, Sofia) and Vertei lung und Berechnung der Nullstel len reaier Po ly 
nôme  (in German, Berlin ). These books are the result o f 40 years o f active research 
in this field. Earlier there were published only two monographs in this area: Nr 

93 o f M ém or ia l  des sciences mathématiques by Dieudonné (1938) and Geometry  o f  
polynomials  by Marden (1949). The first volume o f Obreshkoff’s Collected Works 
contains 45 papers upon zeros.

In his inaugural lecture by “ the basic problem  o f algebra” Obreshkoff meant the 
solution o f algebraic equations. Nowadays the term “algebra” has a quite different 
meaning. The distribution o f zeros o f polynom ials belongs therefore to the domain 
o f analysis. D ieudonné’s review o f 1938 is called: Théorie analytique des polynômes  

d ’une variable.
Obreshkoff contributed also to the distribution o f zeros o f entire functions, to 

particular meromorphic functions which are lim its o f special polynomials or rational 
functions. These results interfere w ith his interest in functional series and lead him

15



to his second great love that turned out to be very fruitful: the summation o f 
divergent series. Unfortunately, he did not succeed to present this part o f his life 
work in a bookform . But the bifurcations from  this theory are very interesting. 
In his famous paper on quadrature formulae, published in the Proceedings o f  the 
Prussian Academy o f  Sciences in 1940, the approach is based on a summation 
formula.

During the second half o f  the forties Obreshkoff achieved a brilliant result in 
diophantine approximations and gave the answer to a problem posed by Borel as 
early as 1903. Obreshkoff proved that the unknown ‘ Borel constant’ is equal to 1.

Last but not least we should not forget that Obreshkoff has interesting contri
butions to the probability theory (series and polynomials o f Charlier connected with 
the Poisson distribution). They are published in the series Actuali tés Scientifiques 
ei industrielles in 1938.

Obreshkoff must be mentioned also as the author o f many and influential text
books. In a short period the young professor published as № 93, 110 and 153 (resp. 
in 1930, 1932 and 1935) o f the famous Bulgarian University l ibrary series two vo l
umes o f Higher algebra and a Collection o f problems in the same field. W ith in  25 
years the Higher algebra underwent more than five editions. But comparing the 
first edition (1930) w ith the last one (1955) you w ill notice the richness o f the first. 
It contains: fundamental properties o f polynomials, determinants, basic properties 
o f algebraic equations, algebraic solution o f equations, theory o f numbers, theory o f 
groups and its applications to algebraic solution, theory o f Galois and finally A b e l’s 
theorem. The later editions are somehow simplified, they contain linear algebra, 
but some deeper topics are om itted. The second volume o f this algebra textbook 
is in fact the first textbook on probability and statistic written by a professor o f 

Sofia University, parallel to Oskar Anderson ’s (the then director o f the Economical 
Research Institute at the University) Einführung in die mathematische Stat ist ik 
from  1935. During the fifties the two initial volumes o f the Higher algebra (which 
at least to me are still charming and challenging) were split among others into 
textbooks on probability and theory o f numbers.

One can meet the name o f Obreshkoff also as author o f some highschool text
books and two popular booklets (one on Euler, w ith co-author Yordan Duitchev, 
and the another under the title  What  is differentiating? w ith co-author D im iter 
Skordev). These nice texts remind me o f Herbert Robbins’ joke about his co

authorship w ith Courant on What  is mathematics.  The version was that Courant 
wrote the text but put on the front page the prestigious name o f young Robbins, 
as H ilbert did w ith Courant in Methoden der mathematischen Physik.

Tom orrow  and after tom orrow during the specialised session many o f you w ill 
have the possibility o f  fo llow ing the chalk on the blackboard (the good old way to 
communicate mathematical ideas) to learn more on Obreshkoff’s works on integral 
transforms and many other things. Therefore allow me to skip them here.

And now, after these words, you w ill be able to hear some reminiscences on the 
human being Obreshkoff and I shall m yself not elaborate on his image that was in 
a m oving manner unsophisticated. He had no hidden or surprising facets, but was 
both direct and kind. N ot alien to public problems, nevertheless he was absorbed
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by his internal m athem atical world. I do not remember him  in a bad mood, even 
after his physical pains became more frequent in the late fifties. He was not a 
lecturer for beginners but an excellent one for advanced students. Th is feature he 
had in common w ith Kolm ogorov —  they shared a creative manner o f speaking 
and their words could be decoded only by the initiated. One more resemblance 
between them was that scarcely you had shared a problem you could realize they 
had gone through it and as Obreshkoff used to say: ‘ I have been thinking about 
this’ . Indeed there were many things he had thought about.

The mathem atical community o f  this country still owes much to Obreshkoff. 
W e have to accomplish the edition o f his complete works and we must compilate 
his scientific biography.

It is fine that Sofia has now an Obreshkov street, but his hospitable home at 
Tzar Samuel street deserves since a long tim e a memorial plate.

The best what future generations o f  Bulgarian mathematicians can do to hon
our the m em ory o f  Obreshkoff is to be exacting and persevering like him.

23 Oborishte str.
BG 1504 Sofia, Bulgaria 
E-mail: bip@math.acad.bg
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Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И  И Н Ф О Р М А Т И К А  

К ни га  1 —  М атем ати ка и механика 
Т ом  89, 1995

A N N U A IR E  D E  L ’U N IV E R S IT E  D E  S O F IA  „S T . K L IM E N T  O H R ID S K I“

F A C U LT E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre  1 —  Mathématiques et Mécanique 
Tom e 89, 1995

ON A FORMULA OF OBRESHKOFF*

B O R IS LA V  B O JA N O V

W e show that a formula given by N ikola Obreshkoff yields in a very simple way 
the Bernstein comparison theorem.

K e y w o rd s : devided differences, Obreshkoff formula, Bernstein comparison theorem. 
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 41A03, 41A10, 41A50.

Denote by f [ x o , . . . ,  z n] the divided difference o f / at the points x q , . . . ,  x n . It 
is well-known that i f  /  G C n [a, b] and a <  x 0 <  ■ ■ ■ <  x n <  b, then there is a point 

£ G [xq , x n] such that

f rT t 1  _ / (n)( 0  mf l x 0, ■ ■ ■ j x n\ — , • ( 1 )
7l!

Another basic fact from  calculus is the follow ing mean value theorem: I f  /  and g 

are continuously differentiable in ( x , y ) and g ( t ) 0 for all t G ( x , y ) ,  then there

exists a point £ G ( x , y )  such that

/ ( » )  -  f ( y )  _  / ( 0
g ( x )  -  g{y)  g ' ( 0 '

Nikola Obreshkoff [1] has obtained a formula which extends both (1 ) and (2 ). He 
has exploited it to establish various inequalities for differentiable functions.

* Invited lecture delivered at the Session, dedicated to the centenary o f the birth o f N ikola 

Obreshkoff.
The research was supported by the Bulgarian M inistry o f Science under Contract No. 

M M-414.
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O b re s h k o ff ’ s fo rm u la . Assume that f  and g are f ro m  C^n^[a, 6] and g(n) ( t )  >  0 
on [a, 6]. Then f o r  every set o f  points Xq < ■ ■ ■ <  x n in [a, 6] there exists a point  
£ G (x a , x n) such that

f [ x o, • • - ,Zn3 _  / (n )(Q  
g [ x Q, . . . , x n] g (n) (  O '

Proof.  Set

<7[*o, • • ■ i * „ ]

Note that g [ x o , .. ., x n] =  g(n\ t )  for some t £ [x0, x „ ] and thus g [ x 0l . . . ,  x n] /  0. 
Consider the function

p (x )  :=  f { x )  -  L n- \ { f )  x ) -  A [ g ( x )  -  L n- i ( g \ x ) ] ,

where L n- i ( h \ x )  is the polynom ial from  irn- i  which interpolates h at X\ ,. . . ,  x n . 
It follows from  this interpolation that <p(xi) =  0 for i — 1 , . . . ,  n. In addition, by 
the definition o f A  ip(x o) =  0 too  (because h{ x )  — L „ _ i (/ i ; x )  =  / i[x j, . . . ,  x „ ,  x] 
x (x  — x i ) - - - ( x  — x n) for each function h ). Thus <p has at least n +  1 zeros. 

Then, by R o lle ’s theorem, g^n'> vanishes at a certain point £ £ (x o ,x n), that is 
ip(n)(£ ) =  f^n\f , )  — A g l' n\ £ )  — 0 and the p roo f is complete.

Th e  aim o f this short note is to point out the fact that ObreshkofF’s formula 
implies the classical Bernstein comparison theorem [2] (see also [3, Theorem  59]) 
concerning the best uniform  polynom ial approximation o f a function /:

E n (.f )  ■■= in f m ax | / (x )- p (x )| .
pe*n x€[a,b]

Indeed, as well-known, the best approxim ation E n (f\ x o , .. ., x n+ i )  o f / b y  polyno
mials from  7rn on the finite set xo <  ■ ■ ■ <  x n+ i is related to the divided differences 
o f / by the formula

/ [ xq i . ■ ■ , X n + l]
En  ( f , x  o, ■ I£n + l j  —

s [xq , ■ • • , Xn + l]

where s is any function taking the values ( —l ) 1 at x*, i 
by Obreshkoff’s formula,

0 , . . . ,  n  T  1 • Therefore,

E n ( f , x 0, •* - ,^ n + i) / (n+1)( 0

E n ( g ,  X q , . . . , Xn_|_i)

Now the follow ing assertion is clearly true:

Assume that f t g £  C (n+1)[a ,6 ] and 0 <  |/(n+1)(<)l <  <7(n+1)(0  f ° r  a U t 6 [a ,6]. 
Then f o r  each a <  xo <  ■ ■ ■ <  x n+ i <  6

E n  ( j ] X Q ) . . . 1X n -{-l ' ) ^  E n  ( p ,  Xq, . . . , X n _|_i) .

Taking x o , . . . ,  x n+ i to be the alternating set for /, we get

E n{ f )  =  E n ( f :  x 0, . . . ,  x n+ i )  <  E n(g\x0, . . . , x n + i )  <  E n ( g ), (3 )
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which is the Bernstein comparison theorem.

Note that equality holds in (3 ) only i f  the functions '/ and g have a common 
alternating set.
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В Ъ Р Х У  И ЗС Л Е Д В А Н И Я ТА  
НА А К А Д Е М И К  Н. ОБРЕШ КОВ, С В Ъ РЗА Н И  

С Р Е Г У Л Я Р Н О  М О Н О ТО Н Н И ТЕ  ФУНКЦИИ1

Т О Д О Р  Г Е Н Ч Е В

Тодор  Ген чев .  О Б  И С С Л Е Д О В А Н И Я Х  А К А Д Е М И К А  Н. О Б Р Е Ш К О В А , С В Я З А Н 
Н Ы Е  С  Р Е Г У Л Я Р Н О  М О Н О Т О Н Н Ы М И  Ф У Н К Ц И Я М И

В этом  статье  представлен  короткий обзор  исследований академика Н . О бреш - 
кова, связанные с р егуляр н о  монотонны ми функциями.

T o i o r  Genchev. O N T H E  IN V E S T IG A T IO N S  O F  A C A D E M IC IA N  N. O B R E S H K O FF  C O N 
N E C TE D  W IT H  R E G U L A R L Y  M O N O T O N IC  F U N C T IO N S

A  short survey o f some investigations o f the academician N. Obreshkoff connected with the 
regularly monotonie functions introduced by S. N. Bernstein is proposed.

В този  кратък  обзор  ще се спра на публикациите на акад. Н . О бреш - 
ков, близки  по д ух  с някои от к ласически те и зследвания на С . Н . Берн- 
щейн в ъ р х у  р е гу ля р н о  м онотонните функции. О свен  че в тези  публикации 
намираме характерните за  О бреш ков п р остота  и единство на м етодите, 
именно тук  се съ д ъ р ж а т  и неравенствата, които привличат вниманието 
на м лад и я  то гава  Я р о с л а в  Тагам ли ц ки  и в края на краищ ата го довеж дат 
до неговата  Теорема за конусите.

1 Д оклад , изнесен на 20 април 1996 г. на ю би лей н ата  научна сесия по случ а й  
стогодиш нината от рож дението на акад. Н. О бреш ков.
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Както ще стане ясно от сам ото излож ение, за  пряко влияние на ра
боти те на Б ернщ ейн в ъ р х у  О бреш ков не мож е д а  се говори . Н еговите 
изследвани я са предизвикани от естествения стрем еж  да  си изясним в р ъ з
ката м еж ду някои р е зу л та т и  от теори ята  на разходлщ ите редове, които 
вече е п о луч и л . Н аистина  на с. 105 от най-ранната м у публи кация [1], 
която мож е да  се п ричисли  към  разглеж дани я  цикъл, намираме следния 
пасаж: „П р и  изследвани ята  на зави сим остта  м еж ду услов и я та  на теор е 
мите стигнах до  някои р езултати , които им ат някакъв и н тер ес “ . С л е д  
това  идва теорем а  1, приведена п о -д о лу  в леко изменена редакция. Е два 
с течение на годините О бреш ков осъзн ава  идейната б ли зо ст  на своите 
р езултати  с тези  на Бернщ ейн и в сам ия край на своя жизнен и творчески 
п ът дава прости  и елегантни  д ок азателства  на две от най -хубавите теор е 
ми на Бернщ ейн заедно с едно същ ествено обобщ ени е на сам ото понятие 
за  р егу ля р н о  м онотонна функция.

С л е д  това  встъ п лен и е  ще ф орм улирам  теорем а  1, за  която стана дум а  
по-горе.

Т е о р е м а  1. Нека реалните функции <р и ф са дефинирани за х >  xq и при
т е ж а в а т  непрекъснати производни до п -т и  ред включително.  Нека освен 

това е в сила неравенството

\ ^ п\х)\ <, \фМ(х)\,  х > х о , (1 )

и границите lim  <р(х) =  а, lim  ф(х )  =  Ь съществуват. Най-сетне нека 
х —*оо г —»-fco

ф(п) ф 0 в целия интервал (х св+оо )- В такъв случай е изпълнено и неравен
ството

\<р(х) -  а| й |-0(аг) -  Ь|, х >  х 0. (2 )

Както о тб е ля зв а  сам ият автор, тази  теорем а  ни позволява  да  срав
няваме скоростите, с които и ф к лонят към  своите граници, когато 
х —*■ + со . З а  да  м ога  д а  дам  представа  както за  естеството  на задачата , 
така и за  м етода  на О бреш ков, ще си позволя  кратък  коментар.

Я сн о  е, че за  д а  п олучи м  (2 ),  трябва  да  проинтегрирам е (1 ) по под
ходящ  начин. В с л у ч а я  п =  1 това се постига  непосредствено. Н аистина 
за произволни  ч и сла  А  и х,  принадлеж ащ и на и н тервала  (e q .+ o o ) ,  имаме

\ip{x) -  i p (A ) |

А
x

J  m oidt

X

I  Ш \

A
x

J  Ф'(1)

dt

dt \ф(х) -  Ф{А)\,

откъдето , като оставим  А  да  клони към  + о о  при фиксирано х >  хо, п о л у ч а 
ваме (2 ). О т  това  разискване се вижда, че мож ем да  заменим изискването 
ф' ф 0 с услови ето  ф' да  не си сменя знака в и н тервала  (ж о ,+оо ).
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В общ ия с л у ч а й  д ок азателството  е по-слож но, но О бреш ков, п р ибяг
вайки към  един от лю би м и те  си ин струм енти  —  ф орм улата  за  п -тата  раз
лика, с лекота  се справя с възникналите затруднения. Щ е  припомня за 
какво става дум а . А к о  <р е деф инирана в и н тервала  (го , + о о ) за  фиксирани 
х >  хо и /1 >  0, п ола гам е  п ослед ователн о

&к<р(х) =  <р(х + к ) - < р ( х ) ,  Д  1<р{х) =  А н<р(х +  И,) -  А к<р{х), . . . ,

А£<р(х)  =  А ’£ ~ 1Аь<р(х)

и индуктивно сти гам е до равенството

п
А%<р(х)  =  Iр ( х  +  пК)  -  ( ) <р(х +  (п  -  1)/г)

+  у 2) (р х̂ +  ( п ~  2) л ) +  • ■ ■ +  ( - 1) п<р ( х )~ (3 )

О т  д р у га  страна, като вземем  предвид (1 ),  с пом ощ та на класическата  
ф орм ула

/1 /I

А%<р(х) =  У " ‘ У  <Р('пЧ х  +  * 1 + ^ 2  + -----\-1п )&1<И2 .. . (к п

о о

/
П

I ( х +  (И =  . .  ,<Ип , (4 )

п

където  С Г?" е п-м ерният куб, деф иниран с неравенствата  0 ^ ^  Л,
.7 =  1 ,2 , . . . ,  п, непосредствено п олучавам е

(д х * ) !   ̂ [\<р{п)(х + '521-з)\л  = / ^ (п)(я: + Х !<-'')1л
п >'=1 п ' =1

/П

+  = | Д ^ М 1 >

п * = 1

защ ото не си сменя знака в ц ели я  ин тервал (х о ,+ о о )-  П о този  начин 
О бреш ков сти га  до реш аващ ото съотнош ение

|ДХг)1 й 1дХ г)1, х >  х 0,

откъдето , имайки предвид (3 ),  с л е д  граничния п р еход  /г —+ оо п олуч ав а  
неравенството

1 / = 1 1/ = 1

което съвп ада  с (2 ) ,  защ ото очевидно ( - 1 ) "  1( " )  =  1.
|/=1

В тор ата  публи кация  [2] от разглеж дани я  цикъл отново е пом естена в 
годиш ника на уни верси тета . Т у к  основен е следн ият р езултат :
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Т е о р е м а  2. Нека ф и <р са две реални функции, дефинирани за х  >  а, 
които пр ит еж ава т непрекъснати производни до п -ти  ред включително и 
у?(") ф 0 в целия интервал х >  а. По-нататък, нека съществуват безкрайна 
редица {х ',,} —» + о о  и цяло число т,  0 ^ тп <  п, такива, че границите

Н т  ^  =  А,  Нш =  В
У-ЮО X™ 1/—ЮО Xи*

да съществуват. В  такъв случай от неравенството

/(п )( * )

следва неравенството

ф ^ ( х ) - т \ А

(п \ х ) х >  а,

(ш х >  а.

(5)

(6)

(7)

Т а зи  теорем а  е значително  п о -д ъ лб о к а  от теорем а  1. В разглеж д ан а
та работа  О бреш ков дава две док азателства : в първото  си служ и  с едно 
ново представяне на п -тото  ш отоново частно, а във втор ото  —  с позната
та  ф орм ула  на М о н т е л  за  същ ото  ню тоново частно, която м у позволява  
да  обхване и сл уч а я , когато / прием а и комплексни стойности. За  да 
м ога  д а  дам  повече п одробн ости , щ е припомня, че ако / е функция, дефи
нирана в някакъв и н тервал  (а,/?), нейното п-то ню тоново частно с в ъ зли  
хо <  ху <  . . .  <  х п I { ^ 1/}о С (а , /?), се деф инира би ло  чрез ф орм улата

М ( / , х о , х 1, . . . , х п) =  £ - 0 ^ ,

където  Р ( х )  =  П  ( х  — х и), би ло  рекурентно чр ез  равенствата  
|/ =  0

х 0, х г )  =

N  ( / ,  Хо  , . . . ] Х т , Х т + 1 )  —

/ ( Д г )  "  / ( а ? о )

Х\ — Хо

хр,  Х2 ) -  Л Г ( / , . т о ,  ж т )

Х2 — XI

N ( 1 x 0 , . . . ,  •Е 771— 1 1 ^  777 +  1 )  - А Г ( / ,  х р , . . . , 7̂71—1 ) ^т)

3-771 +  1 *̂ '771

Л есн о  се виж да [3], че ако / притеж ава п-та  производна в (а,/3), то с ъ 
щ ествува  такова ч и сло  £ £ (а ,/?), ч е  д а  имаме

/■(” ) ( £ )
Ы ( / , Х о , Х 1 , . .  . , х „ )  =  ---------- ,

Т) I
т т ш у  <  £ <  т а х т „ . (8)

С лед ов а телн о  п -тото  ню тоново частно на една функция с неотрица- 
телн а  п -та  производна е н еотриц ателно , както и да  и зби рам е в ъ зли те  в 

разглеж дани я  интервал.
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П одготвяйки  се за док азателството  на теорем а  2, О бреш ков дава 
следн ото  обобщ ени е на равенство (8 ):  А ко  / и д са  две функции, дефини
рани и н -п ъти  диф еренцируеми в и н тервала  (а ,  /?), и освен това д^п\ х )  ф 0 
за  х  6 (а ,  /?), то

N ( f , x  o , x i , . . . , x n)  / (п )( 0
а  <  £ <  ß . (9)N { g , x о, а л , , ж„) ’

Д ок а зателств ото  на (9 ) не се разли чава  от к ласическото  и се опира на 
теорем ата  на Р о л .  Т р я б в а  д а  отбележ а , че стр о го  поглед н ато  един меж
динен етап е пропуснат: най-напред би тр я бв а ло  да  се убедим , например 
с пом ощ та на (8 ),  че N ( g ,  xq , . . . , х п) ф 0, и с л е д  това  д а  разсъж давам е та 
ка, както прави О бреш ков. Такива пропуски, които не засягат  същ ността  
на док азателствата , но затрудняват четен ето , намираме и на д р у ги  м ес
та  в бо гатото  твор чество  на О бреш ков. Л и п сата  на подробно цитиране, 
както и на уводни  бележ ки, които д а  приобщ ават ч и тателя  към  съответн а 
та  п роблем ати ка , същ о не спом агат за  поп уляри зиран ето  на безспорните 
постиж ения на О бреш ков.

С л е д  това  отклонение да  се върнем  към  док азателството  на теорем а
2. Н ай-напред  О бреш ков фиксира ч и сла т а  Щ <  f]i <  ■ ■ ■ <  г]т произволно в 
и н тервала  х >  а и с л е д  това и зби ра  от редицата { х и} (вж. (5 ) )  такава под-

редица {< , } ,  че д а  имаме t\ >  Tjk, 0 £ к g  m, и освен това  lim  -1Ü  =  оо.
'■ + оо t;

П о-н ататък  с пом ощ та на тъ ж д еството  

А ( / ,  щ ,  т)\, . . . ,  Tjm /(п)(0
v?(n )0Ü

< i
А ( р , 7 7 о ,  771 , . . . , 7 7 т  ) ^п — т + г  — 1 )  |

той сти га  до неравенството

| Л Г ( / ,  т]0 , 7 7 1 , .  . ■ | | ) ^* +  1 ’ * * * 1 ^п — т + г  — 0 1

г +  1 1 ■ • • I ^п — т + г — 1 )  |:

откъдето , като ум нож и с |М;+1 . . . < г + п . —т.— 1 1 и извърш и граничния п р еход  
и  —+ оо, п о луч а в а

|А(/, Т]0, гц , . . . ,т}т)  -  А\ <: ..,т)т) -  В\, (10)

т. е.

/ (п )( о  — т\ А\ й k (n )( 0  — т\ В minr]k <  £ <  majcjjfc. 
Je к (и)

Н ай-сетне, полагай ки  7^ =  х +  кк,  0 ^ к ^ т ,  където  х е произволно чис
ло  от и н тервала  (а ,+ о о ) ,  О бреш ков оставя к д а  клони към  н у л а  в (1 1 ) и 
п олуч ав а  (7 ).

За  да  и лю стр и р ам е  казаното, ще р азгледам е  простия  с л уч а й  п =  2, 
ш = 1 .  П онеж е в с л у ч а я

М (Г  \ - К Х°  ̂ | |
(®1 -  Х0) ( Х 2 -  Х0) (Х0 -  Х 1 ) ( х 2 -  X].) ( х 0 -  Х2) ( х Х -  х 2) ’

а <  хо <  х  1 <  х 2, неравенството

\ М (/ ,х й, х и х 2)\ < \М( (р,х0, Х 1 , х 2)\

27



взема вида

/ (* о )
+ / ( * 0 +

/ ( * 2)
(а?1 — я?0)(а :2 — аг0) (х 0 -  Х ! ) (х 2 -  х г ) ( х а -  х 2) ( х 1 -  х 2)

<р(х0)
+

<Р(х 1)
■ +

<р{х 2) (12)
(х\ -  х 0) ( х 2 -  х 0) (х 2 -  х 1) ( х 0 -  Х1) (хо -  х 2) ( х !  -  х 2)

К ато умнож им (1 2 ) с х 2 — хо и извърш им  граничния п р еход  х 2 —> -Ьоо,1 
намираме

/ ( * 1 ) -  / (®о)
Х\ Хо

- А
<р(х 1) -  <р(хо)

Х\ Хо
-  в

откъдето , като оставим  ап да  клони към  хо, п олучавам е

|/ '(л0) - Л |  ^ |^'(10) - В |

и завърш вам е д ок азателството , защ ото ло е произволна  точка от интер
в а ла  (а, + о о ).

В следващ ите си публикации [4 -6 ] О бреш ков опростява  своя м етод, 
като обобщ ава  постановката на въпроса , разглеж дайки и едностранни не
равенства. С лед в ащ ата  теорем а  е типична.

Т е о р е м а  3 ( [4 ] ) .  Нека <р и ф са реални функции, дефинирани за х  <  а, 
които пр ит еж ава т п -т и  производни,  удовлетворяващи неравенството

р ( п) ( х )  ^ ф(п) ( х ) ,  х <  а. (13)

По-нататък да предпо ло жим,  че за някакво цяло т,  0 < т  <  п, съществува 
редица { х и} —> —оо, за която границите

Нш
< р (х и )

=  А Кш =  В
х и —  - оо  XV}

съществуват. В такъв случай имаме

( л )  — т !  А  ^ ф(т\ х )  — т !  В,  х <  а.

(14)

(15)

Нещо повече, ако за някакво хо (15) се превръща в равенство,  то имаме  
равенство в целия интервал х  £ х 2.

Я сн о  е, че тази  теорем а  е п о-общ а от теорем а  2, защ ото ако ф ^  ф 0 
за  х <  а и е непрекъсната, мож ем  да  заменим  неравенството ||р(")(л)| 
^ |^(п )(я)|, х <  а, с двете неравенства (р (п\ х ) й еф(п\ х )  и —<р(п\ х )  
< Еф̂ п\ х ) ,  х <  а, къд ето  е е знакът на ф(п\

Д ок азателств ото  на теорем а  3 се извърш ва по схем ата, и зп олзва 
на за  д ок а зателството  на теорем а  2, но е по-просто, защ ото в с л уч а я  
е достатъ чн о  да  прилож им  равенство (8 ) към  п -тото  ню тоново частно 
^ (/ ,  тю,щ,. . .  ,т]т , и , и +1, . . .  , гп- т+г - 1 ), където  / =  ф -< р ,  и с л е д  граничния 
преход  и  —► — оо да  п олучи м

М(<Р,Т)0, Т ) 1 , - - - , Г ] т ) - А  й N ^ , 7 ) 0 , 7 1 1 , . . . , ^ ) -  В,  

което, както видяхм е, води до (1 5 ).

Х П редполагам е, че х 2 —+ + оо  чрез стойности  от редицата { л „ } ,  за  която границите 

(5 ) същ ествуват.
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О собен о  интересен  е с л уч а я т  т  =  0, А  =  В  =  0. Т ъ й  като тези  пред
полож ения ни оси гур яв ат  и равенствата

. ,1 т  Щ 1 =  0 , цт  % ) = 0 , А =  0, 1 , 2 ,. л  — 1 ,
Г „ - > - 0 О  Х у  X  „  —► — о о  X *

стигам е до  следн ия  забележ и телен  р езултат :

Т е о р е м а  4. Нека функциите <р и ф са дефинирани за х  <  а и прите
жа в а т  п-ти  производни,  удовлетворяващи  (13). В такъв случай, ако гра
ниците  lim  <p(xv) =  0, lim  ф ( х Л  =  0 съществуват за някаква редица

Х и  — ► —  ОО Х и — ► — 0 0

{ х „ }  —1- — оо, то неравенствата

<Р̂ к\ х )  < ф(к\ х ) ,  х  <  а, к =  0 , 1, 2 , . . . ,  п -  1 (16)

са налице. Нещо повече, ако за някакво xq, Xq <  а, и някакво и, 0 ^ и <  п, 
имаме ф(“ \ х о )  =  ф ^ { х о), то i p ^ { x )  — ф(у\ х )  в целия интервал х  ^ хо-

В частния с л у ч а й  ф{х)  =  ех п олучавам е  силно обобщ ение на една 
красива теорем а  на Тагам ли цки  [7].

Т е о р е м а  5. Нека п ^ 1 е естествено число и функцията /  е п пъти 
диференцируема в интервала х  < 0. Ако  / (х )  £ ех за х  £ 0 и освен това f
удовлетворява условията  lim  / (х ) =  0 «  / (0 ) =  1, то  / (х )  — ех в целия

X —► — ОО

интервал х  ^ 0.

Н аистина сп ор ед  теорем а  4 функцията F { x )  =  ех — / (х ) е монотонно 
растящ а и н еотри ц ателн а  в ин тервала  х < 0. П онеж е по у слови е  F (0 )  =  0, 
то F { x )  =  0 за  х g  0.

Щ е  завърш а този  по н еобходи м ост  кратък  обзор  с няколко дум и  за 
и зследвани ята  на О бреш ков, непосредствено свързани  с теори ята  на р е гу 
лярно м онотонните функции. В своята  р абота  [2], за  която вече говорих, 
изхож дайки от ф ор м улата  на М он тел

1 h <п-1

N ( f , x  о , х ь .. . ,æn) =  J  dt\ J  dt2 . . .  J  f ( n\ w ) d t ni

0 0 0 

W  —■ Xn t n  -|- Xn — i ( t n —\ tn )  +  • — I- *To(l ^l ) j

за n-тото  ню тоново частн о, О бреш ков м еж ду д р у го то  установява следн а 
та

Т е о р е м а  6. Нека / притежава п -та производна в интервала х >  а и за 
някаква безкрайна редица { х „ }  —► + о о  и някакво цяло т, 0 < т  <  п, граница

та lim  =  о съществува. Тогава, ако интегралът J  tn~ m~ 1 | / ^ (ï)|  dt
х и ►оо X™ ' х

е сходящ за всяко х  >  а, равенството
ОО

/ ( " > ( » )  =  т ! Л +  . ( ~ 1)П~ " , ,  ( { t - x ) n - m- l f ^ \ t ) d t ,  х >  а, (18) 
(п  -  т  — ly. J

X

е удовлетворено.
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П ет години по-късно О бреш ков развива тази тем а  и п уб ли к ува  своя
та заб ележ и телн а  р абота  [8], в която меж ду д р у го то  дава  забележ и телн о  
просто и елегантно  док азателство  на една от класическите теорем и  на 
Бернщ ейн. О бреш ков започва разискването съ с  следн ата

Т е о р е м а  7. Нека /  е реална функция, дефинирана за х >  а, която има 
производни до (п +  1)-аи ред включително и удовлетворява условията

( _ 1 ) * / ( «0(а.) > о, х >  а, к =  0,1, 2 , . . . ,  п +  1. (19)

В такъв случай е в сила равенството
ОО

f ( x )  =  6 +  ^ +- -  J ( t -  x ) V (n+1)(0  dt, X >  a, (20)

X

където, разбира се, 6 =  lim  f ( x ) .
X  — ► CO

И менно и н тегр алн ото  представяне (2 0 ) е изходният пункт на О бреш 
ков към  теор ем ата  на Бернщ ейн, чиято ф орм улировка привеж дам само за 
п ъ лн ота  на излож ението .

Т е о р е м а  (C . Н. Б ернщ ейн ). Нека / е реална функция, дефинирана и 
безбройно м но го  пъти диференцируема в интервала х  ^ 0. Нека условието  
(_ 1  ) * / (0 (ж) ^ о, х  ^ 0, k =  0,1, 2 , . . .  е удовлетворено.  В такъв случай / 

има вида ■
ОО

f { x )  — J  e~ ix da ( t ) ,  х >  0, (21)

о
където а  е дефинирана, моното нно  растяща и ограничена в интервала 
[0, + о о ).

З а б е л е ж к а . Функциите, удовлетворяващ и  услов и я та  на теорем ата , 
се наричат регулярно монотонни.

С ега  е м ом ен тът д а  скицирам док азателството  на О бреш ков. Б ез ог
раничение на общ ността  мож ем да  предполож им , че lim  f ( x )  =  0, т. е. че

X — ►ОО

72
в (2 0 ) имаме S =  0. В  такъв с л уч а й  с л е д  субсти туц и ята  г  =  — от (20 ) 

п олучавам е
гг

1 1  =  ( - 1 ) " + ‘ ( ^ I j i  /  ( '  -  v ) ”  ? Г П / < " + 1 )  0 9  i T ' * > » ■  <2 2 >
0

(И н т е гр а л ъ т  (2 2 ) е сходящ , защ ото сход и м остта  на (2 0 ) е установена в 
процеса на д ок а зателството  на теорем а  7 .) О става  ни да  въведем  м оно

тонно растящ ата  и ограничена  функция

М г) = / (- 1 Г 7 ("+1> Q
0
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за  да  представим  (2 2 ) във вида

П
X п

д а п(т). (23)

о

Н ай-сетне, опирайки се на двете класически  теорем и  на Х е л и , избирам е 
сходящ а подредица от { а „ }  и като извърш им  традиционния, но деликатен 
граничен  п р еход  п  —► оо в (2 3 ), п олучавам е  (2 1 ) и завърш вам е д ок а зател 
ството.

П убли к уван о  в годиш ника на ф акултета, скицираното доказателство  
остава незабелязано . З а  съж алени е по същ ото врем е м лад и ят  тогава  съ 
ветски м атем атик Б. К о р ен б лю м  п убли к ува  в Успехи математических на- 
ук [9] по същ ество същ ото  док азателство , но значително по -д обре  редак
тирано и ш лиф овано. П репечатано от Ш и ло в  в неговия знаменит учебник
[11], именно то завою ва  и зк лю чи телн а  популярност.

Т у к  се натъквам е на явление, което не искам д а  отм ина с м ълчани е. 
П убли кации те на О бреш ков често  съ д ъ р ж ат  блестящ и  идеи, но са твъ р де  
д ъ л ги  и по пр авило  —  небреж но написани. В тях важ ното и в тор осте 
пенното водят „м и рн о  съвм естно съ щ еств ув ан е“ . Р е з у л т а т ъ т  от подобна 
стратеги я  м ож е д а  бъ д е  само един —  лип са  на популярност. Н апример 
разглеж даната  р абота  [8] е и зк лю чи телн о  богата  по съдърж ани е. О свен  
скицираното д ок а зателство  на теорем ата  на Бернщ ейн там  нам ираме и 
елегантно  док а зателство  на теорем ата  на Х аусдорф  за  моментите, както 
и скица на м ногом ерния вариант на р азгледан ата  теорем а на Бернщ ейн. 
Н ар ед  с това  обаче  р аботата  съ д ъ р ж а  и различни варианти и отклонения, 
които развалят  общ ото впечатление.

Една от последн и те  р аботи  на О бреш ков [10] съ д ъ р ж а  същ ествено 
обобщ ение на д р у га  к ласическа  теорем а  на Бернщ ейн, отнасящ а се до 
р егуля р н о  м онотонните функции. Е то  нейната ф ормулировка.

Т е о р е м а  (С . Н. Бернщ ейн ). Нека реалната функция / е регулярно 
монотонна в крайния интервал  ( а,/3). Тогава, каквото и да бъде числото  
Ь £ (а,/3), равенството

е в сила в интервала а  <  х < Ь и следователно ни позволява да продължим  
/ аналитично в кръга \г — 6| <  Ь — а.

Кратко и елеган тн о  док азателство  на тази  теорем а  мож е да  се намери 
в учебника на Та гам ли ц ки  [12].

За  да  обобщ и  този  р е зу л та т  на Бернщ ейн, О бреш ков изхож да от едно 
сп олуч ли в о  разш ирение на понятието р егу ля р н о  монотонна функция.

Д е ф и н и ц и я  (Н . О бреш ков ). Н ека / е ком плексна функция, дефини

рана и безброй но  м ного  пъти  диф еренцируем а в крайния ин тервал (а, 6).
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Казвам е, че /  е регулярно монотонна в смисъл на Обрешков,  когато са 
изп ълнен и  следн ите  изисквания:

А )  З а  всяко фиксирано п ^ 0 функцията |/(п)(х )|  е и ли  м онотонно рас
тящ а, и ли  м онотонно нам аляващ а в ц ели я  ин тервал (а, 6).

Б ) К о га то  х  описва (а, 6), стой ностите на / (п )м  леж ат  в някакъв ъ г ъ л  
А п с вр ъ х  в н ач алото  и с голем и на , ненадминаващ а тг — 6, където  ч и слото  
б >  0 ие зависи  от  п.

Я сн о  е, че всяка р е гу ля р н о  м онотонна функция е р егуля р н о  монотонна 
и в см и съ л  на О бреш ков.

С е га  вече м ога  д а  ф орм улирам  основния р е зу л та т  на О бреш ков.

Т е о р е м а  8. Ак о  / е регулярно монотонн а в смисъл на Обрешков в ин 
тервала ( а,Ь ), то т я се продължава аналитично поне в областта, която 
се получава като прекараме допирателните от точките  (а ,0 ) и (6 ,0 ) към

окръжността
а +  6

<
Ь — а 

4е
(фиг. 1 ).

( « , (6, 0)

Фиг. 1

Д ок а за телств ото  на О бреш ков се р азли чава  същ ествено от всички д о 
казателства , дадени  в реални я  случ а й . О бреш ков и зхож да от едно пред
ставяне на п -тото  ню тоново частно, което се п о луч а в а  като прилож им  
ком плексния вариант на теор ем ата  за  средните стойности  към  и н тегр ала  
в (1 7 ). (С р а в н ете  с [13, с. 7 2 -7 3 ].)

Д ок а за телств ото  на О бреш ков непосредствено се обобщ ава  за  функ
ции съ с  стойности  в крайномерни векторни пространства . З а  съж алени е 
тук  не м ога  д а  дам  повече подробности .

ON  T H E  IN V E S T IG A T IO N S  O F  N IK O L A  O B R E S H K O F F  

C O N N E C T E D  W IT H  T H E  R E G U L A R L Y  M O N O T O N IC  F U N C T IO N S

(Sum m ary)

Academ ician N. Obreshkoff came across this field o f research studying the 
connections between some o f  his theorems about sum m ability o f a class o f divergent 

series by typical means. His earlier result in this direction reads as follows:
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T h e o r e m  1 ([1 ]). Suppose <p and ip are real-valued funct ions defined f o r  x >  xq 
and belonging to the class C n ( x 0, + o o ) .  where x 0 E R, n g  1. Further let the limits 

lim  p ( x )  =  a. Iim i p(x)  =  b exist. I f  ip(nl ^  0 in the whole interval x  >  x 0,
x —*-+oo x —*- +  oo

the inequality

n\ x ) <: i b ^ i x ) X X q ,

implies the inequality

| p ( x ) - a [  <; |V>(x)-6|, x >  x Q.

(I)

(II)

Obreshkoff’s p roo f is based on the well-known integral representation o f the 

n-th differences o f  p  and ip (see (3 ) and (4 ) in the text), which leads to the decisive 

estimate

|A)>(a:)| < [ A " ^ ) ! ,  x >  x 0., h >  0. ( I l l )

Letting h —► +00 in ( I I I ) ,  Obreshkoff completes the proof.

In the second paper [2] o f this series o f publications we find a deeper result.

T h e o r e m  2 ([2 ]). Let f  and tp be real-valued funct ions in C n ( a , +  oo), a £ R, 
n ^ 1, and let p ( n1 ^  0 f o r  x >  a. Suppose fur ther  that there exists an infinite 

sequence —> + 00, x u >  a, and an integer m,  0 51 m  <  n, such that the

l imits

B
I/ —*00 X "

exist. Then the inequality

ix —oc xy.

/ M (x )  ^ p ^ \ x ) x >  a,

implies the inequality

/ (m )(x )  — m\ A x >  a.

(IV)

(V)

(VI)

Obreshkoff gives two proofs o f this theorem. Th e  first one uses his formula (9 ) 
(see the text) for the n-th divided differences o f / and ip, whereas his second proof 

is based on the M ontel formula (17).

In [4-6] Obreshkoff simplifies his methods and begins considering one-sided 
inequalities. The follow ing theorem is typical.

T h e o r e m  3 ([4 ]). Let p  and ip be real-valued funct ions in C n ( —00, a ), a 6 R, 

and let the inequality

p (n\ x )  <: ip(n\ x ) ,  x < a ,  (V I I )

hold. Suppose in addition that the limits

hm — — -  =  A, lim
ip(x„)

Xp —-00 x\

33



exist f o r  some integer m , 0 ^ m  <  n, and f o r  a sequence { x ^ }  —<■ —oo. Then we 
have

y {m\ x ) - m \ A  <: ^ m\ x )  — m' .B ,  x <  a. (V I I I )

By applying Theorem  3 with ip(x )  =  ex , m  =  0, A  =  B  =  0, Obreshkoff
obtains an interesting characterization o f the exponential function.

T h e o r e m  4. Let f  £ C n ( —oo,0 ], n ^ 1, and the inequality

f ( x )  < , e x , x ^  0, ( IX )

is satisfied. I f  in addition we have lim f ( x ) =  0 and / (0 ) =  1, then f ( x )  =  ex
X  —*■ — CO

f o r  x  % 0.

A fter 1950 Obreshkoff’s scientific interest came closer to Bernstein ’s subjects. 
In particular, in [8] we find the follow ing

T h e o r e m  5. Let f  be a real-valued funct ion in C n+1(a ,+ o o )  and let

( - l ) kf {k) ( x ) ^ 0  for z  >  a, k =  0,1,2, .  . . , n +  1. (X )

Then the representation

OO

f ( x )  =  6 +  ( { t -  z ) " / (n+1)(<) dt {8 =  lim  / ( * ) )  (X I )
n\ J x—» + oo

x

holds.

As a corollary o f Theorem  5 Obreshkoff gets a simple p roo f o f the classical Bern
stein ’s integral representation o f the regularly monotonic functions in the interval

71
(0 ,+ o o ).  Indeed, i f  we set t  =  — in (X I )  and take 8 =  0, we obtain (23), where

{ « „ }  is a bounded sequence o f  increasing functions. By means o f the well-known 
H elly ’s theorems, passing to  lim it in (23), Obreshkoff gets (21). Independently, at 
the same tim e a sim ilar p roo f has been published by B. Korenblum in [9]. In fact, 
the remarkable paper [8] also contains a draft o f a proof o f the multidimensional 
version o f (21), an original solution o f the classical Hausdorff moment problem  and 
o f its analogue for multiple sequences as well.

In his last publication [10] Obreshkoff gives an interesting generalization o f the 

Bernstein theorem about the analyticity o f the regularly m onotonic functions. In 
order to state the Obreshkoff’s result we need a definition.

D e f in it io n . Let (a, b) be a finite interval on the real axis and let / be a 
complex-valued function in C °°(a ,l> ). W e say that / is regularly monotonic in 

Obreshkoff’s sense i f  it has the follow ing properties:
a) For any n ^ 0 the function x —+ |/(n)(:r)| is either increasing or decreasing 

in (a ,b).
b) For any n k 0 there exists an angle A n w ith a vertex at the origin o f the 

complex plane C  and w ith a magnitude \ A n \ < ir — 8, 8 >  0 (8 does not depend on 

n).  such that when x  varies in (a ,b ) ,  all the values o f / lie in A n .
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Now we state the last result o f Obreshkoff.

T h e o r e m  6 ([10 ]). I f  f  is regularly mono ion ic  in ( a,b) in Obreshkoff ’s sense, 

it is analytic in the domain D ,  D  C C, enclosed by two arcs o f  the circle z — °  ^   ̂

b — a
and f o u r  segments o f  the tangents to that circle passing through (a, 0) and<

4e
(6 ,0 ), respectively (F ig . 1).
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ZEROES OF POLYNOMIALS AND ENTIRE FUNCTIONS 
IN THE WORKS OF N. OBRESHKOFF*

P E T E R  RUSEV

In the paper some o f the most remarkable Obreshkoff’s results about zero distri
bution o f algebraic polynomials and entire functions o f exponential type are discussed.

K e y w o rd s :  zeroes o f polynom ials and entire functions, Obreshkofl theorems.

M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 01A60, 12D10, 26C10, 30C15.

IN T R O D U C T IO N

The great Bulgarian m athematician N ikola Obreshkoff (1896-1963) left a vast 

scientific inheritance. A bou t 45 o f  his papers contain the results o f his investiga

tions on the zero distribution o f algebraic polynom ials and some classes o f  entire 

functions, as well as on the numerical methods for solution o f algebraic equations.

N. Obreshkoff was a world-known expert w ith considerable contributions to 

the field just mentioned. T o  w rite even a brief review on his achievements, seems 

to be a very hard work. T h a t is why the author o f this short survey has chosen 

some o f the most remarkable results concerning zeroes o f  algebraic polynom ials 

and entire functions o f  exponential type. In the first place, o f  course, his famous 

generalization o f  the classical Descartes rule is discusssed. Further follow  his gen

eralizations o f  Schur’s and M a lo ’s composition theorems obtained by means o f the

* Invited  lecture delivered at the Session, dedicated to  the centenary o f the b irth  o f N ikola 

Obreshkoff.
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generalized Poulain -  Herm ite theorem. Some attention is paid to his results on 
zero distribution o f  fin ite Fourier transforms.

1. C L A S S IC A L  D E S C A R T E S  R U LE

1.1. The classical Descartes rule gives an upper bound for the number o f 
the positive roots o f  a non-constant algebraic polynom ials w ith real coefficients. 
It is remarkable that this upper bound depends only on the sign-changes o f the 
(non-zero) coefficients o f the polynom ials under consideration.

Let Aq , A i , A2, . . .  be a finite or infinite sequence o f real numbers. It is said that 
between Ar and As (0 <  r <  s) there is a variat ion iff Ar+1 =  Ar+2 =  . . .  =  As_ i  =  0, 
and moreover Ar As <  0.

Let
f ( x )  — a0 +  a i x  +  a2 X2 +  . . .  +  anx n ( 1.1)

be a real polynom ial o f  degree n >  1. Denote by V  =  V ( f )  the number o f the 
variations in the sequence

ao, ^2j ■ ■ * i Qn ( 1 *^)

and let p =  p ( f )  be the number o f the positive roots o f /. Then  the classical 
Descartes rule can be formulated as follows:

The number p o f  the positive roots o f  the polynomial  f  is not greater than the 
number V  o f  the variat ions in the sequence o f  its coefficients and in any case the 
difference V  — p is an even number , i.e.

p = V - 2 k  (1.3)

where k is a non-negative integer.

R e m a rk . Further, by V  =  V ( f )  w ill be named the number o f the variations 
o f the polynom ial /.

1.2. Descartes rule is form ulated in the last part o f his book Discours de la 
méthode pour  bien conduir sa raison, et cherche la véri té dans les sciences. Plus la 
dioptrique, les Meteors et la Geometrie,  qui sont des essais de set méthode , Laiden, 
1637, nam ely in la Geometrie.

The first p roo f o f  Descartes rule for algebraic equations w ith on ly real zeroes 
is due to J. A . von Segner. The auxiliar statement he has used is known now as 
Segner’s lemma, namely:

Let c >  0 and V  be the number o f  the variat ions o f  the polynomial  ( x  — c ) f ( x ) .  
Then V  — V  -(- 2k +  1, where k is a non-negative integer.

Descartes rule had been formulated, proved, as well as rediscovered by many 
authors. Am ong them are J. Newton ( Universal arythmetic, 1728), J. P. de Guadet 
M alv (1747), J. B. J. Fourier (1796) and F. I. Budan (1803). In the whole generality 
it had been proved by K . F. Gauss (1828).

R e m a rk . The above historical data are taken from  the Bulgarian translation 
o f A . P. Jushkevitch’s Comments to Descartes G eom etry (Descartes, Geometry.  
Sofia, 1985, p. 199 (in  Bu lgarian )).
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A  proof, as well as numerous generalizations o f Descartes rule are due to E. 
Laguerre ( Oeuvres, 1, Paris, 1898).

1.3. Descartes rule is carried over equations o f the kind

n

' }T/akipk( x ) =  0, ak G M, k =  0 , 1 , 2 , . . .  ,n, (1.4)
jfc=0

where { (a: ) } ^ _ 0 is a given system o f real functions.

In the second part o f G . P o lya  and G. Szegö’s Aufgaben und Lehrsätze aus 
der Analysis, Berlin, 1925,can be found a necessary and sufficient conditions which 
“ensure” the va lid ity o f Descartes rule for the equation (1 .4 ) provided that the 
functions { (a; ) } fc_ 0 are sufficiently smooth.

2. B U D A N  -  F O U R IE R  T H E O R E M

2.1. The first generalization o f the classical Descartes rule is due to Budan 
and Fourier. Their theorem gives an upper bound for the number o f the roots o f  a 
non-constant real algebraic polynom ial ly ing in an interval o f the real axis.

Let f ( x )  be a real polynom ial o f degree n >  1. Then the sequence

f ( x ) , f ' ( x ) , f l ( x ) , . . . , f ^ ( x ) ,  x e l ,  (B F )

is called Budan -  Fourier (B F ) sequence for the polynom ial f ( x ) .
Denote by Vx =  Vx ( f )  the number o f the variations in the (B F ) sequence.

Then the follow ing statem ent is true, namely:

The number p (a ,b )  o f  the roots o f  the polynomial  f  in the interval  (a, 6) (a  <  6) 
is not greater than Va — Vb and in any case the difference Va — Vb — p (a ,b )  is an 
even number, i.e.

p (a ,b )  =  Va - V b - 2 k ,  (2.1)

where k is a non-negative integer.

2.2. It is clear that Descartes rule is a particular case o f Budan -  Fourier 
theorem. Indeed, i f  b >  0 is great enough, then Vb =  0, i.e. I4o =  0. Moreover, 
since V0 =  V  and p (0 ,o o ) =  p, the equality (1 .3 ) is a corollary o f (2.1).

3. O B R E S H K O F F ’S G E N E R A L IZ A T IO N  O F  B U D A N  -  F O U R IE R  T H E O R E M

3.1. Let a <  b and f ( x )  be a real polynom ial o f degree n >  1. Denote by 
M ( a ,  b) the inside o f the rectangle which is determined by the follow ing conditions:

( I )  It is sym m etrically situated w ith respect to the real axis.
( I I )  T w o  o f  its opposite vertices are at the points a and b.
( I I I )  The angles at these points are equal to 2ir/(n—Va) and 2ir fVb, respectively. 
R e m a rk . I f  Vb =  0, i.e. when 6 is great enough, then M ( a , b )  is an angular

domain w ith a vertex at the point a.

39



Let further p (a ,  6) be the number o f  the roots o f the polynom ial f ( x )  in M ( a ,  b). 
Then the next statement is valid.

T h e o r e m  1 (O breshkoff’s generalization o f Budan -  Fourier theorem [1-3 ]). 
Let f ( a ) f ( b )  0, then p ( a , b ) is not greater than Va — Vb and in any case the 
difference Va — Vb — p ( a , b )  is even, i.e.

p (a ,b )  =  Va - V b -  2s, (3.1)

where s is a non-negative integer.

The case a =  0 and b =  oo gives the follow ing statement:

T h e o r e m  2 (O breshkoff’s generalization o f  Descartes rule [1—3]). Let p. be the
number o f  the roots o f  the polynomial  f ( x )  having their  arguments in the interval  
( —x/{n  — V ) ,  7r/(n — V ) ) .  Then

/i =  V -  2s, (3.2)

where s is a non-negative integer.

R e m a rk . The classical Descartes rule is a corollary o f the above statement. 
Indeed, i f  2q is the number o f the non-real roots o f the polynom ial / in the angular
domain M  =  M ( o ,  oo ), then p =  p +  2q and (3.2) gives that p =  V  — 2(g +  s ), where
q +  s is a non-negative integer.

Another version o f Theorem  2 is the next statement.

T h e o r e m  3 (Obreshkoff [4]). I f  the real polynomial  f  o f  degree n >  1 has 
p roots with arguments in the interval  ( —rr/{n +  2 — p) ,  rr/(n +  2 — p ) ) ,  then the 
number V  o f  its variat ions is at least equal to p  and moreover,  the difference V  — p 
is an even number, i.e. V  = p + 2 k ,  where k is a non-negative integer.

Let us mention that Theorem  1 is proved by the aid o f two statements, where 
each o f them can be regarded as analogous to Segner’s lemma. Let again f ( x )  be 
a real polynom ial o f degree n >  1 and let V  be the number o f its variations.

L e m m a  1 (Obreshkoff [1, 3, 5]). Let p >  0 and 0 < y < 7 r / ( n  +  2 — V ) ,  then 
the number o f  the variations o f  the polynomial  ( x 2 — 2p cos ip.x +  p2) f ( x )  is equal 
to V  +  2(k  +  1), where k is a non-negative integer.

L e m m a  2 (Obreshkoff [1, 3, 5 ]). I f  p >  0 and 0 <  <p <  tt/ (V  +  2), then the 
number o f  the variations o f  the polynomial  ( x 2 +  2peos<p.x +  p 2) f ( x )  is equal to 
V  — 2k, where k is a non-negative integer.

4. S C H O E N B E R G ’S E X T E N S IO N  O F  D E S C A R TE S  R U LE  
T O  T H E  C O M P L E X  D O M A IN

A  corollary o f Theorem  2 is the follow ing statement:

Let f  be a real polynomial  o f  degree n >  1 and let V  be the number o f  its var i 
ations. Then the number v o f  its roots with arguments in the interval  ( —ir/n,Tr/n)  
is not greater than V  and differs f r om  V  by an even number, i.e. v  =  V  — 2k, 
where k is a non-negative integer.
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The first attem pt to generalize the above corollary to polynomials with ar
bitrary com plex coefficients is due to I. J. Schoenberg ( Extension o f  theorems o f  
Descartes and Laguerre to the complex domain. —  Duke Math. J., 2, 1936, 84-94). 
In order to formulate his result we need some definitions.

Let A  be an open and convex angular domain with vertex at the origin. Define 
C  to be its opposite angular domain, i.e. C  : =  { z  G C  : — z G A } .  Both A  and C  
form  a pair o f  sectors, which we denote by S  =  (A , C ).

The complement o f  A  (J C  w ith respect to the complex plane is a union o f  two 
closed angular domains B  and D ,  each o f  them being the opposite o f the other. 
Let B *  =  B \  { 0 }  and D *  =  D  \ { 0 } .

Let F ( z )  =  Co +  C\z +  c2z 2 +  . . .  +  c n z n be a non-constant polynom ial w ith 

arbitrary complex coefficients. I f  there exists a pair o f sectors S  — (A , C )  such that 
all its coefficients are in B U D ,  then we say that S  is a d ivid ing pair o f  sectors for 
the polynom ial F .

I f  0 <  r  <  s and cT G B " , cs G D * or cr G D * , c, G S ’ , and moreover 
cT.|-i =  cr+ 2 =  .. . =  cs_ i  =  0, then we say that there is a variation between cr and 

cs. W e denote the number o f the variations by V ( F , S )  in order to emphasize that 
it depends on the polynom ial F ,  as well as on the dividing pair o f sectors S.

Schoenberg’s extension o f Descartes rule is the follow ing statement:

Let there exist a dividing pair  o f  sectors S ( A , C )  f o r  the polynomial  F  and let 
в G (0 ,7r) be the angular measure o f  A .  Then the number o f  the roots o f  F  having 

their  arguments in the interval ( —в/п, в/п)  is not greater than V ( F , S ) .

A  refinement o f the above theorem is given later by N. Obreshkoff [6].

5. V A R IA T IO N -D IM IN IS H IN G  T R A N S F O R M A T IO N S

5.1. Let A  =  ( a i j ) be a real m x n-matrix. We say that the linear transorf- 

mation Mn —► Mm defined by the m atrix A  (or simply the m atrix A )  is variation- 
dim.mishing iff whatever the vector x — (x\ , X 2 , . . .  , x n)  G R "  be, then V ( x )  < V  ( y) ,  

where y — A x  and V ( x ) ,  resp. V ( y ) ,  is the number o f the variations in the sequence 

X i ,  Х 2 , ■ ■ ■, X n ,  resp. У г , У 2 ,  ■ ■ ■ , У т -

In 1930 Schoenberg gave ( Uber variat ionsvermindernde lineare Transformatio-  
nen. —  M ath. Zeitschr.,32, 1930, 321-328) a sufficient condition for a real m atrix  
to be variation-dim inishing, namely:

I f  the matr ix A  is totally positive, i. e. all its minors are positive, then it is 
variat ion-diminishing.

Later T . M otzkin  ( Beitrdge zur Theorie der l inearen Ungleichungen, Disserta
tion, Basel, 1936) found necessary and sufficient conditions for a real m atrix  to be 
variation-diminishing.

A  shorter p roo f was given by I. Schoenberg and A . W h itney ( A  theorem on poly
gons in dimensions with application to variat ion-diminishing and cyclic variat ion-  
diminishing l inear transformations.  —  Com positio M ath .,9, 1951, 141-160).
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It  seems that the notion o f variation-dim inishing transformation, as well as 
Schoenberg’s criterion have been inspired by Obreshkoff’s p roof o f the generalized 
Budan -  Fourier theorem , and in particular by that o f Lem m a 2. In fact Obreshkoff 
has proved that the m atrix

( -2/3 cos ip p2 0 0 0 . . . 0  0 \
0 1 —2/3 cos (p p2 0 . . .  0 0 I

0 0 0 0 0 . . . 1  — 2/3 cosy>/

is variation-dim inishing by establishing that all its principal minors are positive.

5.2. In Obreshkoff’s paper [6] by means o f Schoenberg’s criterion a pure al
gebraic p roof (i.e. w ithout using the continuity o f  the polynom ials considered as 
functions o f a real variable) o f the classical Budan -  Fourier theorem is given. In 
the same paper, again by the aid o f Schoenberg’s criterion, the follow ing statement 
is proved:

T h e o r e m  4 (O breshkoff [6]). Let a G M, a t € M, k =  0 , 1 , 2 , . . . ,  n, and h >  0. 
Then the number o f  the roots o f  the polynomial

aQ+a\{x — a) +  a2 ( x  — a ) ( x  — a — 2h)  +  - ■ - + a n ( x  — a ) ( x  — a — n h ) n~ l , n >  0, an ф 0,

is less o r  equal to the number o f  the variations in the sequence do, a\ , . . , ,  an .
The last sequence can be replaced by the sequence

/ (a ),  / '(a  +  h ) , f " ( a  +  2 h ) , / ( n) ( a +  nh) .

R e m a rk . I f  a =  h =  0, then as a corollary o f the above theorem one gets
again the classical Descartes rule.

6. C O M P O S IT IO N  T H E O R E M S

6.1. Let

A ( z )  — ao +  а 1г +  ̂ 2^ а2г2 +  • • ■ +  nnz " i

B ( z ) — bo +  biz  +  l>2 z2 +  • • • +  bnzn

be polynom ials o f degree not greater than n and w ith arbitrary com plex coefficients. 
Let us form  the polynom ial

C ( z )  =  a0b0 +  d jbi z  +  a2b2z2 +  . . .  +  anbn .

It  is o f great im portance to  know how the distribution o f the zeroes o f the 
polynom ial C ( z )  in the com plex plane depends on the distribution o f the zeroes o f 

A { z )  and B {z ) .
The most popular statement answering the above question is due to G . Szegö 

( Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gle
ichungen. —  M athem . Zeitschr., 13, 1922, 28-55), namely:■12



Let the zeroes o f  A ( z )  be in a circular domain K  and ß\, ß2, . . . ,  ßn be the 
zeroes o f  ( B ) .  Then every zero o f  C ( z )  has the f o r m  —Xßs, where A 6 K  and s is 
some o f  the numbers 1 , 2 , 3 ,n.

R e m a rk . A  circular domain in the com plex plane is either the closure o f the 
inside or the closure o f the outside o f a circle, or the closure o f a half-plane.

The above theorem  o f  SzegcUs a corollary o f a statement known as the theorem 
o f Grace ( The zeroes o f  a polynomial.  —  Proc. Cam bridge Philos. Soc., 11, 1902, 
352-357). In fact Szegö has given to the G race’s theorem a form  which is more 
convenient for applications.

Here are two statements which can be proved by using Szegö’s theorem. The 
first one is due to I. Schur ( Zwei  Sätze über algebraische Gleichungen mi t  lauter 
reellen Wurzeln. —  J. reine u, angew. M ath., 144, 1914, 75-88) and the second to
E. M alo (N o te  sur les équations algébriques dont toutes les racines sont réelles. —  

J. de Math, spéciales (4 ), 4, 1895, 7—10):

( I )  Let the real polynomial

f ( x )  =  a0 +  a i x  +  a2x 2 +  . . .  +  am x m 

have only real roots and let the real polynomial

g ( x )  =  b0 +  b ix  +  b2x 2 +  . . .  +  bnx n 

have either only real and positive o r real and negative roots. Then the polynomial  

a0b0 +  l !a i6 ix  +  2!a2b2x 2 +  kla^b^x^, (6-1)

where k =  m in (m , n ), has only real roots.
( I I )  Under the same conditions and notations the polynomial

a0b0 +  a\b\X +  a2b2x 2

has only real roots.

6.2. The fo llow ing statements generalize Schur’s and M a lo ’s theorems:

T h e o r e m  5 (O breshkoff [7 -9 ]). Let the polynomial  f ( x )  have only real zeroes 
and let the zeroes o f  the real polynomial  g ( x )  lie in the angular domain G ( m )  defined. 
by the inequality |sin0| <  rn~1/2 (9 =  a rg z ).  Then the polynomial  (6 .1 ) has only 

real zeroes.

T h e o r e m  6 (O breshkoff [7 -9 ]). Let the zeroes o f  the both real polynomials 
f ( x )  and g ( x )  lie in the domain G ( m ) .  I f  all the coefficients o f  g ( x )  o r  g ( - x )  have, 
the same sign, then the polynomial  (6 .2 ) has only real zeroes.

A  classical result due to Ch. H erm ite (Questions.  —  Nouv. Ann. Math., 2 
sér., 5, 1866, 432-479) and S. J. Poulain ( Théorèmes  généraux sur les équations 
algébriques. —  Nouv. Ann. M ath., 2 sér., 6, 1867, 21-33) is the follow ing statement:

I f  the polynomials f ( x )  and g ( x )  have only real zeroes, then so does the poly-
d

nomial  g ( D ) f ( x ) ,  where D  =

A  generalization o f  H erm ite -  Poulain theorem is given by the next statement.
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T h e o r e m  7 (Obreshkoff [7 -9 ]). Let the polynomial  f ( x )  o f  degree m  have only 
real zeroes and let the zeroes o f  the real polynomial  g ( x )  lie in the domain G ( m ) .  
Then the polynomial  g ( D ) f ( x )  has only real zeroes.

The above theorem is a simple corollary o f  the fo llow ing lemma:

L e m m a  3 (ObreshkofF [7-9]). I f  the polynomial  f ( x )  o f  degree m  has only real 
zeroes and, moreover,  |sin#| <  m ~ 1/2, then the polynomial

f ( x )  -  2 p c o s 9 . f ' ( x ) +  p2f " ( x ) ,  p >  0,

has only real zeroes.

Let us mention that the generalized Schur’s and M a lo ’s theorems are proved 
in [7-9] by means o f Theorem  7.

7. ZERO ES O F F IN IT E  F O U R IE R  T R A N S F O R M S

A  well-known fact is that the entire functions o f exponential type defined as 
finite Fourier transforms, namely

a

F ( z )  =  J  i p ( t ) e x p ( i z t ) d t ,  (7.1)

— a

where 0 <  a <  oo and <p 6  L i ( —a,a ) ,  play an im portant role in the mathematical 

analysis and its applications.
A  great number o f  classical special functions have integral representations o f 

the kind (7.1). A  typical example is the Poisson formula

i

y r F ( j / +  1/2) Ju{z)  =  J ( l - t 2Y ~ 1/2e xp ( i z t )d t ,

- l

where Jv is the Bessel function o f the first kind w ith index v.
Particular cases o f (7 .1 ) are the entire functions

a

C ( z )  =  j  ip{t) cos z t d t  (7-2)

o

and
a

S ( z )  =  J  <p(t) sin zt dt. (7-3)

o

R e m a rk . It  is clear that when studying the entire functions (7 .1 ) it can be 
assumed a =  1.

A  problem  o f considerable importance is that o f the zero distribution o f the 
entire functions (7 .1 ), resp. (7.2) and (7.3). It has been studied by many authors

and it seems that it is not exhausted till now. E. g. the problem  o f finding necessary
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and sufficient conditions the entire functions (7.1 ), resp. (7 .2) and (7.3 ), to  have 
only finite number o f non-real zeroes seems to be still open.

R e m a rk . A  m ore difficult problem  is that o f finding necessary and sufficient 
conditions an entire finction o f the kind

OO

J m  cos zt dt ( 7 -4)

o

to have only finite number o f non-real zeroes. Th is  problem  has been inspired by 
the fact that the R iem ann ’s Ç-function has a representation o f  the kind (7.4).

G. Po lya  was the first who studied system atically the zero distribution o f the 
entire functions (7.1 ), resp. (7.2) and (7 .3 ) ( Uber die Nullstel len gewisser ganzer 
Functionen.  —  M ath. Zeitschr., 2, 1918, 352-383). In order to formulate his main 

result, we introduce the class E  o f  the real functions (p defined and iî-in tegrab le on 
the interval [—1 , 1] and having the property that the polynomials

have their roots in the unit disk, provided that n is great enough. Po lya  has proved 
that:

I f  the func t ion ip is in ike class E ,  then the entire funct ions C( ip]  z )  and S(ip\ z)  

have only real zeroes.

E x a m p le . I f  <p is non-negative and not decreasing, then it is in the class E.

A  rather surprising result concerning the zero distribution o f the entire func
tions o f the kind (7 .2 ) and (7.3) has been established by N. Obreshkoff. It  can be 
formulated as the fo llow ing statement:

T h e o r e m  8 (Obreshkoff [6] ).  I f  the funct ion (p 6 E  and h is a real plynomial  
having all its roots in the half-plane R e 2 <  1/2, then the entire funct ions C(<ph\z) 

and S(<ph; z )  have only real zeroes.

In fact ObreshkolT has proved that if  tp 6 E ,  then iph 6 E .  He has succeeded 

to get this result by using the follow ing statement:

L e m m a  4 (Obreshkoff [6] ).  Suppose that the ( algebraic)  polynomial  f ( z )  o f  
degree n >  1 has all its roots in the unit disk. Then whatever the complex number  
7 with R e 7  >  —n /2  be, all the roots o f  the polynomial  y f ( z )  +  z f ' ( z )  are in the 

unit disk too.

The above statement can be regarded as a “ complex version” o f an well-known 
theorem due to E. Laguerre, namely:

Let  / (x )  be a real polynomial  o f  degree n and j  be a real number outside o f  the 

interval  [—n, 0]. Then the polynomial  7 / (x )  + x / ' ( x )  has as many real roots as the 

polynomial  f ( x ) .
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К нига  1 —  М атем ати ка и механика 

Т ом  89, 1995

A N N U A IR E  DE L 'U N IV E R S IT E  D E  S O F IA  „S T . K L IM E N T  O H R ID S K I"

F A C U L T E  DE M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  
L ivre 1 —  Mathématiques et Mécanique 

Tom e 89, 1995

THE CONTRIBUTION OF NIKOLA OBRESHKOFF 
TO THE THEORY OF DIOPHANTINE APPROXIMATION *

T O N K O  T O N K O V

Toutes les Mathématiques peuvent 
se déduire de la  seule notion de nombre entier; 
c ’est là  un fait aujourd’hui universellement admis.

E m i le  B o re !

The results o f Obreshkoff are compared with the similar or the same results of 
other mathematicians.

K e y w o rd s :  diophantine approximations, continued fractions, convergent theorems. 
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 11A55, 11D99.

1. T H E  T H E O R Y  O F  D IO P H A N T IN E  A P P R O X IM A T IO N  
IN  D E V E L O P M E N T

The theory o f diophantine approximation, i.e. the approximation by rational 
numbers, begins w ith an investigation o f Peter Gustav Lejeune Dirichlet (1805— 
1859). The prehistory begins w ith the first known approximation o f an irrational 
number by a finite continued fraction, which is the first known writing by continued 
fraction. Th is was the Ita lian  m athem atician and engineer Rafael Bom belli (1526-

4
1573) who presented the number -\/T3 as equal to 3 H in his book A lgebra,

® T  6
edited in Venezia in 1572, making an error o f y/lS — 3,6 <  0,006.

* Invited lecture delivered at the Session, dedicated to the centenary o f the birth o f N ikola 

Obreshkoff.
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A  half century later another Italian mathematician, P ietro Antonio Kata ld i 
(1552-1626), introduced and studied continued fractions by using notations, close 
to the contemporary ones. In the book “T ra tta to  del m odo brevissimo di trovere 
la radice quadra delli numeri” , edited in Bolognia in 1613, he wrote:

V l 8  =  4 .& J L

or, briefly, 4

Th is is a particular case o f  the formula

\/ a? +  b =  a ----------

2a

2a T
2 a

The first known application o f continued fraction convergents for approxima
tion by rational fractions w ith large numerators and denominators was made in 
1625 by the German mathematician and philologist Daniel Schwenter (1585-1636). 
l ie  used recurence relations. A  more detailed study o f the recurrence relations for 

the convergents was made by the English mathematician John Wallis (1616-1703) 

in his book “A rithm etica  in finitorum ” , edited in 1656. In it he introduced the 
special term  “fractiones continue fractae” .

A n  im portant application o f  continued fractions was made by the Dutch m ath

ematician, physicist and astronomer Christian Huygens (1629-1695) in connection 

w ith the planetary m odel o f the solar system, exposed in Paris in 1680. The the
oretical basis was described in his book “Descriptio autom ati planetarii” , edited 
in 1698. Huygens gave the optim al ratio o f the numbers o f teeth o f the gears, by 

which he m odelled the revolutions o f planets around the sun. He found that the 

convergents are the optim al rational fractions in the follow ing meaning: I f  the real 

number a  has an expansion in continued fraction and Pk/Qk is its convergent with 
Q  >  1, and if  p/q is a rational fraction for which (p , q ) =  1 and q <  Qk,  then 

from  |a — ( p/q )| <  |q- — ( P k / Q k )| it follows that q — Qk,  and p — P k. (A  stronger 
result was given as late as 1877 by the English mathematician Henry John Smith 

(1826-1883)).

During the 18th century the theory o f continued fractions was directed to 
the Analysis. Interesting results were given by Leonard Euler (1707-1783). He 

applied continued fractions in his monograph “ Introductio in analysin infinitorum” 
(first edition —  1748). Euler showed that periodical continued fractions are equal 

to quadratic irrationalities. The reciprocal theorem was proved by Joseph Louis 

Lagrange (1736-1813). In a publication in 1798 Lagrange deduced the follow ing 
relations:

Pk a  . _ _
Q k

1 1
<  -X—^-----  <  -^ 2  an°

kQ k Q k  + l Q \

P k a  __ —_  
Qk Q k ( Q k  +  Qk  + l )   ̂ ^
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These relations express properties o f continued fractions in themselves. In the 
second edition o f  his book “ Essai sur la théorie des nombres” in 1808 Adrien Marie 
Legendre (1752-1833) proved that i f  (p, q) =  1 and

1Va -----
?

<
2 q2 (2)

then p/q is a convergent to the continued fraction o f  a.
The theory o f diophantine approxim ation begins with the study o f the approx

imation o f real numbers by rational fractions. The first result was deduced and 
proclaimed on A pril 14, 1842, by Lejeune-Dirichlet [2], who generalized a theorem 
about continued fractions and applied it in the theory o f numbers. Dirichlet proved 
that if  Q i, . . . ,  a m are arbitrary real numbers and s is a positive integer, then there 
exist integer numbers X\, . . . ,  x m , not all equal to 0, for which \x{\ <  s, i =  1 , . . . ,  m, 

and integer number x q , so that

i ■ 1|zo +  a\Xi + . Ckm^T] <

The p roo f is very interesting and remarkable. In the contemporary literature 
the theorem o f Dirichlet for the case m  =  1 is usually formulated in the follow ing 
form:

T h e o r e m  o f  D ir ic h le t .  Let a and Q  be real numbers and Q  >  1. Then  there 
exist integer numbers p and q such that

N -p |  < q with 0 <  q <  Q. (3)

Proof.  Case I. Q  is an integer. W e consider the follow ing Q +  1 numbers:

0, { a } ,  { 2 a } ,  { 3 a } ,  . . . ,  { ( Q  -  l ) a } ,  1, (4 )

where { x }  is the fractional part o f x, i.e. { r }  =  x — [ i ] ,  and [ i ]  is the integer part 
o f x  (the greatest integer number not greater than i ) .  These Q +  1 numbers belong 
to the interval [0,1]. W e divide the interval [0, i ]  into the follow ing Q  subintervals:

1 1
Q'Q

Q - 2 Q  — I Q - i
Q ,1 5)Q Q

Obviously, there is at least one subinterval (5 ) which contains at least two numbers 
(4 ). Let they be { r a }  and { s a }  w ith integers r  and s, r  >  s for instance, and 
0 < r < Q  — 1, 0 <  s <  Q  — I- Their difference w ill be not greater than the length 
o f any o f the intervals (5 ), and this length equals to 1 /Q.  So

{ r a }  — { s a }  <

i.e.

|ra — sa — [ra ] +  [sa]| <  — .
y

and denoting r  — s =  q, [5a ] — [ra ] =  p , we have

\ q u - p \  <  q and 0 <  q =  r  — s <  Q
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as in (3 ).

Case II. Q  is not an integer. Then instead o f Q  we use the number Q '  =  Q +  1 
and proceed sim ilarly to Case I.

W ith  this the theorem is proved.

The main idea o f  D irichlet, applied in this proof, can be expressed as the 
follow ing principle:

I f  n +  1 things are put on n places, then there will be at least one place 
containing at least two things.

This is the famous principle o f D irichlet. Later, in 1907 Herman Minkowski [3] 
named this principle as “pigeonhole principle” , thinking the places or subintervals 
as “pigeonholes” .

The inequality o f  D irich let’s theorem can be written in the follow ing way:

Pa -----
9

<
Qq

1

<  “ 2 
r

( 6)

These inequalities are sim ilar to (1 ) and we can say that every real number can be 

approximated by a rational fraction p/q w ith exactness 1/g2. It is easy to deduce 
from  (6 ) that i f  a  is irrational, then there exist in fin itely many rational fractions ^ 

with (p, q) =  1 for which

Pa ----- (7)

This follows from  the left inequality in (6 ) when Q  tends to oo as a  is irrational, 
so a — {p/q)  yf 0. Inversely, i f  a  is rational, the inequality (7 ) can be satisfied only 

for fin itely many rational fractions p/q w ith  (p, q)  =  1. Indeed, let a  =  a/b ^  p/q 
and (a, b) =  1, b >  0, q >  0. Then  aq — b p f l  0 and

\aq -  bp\

bq

1

> Vq

I f  p/q are in fin itely many, then there w ill be q >  b for some q and

1 1 

>  r  >  ~2'bq q2

which contradicts (7 ).
Thus the theorem  o f  Dirichlet shows different approxim ability o f the rational 

and irrational numbers. Th is singularity was generalized two years later by Joseph 
Liouville (1809-1882) who proved in 1844 the remarkable theorem that i f  a  is a 

real algebraic number o f degree n >  1, then there exists a constant C  =  C ( a )  such 
that

C  

> qn
(8)

for all rational numbers p/q, q >  0, p/q ^  a.
It is easy to find examples for a  when (8 ) is not satisfied, such that these a  are 

non-algebraic, transcendental numbers. Th e  theorem  o f L iouville  was continued by
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A. Thue, C. L. Siegel and others, and completed finally by K . Roth  in 1955, but 
here our aim is to fo llow  directly the D irich let’s theorem.

In 1891 A d o lf  Hurw itz (1859-1919) [4] proved that i f  a  is irrational, then the 
inequality

a  — <
\/b q2 (9)

has infinitely many solutions in integers p, q w ith (p, q) =  1. Th is is not true i f  in 
(9 ) we substitute л/5 by a greater number.

In 1895 K . Vahlen [5] proved that i f p „ _ i / g „ _ i  and pn/qn are two consecutive 
convergents o f  the real number a,  expanded in a continued fraction, then at least 
one o f them satisfies the inequality

Pa -----
?

<
_1_

V
The theorem o f Vahlen complements the assertion o f Legendre about (2 ) that 

p/q can be only convergent.

In 1903 Em ile Borel (1871-1956) [1] proved that i f  P n - 2 / Q n - 2 , P n - i / Q n - i  and 
Pn/Qn  are three consecutive convergents to a , then at least one o f  them satisfies 
the inequality

a  — <
л/5 q2

The p roo f is achieved by reductio ad absurdum.
Let a  be an arbitrary irrational number. Its expansion in a simple continued 

fraction has the form

a  =  aQ H------------— ;-----  ( 10 )

cz 1 +
1

a 2 +

or, briefly, a  =  [ao; a i, 02, . . . ] ,  where a 0 is an integer and a* ( i  =  1 , 2 , . . . )  are 
positive integers, (a,- —  incomplete quotients o f a. I f  a  is rational, then a  =  

[ao; a i, (Z2, . . •, a „] f ° r some integer n >  0.)
In 1918 M. Fujiwara [6] proved that i f  n >  1 and an+i >  2, then

Qi
<

5 Q?

for i  =  n — 1 or i  =  n +  1. (For more details about D iophantine approxim ation 

until 1936 see [7].)

2. T W O  T H E O R E M S  O F  O B R E S H K O F F  A B O U T  R A T IO N A L  
A P P R O X IM A T IO N

Academ ician N ikola Obreshkoff (1896-1963) wrote 18 publications about dio
phantine approxim ations ([8 -25 ]). In the first o f  them [8] and briefly in [12] he 

deduced a very im portant result, expressed by two theorems:
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F ir s t  th e o r e m  o f  O b re s h k o ff  fo r  r a t io n a l a p p ro x im a t io n . Let a  be an
arbitrary irrat ional  number with expansion in simple continued f ract ion  (10 ). Then 

at least one o f  the convergents P n- i l Q n- i ,  P n- i / Q n - i  and P n/Q n to a satisfies 
the inequality

Qi
<

V an +  4 Q j
(11)

S eco n d  th e o r e m  o f  O b re s h k o ff  f o r  r a t io n a l a p p ro x im a t io n . Let m  be
an arbitrary integer number, m  >  1, and let E  be the set o f  all i r rat ional  numbers 
whose incomplete quotients are <  m  — 1 and o f  their  equivalent numbers. Let a be 
an arbitrary i rrat ional  number not belonging to E .  Then f o r  at least one o f  three 
consecutive convergents p/q to a  we have

< (12)

The number \Jm2 +  4 in (12 ) can not be substituted by a greater number.

The first theorem o f  Obreshkoff evidently is a nice generalization o f  the theorem 
o f Borel. The p roo f is deduced by reduclio ad absurdum.

These two theorems o f Obreshkoff are reviewed in the international journals 
very modestly.

In Mathematical  Reviews the great number theorist H. Davenport [26] wrote 
about the first theorem o f Obreshkoff: “The author’s first result is a simple gener
alization o f B orel’s theorem on three successive convergents to a continued fraction. 
Let

1 1 
0 — no H ;   ' • '

a l +  U2 +

and let pn/qn be the general convergent to 0. Then the inequality

EL
9«

<
1

9?(^+ 4)1/2
is satisfied for at least one o f the three values n — 2, n — 1 and tj” .

In Zentralblatt f u r  Mathemat ik  another great number theorist K . Mahler [27] 
described the first theorem o f Obreshkoff, showing the inequality (11).

In spite o f the original and official publications o f the theorems o f Obreshkoff 
and their international reviews, these theorems were forgotten for years.

3. R E D IS C O V E R IN G  T H E  T H E O R E M S  O F  O B R E S H K O F F

In 1955 M ax M iiller [28] proved several theorems and two o f them punctually 
repeat the theorems o f Obreshkoff, but his name is not cited. (In  conversations 
with me, Obreshkoff said that he did not like the fact that his name was not cited.) 
The paper o f M iiller was reviewed in Zentralblat f u r  Mathem,atik (Bd. 64, 1956, 
p. 44) by the very known J. W . S. Cassels, who wrote that “Theorem s o f  Vahlen, 
Borel fo llow  at once since an+ i >  1, and theorems o f Fujiwara if  an+i >  2” . In
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Mathematical  Reviews, vol. 16, No 11, 1955, p. 1090, J. H. H. Chalk wrote that 
Müller “ establishes several inequalities o f  which the follow ing is typical. I f  n >  1 and

the continued fraction has at least n +  2 elements, then
Bv

\ J a l +1 +  4 B l
for at least one o f the values v =  n — 1,п,тг +  1” , but this is the first theorem 
o f Obreshkoff. In Реферативный журнал,  Математика,  No 987, 1956, P. G. 

Kogon iya accurately described all the theorems o f  M iiler. But nobody o f these 
reviewers noted that Obreshkoff was the first. In 1959 F. E. G. Rodeja  [29] proved 
a theorem, which was reviewed by the great specialist on continued fractions A.

Pk
N. Hovanski [30] in the form : “ Е сли  —  (k =  0 , 1 , 2 , . . . )  —  подходящ ие дроби

4k

цепной дроби , в к оторую  разлож ено чи сло  а,  а =  (а о, a i, а г , . . . ) ,  то вы пол-

няется  по меньш ей м ере одно из трех  неравенств
Р т

<
1

V 4̂ +  a* + l «n

т  =  к — 1. к, к +  1. П ри  этом  ч и сло  +  а^+1 н ельзя  зам енить больш им

даж е при увели чен и и  ч и сла  неравенств .” ObreshkofF is not cited.
Evidently, R odeja  also rediscovered the theorem o f Obreshkoff. But he added 

more about the exactness o f the constant.

In 1966 F. Bagem ihl and J. R. M cLaughlin [31] proved the follow ing theorem: 
Let a  is an arbitrary real number w ith expansion (10). Let s be a natural 

number (positive integer). I f  an_ i  >  s for some n >  1, then at least one o f the 
three inequalities

j  =  n -  1, n, n  +  1,P ia ------
Qi

<
V s 2 +  4qj

holds.
Evidently, this is the second theorem o f ObreshkofF, but the authors do not 

cite it.
In 1982 Fuzhong L i [32] published certain results in Chinese, whose English 

summary in Zentralblatt fu r  Mathematik  [33] shows full coincidence w ith the first 

theorem o f Obreshkoff.
In 1983 Jingcheng Tong published a paper [34], in which he defined the number

M n from  the equality 

follow ing theorem whic

Pa -----
M n q l

, and wrote: “ In this paper we prove the

h shows the conjugate property o f the Borel theorem.

T h e o r e m . For n >  2, at least one o f  M i ,  i =  n — 1, n, m + 1 ,  exceeds y j  a^+1 +  4;

at least one o f Mi, i — n — 1, n, m  +  1, is less than \Jo,2+1 +  4.”

Evidently, the first part o f this theorem coincides w ith the first theorem o f 
ObreshkofF and is not new. But its second part is really a new theorem o f Tong. 
W e shall call it the Theorem  o f  Tong o f 1983. Th is T on g ’s very interesting theorem 
completes the theorem  o f Obreshkoff.
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In 1994 Tong [35] achieved in some sense the best im prove o f the first theorem 
o f Obreshkoff by proving, w ith the above notations, that

M n <  \/(an+1 +  fin) 2 +  4

implies

n+1 +  P n ) 2 +  4,

where

ß n  | ß n  1 j CTn [0, f ln + 2 j ^n+3  ) ••■] )  /?n — [0, Qn , Gtn — 1 j ■ • • > ^ i ] .

But the name o f Obreshkoff is not mentioned. Instead o f this the reviewer Hans 
K opetzky wrote in Mathemat i cal  Reviews [37] how to obtain the result o f Müller 

as a particular case. Evidently, it was not known yet that “ the result o f  M üller” is 
the first theorem o f Obreshkoff.

4. A S Y M M E T R IC  A P P R O X IM A T IO N  —  A N O T H E R  W A Y  F O R  

R E D IS C O V E R IN G  T H E  O B R E S H K O F F ’S T H E O R E M S

In 1945 Beniam ino Segre [38], using a geom etrical m ethod, proved the follow ing 
theorem:

Let a  be an arbitrary real number. Then for every real r  >  0 there exist 
infin itely many rational fractions p/q such that

- 1 =  <  a  — -  <  T =  • (13)
q2\/l +  4 t  q g2V  1 +  4 r

A  precision o f  this result o f Segre was proposed by N icolae Negoescu [39], but 
it turned out to be wrong, as remarked by R. A . Rankin [40]. In 1953-1954 W .
J. LeVeque [39] proved the precise theorem. Th e  author o f the present paper has

written m ore details about this history in [45].
In 1988 Jingcheng Ton g  [35] proved the follow ing theorem:

Let r  >  0 and let a  be an irrational number w ith expansion (10), and let pn/qn , 
n =  1,2, . . . ,  be its convergents. Then  among the three consecutive convergents 
Pi/q i ,  i  =  2n — 1, 2n, 2n +  1, n >  1, at least one satisfies the inequalities

t  a  _  Pi 1

Qi '\/a 2n +  1 +  4 r  ^  < i l\ J a l n  +  l  +  4 r

Evidently, putting r  — 1, we receive a variant o f the theorem o f Obreshkoff.

5. T H E  F IR S T  C IT A T IO N  O F  T H E  F IR S T  T H E O R E M  O F  O B R E S H K O F F  
IN  T H E  F O R E IG N  L IT E R A T U R E

Very probably, it was H. Jager and C. Kraaikam p [44], in 1989, who first 
among the foreign m athematicians (re la tive to Bulgarians) cited the first theorem
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o f Obreshkoff. In his paper, Jager and Kraaikamp gave a new proof o f the first
theorem o f Obreshkoff and o f the Theorem  o f Tong o f 1983.

However, the second theorem o f Obreshkoff, which was rediscovered also by 
M. Müller, and by F. Bagem ihl and J. R. McLaughlin, remaines forgotten (not 
counting the present paper and [45]).

6. O N  T H E  C O N S T A N T  O F  B O R E L

In his memoir o f  1903, E. Borel [1] proved many theorems; one o f them we 
cited above as the theorem o f  Borel, another one is the following:

Let a and b be given real numbers. Let M  be an arbitrary positive number.
Then there exist integer numbers x, y and z such that

I I  n jT I I  US I \ Ä *  J I L I 0? “f" b̂  +  1|i| <  M , |y| <  M ,  \z\ <  M  and |ax +  by +  z\ <  -------- —---------- ,
M 2-

where 9 is a constant, not depending on a, b and M . In his History, L. E. Dickson 
[43, p. 96] called 6 the constant o f Borel, and wrote that it was not found. But in 
1956, i.e. after 53 years, N. Obreshkoff [18] (also [20, 24]) proved that 9 — 1. W e 
see that, unfortunately, the constant o f Borel is not remarkable, and furthermore 
we shell speak about “ constant o f  Borel” only historically.

7. O T H E R  O B R E S H K O F F ’S R E S U LTS  A B O U T  D IO P H A N T IN E  
A P P R O X IM A T IO N

In his first paper [8] Obreshkoff im proved not only the theorem o f Borel, but 
also the classical inequality o f D irichlet, demonstrating the va lid ity o f the follow ing 
theorem:

Let a  be an arbitrary real number and let n be an arbitrary positive integer. 
Then there exist integer numbers x  and y, for which 1 <  x  <  n and

1
\ax -  y\ <

n +  1
The equality sign o f the inequality is achieved only if  a =  d{n +  1), where d is an 

arbitrary positive number w ith (d, n +  1) =  1.

In the last paper [25] he generalized this theorem in the fo llow ing way:

Let a  be an integer >  0 and n be an integer >  a. Then for every real a , for 
which 0 <  a, there exist at least two integer non-negative numbers x  and y, for 

which 0 <  x  +  y <  n and

1\ax - y \ <
n +  a

+  2
n +  1

Moreover, the equality sign is achievable.
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In some papers Obreshkoff generalized the inequality o f D irichlet for sever
al variables. Especialy, in [23] he deduced as a consequence o f his theorem the
follow ing theorem o f Thue -  Nagel:

Let a and b be integer numbers and m  be an integer positive number. Then 
the congruence

ax  +  by =  0 (m od m )  

has always a solution in positive integer numbers x  and y, for which x 2 +  y2 >  0 
and |ar| <  \/m, \y\ <  y/m.

The generalization o f Obreshkoff is the following:

Let d i, 02, ■ •., Ojt be k integer numbers and let m  be a positive integer. Then 
the congruence

a\xx +  a2x 2 +  . . .  -I- OjfcX'jfc =  0 (m od m )

has a solution in integer numbers aii, x 2, ■ • Xk, not all equal to 0, satisfying the
conditions

k
\XPi <  V ™ ,  P -  1 ,2 ,

W hen k — 2, we have the above cited theorem o f Thue -  Nagel.
In [15] Obreshkoff proved a theorem and H. Davenport wrote about it in Math

ematical Reviews (vo l. 1 2 , N 9 3, 1951, p. 163):
“The author proves the follow ing simple but elegant variation o f a well-known 

result on diophantine approximation. Let u>i, . . . ,  w* be real numbers, and n a 
positive integer. Then there exist integers n ,  . . . ,  Xk (not all zero) and y, such 
that 0 <  Xi <  n and

luqxi +  . .. +  wkx k +  y\ <  N ~ \  

where N  =  kn +  1. Th e  p roo f is by D irich let’s principle.”
Obreshkoff showed the conditions when the equality sign is achieved. The 

reviewer had a remark that the conditions “ does not seem obvious to the reviewer” . 
In [23] Obreshkoff proved a more precise and general theorem:

Let us have the linear form

f  =  Y ,  a^ x i 1] +  £  <*2m42) +  • ' '  +  i ,
H=\ /1 = 1 /1 = 1

where 0 iM, 02/1 , . . . ,  apil are arbitrary real numbers and n\, n 2, . . . ,  np are integer 
positive numbers. Let m i, m 2, . . . ,  mp also be integer positive numbers. Then 

there exist integer numbers \ x ^ ,  ■ • •, xi i } , n =  1 , 2 not all zero but all 
non-negative or all non-positive, and integer y, for which

<  m „, 1 <  p <  n„,  1 < v < p ,

and

l / - » l  < T ,  (14)

where M  =  (n im i +  l ) ( n 2m 2 +  1 ) . . .  ( npm p +  1).
The equality sign in (14) can be achieved.
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HYPERBOLIC AND EUCLIDEAN DISTANCE FUNCTIONS*

W A L T E R  BENZ

In memory  o f
Nikola Obreshkojf (1896-1963),  
the great Bulgarian mathematician

This is a functional equations approach to the non-negative functions h ( x , y )  and 
e ( x , y )  as defined in formulas (1 ) and (2 ). M oreover, all distance functions o f IS71 are 
characterized, which are invariant under linear and orthogonal mappings (see Theorem  
l ) ,  and, especially, all functions o f this type are determined, which satisfy in addition 
(D 2 ) (see Theorem  2). Here (D 2 ) asks for the invariance under euclidean or hyperbolic 
translations o f the x j-ax is . Finally, add itiv ity on the x j-ax is  is considered, leading to 
the distance functions h and e up to non-negative factors (see Theorem  3).

K e y w o rd s :  hyperbolic distance, invariance o f distance functions under special m o
tions, add itiv ity on a line, theorems.
1991 M a th e m a t ic s  S u b je c t  C la ss ific a t io n : 39B40, 51M10, 51K05.

1. Let n >  1 be an integer and let M>o be the set o f all non-negative real 

numbers. A  function

d : ffin x R n ->  R > 0

is then called a distance func t ion  o f  M>o- Especially, we are interested in the 
hyperbolic distance funct ion h ( x , y )  satisfying

cosh h(x ,  y) =  v  1 +  e 2i/ 1  +  y2 -  xy,  ( 1 )

* Lecture accepted for the Session, dedicated to the centenary o f the b irth  of Nikola 

Obreshkoff.
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and, moreover, in the euclidean distance funct ion  e {x ,y )  defined by

e ( x , y )  -  y / ( x - y ) 2. (2 )

In formulas (1 ) and (2 )

uv =  U i« ! +  u2v2 d b u „ v n

denotes the usual scalar product o f  the elements

u -  ( u i and v =  ( v i , . . . ,  vn)

o f R " .

W e w ill say that the distance function d o f K  is o f type (D i )  if, and only if, it 
satisfies

(D ] ) d ( x , y ) =  d ( p ( x ) , p ( y ) )  f o r  all x , y  £ IRn and all l inear and orthogonal
mappings p  o f  Mn .

Obviously, distance functions h and e are o f type (D i ) .

2. It is posible to determ ine all distance functions d o f which are o f type 
(D i ) .  We would like to prove the follow ing

T h e o r e m  1. Define

K  { (£ i j £2j £3) £ ® 3 I £1 > £2 £ ®>o and <  £i£2}  ■

Suppose ikrrTj^:  K  —► M>o is chosen arbitrarily. Then

d {x ,y )  =  f { x 2,y 2, x y )  (3 )

is a distance funct ion o f  M " o f  type (D i ) .  If, vice versa, d is a distance func t ion o f  
o f  type (D i ) ,  there exists f  \ K  —* M>o such that (3 ) holds true f o r  all x, y £ R n .

Proof.  Since x 2 =  [^>(x)]2 and xy  =  p ( x ) p ( y )  for all x , y  £ M " and for every 

linear and orthogonal m apping p  o f  Mn into itself, we get

d{x ,y )  =  d { p { x ) , p { y ) ) .

d is hence o f type (D j ) .
Assume now that d is a distance function o f M” . Suppose that

is an element o f K  and define

ei =  (1 ,0 , . . . , 0 )  and e2 =  (0 ,1 ,0 , . . . ,  0) 

as elements o f . Put
x 0 =  0 and y0 =  ei 

in the case =  0. Observe here £3 =  0, in view  o f £3 <  £i£2- Define now

/(£ 1 , 6 , ^ )  =  d ( x 0,y0).

Put xq — e\y/i[\ and

e 1 £3 +  e 2 \ / ^ i^ 2  ~  £3

m ~  V T i
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in the case 6  >  0. A ga in  define

/(£ 1 . 6 .6 ) =  d ( x 0 , y o ) .

T w o  things must now be proved. First o f all we have to show that the function 

/ is well-established. But since (6 . 6 . 6 ) is in K ,  there are only these two cases 
£1 =  0 or £1 >  0, and in both cases the value under / is uniquely determined. The 
second thing we have to prove, is that

d { x , y )  =  f { x 2 , y 2 , x y )

holds true for all i , j e l n . Let x , y be elements o f ffi" and put

x 2 = - i i ,  J/2 = : 6 , x y = : £ 3 .

Because o f the Cauchy-Schwarz inequality, (6 . 6 . 6 ) must be an element o f K .  I f  
we are able to prove that, there exists a linear and orthogonal mapping

<p : IT -► M"

satisfying

<p(x 0) =  x  and ip(y0) =  y, 

where xo, yo are the already defined elements w ith respect to 6 . then 

d ( x , y )  =  d ( x 0,yo)  = / ( 6 , 6 . 6 ) =  f ( x 2, y 2, xy )

holds true and (3 ) is established. W e now make use o f the follow ing simple state
ment: let a i, C12, 0,3, &i, 62. 63 be points o f Mn. Then  there exists an orthogonal 
mapping ip o f M " w ith

%p(a,i) =  6,- for all i G {1 ,2 ,3 }

if, and only if,
(a,- -  a j ) 2 =  ( 6; -  b j ) 2 (4 )

is satisfied for all i , j  G {1 , 2, 3 } w ith i  <  j .
In order to apply this statement, we put

a i =  0 =  61

and d3 =  xq , a3 =  yo, b-> =  x,  b3 =  y. Since the assumptions (4 ), namely

2 r 2 2 / -  2
X 0 =  6  =  X , y 0 =  6  =  y

and (xo — yo)2 =  6  — 2 6  +  6  =  {x ~  y )2 are satisfied, ip exists; which is in addition 
linear in view  o f

^ ( 0) =  i p (a i )  =  6 = 0. ■

In the case o f  the hyperbolic distance function we apply the branch arg >  0 o f 
the inverse function o f cosh and we have

f { x 2 , y 2 , x y )  =  arg ( v T + ^ / T T y 2 -  x y j  .

In the case o f e ( x , y )  we get

f ( x 2, y 2\,xy) =  \Jx2 +  y2 — 2 xy.
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3. W e would like to prove the follow ing statement. I f  z ^  0 is an element o f 
Mn , then there exists a bijection 7  o f  M " w ith 7 ( 0) =  z and

h ( x , y )  =  /1( 7 ( 20, 7 ( 7/))

for all i , ÿ Ç R ” ,

There definitely exists a linear and orthogonal mapping <p w ith <p(z) =  e iy f z 2. 
Take now t >  0 satisfying

cosh t =  \/l +  z 2.

Then r ( x )  (æi cosh t +  a/I +  x 2 sinh t, 1 2 , . . . ,  x n)  must be a bijection o f 1R", 
transform ing 0 into

(s in h t.O ,. . .  ,0 ) =

Now put 7  =  ip~l T and observe that

h ( x , y )  =  h ( r ( x ) , T ( y ) )

holds true for all x, y G Mn .

R e m a rk . For m ore inform ation about the mapping r  see the book [5] o f the 
author.

It it well-known that ffi" is a metric space w ith respect to the distance function 
e (x ,y ) .  W e would like to show the follow ing

P r o p o s it io n .  Mn is a met r i c  space with respect to the distance funct ion  
h ( x ,y ) .

Proof.  Suppose that x, y are elements o f K n . The inequality o f  Cauchy-Schwarz

( x y ) 2 <  x 2y2 

then implies ( x y ) 2 <  x 2y2 +  ( x  — y) 2, i.e.

( x y ) 2 +  2xy  +  1 <  (1 +  x 2) ( l  +  y2) 

and hence xy +  1 <  \xy +  1| <  -y/l +  x 2\J\ +  y2. W e thus have

\/l +  x 2y/l  +  y1 -  xy  >  1 , 

so that (1 ) determines h ( x y )  >  0 uniquely. In view  o f  (1 ), obviously,

h ( x , y )  =  h ( y , x )

holds true for all x, y G IRn . Observe, moreover, h (x ,  x )  =  0 for all x £ M n . Suppose
now that h ( x , y )  =  0. Then  (1 ) implies

( x y ) 2 =  ( x  -  y )2 +  x 2y2.

I f  x  were ^  y, we would have the contradiction

( x y ) 2 <  x 2y2 <  ( x  -  y )2 +  x 2y2.

In order to prove the triangle inequality

h ( x , z )  <  h ( x ,  y) +  h ( y , z ) ,  (5 )

take a bijection 7  o f  R "  satisfying 7 ( 0) =  y and

h ( p , q )  =  h ( j ( p ) , j ( q ) )  ( 6)
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for all p, q G Mn . Pu t a =  j  ^ x )  and 6 =  7  x(z ) .  Then we shall prove

h(a, b) <  h(a,  0) +  /i(0, 6), ( 7)

which leads to (5 ) by applying ( 6). Now  observe

—ab <  \ab\ <  V a ^ V b 2, 

i.e. v/l +  a2\/l +  b2 — ab <  \/l +  a2\/l +  62 +  V a ^ V b 2. Hence

cosh h(a,  b) <  cosh h(a,  0). cosh h ( 0 , b) +  sinh h(a,  0). sinh h{0 , b) 

by observing

0 <  sinh h{a, 0) =  \Jcosh2 h(a,  0) — 1 =  a2

and 0 <  sinh h ( 0, 6) =  b2. Thus

cosh h{ a , b) <  cosh(/i(a, 0) +  h ( 0 , 6) ) .

Th is implies (7 ) since cosh 6  <  cosh 6  leads to t\ <  for non-negative real
numbers t\, t 3.

R e m a rk . Observe that Mn is also a m etric space under the rather strange 

distance function

d ( x , y )  : =  h ( x , y )  +  e ( x , y )

(for all î , t/ G  Mn) which is o f type (D i )  as well.

4. W e shall call a distance function d ( x , y )  an euclidean (or a hyperbolic)

distance function i f  it adm its all euclidean (or all hyperbolic) motions.
Define for a distance function d the property (D 2), as follows:

(D 2) d { x , y ) =  d ( r ( x ) , T ( y ) )  f o r  all x , y  G Mn and all euclidean (o r  hyperbolic)
translations o f  thé xi -axis.

The euclidean translations o f the i i-a x is  are the mappings

(x  1 , . . . , Xn ) ► ( i l  T f , X 2j • • - jX n)

for f  G 1 ; the hyperbolic translations o f the same axis are the already defined 

mappings

x —>■ ^£1 cosh t +  \/l +  x 2 sinht, x 3, ■ ■ ■, x n j  . (8)

T h e o r e m  2. Let g be a funct ion  f r om  M>o into  M>o- Then

d ( x , y )  =  g ( e { x , y ) )  

ts an euclidean distance funct ion,  and

d(x,  y) =  g { h { x , y ) )

is a hyperbolic distance funct ion.  There are no other distance funct ions satisfying 

(D i )  and (D 2).
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Proof,  a) Let us assume that d satisfies (D i )  and (D 2) w ith respect to euclidean 
translations. Then  d admits all congruent mappings o f Mn, in view o f (D i )  and 

(D 2). Hence

d(x,  y) =  d (x  +  ( ~ y ) , y  +  ( - y ) )  =  d(x  -  y, 0) 

and thus d(x,  y)  =  / ( (x  — y ) 2, 0, 0) because o f Theorem  1. Define

9(0 := /(6,0,0)
for all real £ >  0. Hence

d ( x , y )  =  g ( y / (x  -  y )2)  = g ( e ( x , y ) ) .

b) Suppose that d is a distance function satisfying (D i )  and (D 2) w ith respect 

to hyperbolic translations. From

( x i , . .  . , x „ )  G IRn

we go over to Weierstrass co-ordinates

( x i  1 • ■ •, x n , \ / 1 -f x 2)  .

The mapping ( 8) then reads

T ■ j x ny x / T + x 2)  =  ( x i , . . . , x „ , \ / l  +  x 2  ̂ H ( t )

with the (n  +  1 , n +  l)-m a tr ix

/ cosh t

H ( t )  =

sinh t \

\ sinh t cosh t J

with zeros elsewhere. Let

B (p i , . . . , p n -,k)

be an arbitrary Lorentz boost (see [3, Sections 6.10, 6.11]). W e hence have k >  1,

P i  +  b  P n  <  L  ( 9 )

k 2 ( l - p \  P 2n )  =  ! •

Set coshf :=  k , t  >  0, and

( “ 11, “ 2 1 1  ■ ■ •, “ n i )  : =  . j ^ ( P i , •••  1 P n )

for t >  0. (For t =  0, i.e. k =  1, the m atrix B  must be the identity m atrix  E,  and

we are not interested in this case.) Observe

k2 "

i= i
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from  (9 ). Extend 

to an orthogonal m atrix

A  =

> flnl • • • ^nri -

o f Mn . Define the so-called induced Loreniz matr ix

/ ° \

A  := A
0

l o . . .  0 1 /

and observe

(In  the case B  — E  we have E  =  E H ( 0 ) E ~ l .) Because o f A .10.1 (see [3. p. 
249]), an arbitrary orthochronous Lorentz m atrix  o f K n+1 can be written as the 
product o f  a Lorentz boost and an induced Lorentz m atrix. Th is implies that the 

( " )
group H  o f all motions o f n-dimensional hyperbolic geom etry (that is the group 

o f all orthochronous Lorentz matrices o f Mn+1, see [4, Sections 2.6 and 5.7]), can 

be generated by H ( t ) ,  i 6 K , and the induced Lorentz matrices, i.e. by linear 
orthogonal mappings o f R n and hyperbolic translations concerning the x i-axis. 
W e now would like to  define a function

g : M>o —*• M>o 

9 ( 0  ■= d (0 , ei  sinh £).

as follows: for f  >  0 set 

W e then have to prove

d ( x , y )  =  g ( h ( x , y ) )

for all x, y £ 1R". Pu t h ( x , y) Hence

h(x ,  y)  =  /i(0, e\ sinh £).

Take a linear and orthogonal mapping o f K "  that transforms x  in e iy fx * , then 

a t  which maps this latter point into 0. W ith  another ip2 we get

ip2T < p i ( x ) - 0  and ip2T<p1(y)  = :  e^rj

with T] >  0. Because o f

£ =  h ( x , y )  =  h (0 ,e i r ] ) ,  

it follows cosh^ =  cosh /i(0, e ^ )  =  \J 1 +  y2, i.e.

77 =  sinh^.
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Hence with j  : =  <p2 T<pi

d ( x , y )  =  d ( j ( x ) , j ( y ) )  =  d (0,e is in h O  =  g ( 0  =  g { h ( x , y ) ) .

W ith  respect to the first part o f Theorem  2 we know that e and h admit the 

corresponding mappings mentioned in (D i )  and (D 2). But those mappings already 
generate the automorphism groups o f the geometries in question. ■

A  distance function d o f Mn w ill be called additive on the x i-ax is  if, and only 
if, the follow ing property holds true:

(D 3) Lei  a, (3, 7  be real numbers with a  <  (3 <  7 . Then

d ( a e u j e 1) =  d ( a e u f3e{) +  d(f3e 1, y e i ). (10)

T h e o r e m  3. Let d be a distance funct ion o f  satisfying (D i ) ,  (D 2), (D 3). 
Then

d ( x , y )  =  ke(x,  y)

or
d(x,  y) =  kh(x ,  y)

holds true with a fixed real number k >  0.

Proof,  a) Eucl idean case. Taking into account Theorem  5 (see [4, Section 5.1]) 
we only need to prove that (D 3) carries over to every euclidean line o f M ". Let x, 

z be distinct elements o f M " and let y be the element

y =  Ax +  (1 — A )z

with 0 <  A <  1. W e then transform x, y, z in

a e i,  0e i ,  j e i

with a — 0, P  =  (1 — A )e (x ,z ) ,  7  =  e (x ,z ) .  Now with Theorem  2 

d (x ,y )  =  g ( e ( x , y ) )  =  g (e (0 , (3e i ) )  =  d (0 ,^ e i) 

and so on. Hence (10) yields

d ( x , z )  =  d ( x , y )  +  d (y ,z ) .

Then everything else depends on the solution o f the functional equation

g ( a  +  /3) =  g ( a ) + g ( ( 3 )

for all o■,/? G M> 0 (see [1 ]).
b ) Hyperbolic case. W e have to apply Theorem  9 (Section 2.6 in [4]) and a 

similar procedure as in part a). ■

R e m a rk s . 1) I t  is possible now to determ ine all distance functions d satisfying 

(D i ) ,  (D 2), constituting a metric. By applying Theorem  2 the reader might verify 
the next statement which we shall formulate for the hyperbolic case. The situation 

in question is characterized by all functions

g : M>o —> M>o

satisfying

(i )  g ( 0  =  0 4 = >  6 =  0;
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( i i )  Let a, 0,  7  be real numbers such that there exists a triangle xyz  with 
a =  h (x ,  y ), (3 -  h(y,  z ) ,  7  =  h(z,  x ), then

<7( 7 ) <  g ( a )  +  g{(3).

2) For general inform ation about hyperbolic geom etry compare [5-8].
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TIKHONOV’S THEOREM FOR FUNCTIONAL-DIFFERENTIAL 

INCLUSIONS*

T Z A N K O  D O N C H E V , IO R D A N  SLAV O V

W e investigate differential inclusions and equations o f a retarded type with a small 
real parameter e >  0 in  part o f the derivatives. Analogues o f the well-known in the 
theory o f singularly perturbed ordinary differential equations theorem o f Thikhonov 
are obtained. W e prove lower semicontinuity o f the solution set for inclusions and 
continuity o f the solution for equations in the most appropriate topology when e —>- 0.

K e y w o rd s : differential inclusions, equations o f retarded type, T ikhonov theorem. 
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 49J40, 49K25, 49J45.

1. IN T R O D U C T IO N  

Suppose that the functional-differential inclusion

( e y ( t ) )  G *0 =  t f ,y o  =  A  1 e  I  =  [0,1], (1 )

is given, where x  6 R n , y G R m and e >  0 is a real parameter.

In the sequel, C ( I , X )  and L l ( I , X )  are the usual spaces o f respectively con

tinuous and integrable functions on I  w ith values in X .  For any z 6 C ( [— r, 1], R * )  
and t £ I  we let zt 6 C ( [—r, 0], R ^ ) be defined by zt (s ) =  z ( t  +  s), —r  <  s <  0.

* Lecture presented at the Session, dedicated to the centenary o f the birth o f N ikola Obreshkoff. 

This work is partially supported by the National Foundation for Scientific Research at the 

Bulgarian M inistry o f Science and Education, Grant 701/97.
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Here t  £  (0 ,1 ) and F  is a map from  I  x R n+m x  C ( [—r, 0], R n) x L l ( [ —r, 0], R m)
into R 71 x R m , while <p £  C ( [ - r ,  0], R n), ip £ C ( [ - r ,  0], R m).

There is a fundamental theorem refered as T ikh on ov ’s theorem [10] dealing 
with the continuity o f the (unique) solution o f (1 ) when F  is single valued and does 

not contain ( xt,yt)■ Namely, continuous dependence o f the solution w ith respect 
to C ( I ,  R n) x C([<5, l ] , R m) topology (0 <  6 <  1) when e —► 0 is stated. Our 
considerations differ from  the situation in [ 10] also in the fact that we assume, only 
measurable on t right hand side. Then it is natural to define the solution set Z ( e )  
o f ( 1 ) when e >  0 as the collection o f  all absolutely continuous functions ( x , y ) 
satisfying (1 ) for a.e. t £ I. W hen e =  0, inclusion (1 ) becomes

e - F ( t , x ( t ) , y ( t ) , x t l yt), x0 = <p, yo = ip, t € I  =  [0,1]. (2)

Here solutions are all pairs ( x , y ) o f absolutely continuous functions x ( - )  and L 1- 
functions y (-) such that (2 ) holds for a.e. t £ I .  As in the ordinary differential case, 
y(- )  can differ from  the initial condition ip(-) at t =  0.

It is too restrictive to assume the j/-part o f the solutions o f the above “ degen
erate” inclusion to be continuous in view  o f the follow ing simple example:

ey ( t )  -  - 2 a y ( t )  +  ay ( t -  ^  ) , y(s)  =  1 , s £

For £ =  0 one has 0 =  —2y ( t )  +  y ( i  — 1/2), i.e. y ( t )  =  (1/2 ) y ( t  — 1/2). Thus 
y ° ( t )  =■ 1/2 for t £ [0,1/2) and y ° ( t )  =  1/4 for t 6 [1/2,1). For this reason the 
C -topology used in [10] is not suitable and must be replaced w ith another one. 
In Examples 2.1 and 2.2 we show that when the delay is not fixed it happens the 
classical T ik h on ov ’s theorem not to be valid. So it must be reformulated in the 
functional-differential case when it  holds at all.

Here we exam ine first the lower semicontinuity properties o f the solution map 
Z ( e ) as £ —* 0+ and then derive on this base the continuity dependence o f the 
solution for equations. For inclusions without the functional arguments ( x t ,y t ) the 
lower semicontinuity is studied in itia lly in [11]. The results then are extended un
der weaker type o f  assumptions in [3] for functional-differential inclusions w ith fixed 
tim e delay. The main assumption in the last paper is a version o f the one-side Lip- 
schitz condition used first for multivalued maps in [2]. Since singular perturbations 
are not presented in [2], this key condition is modified in [3] and here in a suitable 
way. W e do not consider upper semicontinuous properties since, as shown in [3], 

the solution set is not upper semicontinuous in used here C ( I ,  R n) x -£/(/, R m) 
topology, even for linear control system. Moreover, in the case considered in [3], 
redefining the solution set o f ( 2) to obtain upper semicontinuity one w ill lose lower 
semicontinuity. Some upper semicontinuous results under restrictive assumptions 
are obtained in [3-5].

A t the end o f thé section we shall give some notations and definitions. In
troduce the subspaces =  { a  £ C ( [ — r, 0], R * 1')  : |or(0)| =  m ax_T< 5<o |q(s)|}, 

ki =  n, k2 =  m , which are used in Razumikhin type conditions [7]. The norms 
in C ( I , X )  and L l { I , X )  are denoted with || • ||c and || ■ ||li, respectively. For the
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sake o f sim plicity we w ill denote by ||a*||c and ||a<||ii', respectively, the norms
o

m ax_T< s<o ]a ( i  +  s)| and f  |a ( t  +  s)| ds. For a set A  C R *  and a vector I G R fc we
—  T

let a( l ,  A )  =  supa6A (/, a) be the support function, where (•, •) is the scalar product. 

I f  A  C R n+m, we denote by A  the projection o f A  on R n , by A  the projection o f A  
on R m , and by cl A  ( c l c o A ) the closed (the closed convex) hull o f A.  The set-valued 
map G  : I  x Z  —* Z  is called: a) lower semicontinuous (L S C ) when for every ( f , z )  
and every u G G { t , z )  there exists iq G G ( t i , Z { )  such that ut- —► u when t i —> t, 
Zi —► z; b ) upper semicontinuous (U S C ) i f  for every ( t , z )  and every u >  0 there 

exists 6 >  0 such that G(s ,  w)  C G ( t ,  z )  +  v U  (here U  is the unit ball in Z ) when 
11 — s| +  |z — io| <  6; c) continuous when G  is LSC  and USC. G  is called almost 
continuous (resp. LSC , U SC ) when for every 6 >  0 there is a compact set Is C I  
w ith m e a s ( I  \ Is )  <  6 such that G  is continuous (resp. LSC , USC ) on Is x Z .  For 
more detailed considerations o f definitions and concepts used bellow we refer to [1 ] 

and [7].

2. L O W E R  S E M IC O N T IN U IT Y  IN  C  x Z d -T O P O L O G Y

W e take an exam ple which tells us that for continuity w ith respect to C [ 6 , 1] 
topology on y(- )  there have to be restrictive assumptions.

E x a m p le  2.1. Consider the follow ing equation:

ey{ t )  =  - 2  y{ t )  +  max y(t  +  s), y (0) =  1 ,

where I t =  [m a x {- l/ 2 ,  —i } ,0 ]  for t G [0,1]. For e >  0 one can find

t f ( i )  >  ^ ( 1 +  exP ( _ l ) )  ’

>  J  ( l - t - e x p  ( - |  ( *  -  i ) ) )  , ± < f < l .

For £ =  0 we get the “degenerate” equation

2 y ( t )  =  m ax y(t  +  s).
s £ l t

Obviously, y ° ( t )  =  1/2, t G (0,1/2]; y ° ( t )  =  1/4, t G (1/2,1] w ith y ° (0 ) =  1 is a 
solution o f the above equation. A lso it is not difficult to see that y€( t )  —* y° { t ) ,  
e 0 for t G I  and that this convergence is uniform  on [6,1 / 2 )U[1/2 +  i5, 1]. On the 
other hand, y ° ( i )  =  0 on i  G I  is other solution o f the “ degenerate” equation. 

The last implies that there is no continuous in C [ 6 , 1] but only USC dependence in 

C { [ 6 , 1/2) U [1/2 +  6, 1]) topology.

E x a m p le  2.2. Let us combine the above equation w ith the control system 

from  Exam ple 2.5 o f [3], i.e. consider

i  -  \yi ~  2j/2|, z ( 0) =  0,
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£2/1 =  - 2/1 +  u ( t ) ,  i/i(0) =  0,

£2/2 = - 2y2 +  u (0 . 2/2( 0) =  0,

£2/3 =  - 2 y 3( t )  +  m axy3(< +  s), y3(0 ) =  1,
sei t

where u ( t ) E [—1,1] is measurable. It is shown in [3] that the solution set o f 

the subsystem consisting o f the first three equations is not USC in C ( [0 ,1 ] ,R )  x 
L 1 ( [0 ,1 ] ,R 2) topology at £ =  0. Thus the solution set o f the above inclusion is 
neither LSC nor USC.

These examples tell us that when the delay depends on tim e t it is hard to 

expect that T ikh on ov ’s theorem  is true. But still there are situations in which we 

could formulate a very close result. Consider first (1 ) under the follow ing assump
tions:

A l .  The map F  is almost continuous and bounded on the bounded sets. 

Moreover, there exist constants a, b, p. >  0 such that for every ( x,  y) E R n+m

< r ( x , F ( t , x , y ,  a,/?)) <  a ( l  +  |x|2 +  |y|2 +  \\P\\c), a  £ f i i ,  P  £ C ( [ - r ,  0], R m), 

< r ( y , F ( t , x , y , a , 0 ) )  <  6(1 +  |ai|2 +  ||a||c) -  u\y|2, 6 C ( [ - t , 0], R n), 0  G f i 2,

for a.e. t E I .  Here a (0 ) =  x,  /3(0) =  y.

A 2 . There exist positive constants A,  B  and p  such that if  we choose arbitrary 

( x i , y i t ai,/3i) G R n+m x C ( [ —t,  0], R n) x L x( [ - r ,  0], R m), i  =  1,2, then for every 

( f u 9 i )  G F ( t , x 1, yl , a u P i )  there is (/2,y 2) G F ( t ,  x 2, y2, q 2, P i )  such that

( x i  -  x 2J i  -  /2) <  A(\x i  -  x-2\2 +  |yi -  y2|2 +  ||/?i -  # 2||ii), for Q'i -  a 2 E f i i ,

(yi -  2/2,51 -  92) < B(\xi -  x 2 \2 +  ||ai -  Q2||c +  IIPi ~ P i IliO -  fi\yi -  y2 12

for a.e. t E I -  Here » , ( 0 )  =  Xi and for /3,- continuous /3,(0) =  yi, i =  1, 2.

The next result is proved in [3].

L e m m a  2.3. Under  A l  there exists a constant M  >  0 such that |xE(t)| +  

|y£(t)| <  M  f o r  every t E I ,  ( x €,y€) E Z ( e )  and e >  0, and a.e. on I  i f  £ =  0.

By A l  it follows that there exists L  >  0 such that \F(t,  x, y, a,  /3) | <  L  for 

every t E I ,  |a:| +  |y| <  M  +  1 and ||a||c +  ||^||l“  <  M  +  1.

T h e o r e m  2.4. Under assumptions A l  and A2  the solution set Z ( e )  is L S C  

at £ =  0+ with respect to C ( [ 0 , l ] , R n) x L^ fO , l ] , R m) topology.

Proof.  Let ( x ° , y a) be a solution o f (2 ) and 8 >  0 be given. Then there is 
a Lipschitz on I  function z w ith a Lipschitz constant K t  such that z (s )  =  4>(s), 

s E [—r, 0], and

||z -  y°||z,i <  6, \\p\\Li <  8.

Here p ( t )  =  D n ( F ( t , x ° , y ° , x ° , y !? ) , F ( t , x 0, z , x !l , z t ) )  and D H {-, ■) is the Hausdorff 

distance between sets. Therefore

d ( ( x ° ( t ) , £ z ( t ) ) ,  F ( t ,  x ° ( t ) ,  z ( t ) , x ° ,  zt ) )  <  eKt, +  p ( t ) .  (3 )
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(x ° ( t )  -  u , x ° ( t )  -  f )

<  2A(\x° ( t )  -  u|2+ | z (f )  -  u|2 +  ||zt -  P \\2L l ) +  e K s +  p ( t )  +  <5, (4 )

( z ( t )  - v , e z ( t ) -  g)

<  2 B ( |a r ° ( < )  -  u | 2 + | | x (° -  a | | c  +  | |z (  -  P \ \ \ i )  -  p \ z ( t )  -  v \ 2 +  e l< 6 +  p ( t )  +  6. ( 5 )

Consider the map r j ( f ,  u, v, a,  ft), which we define only for continuous /?, w ith 
values as follows:

a) d { ( f , 9 )  G F ( t , u , v , a , / 3 )  : g satisfies (5 ) }  for a  -  x°  £ Q i , u =  a (0 ) and 
v =  /?(0);

b ) c l { ( f , g )  G F ( t , u , v , a , P )  : ( f , g ) satisfies (4 ) and (5 ) }  for a -  x 1} 6 f i i , u =  a (0 ) 
and v =  /?(0);

c) T s ( t , u , v , a ,  /3) =  F ( i , u,v,a,/3 )  when u ^  a (0 ) o r v /  /3(0).

Note that F  is almost continuous on I  x R n+m x C ( I ,  R n+m). W e claim  that 

T i ( - )  is almost LSC  w ith nonempty and compact values. To  prove that we first
note that T i ( - )  is compact valued by its definition, Lem m a 2.3 and A l .  W e will
show the nonemptiness o f  r^ (- ) on ly in case b).

By (3 ) there is ( f ° ( t ) , g ° ( t ) )  G F ( t ,  x ° ( t ) ,  z ( t ) , x ° , z t ) such that for a.e. t G I

| ( i° ( f ) ,  c z ( t ) )  -  ( f ° ( t ) , g ° ( t ) ) \  <  £l<6 +  p ( t ) .

So, there exists ( f , g ) G F ( t , u , v , a , / 3 )  such that for x\ =  x ° ( i ) ,  12  =  « > 2/1 =  z ( i ) . 

z/2 =  u, /1  =  / °, /2 =  /, g\ =  g°  and g -2 =  g the inequalities o f A2 hold, i.e.

( x ° ( t )  - u , f °  -  f )  <  A (|.T°(f) -  u |2 +  |z ( t )  -  v\2 +  [|zt -  P\\li) ,

( z ( t ) -  v , g °  -  g)  <  R (| x °( 0  -  u |2 +  ||x° -  a\\2c  +  ||z, -  /?||£,) -  p\z(t )  -  u|2.

Therefore the inequalities (4 ) and (5 ) are fulfilled.

The fact that T i ( - )  is almost LSC  has a standard p roo f (see [1]), which is 

om itted.

Now, from  [6] we know that the inclusion

( e j/ ( t ) )  ^  r « ( L  x ( t ) , y( t ) ,  x t , yt), x 0 =  <p,yo =  ip, t G I  =  [0,1], ( 6)

has asolu tion  ( x c , y£)  in this case as well. On the other hand, |xe(<) — x ° ( f )|2 <  2h(t )  

and |y£( f )  -  z ( t )|2 <  2r ( t ) ,  where:

h ( t )  =  2 A ( h ( t )  +  r ( t ) +  ||rt||£i) +  p ( t )  +  6 +  el<s, h (0 )  -  0, 

t r ( t )  =  2B h ( t )  -  p r ( t )  +  2£(||/it||c +  ||ft|U0  +  p ( t )  +  6 +  eI<s , r ( 0) =  r 0.

W e do not indicate the dependence on e o f the solution o f  the system for the sake 

o f sim plicity o f notations. Let A; be a sufficiently large natural number. W e divide 

[0,1] on k parts w ith equal lengths. Obviously, by the first equation above we have 

that h( - )  increases, i.e one can suppose w ithout loss o f generality that h ( t )  =  |[A-t ||c •

Introduce the follow ing conditions:
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Then solving the second equation on [0, l /k]  and integrating by parts one obtains

t

r ( t )  <  exp ( - f i t / e ) r 0 +  ( 1 /e) J  e x p -  s )/ e )(4B / i(s ) +  p (s)

0

+  25||r5||£i +  8 +  el\&) ds

t

<  e x p (- p t/ e )r 0 +  ( 1 /e) j  e x p ( - p ( f - s ) / e ) ( p ( s )  +  2.B||rs||i i )d s  

0
4" (1//-t)(4-S/i( ( )  +  6 +  e A { ) .

Denoting further w ith C  an arbitrary positive constant dependent only on A,  B  
and /i (in  the follow ing inequality for example C  — 2A +  8A B / p ) ,  we derive that

t

K t f  <  J  e x p (C ( t - s ) ) (p (s )  +  2J4||rs||i i +  ( l  +  2 y l/ / i)(5 + eA ^ )+ 2 J4 e x p (-p s / e )r o )d s  

o

t $

+ ( 2.A/e) J  J  G xp (C (i — s )) e x p ( —fi (s — X )/e ) (p (X )  +  ||?w||lO dX ds.

0 0

Thus changing the order o f  integration we get h ( t )  <  C ( 2 e K s +  6 +  1 /fc) for t £ 
[0,1/fc]. Consequently,

J  |r(s)| ds <  C  ^2eA 'i +  6 +   ̂ for t E 0,

By induction one can show that

h ( t )  <  C  ^2el<s +  & +  j. +  - p +  h &7 ) ’

M k ‘ [ C M ]  <  <-■ \  2 e K s  +  6 +  J .  +  ] / 2 + " ' + j j ) ’  t e

Finally, one obtains

h ( t )  <  C  2e I<s +  S +
k -  1

r(-)\\L i < C  ( 2 £ l u  +  6 +
k - l j  '

Since k is arbitrarily large, we get that there exists a solution ( x e ,y e)  o f (1 ) such 
that

||x£ -  x°\\2c  <  C ( e K 5 +  6), IIyE -  y0\\2Ll  <  C ( e K s  +  6).

Since 6 is arbitrary and K f  depends on 6 but not on e, the LSC  in the considered 

topology is established. ■

R e m a rk . A  prelim inary version o f this theorem is reported in [9].
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( / / S )  e F (*-xW ’ ^ (0 ,z (*-r(< )),:!/ (< -T (< ))), (7 )

x ( t )  =  <j>{t), y ( t )  =  ip(t) ,  t G [—A, 0],

where r ( f )  G [0, A] is a monotone non-increasing function on I .  Suppose that:

B l .  The map F  is Caratheodory ’s and bounded on the bounded sets. M ore
over, there exist constants a, b, y  >  0 such that for every i  G I ,  ( x ( t ) , y ( t ) )  G R n+m

cr (x( t ) ,  F ( t ,  x ( t ) , y ( t ) ,  x ( i  -  T ( t ) ) ,  y(t -  t ( 1 ) ) ) )  <  a ( l  +  |ar(<)|2 +  |j/(t)|2

+  \x(t — r ( t ) ) \ 2 +  \y{t — 1" (f))| 2),

*(0.2/(0. x (t  ~ T(0). 2/0 -  t-(O))) < b ( l  +  |x(f)|2 +  \x{t -  r(f))|2

+  |2/0-t (0)|2) - p I2/(0|2-

B 2  (one-side Lipschitz condition). There exist positive constants A, B  and 

y  such that for every G F ( t ,  x ^ l ) ,  yx( t ) ,  x i ( t  -  T ( t ) ) , y i ( t  -  r ( t ) ) )  there is
(/2, 52) G F ( t , x 2( t ) , y 2( t ) , x 2(t  -  T ( t ) ) , y 2{t -  r ( t ) ) )  such that

<xi -  x 2, / 1  -  /2) <  -4(1^! — ac212 +  |yi -  y2\2 +  |ttl -  a 2|2 +  |/?i -  /?2|2),

( 2/1 -  2/2,51 -  52) <  B(\x\ -  x 2\2 +  |ai -  a 2|2 +  |/?x -  (32\2) -  y\yx -  y2\2

for a.e. t e l .  Here a i ( t )  =  Xi ( t  -  r ( t ) ) ,  P i ( t )  =  y{ (t -  r ( t ) ) ,  i =  1,2.

B 3 . I f  in f(6/ r ( t )  — 0, then y  >  B.

T h e o r e m  2.5. Under the assumptions B1-B3, the solution set Z ( . )  is lower 
semicontinuous in C ( I , R n) x L l { I ,  R m) topology.

Proof.  Define the sequence t {+ 1 =  sup{2 G 7|/i-i <  t — r ( t )  <  t ; } ,  where 

to =  —A, <1 =  0. There are two cases. I f  fjt =  1 for some k, one can easily complete 
the p roof exploiting the same fashion as in a fixed tim e lag, see Theorem  3.2 from  

[3]. In the opposite case there exists obviously 1/ <  1 with v  =  lim  Then B 3
i—*cc

holds. Moreover, r { t )  — 0 for t >  1/, i.e. the inclusion (7 ) becomes an ordinary 
differential one. Let 6 >  0 be given and ( x ° , y ° ) be the solution o f  (7 ) for e =  0. 

Then for every t <  v  again on the base o f [3] one can find £(/,<5) such that there 

exists ( x £, y£) G Z ( s )  whenever 0 <  £ <  e(t,  6) with

||®° -  z£||c[o,q +  ||2/0 _  2/£||li[o,i] < b/'i.

Note that the norms above are evaluated on [0 ,t]. Moreover, Z ( e )  is LSC  on [1/, 1] 

w ith respect to C ( [ v , 1], R n) x L l (\y, 1], R m), see [11]. So without loss o f generality 

one can suppose that

||z° -  £ £ ||c [ i/,i ] +  ||2/° -  y £ | k '[,/ , i] <  <5/3.

Using the boundedness o f the solution set and thus o f the right hand side o f (7 ), 

we can manage also on the interval [f, v]. Namely, i f  u — t is small enough, then

Consider the follow ing special case o f  (1 ):



Consequently, there exists ( x E,j/£) £ Z ( e )  such that

lk °  -  x c \\c +  ||y° - 2/e||l> <  <5

for sufficiently small e. ■

3. T IK H O N O V  T Y P E  T H E O R E M  F O R  F U N C T IO N A L -D IF F E R E N T IA L
E Q U A T IO N S

Consider now the follow ing singularly perturbed system o f functional-differen
tial equations:

=  /(<> 2/(0. *«,!/ «), x o =  0 ,
e y ( t )  = » ( 0 ^ (0 . 2/(0 . £<> 2/0 . 2/o =  V', ( 8)

derived from  (1 ) when F  is single valued. Here /(•) and g ( - )  are Caratheodory ’s 

functions, satisfying A I  and A2.

First we shall show that the reduced system

i-(0  =  / (0 * ( 0 , 2/(0 . ^  2/0 , x o =-<0
0 =  g( t ,  x ( t ) ,  i/(0, i t ,  2/0, 1/0 =  2/’, (9)

admits C (/ ,R " )  x £ * (/ , R n) solution, i.e. the next lemma is true.

L e m m a  3.1. Under the assumptions A1 and A2 the degenerate system (9 ) 

has a solution.

Proof.  First we shall consider the case when / and g are jo in tly  continuous, 

i.e. continuous in all arguments.

By Lem m a 2.3 for 0 <  6 <  (i there is a constant such that for all t £ I

|x(0 | +  12/(01 <  Ms ,  when

| i ( 0  -  / ( 0  x ( 0 >  2 / (0 , x t> 2/01 <  0  l f f (U  z ( 0 >  2 / (0 , e * ,  2/01 <  S -

Choose a sequence Si —* 0+ and construct the corresponding sequence o f approx

imate solutions ( x ^ y 1) as follows. By the well-known theorem o f M inty-Browder 

there exists /3q £ R m such that

0 =  g(t,<f>(0),/3o ,<t>,Tp). (10)

Let

x \ t )  =  < £ ( 0 ) - m / ( o ,  0 ( 0 ) , / ? o ,  0, 2/0, y ' ( 0  =  Po>
for t £ [O.i/J. Here i>y is the maximal v  for which (10) and

|x‘ (0  -  / (0 * ' ( 0 ,i/‘ (0 , 0 , 2/01 <  0 , \g(t,x l { t ) , y \ t ) , x \,y\)\ <  0

hold on [0,1/]. Using continuity o f f , g  and Zorn ’s lemma, it is not difficult to 

show the existence o f  such (x ’ , 2/1) on the whole I .  By the A rze la -Asco li’s theorem 
{ x 1̂ ) } ? ^  is C ( I ,  R " )  precompact and passing to subsequences i f  needed, there 

exists a cluster point x ° (- )  £  C ( I ,  R n). W e shall show that { y ' ( - ) } i = i  is a Cauchy
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sequence in L 1 ( / ,R m). Denote r ( t )  =  r f>(t )  =  (Z) — yJ (Z)|, —^ (O l lc -

Then, o f course, \\x\ — x[\\L i <  &ij and by A2 we obtain

u r 2( t )  <  B(6f j  +  \\nWl )  +  C(5{  +  Sj).

For the sake o f  sim plicity o f notations here and further we denote w ith C  an arbi
trary constant and w ith <5t;- an expression tending to zero w ith i , j  —► oo. Hence

r ( t )  <  C{8i j  -1- UrtlUO, t £  I  and r ( f )  =  0 , t  £ [ - r ,  0].

t
Let r ( t )  — M  on [0, t }. Thus ||rt ||£i <  /  M  ds =  M t  for t  £ [0, r ] .  Therefore

o

r ( f )  <  C8i j  T  C M t ,  t £  [0, t ].

T t

Since =: /  r ( t  — s) ds — f  r ( s ) ds , we have
0 0

I N I l i  < c m  +  c m | ,  < e [ 0,r ] .

Then it follows

r ( t )  <  C8ij ( i  +  § )  +  c m ^ ,  t e [o ,r ].

Proceeding in the same way, we find that

r ( t )  <  C6i j  ( l  +  ̂  +  . . . ) + M  lim  < '6 i j C e x .p { C t ) ,  t €  [0, r ],
\ 1! 21 J  n-+oo nl

Thus lim  r ( t )  =  lim  r i j ( t )  =  0 and { 2/‘ ( ) } “ i is a Cauchy sequence on [0 ,r ],
i ,j —*oo i ,j —► oo

Therefore lim  yl ( t )  — y ( t ) , t  G [0 ,r ] exists. It  is easy to show that ( x ( t ) , y ( t ) )  is a 
*—*-00

solution o f  (9 ) on [0, t ] .  Analogously (keeping in mind that r ( t )  — 0, t £ [0, r ]),th e  

solution can be extended on [r, 2r ] and therefore by induction on [0, 1 ].
Now let / (•) and g ( - )  be Caratheodory ’s functions. By Scorza-Dragoni’s theo

rem /(•) and g ( - )  are almost continuous, so we can use the same fashion. Namely, 
for 8i >  0 consider A,- C I  with measAi  <  8i, A ,+ i C A,-. A lso let us have on 
I  \ A{  that /(■) and g ( - )  are continuous and for the approxim ate solutions ( i ‘ , y! ) 

the follow ing relations are true:

|x l ( t )  -  f { t , x i { t ) , y l { t ) , x lu y\)\ <  6it x ’ ( t ) ,  yl ( t ) , x ] , y l ) \  <  8i.

On A,  the above distances are less or equal to  L.
Denote again r ( t )  =  |y* — t/J |. One can show that r ( t )  <  8 { j ( t ) D  ex p ( t ) ,  where 

8 i j ( i )  <  M , t  £  A i ,  and % (< )  <  8i j , t  G I \ A i ,  where lim  <5;j =  0. Therefore
i tj  —►oo

( x l ( - ) ,  y‘ ( ) )  —» (a:(-)> y('))< which is a solution o f (9 ) on [0,1]. ■
Now  one can easily prove the next variant o f the T ikh on ov ’s theorem.

T h e o r e m  3.2. Under conditions A l ,  A2 f o r  single valued F  the solution set 

Z ( e )  o f  (8)  is continuous in C ([0 , 1 ] ,R " )  x i 1 ([0, l ] , R m) topology at e =  0+ .
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Proof.  The solution set Z ( 0) o f (9 ) is non-empty thanks to Lem m a 3.1. By A2 
it follows (see [8] )  that Z { e )  is single valued. Then by the LSC o f Z ( e )  at e =  0+ 
(Theorem  2.4) the proof is completed. ■
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Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В . К Л И М Е Н Т  О Х Р И Д С К И “

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И И Н Ф О Р М А Т И К А  
Книга 1 —  М атем ати ка и механика 

Т ом  89, ]995

A N N U A IR E  D E  L ’U N IV E R S IT E  D E  S O F IA  „S T . K L IM E N T  O H R ID S K I“

FA C U LT E  DE M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre 1 —  Mathématiques et Mécanique 
Tom e 89, 1995

COMPLETE SYSTEMS OF BESSEL AND INVERSED BESSEL 
POLYNOMIALS IN SPACES OF HOLOMORPHIC FUNCTIONS*

J O R D A N K A  P A N E V A -K O N O V S K A

Let B n ( z ) ,  n  — 0 ,1 , . . . ,  be the Bessel polynomials generated by

(1 -  4z w ) ~ 1! 2 exp 1 1 - ( 1 ~ 4zt" ) 1/2|  =  Y ^ B n ( z ) w n , \4zw\ <  1

^  '  71 =  0

and the functions B n ( z )  be defined by the relations

B n ( z )  =  4 ~ n z n B n ( l / z ) e x p ( - z / 2 ) .

Let K  =  {/cn}^Lo be an increasing sequence o f non-negative integers.
Sufficient conditions for the completeness o f the systems and

 ̂ in spaces o f holomorphic functions are given in terms o f the density 

o f the sequence K .

K e y w o rd s :  holomorphic functions, complete systems, Bessel polynomials.
M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 30B60, 33D25, 41A58.

1. IN T R O D U C T IO N

Let G  be an arbitrary region in the complex plane C  and H ( G )  be the space 
o f the complex functions Holomorphic in G.  As usual, we consider H ( G )  w ith the 

topology o f uniform convergence on compact subsets o f G.  A  system {^ n C U In =o G.

* Lecture presented at the Session, dedicated to the centenary o f the birth o f N ikola Obreshkoff. 

This work was partially supported by the M inistry o f Education and Science, Bulgaria, under

Pro ject M M  433/94.
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H ( G )  is called com plete in H ( G ) i f  for every /  £ H ( G ), every compact set K  C G  
and every e >  0 there exists a linear combination

N

P ( z )  =  ^ c „ v ? „ ( z ) ,  c „ e C ;  n =  0 ,1 ,2 , . . . ,  N ,
71 =  0

such that |f ( z )  — P ( z ) | <  e whenever z £ K .  For example, i f  G  C C  is sim ply 
connected, the system { 2n} “_ 0 is complete in H ( G ) and this assertion is nothing 
but a particular case o f the Runge’s approximation theorem [1, (2.1), p. 176].

Let 7 be a Jordan curve in C  and C 7 be the closure o f its outside with respect 
to the extended com plex plane C  =  C U  {c o } .  By f / 7 we denote the (vector) space 
o f all com plex functions, holomorphic in an open set containing C 7 and vanishing 

at infinity. The next statement is a criterion for completeness in the space H ( G )  
[2, Theorem  17, p. 211].

(C C )  A  system {y>n ( 2) } “ = 0 o f  complex functions holomorphic in a simply con
nected region G  C C  is complete in the space H ( G ) iff for every rectifiable Jordan 
curve 7 C G  and every function F  £ H  the equalities

j  F ( z ) i p n (z)d.z =  0, n =  0 ,1 ,2 , . . . ,

7

im ply F  =  0.

Completeness o f  systems o f special functions in spaces o f holomorphic functions 
has been considered also by Kazm in [3], Leontiev [4, Ch. 3], Rusev [5-9].

2. BESSEL A N D  IN V E R S E D  BESSEL P O L Y N O M IA L S

Let us define the function <$(z,u;) as

$ ( 2 , w)  =  (1 — A z w )~ 1! 2 exp | ------  — -----------  1 , \4zw\ <  1. (2-1)

Note that the identity

1 -  (1 -  4z w ) 1/2 _  2w ,0
22 “  1 +  (1 -  42uj)1/2 1 ' '

implies that the point 2 =  0 is a removable singularity o f this function for every 

fixed w.
Let B n( z ), 71 =  0 ,1 , . .  ., be the Bessel polynom ials defined by [10, (11.2), V II]

OO

$ ( 2 , w) =  ^ 2  B n ( z ) w n , |42w| <  1. (2.3)
71 =  0

The polynom ials yn (x\a ,b ) [11, 6] are defined by

(1 -  2 x t ) ~ 1/2 exp Q  -  ~ (1  -  2 x f ) 1/2)  exp ( A  ( l - ( l -  2 x t ) 1/2) )

= E ( t ) ny" ^ :a’6)<rî " 1- (2-4)
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Their explicit form

. - ( - ‘ ) = E G ) ( " + i r ' > ! ( f ) ‘  p.»)

is given in [12, 19.7, (19 )]. The substitution o f x, t, a and 6, respectively w ith 2z, 
w, 2 and 2 in (2 .4 ) and (2 .5 ), gives the equality

w) =  ^ 2 y n ( 2 z \ 2 , 2 ) w n (n\) \
n=0

i.e.

1 (n  +  fc)! L.

^ S A!(n-/b)!2 (2-6̂
The polynom ials ( —l ) ” ra!5n ( —z) ,  which are also called Bessel polynom ials, are 

considered in [13].
Denote

B n (z )  =  4~ nz” B n Q )  exp ( - 0  . (2.7)

Having in m ind (2.6 ), we get

n  M  _  ex P ( - z /2 ) V '  (n +  k)\ _n_ k
n!4"  2 _, * . ( „ _ * ) ! *  • ( i -8)

Let

$ ( z , w )  =  (1 -  w ) -1/,2exp | ~ ^ (1  _  u ;)1̂ !  , z £  C , w £  C  \ [1 ,00). (2.9)

L e m m a  2.1. I f  |tu| <  1 and z £ C , then

OO

$ (z ,™ ) =  ' £ /B n ( z ) w n . (2.10)
n = 0

Proof.  The substitutions z =  £ - 1  and w =  Cw/4 applied consecutively in (2.1), 

(2 .3 ) give

 P / 2

2 n = 0
$(C  1 ,w ) =  ( l - 4 ^ C  *) 1/2 exp I  -— ^  — c |  =  X ^ S n(C ‘ K ,

1  0 0

=  £ ■
* r> — H

« ( C - 1, C «/4 ) =  (1 -  ^ ) ~ 1/2 exp \ 1 (1 0 u )1/2
n = 0

A fter m ultiplication o f the last equality by ex p (—((/2) we obtain

ex p (—C/2)$(C-1,Cw/4) =  (1 -  w)-1/2exp | - ( 1 ~ ^ )1/2C}  =  g  Bn(Qcjn , 

and since |4ziu| <  |w| <  1, the lemma is proved.
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3. A U X IL IA R Y  S T A T E M E N T S

Denote

A a — { z \ z £ < C * ,  | a r g z | < a 7r },  C * = C \ { 0 } .  (3.1)

L e m m a  3.1. Let G  C A a , 0 <  a  <  1, be a simply connected region, 7 C G  be 
a rectifiable Jordan curve, F  £  H 1, F  ^  0, and in f |z| =  r.  Let |u;| <  l/ (4 r )  and

*£7

f ( w )  =  J  F ( z ) $ ( z ,  w ) dz.

Then the fol lowing expansion holds:

OO

/ M  =  5 > „ ( i > "
n =  0

with the coefficients

A n ( F )  =  j  F ( z ) B n ( z )d z .

7

Moreover,  the radius o f  convergence of  the series (3.3) is finite.

Proof.  It follows from  (2 .3 ) that B n {z ) =  —
1 f d n$ ( z , w )

(3.2)

(3.3)

(3.4)

. Since f ( w )  is
u> =  0

holomorphic for |u>| <  1 / (47’), then f ( w )  can be expanded in a Taylor series

' f l n$ (z ,u > )|

... , „ v dwn j n
71 =  0  \  'L  '  )  « " = 0

= J  f (z dz^j wn =  ^  j  F ( z ) B n (z )  dz^j wn ,

which yield (3 .3 ), i f  the notations (3.4) are taken into account. 
Having in m ind the identity (2.2), we get

5>(z, w)  =  (1 — 4zw)  exp y-
2w

+  (1 — 4ZITJ)1/ 2

—2w Ï
(3.5)

Suppose that the radius o f convergence o f (3.3) is infinite. Th is means that 

(3.3) defines an entire function. Let us evaluate the order o f f ( w ) .  Using (2.1) and 

(3.2), we get consecutively

I / H I  <  J  F ( z ) ( l - 4 z w )  1/2 exp j   ----^  2^ ZW~
1/2

ds

< J  \ F { z )\ \ \ - 4 z w \ ~ 112 exp I z r 1/2|u)|1/2
'j — (uj 1 — 4z) 1/ 2

2 z 1/ 2
^ ds.
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„ - 1/2 _  ( №- lAs lim
] li/1 — ►CO

fo llow ing inequalities hold

4z ) 1*2 =  2\z\l l 2 and lim  ( l - 4 z t u )  ^ 2 =  0, then the
| tx» f —*■00

w 1! 2 — (w 1 — 4z)
1 / 2

2 Z 1/2

for sufficiently large |w|. Denoting

< 2 ,  |1 -  4ztu[ 1/2 <  1,

m  =  sup |F(z)|, /2( 7 ) =  L , M  =  m L ,
267

(3.6)

we conclude that there exists a constant B  >  0 such that the inequalities

|/(u>)| <  M e x p  ^2 1̂ | — 1^2|7i'|1̂ 2̂  <  M e x p  ^r- 1/,2|w|ly,2j

hold for every |iu| >  B.  Therefore, the order o f the function / is p <  1/2.
Further we apply the Phragm en-L indelo f theorem [14, p. 206] for f ( w ) .  T o  

this end, consider first / (—u), u >  0, and use 3>(z,— u)  as given in (3.5). 
Since 7  C A a , then |arg (l +  4zu)| <  a n  and |arg(l +  d zu )1/2] <  an/2.  There-

2u
fore |arg ( l  +  (1 +  4 zu )x/2) [ <  an/2.  Then arg 

2 u
1 +  (1 +  4ZU)1/ 2

<  a n / 2 , i.e.

Re

get
1 +  (1 +  4 zu )1/;

>  0. Further, using the notations 77 =  in f Re z and (3 .6 ), we
z£7

|/(-u)| <  m  J  |(1 +  4zu)~ 1 /: exp
2u

1 +  (1 +  4ZU)1/ 2
7

<  m ( l  + 4 r , „ ) - ‘ /! / e x p  ( R e 1 + ( 1 ~ 2" g u ),/2)  d.

ds

<  M (  1 +  4 r iu ) l ! 2.

Now, let m ax (a , 1 — a )  <  /3 <  1, a rg (—w)  =  (1 — /3)n, a rg z  =  
a rg (—zw)  =  (1 — P ) n  +  9, and as —a 7r <  9 <  a n , we get consecutively

(1 — a  — 0 ) n  <  arg ( —zw)  <  (1 +  a  -  0 )n ,

(1 — a — P ) n  <  a rg (l — 4zw)  <  (1 +  a — f i )n,

(1 -  a  -  /3)1 <  a r g ( l  -  4z w ) 1/2 <  (1 +  a  -  /3)^ • 

Denoting ip — arg ( l  +  (1 — 4z w ) 1/2) , we have

(3.7)

Then

( l - a - / 3 ) ^ < V » < ( l  +  a - / 3 ^ , arg
—2w

1 +  (1 — 4ZU;)1/ 2
(1 — 0 ) n  -  ip,

(1 -  a  -  /3)| =  (1 -  (3)n -  (1 +  a  -  /3)|

<  (1 -  /3)n -  ip <  (1 -  0 ) n  -  (1 -  a  -  /3)| =  (1 +  a  -  / 3 )| ,
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hence
—2w 7r . / —2w \

" g l  +  ( l -4  r v ) m  K  2 ' ’ '8 ' 1118 ( , l  +  ( l - 4, « , )■/» ;  > °- N° W' USinS

lim  (1 — 4z w ) ~ 1! 2 =  0 and (3.6 ), we conclude that there exists a constant P  >  0
) w | —*■ oo
such that

I / H I  <  m P  J  exp { l i e  j  ds <  M P.  (3.8)

7

The rays /i =  {tn : in =  —u, u >  0 } and I2 =  {w  : arg (—w)  =  (1 — divide 
the complex plane into two angular domains o f sizes (1 ±  p)ir.  Th e  order o f the 

function is p <  1/2. It follows from  (3.7) and (3.8) that |/(w)| is bounded along /1 
and /2- As 1/2 <  (1 ± / ? )- 1 , according to the Phragm en-L indelo f theorem f ( w )  is 
bounded in both angular domains and therefore in the whole com plex plane. Hence 
/ =  const. It  is seen from  (3 .7 ) that lim  / (—u) =  0, which means / =  0. Since

U —*■ OO

F  0 and the system { B n (z ) }% L 0 is com plete in 77(G ), see Theorem  1, the last 
equality contradicts the criterion for completeness (C C ) .  Therefore the radius o f 

convergence o f  the series (3.3) is finite.

L e m m a  3.2. Let G  C A a , 0 <  a  <  1/2, be a simply connected region, 7 C  G  
be a rectifiable curve, F  £  77T and F  ^  0. Then there exists a real number ip 6 (0, a )  

such that the func t ion f  has no singular points outside the set A v .

Proof.  Th e  curve 7  is a compact set, hence there exists a closed domain A v , 
0 <  <p <  a ,o f the kind (3 .1 ) such that 7 £ A v and ■yC\dAv ^  0. The values o f w, fox 
which 1 — 4zw =  0, are wz —■ (4 z ) - 1 . Let z £  7 . Then wz £ A v too. Therefore all 
the points for which 1 — 4zw =  0 are in the set A v and the function (1 — 4zu>)- 1 / 2 
is a h'olomorphic function o f  w outside A v . Hence the function (3.2) is holomorphic 

for w £  Ext A v  too.

L e m m a  3.3. Let G  C A a , 0 <  a  < 1 / 2 , be a simply connected region, 7  C G  

be a rectifiable Jordan curve, F  £  T77 and F  ^  0. Let

f ( w )  =  J  F ( z ) $ ( z , w ) d z ,  u i £ C \ [ l , o o ) .  (3.9)

7

Then the fol lowing expansion holds:

CO

f ( w )  =  j 2 x * ( F > n ( 3-10)
П = 0

f o r  I ta I <  1 with coefficients

\n ( F )  =  j  F ( z ) B n ( z ) d z .  (3.11)

Moreover,  the radius o f  convergence o f  the series o f  (3.10) is f inite and it has no 

singular points in С  \ [1, 00).
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Proof.  From  (2.10) it follows that B n (z )  =  i  -  ® ( z ' w)  1 j±s f f w\ jg
T7* I O WTl *

1 ti/=0
holomorphic for |i d | <  1 , then / ( i d )  can be expanded in a Taylor series, i.e.:

/ H  = E ) / t ( / n * )  1 31 1 ':W)}  d z ^  = f 2 ^ J  F(z)Bn(z)dzy \

which yields (3.10), i f  the notations (3.11) are taken into account.

Suppose that (3.10) has infinite radius o f  convergence. Th is means that (3.10) 

defines the entire function /. From  (2.9) and (3 .9 ) we obtain

/M|< J  | T ( z ) | | l - H - 1/2exp \w
,1/2

j- ds.

1 try

Since lim  I«;- 1  — l| = 1  and lim  |1 — id |- 1 / 2 =  0, then the inequalities
|ttJ | —► OO |ti/|—*oo

|id- 1  — l ]1 2̂ < 2 ,  |1 — w\~l l 2 <  1 hold for sufficiently large |?d|. I f  we denote 

R  — sup |z| and use (3 .6 ), we obtain that there exists a constant D  >  0 such that
2 £7

the inequality f (u>)  <  M  exp x/2) holds for every |id| >  D .  Th is means that

/ is o f order p <  1 /2 .

Now let us investigate the behaviour o f / (id ) along each o f the rays f  =  {w  : 
w =  — u, u >  0 } and l3 =  {w : a rg (—w)  =  (1 — 2a)Tr/2}. As 7  C A a , then

<  an,  i.e. Re f - ( l  +  u )1/2 ) >  0. Using the notation (3.6 ),arg +  u 

we get

/ ( - u ) < m ( l  +  u) 1/,z ^  exp ^ R e  ^ “ (1 +  u )1/2^ | ds 

7

<  M (1  +  u ) ~ 1! 2 <  M .  (3.12)

Now  let w 6 /3 . As —a n  <  a rg z  <  an,  we have consecutively

0 <  a r g ( l  -  in) <  (1 -  2 a ) ^  ,

0 <  a rg (l -  uj)1/ 2 <  (1 -  2a)  ̂  ,

0 <  arg ^ | (1  -  id) 1/2^ <  (1 +  2 a )^ - , i.e. Re ^ | (1  -  id) 1/2^ >  0.

Using that lim  [1 —id |- 1 / 2 =  0 and (3.6 ), we conclude that there exists a constant
|ti/|—*-00

Q  >  0 such that

/ (id ) <  m Q  J  exp ^ R e  ^-(1 — id )1/2^ j- ds <  M Q .  (3.13)
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The rays l\ and / 3  divide the com plex plane into two angular domains with sizes 

(1 — 2q ) 7t/2  and (3 +  2a ) 7r/2 . The order o f the function is p <  1/2. As seen, from  

(3.12) and (3.13), J ( w )  is bounded along h  and /3 . Because o f  1 /2  <  2 ( l - 2a ) - 1  and 

1/2 <  2 (3 + 2 q )_1 , according to the Phragm en-Lindelof theorem f ( w ) is bounded in 

both angular domains and therefore on the whole complex plane. Hence /  =  const. 

From (3.12) it is seen that lim  f ( —u)  =  0, that is / =  0. Since F  ^  0 and
XL —► OO

the system | s „ ( z ) |  is complete in H ( G ) ,  see Theorem  2, the last equality
 ̂ J 71=0

contradicts the criterion (C C ) .  Therefore the series (3.10) has a finite radius o f 

convergence. Finally, let us note that (3.9) has no singular points in C  \ [ l ,o o ) .

4. M A IN  R E SU LTS

T h e o r e m  4 .1 . Lei  G  C C  be a simply connected region. Then:

i) The system o f  the polynomials {B n ( z )}£°=0 is complete in the space H (G )\

ii) The system o f  the funct ions  1 Bn(z)  > is complete in the space H { G ) .
I J n=0

Proof,  i) According to (2 .6 ) d e g S „  =  n, n =  0 , 1 , 2 , . . . ,  and therefore the 

system {B n ( z ) } “=0 is linearly independent. Therefore { B n(z) }%L0 is a basis in the 

space o f the algebraic polynom ials. Hence zn is a linear combination o f {Bk(z) }^=Q, 
therefore it can be concluded that { B n(z)}%L 0 is com plete in H ( G ) .

ii) According to  (2 .8 ) the coefficients o f the polynom ials exp (z/2 )H n(z )  are

all different from  zero, i.e. deg ( e x p ( z / 2 ) B n ( z ) j  =  n, n =  0 , 1 , 2 , . . .  Therefore

the system | exp (z/ 2) S n ( z ) l  is linearly independent, which means that it is 
v J n=0

a basis in the space o f algebraic polynom ials. Then z n is a linear combination o f 

| exp (z/ 2 )H i;(z )| ^  . T h a t is why | e x p (z / 2 )H „ (z )|  is com pete in H { G ) ,  and

since exp (z/2 ) ^  0 for each z G C, the correctness o f  the theorem is proved.

T h e o r e m  4.2 . Let  0 <  a  <  1 and lim  ( n/kn ) =  6 >  a.  Then the system o f
T l — ►OO

the polynomials

№ „(*)}“  0 (4-1)
is complete in the space H ( G )  f o r  each simply connected region G  C A a .

Proof.  Suppose the statement is not correct. Then  there exists a sim ply con

nected region G  C A a such that the system (4 .1 ) is not com plete in H { G ) .  A c
cording to the c r ite r io n .(C C ) this means that there exist a rectifiable Jordan curve 

7 C G  and a function G  €  H 7 such that F  ^  0, but

J  F ( z ) B kn(z )  dz =  0, n =  0 , 1 , 2 , . . .  (4.2)

7
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Let r  =  in f \z\ and |ui| <  (4 r ) L  Consider the complex-valued function f ( w ) ,
z£ 7

defined in (3 .2 ). Let us note that it is not identically zero. Moreover, i f  kn are
OO

kn > =

{n } “=0 \ {& n}£°=0, it follows from  (4.2) that

OO

f ( w )  =  J 2 A i c J F ) wkn- (4-3)
n  =  0

For the density o f the sequence \k n \ we have
f  i  n = o

A = l  — 6 < 1  — a. (4.4)

As F  ^  0, not all the complex numbers (3.4) are zeroes. Then, according to Lem m a 
2, there exists a number p  e  (0, oc) such that all singular points on the circle |tn| =  R  
( R  is the radius o f the convergence o f the series (3 .3 )) lie in the set A v , i.e. there is 
a closed arc w ith lenght 2^(1 — ̂ ?), where (3.3) has no singular points. On the other 
hand, by a Po lya  theorem  [15, Th . 7, p. 625] every closed arc o f  the circle |in| =  R  
w ith lenght 27rA contains at least one singular point o f (4.3). Because o f (4 .4 ) we 
have 27tA =  2tt(1 — 6) <  27t(1 — a )  <  27t(1 — ip) and we come to a contradiction.
Therefore the system (4.1) is complete in H ( G )  for every sim ply connected region

G  C A a .

T h e o r e m  4 .3. Let  0 <  a  <  1/2 and lim  ( n/kn) =  6 >  0. Then the system
n  —► OO

o f  the funct ions

{ 5 * . ( * ) } ° ° n (4 -5)*  I  J n = 0
is complete in the space H { G )  f o r  every simply connected region G  C A a .

Proof.  Let us suppose that the statement is not correct. Then there exists
a simply connected region G  C A a such that the system (4.5) is not complete in
I L ( G ) .  Th a t means that there exist a rectifiable Jordan curve j  C G  and a function 

F  € H 1 such that F  =£ 0, but

/ F ( z ) B kn( z ) d z  =  0, n =  0 , l , 2 , . . .  (4.6)

Let |u»| <  1. Consider the complex-valued function f ( w ), defined by the equality 

(3.9). Observe that it is not identically zero. Moreover, i f  kn are the indices o f the

coefficients (3.11) in the power series. (3.10) for which \ kn > =  {n }^ o=0\ {^ n } “ =0,
I J 71 = 0

it follows from  (4 .6 ) that

CXI

/ H  =  £ A i n( * V > .  (4 .7 )
7 1 = 0

W e have
A  =  1 — 5 <  1 (4.8)
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for the density o f the sequence { £ „ }  . As F  ^  0, not all o f the complex numbers
I  )  n = 0

(3.11) are equal to zero. Then, according to Lem m a 3, the unique singular point 
o f f ( v j )  on the circle |w| =  R  ( R  is the radius o f convergence o f  the series (3 .10 )) 
is w =  R.  On the other hand, according to a Po lya  theorem [15], every closed arc 
o f the circle [ui| =  R  w ith  lenght 2ttA  contains at least one singular point o f (4.7). 
Because o f (4.8) we have 2 x A  =  27r(l — 6) <  2ir and we come to a contradiction. 
Therefore the system (4 .5 ) is complete in H { G )  for every sim ply connected region 
G c A a .

A c k n o w le d g e m e n ts .  The author is thankful to Prof. P. Rusev for the interest 
shown in these results and the useful recommendations.
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ГОЛИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ О ХРИДСКИ“

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И И Н Ф О Р М А Т И К А
К нига  1 —  М атем ати ка и механика 

Т ом  89, 1995

A N N U A IR E  D E  L ’U N IV E R S IT E  DE S O F IA  „S T . K L IM E N T  O H R ID S K I” 

FA C U LT E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E
Livre 1 ■— Mathématiques et Mécanique 

Tom e 89, 1995

AN ALGORITHMIC APPROACH TO SOME PROBLEMS 
ON THE REPRESENTATION OF NATURAL NUMBERS 

AS SUMS WITHOUT REPETITIONS1

D IM IT E R  SK O R D E V

Given any strictly increasing computable function in the set o f natural numbers, 
certain algorithm ic problems arise on the representation o f numbers as sums o f distinct 
values o f the function. The problem  whether a given natural number is representable 
in this form is obviously algorithmically solvable, but we propose some methods for the 
solution o f the problem  that seem to be better than the straightforward ones.

It is easy to see the algorithm ic unsolvability o f the problem whether all natural 
numbers are representable (under the usual assumption that an index o f the given 
computable function is used as input data ). However, under an appropriate restriction 
concerning, roughly speaking, the speed o f the growth o f the function, we present 
an algorithm  for solving this problem  and the more general one whether all natural 
numbers greater than a given one are representable (the restriction is satisfied, for 
example, when the given function is a polynom ial).

W e make applications o f the presented positive results to concrete problems con
cerning, for instance, the representation as sums o f distinct squares or as sums of 
distinct positive cubes.

K e y w o rd s :  algorithm , sums without repetitions, representability o f natural numbers, 
sums o f distinct squares, sums o f distinct positive cubes.
M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 11-04, 11B13, 11E25.

1. IN T R O D U C T IO N

Let N +  be the set o f  the positive integers. Suppose /  is a strictly increasing 
function in N + .  An  integer n w ill be called additively f - representable without

1 Lecture presented at the Session, dedicated to the centenary o f the b irth o f N ikola Obreshkoff.



repetitions ( f - representable,  for short) iff

n =  J 2  -ft*)
i £A

for some finite subset A  o f  N + ;  any such A  w ill be called an / - representation o f  
n. O f course, all /-representable integers are non-negative, and the number 0 is 
/-representable (w ith  an em pty /-representation).

There is a case when any non-negative integer is /-representable and has a 
unique /-representation. Th is is the case when /(?') =  21 - 1  for i =  1 , 2 , 3 , . . .  To  
have a more complicated exam ple concerning /-representability, let us consider the 
case when f ( i )  =  i 2 for any i  in N + . Then there exist positive integers that are 
not /-representable, as well as ones having more than one /-representation. Some 
results connected to  /-representability in this case have been presented in [2- 5], 
but w ithout g iv ing a com plete description o f the set o f the representable integers. 
Such a description can be derived from  certain results given in [1] that show the /- 
representability o f all integers greater than 128 as well as o f  the most o f  the smaller 
positive integers. By checking individually the few remaining positive integers, one 
gets the follow ing conclusion: there are exactly 31 positive integers that are not 
/-representable, nam ely the integers 2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 
28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128.

The mentioned results from  [1] are proved by using tools from  Number Th e
ory (such as, e.g., d iv is ib ility considerations). Those results give in fact consid
erably more precise inform ation about the /-representations in question. For ex
ample, it is seen that each /-representable integer in the considered case has an 
/-representation consisting o f not more than six elements. However, it could be 
possibly interesting to know that the less precise statement, formulated at the end 
o f the previous paragraph, can be proved in an algorithm ic way w ithout using any 
specific tools from  Num ber Theory. Th is  can be done as an application o f a certain 
method that w ill be exposed in the present paper.

2. A  U S E F U L  E X T E N S IO N  O F T H E  IN V E R S E  F U N C T IO N  f ~ l

W e turn back to  the general case described in the first paragraph o f the intro

duction. Given the function /, we define three other functions REPR^, L j  and /T 
with domain N + , the first two o f them being set-valued and the third one being 
integer-valued. W e define them as follows. Let n be an arbitrary element o f N + .  
W e adopt R E PR ^(n ) to be the set o f all /-representations o f  n; clearly, this set 
is finite (possibly em pty ) and its elements ( i f  any) are non-empty finite subsets o f 
N + .  Then we set

L j ( n )  =  {m in  A  | A  £ R E P R ^ (n )}.

O f course, L j ( n )  is a finite subset o f N + ,  and L/(n)  is em pty iff REPR/(n ) is 

empty, i.e. iff n is not /-representable. Finally, i f  L f ( n )  0, then we set (n )  

to be the maximal element o f  L j ( n ) ,  otherwise we set / t (n )  =  0. Thus / t (n )  is a 
non-negative integer that is equal to 0 iff n is not /-representable.
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E x a m p le  1. I f  / ( i )  =  i 2 for 2 =  1 , 2 , 3 , . . .  , then

REPR/(50) =  { { 1 , 7 } ,  {1 .2 , 3 ,6 } ,  { 3 , 4 , 5 } } ,

hence L f  (50 ) =  { 1 , 3 } ,  / t (5 0 ) =  3.
For any positive integer i the singleton { i }  is an /-representation o f  the number 

/ ( i ) , and any /-representation o f  this number contains some element not greater 

than i, hence the equality / t ( / ( i ) )  =  i holds. Thus the function / 1 is an extension 
o f the inverse function / - 1 .

W e also note that for any /-representable positive integer n  the number f ^ ( n )  

belongs to some /-representation o f n, hence the inequality / (/ t  ( 71) )  <  n holds.

The consecutive values o f the function / t can be recursively computed on the 
base o f  the next proposition.

T h e o r e m  1. F o r  any positive integer n we have the equality

L j ( n )  =  { k  £  N + | f ( k )  =  7i or ( f ( k )  <  n and f ^ ( n  — f ( k ) )  >  &) } .

Proof.  Let n be a positive integer. Consider first any k belonging to L j ( r i ) .  
Then k =  m in A  for some /-representation A  o f  n, hence k £ N + . I f  k is the only 
element o f A,  then f ( k )  =  n. Otherwise n — f ( k )  is a positive integer, and A  \ {& } 
is an /-representation o f n — f ( k ) .  Therefore

/ t (n  -  f ( k ) )  >  m in (A  \ { k } )  >  k.

Thus in both cases k belongs to the right-hand side o f the equality. For the reasoning 
in the opposite direction, suppose now that k belongs to the right-hand side o f  this 

equality. Then  k £  N + ,  and either f { k )  =  n or f ( k )  <  n and f ^ ( n  — f ( k ) )  >  k. I f  
f ( k )  =  n, then we set A  =  { k } .  Otherwise we consider an /-representation B  o f

71 — f { k ) such that / t (71 — f { k ) )  =  min B,  and we set A  =  {& } U B.. In both cases 
A  is an /-representation o f  n and k =  min A , hence k £ L j ( n ) .

E x a m p le  2. Let / enumerate the set o f the prim e numbers, i.e. / (1 ) =  2, 
/ (2 ) =  3, / (3 ) =  5, / (4 ) =  7, / (5 ) =  11 and so on. Then, making use o f Theorem  1 

and o f the definition o f the function / t , we get consecutively:

i / ( i )  =  0, / t ( i )  =  o,

L S{ 2 ) =  { 1 } , /+ (2 ) =  1,

1 / (3 ) =  { 2 } , / f (3 ) =  2,

1 / (4 ) =  0, / f (4 ) =  0,

L / (5 ) =  { 1 , 3 } , f h  5)  = 3 ,

L / (6 ) =  0, / f (6 ) =  0,

II / t ( 7 ) = 4 ,

CNII00 / f (8 ) =  2,

L / (9 ) =  { 1 } , / t ( 9 )  =  l ,

1 / ( 1 0 )  =  { 1 , 2 } , /t(10) =  2 .
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X /f (io E +  y)
y =  0 y =  1 y =  2 y =  3 y =  4 y =  5 y =  6 y =  7 V =  8 y -  9

0 1 0 0 2 1 0 0 0 3
1 1 0 0 2 f 0 4 1 0 0
2 2 1 0 0 0 5 1 0 0 2
3 1 0 0 0 3 1 6 1 2 1
4 2 4 1 0 0 3 1 0 0 7
5 3 1 4 2 2 1 2 1 3 1
6 0 5 2 1 8 4 1 0 2 2
7 3 1 0 3 5 1 0 4 2 1
8 4 9 1 3 2 6 3 2 1 5
9 4 1 0 2 3 1 0 4 3 3

10 10 4 2 2 2 4 5 1 0 3
11 5 1 0 7 3 3 4 6 2 3
12 2 11 4 2 1 5 4 1 0 4

Fig. 1. The first 129 values of the function /^ in the case of f ( i )  =  i2

Clearly, it is not always necessary to find all elements o f the set L / (n ) in order 
to see that it is not em pty and to find its maximal element. W e have f ( k )  <  n 

for any k in L f ( n ) .  Therefore, to calculate /^ (n ), one could sim ply find the least 
positive integer k such that f ( k ) >  n and then execute the operator

r e p e a t  k :=  k — 1 u n t il  k =  0 or k E L j ( ti)

(interpreted in a Pascal-like way).

E x a m p le  3. F ig. 1 contains a table o f the values o f  / t  (n ) for n =  1, 2 , . . . ,  129, 
calculated by computer in the above way in the case o f f ( i )  =  i 2 . The table shows 
that among the positive integers not greater than 129, exactly the 31 ones listed in 

the introduction are not /-representable.
The amount o f operations can be somewhat reduced by noticing that for 

positive integers n, not belonging to the range o f /, one could start executing 
the above operator from  the least positive integer k such that f ( k )  >  n/2 ( i f  
n E N + \ range(/ ), then f ( k )  <  n/2 for any k in L j ( n ), since any k in L j ( n )  
belongs to some /-representation o f n together with at least one greater number). 
W orking in this way, one could manually verify the correctness o f the values in 
Fig. 1 in the course of, let us say, one and a half hour.

Let N  be the set o f  all non-negative integers. The indicated method for com

puting values o f  the function / t can be modified by introducing a binary relation 

H j  in N  as follows: n H j  i iff n has an /-representation A  such that all elements 
o f A  are greater than i. W e have 0 H j  i for any i  in N  by triv ia l reasons. On the 
other hand, the fo llow ing equivalence holds for any n in N + and any i in N : n H f  i 

iff / t (n ) >  i. M aking use o f  these properties o f H j  and o f Theorem  1, we get the 

follow ing result.
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T h e o r e m  2. Lei n £  N + . Then

L j { n )  =  {k  £ N + | /(A:) <  n and n -  / (& ) Hj  A;)} 

and f o r  any i in N

n H j  i  o  3A: £ N + (A; >  i and /(A:) <  n and n — f ( k )  H j  k).

To  illustrate the application o f the relation Hj  to the computation o f values 

o f / T , we shall consider one more example.

E x a m p le  4. Let, as in Examples 1 and 3, f ( i )  =  i 2 for i  — 1 , 2 ,3 , . . .  W e 

shall compute (50 ) by using the properties o f  the relation Hj .  Since 50 is not 
a value o f the function /  and the least positive integer k satisfying the inequality 

k2 >  50/2 is 5, the value o f / '(5 0 )  can be obtained from  k =  5 by applying the 
operator

r e p e a t  k : =  k — 1 u n t il  k =  0 or k £  L/ (50 ).

By Theorem  2 we have

4 £ L/ (50 ) 50 -  42 I i j  4 34 Hf  4 « •

3Ar £ N + (A; >  4 and Ar2 <  34 and 34 — A:2 Hj  k)  o -  34 — 52 Hj  5 

9 Hj  5 <=> 3A: £ N + (A; >  5 and k2 <  9 and 9 — Ar2 Hj  k),  

hence 4 0 L/ (50 ). Aga in  by Theorem  2

3 £ L } ( 50) 50 -  32 H j  3 o  41 ILf  3

3A; £ N +  (A; >  3 and k2 <  41 and 41 — k2 Hj  k ) ■£>

41 -  42 Hj  4 or 41 -  52 Hj  5 or 41 -  62 H f  6,

41 -  42 Hj  4 25 Hj  4 &

3A; £ N +  (A: >  4 and k2 <  25 and 25 — k2 Hf  k)  O  

25 -  52 Hj  5 0 Hj  5,

hence 41 — 42 Hj  4, and therefore 3 £ L / (50). Thus /^ (50 ) =  3.

R e m a rk . Th e  m ethod used in the above example is convenient when some 

value o f  the function / t has to be computed w ithout necessarily computing the pre
ceding ones (an additional reduction o f the count o f the operations could be achieved 
by noticing that the statements o f Theorem  2, in particular the second one, hold 
also w ith “ f ( k ) <  n/2” instead o f “f ( k )  <  n ” in the case o f n £ N + \ ran ge (/ )). 

However, i f  one has to make a table o f the values o f  / t (n ) for n =  1,2, . . . , m ,  
where m  is a given positive integer, then it seems more reasonable to  proceed by 
consecutive straightforward applications o f  Theorem  1 as in Exam ple 3.
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The function / t can be used not only for checking whether a given positive 

integer is /-representable, but also for finding one o f the /-representations o f a 

given /-representable natural number. Th is way o f using /T is possible on the 
basis o f the next proposition.

T h e o r e m  3. Let n be an f -representable non-negative integer. Let the integers 
no, r i i , . . .  be defined as fol lows, taken f o r  granted that nj  + 1 is defined i f f  the right-  
hand side o f  the Second equality makes sense:

n 0 =  Tl, nj  + i =  Uj -  f ( f ^ ( n j ) ) .

Then there is a non-negative integer r  such that n r =  0, and i f  r  is such an integer, 

then the set { f ^ { n j )  | 0 <  j  <  r }  is an f - representa t ion  o f  n.

P r o o f  It  is clear that nJ +4 is defined iff nj  is positive and /-representable. 

Hence, i f  nr is defined for a certain r,  then nj  is defined, positive and /-represent

able for any j  <  r, and i f  nr =  0, then nj is undefined for any j  >  r. App ly ing 
the last statement in the case o f  r  =  0, we see that the theorem is triv ia l i f  n  =  0. 

Suppose now that n >  0. Then no is positive and /-representable. On the other 
hand, if  for a certain j  the number nj  is defined, positive and /-representable, 

then, by the definition o f the function / t ,  the number nJ+1 is not only defined, 

but it has an /-representation whose elements are all greater than / t ( n j ) ,  and 

this implies the inequality /^ (n ; ) <  + 1 ) in the case o f n^+i >  0. Since the

values o f the function / are positive, we thus see that the defined numbers nj  form  
a strictly decreasing sequence o f  /-representable and hence non-negative integers, 

and the defined numbers /^ (n ; ) form  a strictly increasing sequence. The sequence 

no, n i , . . .  should be necessarily finite, and it is clear that its last member should 

be 0. Consider now an r  such that n T =  0, and set A  =  {/ f  ( n ; )  | 0 <  j  <  r } .  Then

T—1 V—1
n =  n o  -  nr =  £ > ;- -  nj+ 1 ) =  =

j = 0  j = 0 i £A

Hence A  is an /-representation o f n.

E x a m p le  5. W e shall apply the above theorem to f ( i )  =  i 2 and n =  124. In 

this case we get (using the table from  Fig. 1)

n0 =  124, / t (n 0) =  1, n x =  123, / t (n i )  =  2, n2 =  119, / ^ (n 2) =  3,

n3 =  110, / t (n 3) = 5 ,  n4 — 85, / t (n 4) =  6, n5 =  49, /^ (n 5) =  7, n6 =  0.

Hence, by Theorem  3, the set {1 ,2 ,3 ,5 ,6,7 }  is an /-representation o f the num

ber 124.
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3. C H E C K IN G  IF  A L L  N A T U R A L  N U M B E R S  G R E A T E R  T H A N  
A  G IV E N  O N E  A R E  / -R E P R E S E N T A B L E

As until now, a strictly increasing function /  from  N + to N + is supposed to 
be given. I f  this function is computable (in  the precise sense given by Recursive 
Function Theory ), then there are obvious algorithms solving the problem  whether a 
given naturaj number is /-representable, and the considerations from  the previous 
section yield certain better algorithms for the same purpose. A  more difficult 
problem is to decide whether all natural numbers are /-representable. Th is problem 
is algorithm ically unsolvable in the follow ing natural sense: there is no computable 
function h defined on the indices o f  all strictly increasing computable functions / 
in N + and transform ing such an index into 0 exactly when all natural numbers 
are /-representable w ith respect to the corresponding function /. To  prove this, 
let us consider a two-argument prim itive recursive function g such that the set 
P  =  {ж | Зу (g ( x , y ) =  0 ) }  is not recursive. For each x  in N  we define a strictly 
increasing function f x from  N + into N + as follows: for any i in N + , i f  g (x ,  y) >  0 
for all y less than z, then f x { i )  =  2t_1 , otherwise f x ( i )  — 2l . I f  x  £  P .  then 
the range o f the corresponding function f x is the set { 1 , 2 , 22, 23, . . . }  w ith one o f 
its elements missing, otherwise the range o f f x is the whole set { 1 , 2 , 22, 23 
Hence, i f  x  £ P , then there are in fin itely many natural numbers that are not f x -  
representable, otherwise all natural numbers are /^-representable. I f  we suppose 
that a computable function h exists telling apart indices as said above, then we get 
a contradiction w ith the non-recursiveness o f  P .

O f course, the established algorithm ic unsolvability directly implies the unsolv
ability o f the m ore general problem  to decide whether all natural numbers greater 
than a given one are /-representable. However, we cannot exclude the possibility 
o f an algorithm ic solution o f  the last problem  under some reasonable restrictions 
imposed on the function /. A  realization o f this possibility w ill be demonstrated 
in the present section.

For any two integers a and b let [a. .b) denote the set o f  all integers n satisfying 
the inequalities a <  n <  b (o f  course, this set is non-empty iff a <  6). Let [a . . oo) 
denote the set o f  all integers n satisfying the inequality a <  n.

T h e o r e m  4. Suppose io G N + ,  n o £ N , and the fol lowing iwo conditions are 
satisfied:

1. F o r  any i  in [zo . . oo ) the inequality 2f ( i )  — f ( i  +  1) >  щ  holds.

2. A l l  elements, o f  [no . . n 0 +  f ( i o ) )  are f  -representable.

Then all elements o f  [no . . oo) are f -representable.

P r o o f  (m aking use o f an idea from  [5]). For any positive integer i we set 
Si =  [n0+ / (z ). .2 / (z )) .  W e'shall first show that any element o f the set [no+/ (z 'o )..co ) 
belongs to some Si  (w ith  i  >  io) .  In fact, given an element n o f [ nQ +  f ( i 0) . .oo ), let 
us consider the greatest i  in N +  satisfying the inequality no +  f ( i )  <  n. For that 
i we have the inequalities i >  г0, no +  f ( i  +  1) >  n. From them and Condition 1, 
the inequality n <  2/ (z) follows, hence n £ 5j. Now  we shall prove the conclusion 
o f the theorem by means o f an induction o f the follow ing kind: we shall show that
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whenever an integer n belongs to the set [n o . .00) and all smaller integers belonging 
to this set are /-representable, then n is also /-representable. Suppose n is an 
integer satisfying the above assumptions; we shall prove that n is /-representable. 
By Condition 2, we have to examine only the case when n >  no +  /(z'o). Then we 
consider a positive integer z such that n £ Si. The last condition is equivalent to 
the inequalities n0 <  n — f ( i )  <  / (?). The first o f them, together w ith the inequality 
n — / (* ) <  n and the induction hypothesis, shows that n — / (z ) is /-representable. 
Let A  be an /-representation o f n — /(z). The inequality n — f ( i )  <  f ( i )  implies 
that i £  A .  Th is fact, combined w ith the equality n =  (n  — / (2) )  +  f ( i ) ,  shows that 
A U  {z '} is an /-representation o f n, hence n is /-representable.

R e m a rk . A n  inspection o f the p roof shows that Condition 2 may be weakened 
by requiring /-representability only o f the elements o f  [no . .no +  / (*0) )  that belong 
to none o f  the sets Si,  i  =  1 , 2 , 3 , . . .

Suppose now some no G N  is given. Theorem  4 im m ediately implies the 
follow ing statement: whenever z'o G N+ and Condition 1 is satisfied, then the / -  
representability o f all elements o f  [no . . 00) is equivalent to the representability o f 
the elements o f [no . . no -f / (zo )). I f  the function / is computable, then the last 
condition can be checked in an algorithm ic way, and this w ill be an algorithm ic 
way to check whether all elements o f [no . . 00) are /-representable. O f course, we 
may use this way only if  we succeed to find some z'o G N + satisfying Condition 1. 
W e shall show now some examples when such an z’o really can be found.

E x a m p le  6 . Let / (z ) =  2,_1 for z =  1,2, 3, . .  . Then 2/(z) — /(z +  1) =  0 
for any such z, hence Condition  1 is satisfied w ith no =  0, z'o =  1. Therefore the 
well-known /-representability o f all non-negative integers in this case can be proved 
by checking the /-representability o f the elements o f  the set [0 . . / (1 )).  Thus the 
/-representability o f all non-negative integers is reduced to the triv ia l fact that 0 
is /-representable.

E x a m p le  7 (generalization o f the previous exam ple). I f  2/(z) — /(z +  1) >  0 
for any z, then the /-representability o f all non-negative integers is equivalent 
to  the equality / ( 1 ) =  1 (since no /-representable positive integer can be less 
than / (1 )).  As a particular instance o f this we could consider the case when / 
enumerates the F ibonacci numbers 1 ,2 ,3 , 5 , 8 , 13 , . . .  , i.e. / (1 ) =  1, / (2 ) =  2 
and / (z ) =  /(z -  1) +  /(z — 2) for z =  3 , 4 , 5 , . . .  In this case, i f  z =  1, then 
2/(z) — /(z +  1) =  0, otherwise 2/(z) — f ( i  +  l j  =  / (z ) — /(z — 1) >  0. Thus all 
non-negative integers are /-representable with respect to this particular function /.

E x a m p le  8 . Let the function / be a polynom ial, i.e.

/ (z ) =  a0z'r +  aiz'r_1 -I- a2z'r_2 . . .  +  ar_ i z  +  ar ,

where r  G N,  r, a0, a i , . . . ,  ar_ i ,  ar do not depend on z, and a0 ^  0. Obviously, we 
should have r  >  0, ao >  0 , and all coefficients czo, a i , . . . ,  ar_  1 , ar must be rational 
numbers. The function 2/ (z) — f ( i  +  1) is also a polynom ial, namely

2/ (z ) — /(z +  1 ) =  aozr +  b\iT 1 +  62zr 2 . . .  +  6r - i z  +  br

with the same no and new coefficients 61, 62, . . . ,  6r_ i ,  br that are again rational 
numbers. Clearly, these new coefficients can be effectively found (assuming, o f
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course, that the degree r  and the coefficients ao, a l t . . . .  ar - l t  ar are explicitly  given 
or can be effectively found). Therefore, given any non-negative integer no, one 
can effectively find a positive integer i 0 satisfying Condition 1. Th is allows us to 
check algorithm ically whether all elements o f the set [n0 . . oo) are /-represent
able (the result can be obviously generalized to com putable functions / such that 
2/(*’) — +  1 ) effectively diverges to -foo  together w ith i, i.e. such that there is a
computable function transform ing any non-negative integer no into some positive 
integer i 0 satisfying Condition  1 ).

E x a m p le  9 (a  particular instance o f Exam ple 8). Let f ( i )  =  i 2 for any i  in 
N + .  Then

2 /( 0  -  /(*' +  1 ) =  i 2 — 2* — 1 =  i ( i  -  2 ) -  1 ,

and therefore 2 f ( i )  — f ( i + l )  >  129 for any i  in [13..oo). Since 129+/(13 ) =  298, the 
/-representability o f  all elements o f [129..oo) is equivalent to the /-representability 
o f the elements o f [129 . . 298). Th e  /-representability o f the mentioned finitely 

many integers can be shown by computing the corresponding values o f / t (using 
Theorem  1) and showing that they are all positive, i.e. by a certain continuation 
o f the computations that produced the table from  Fig. 1. W e have done this by 
computer, but we do not present the corresponding continuation o f the table here. 
W e preferred to present a table o f  /-representations o f the numbers from  129 to 
297 (cf. Fig. 2), since its correctness allows an easier manual verification (the table 
itself is produced by computer on the basis o f Theorem  3; the representations are 
written w ithout the curly brackets for the sake o f saving space).

R e m a rk . Some o f the considered numbers have shorter /-representations 
than the ones given in the table. For instance, the number 131 has also the / -  
representation {1 ,3 ,1 1 }.  N ote also that one could (especially at manual verifica
tion ) use the remark after the p roo f o f Theorem  4 and somewhat reduce the count 
o f the numbers to be checked. In the concrete situation (/ ( i )  — i 2, no =  129) we 
have Si =  [129 +  z2 . . 2г2) for any positive integer i. We see that Si =  0 for i  <  11, 
S 12 =  [273 . . 288), and S', consists o f  numbers not less than 298 for i >  13. Hence 
it would be enough to check the numbers belonging to [129 . . 298) \ S 12, i.e. one 
could skip the check o f 15 numbers.

E x a m p le  10 (several other particular instances o f Exam ple 8). Fig. 3 contains 
a summary o f results o f applying Theorem  4 to concrete polynom ials / for obtaining 
results o f the form  “ A ll elements o f [no .. 00) are /-representable” . In any o f these 
results the number no is the least possible for the polynom ial in question and has 
been found by means o f an iterative process starting w ith no =  0 as an initial value. 
The iteration step and the term ination o f the process can be described as follows. 
W e find a positive integer г'о satisfying Condition  1 for the current no and then we 
consecutively check for /-representability the numbers in [no . .По +  /(г'о)). I f  all o f 
them turn out to  be /-representable, then the process term inates w ith the current 
n0 as its result. Otherwise, i f  m  is the least number from  [no • по +  /(г'о)) that is not 
/-representable, then we take the number m + 1 as a next value o f no. Note that at 
the moment o f the term ination o f the process all integers in the set [0 .. no +  /(г'о)) 
turn out to have been already checked, hence the m ethod can be obviously refined 
to compute also the tota l count o f all positive integers that are not /-representable
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n /-represen
tation of n

n /-represen
tation of 71

n /-represen
tation of n

n /-represen
tation of n

129 4,7,8 172 1,4,5,7,9 215 3,6,7,11 258 5,8,13
130 7,9 173 4,6,11 216 4,6,8,10 259 5,7,8,11
131 3,4,5,9 174 5,7,10 217 6,9,10 260 8,14
132 1,3,4,5,9 175 3,6,7,9 218 7,13 261 6,15
133 4,6,9 176 1,3,6,7,9 219 5,7,8,9 262 4,5,10,11
134 3,5,10 177 4,5,6,10 220 3,4,5,7,11 263 5,6,9,11
135 3,4,5,6,7 178 3,13 221 10,11 264 3,5,7,9,10
136 6,10 179 3,7,11 222 4,6,7,11 265 11 ,12
137 4,11 180 6,12 223 2,5,7,8,9 266 8,9,11
138 5,7,8 181 9,10 224 4,8,12 267 4,7,9,11
139 3,7,9 182 5,6,11 225 15 268 3,5,7,8,11
140 2,6,10 183 3,5,7,10 226 4,5,8,11 269 10,13
141 4,5,10 184 2,6,12 227 5,9,11 270 7,10 ,11
142 5,6,9 185 8,11 228 3,5,7,8,9 271 4,5,7,9,10
143 2,3,7,9 186 4,7,11 229 6,7,12 272 4,16
144 12 187 2,3,5,7,10 230 7,9,10 273 4,7,8,12
145 8,9 188 1,2,3,5,7,10 231 5,6,7,11 274 7,15
146 5,11 189 5,8,10 232 6,14 275 5,9,13
147 3,5,7,8 190 4,5,7,10 233 8,13 276 5,7,9,11
148 2,12 191 5,6,7,9 234 7,8,11 277 9,14
149 7,10 192 1,5,6,7,9 235 4,5,7,8,9 278 3,10,13
150 3,4,5,10 193 7,12 236 3,5,9,11 279 5,6,7,13
151 3,5,6,9 194 7,8,9 237 4,10 ,11 280 6,10 ,12
152 4,6,10 195 5,7,11 238 6,9,11 281 6,8,9,10
153 3,12 196 14 239 3,7,9,10 282 7,8,13
154 4, .5,7,8 197 4,9,10 240 3,5,6,7,11 283 3,7,15
155 5,7,9 198 4,5,6,11 241 4,15 284 3,5,9,13
156 2,4,6,10 199 3,4,5,7,10 242 5,6,9,10 285 8,10 ,11
157 6,11 200 6,8,10 243 5,7,13 286 6,9,13
158 4,5,6,9 201 4,8,11 244 10,12 287 6,7,9,11
159 2,5,7,9 202 9,11 245 8,9,10 288 3,5,6,7,13
160 4,12 203 3,7,8,9 246 5,10 ,11 289 17
161 5,6,10 204 3,5,7,11 247 4,5,6,7,11 290 11 ,13
162 4,5,11 205 6,13 248 4,6,14 291 5,8,9,11
163 3,4,5,7,8 206 6,7,11 249 6,7,8,10 292 6,16
164 8,10 207 4,5,6,7,9 250 9,13 293 7,10,12
165 4,7,10 208 8,12 251 7,9,11 294 7,8,9,10
166 6,7,9 209 4,7,12 252 3,5,7,13 295 5 ,7 ,10 ,11
167 3,4,5,6,9 210 5,8,11 253 3,10,12 296 10,14
168 2,8,10 211 4,5,7,11 254 6,7,13 297 4,6,8,9,10
169 13 212 4,14 255 5,7,9,10
170 7,11 213 7,8,10 256 16
171 4,5,7,9 214 3,6,13 257 7,8,12

Fig. 2. Some /-representations of the numbers from 129 to 297 for f ( i )  =  i2



m 71q io no +  /(io)
i ( i  +  l)/2 34 9 79

i2 + 1 52 9 134
( * + l ) 2 - l 157 13 352

i(i +  l ) ( i  +  2)/6 559 16 1375
i3 12759 25 28384

Fig. 3. Several other instances of application of Theorem 4

(we established in this way the existence o f exactly 2788 positive integers that are 
not /-representable in the case o f f ( i )  =  i3). It is easy to design the process so 
that the output includes also the complete list o f  the non-representable positive 
integers.
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CONSTRUCTING MINIMAL PAIRS OF DEGREES*

IV A N  N. SO SKO V

We prove that there exist sets o f natural numbers A  and 3  such that /1 and 
B  form  a m inimal pair with respect to Turing reducibility, enumeration reducibility, 
hyperarithmetical reducibility and hyperenumeration reducibility. Relativized versions 
o f this result are presented as well.

K e y w o rd s :  Degrees, reducibilities, minimal pairs, forcing, enumerations.
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 03D30.

1. IN T R O D U C T IO N

In the present paper we consider four kinds o f reducibilities among sets o f 
natural numbers: Turing reducibility (< x )>  enumeration reducibility ( < e), hyper- 
arithmetical reducibility (< f t )  and hyperenumeration reducibility ( < h e ) -  The first 
three o f those reducibilities are well-known. Th e  hyperenumeration reducibility has 
been introduced by Sanchis in [5] and further studied in [6]. It  is a kind o f  pos
itive reducibility which relates to hyperarithm etical reducibility, as enumeration 
reducibility relates to Turing reducibility.

Let cr E {T ,  e, h, he} .  By 0CT we shall denote the class

{ i 4 | A C N &  A < „  0} .

So, Ox consists o f all recursive sets, 0e —  o f all recursively enumerable sets, Oh 
is equal to the class o f all hyperarithm etical sets, and 0/,e consists o f  all 11 } sets.

* Lecture presented at the Session, dedicated to the centenary o f  the b irth  o f N ikola Obreshkoff.
This work was partia lly supported by the M inistry o f Education, Science and Technologies, 

Contract I 412/95.
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T w o  sets A  and B  are a m inimal pair w ith respect to the u-reducibility i f  for 
all sets X  o f  natural numbers X  < a A  k. X  < „  B  =>■ X  £ 0a .

It follows from  the results o f M cEvoy and Cooper [3] that there exist sets o f 
natural numbers A  and B  such that the pair (A ,  B )  is m inimal w ith respect to 
Turing reducibility and in the same tim e w ith respect to enumeration reducibility. 
Up to our knowledge, m inimal pairs for the higher order reducibilities <h  and < h e 
are not well studied and an analogue o f  the result o f M cEvoy and Cooper is not 
known.

The aim o f  the present paper is to present a uniform  construction o f  m inimal 
pairs. In this way we shall obtain two sets A  and B  such that the pair (A ,  B )  is 
m inimal w ith respect to each o f  the reducibilities < t , < e, <h  and < h e. Namely, we 
are going to prove the fo llow ing theorem:

1.1. T h e o r e m . F o r  every A  C N , such that (N  \ A )  < e A ,  there exists a 
S C N  which is not 11} and such that i f  cr £  {T ,  e, h, he} ,  X  < „  A  and X  < a B ,  
then X  £ 0a .

In particular, i f  we pick up a sufficiently complex set A,  i.e. i f  A  is not 11}, then 
we can find a set B  such that for every u £  {T ,  e, h, h e ]  the cr-degrees determ ined 
by the sets A  and B  form  a m inimal pair.

The p roo f o f the theorem is based on a forcing technique introduced in [8] and 
used there for the purposes o f  the abstract recursion theory.

The paper is organized as follows. In Section 2 we summarize the basic defini
tions and results used in the sequel. In Section 3 we describe our forcing construc
tion. The last Section 4 contains the p roo f o f  the theorem and some generalizations.

2. P R E L IM IN A R IE S

Throughout the paper we shall assume fixed a standard Godel enumeration 
Wo,  ■..,  W a, . . .  o f  the recursively enumerable sets. W e shall assume also that an 
effective coding o f the fin ite sets o f natural numbers is given. By D v we shall denote 
the finite set having code v.

By capital letters A,  B , X  etc. we shall denote sets o f natural numbers.
W e shall use the follow ing definition o f enumeration reducibility given in [4].

2.1. D e f in it io n .  Let A  and B  be sets o f  natural numbers. Then A  is enu
meration reducible to  B  ( A  < e B )  i f  for some a £  N  and for all x £  N

x  £ A  < = >  3 u ( (u , i )  £ W a k  D v C B ).

Turing reducibility can be described in terms o f  enumeration reducibility. 
G iven a set A , denote by A + the set A  ©  (N  \ A ) .  Then we have

A < T B  A + < e B + .

Here ©  is the usual jo in  operation. So,

x £ A  ©  B  < = >  3n((a: =  2n & n G f f )  V ( i  =  2n -)-1 & n £ B )) .

Th e  notion o f hyperenumeration reducibility is introduced in [5]. Let /, g 
denote arbitrary tota l functions in N. By / (n ) we shall denote (the code o f )  the 
sequence (/ (0) , .  . . , f ( n  -  1 ) ) .

102



2.2. D e f in it io n .  G iven sets A  and B  o f  natural numbers, say that A  is 
hyperenumeration reducible to B  ( A  < h'e B )  i f  for some a 6 N  and for all x E N

x  E A  < = >  V f 3 n 3 v ( { v , x ,  f ( n ) )  E W a k  D v C  B ) .

From the definition it follows im m ediately that A  is I l j  in B  iff A  < h e B +  and 
hence we can express hyperarithm etical reducibiiity in terms o f hyperenumeration 
reducibility:

A  <h  B  < = >  A + < h e B + .

A  set A  o f  natural numbers is called total  i f  (N  \ A )  < e A  or, equivalently, if 
A + < e A.  The fo llow ing obvious lemma shows that i f  two total sets form  a m inimal 
pair w ith respect to  enumeration reducibility and hyperenumeration reducibility, 
then they form  a m inimal pair w ith respect to Turing reducibility and w ith respect 
to hyperarithm etical reducibility.

2.3. L e m m a . Let A  and B  be total  sets o f  natural numbers. Then:
( i )  V A (A  < e A k  X  < e В  => X  £ 0 e) => V X ( X  < T A k X < T B = > X e  0T );
( i i )  V X (X  < he A  k  X  < h e В  => X  Е 0Ле) = » V X (A  < h A  k  X  < h B  =>

А е о л ).

W e shall identify the partial predicates on N  w ith the partial functions, taking 
values in { 0, 1 } ,  assuming that 0 stands for true and 1 for false.

By 2lj; we shall denote the structure ( M ; G , £ ) ,  where G  is a total binary 
predicate which is equal to the graph o f the successor function, in other words,

G { z , y ) ~ { 0 ’ l f -» =  *  +  1>
(  1 otherwise,

and E is a unary partial predicate on the natural numbers.
Enumerat ion  o f  is a tota l surjective mapping / o f N  onto N. C learly,every 

enumeration determines a unique structure 03/ =  (N ; G ® y , E ® ' ), where for all x, y

G * ' ( x , y ) ~ G { f ( x ) , f { y ) )  and £ ® ' ( x ) ~ E ( / ( z ) ) .

G iven an enumeration /  o f 2ls, denote by .0(03/) the set o f  all Godel numbers 

o f the elements o f the diagram  o f IB/. In other words,

0 (0 3 / ) =  { (1 ,  n, m, e) \ G ® /(n ,m ) ~  e )  U { ( 2 . n , e )  | E®-/(n ) ~  e } .

Notice that i f  the predicate E  is total, then 0 (03/ ) is a total set.
Th e  main property o f the structure 2ts is that it is relatively stable. Th is means 

that for every enumeration /  o f 21e  the function /  is partial recursive relatively 

0 (03/ ), i.e. g r a p h ( f )  < e 0 (03/ ).

2.4. P r o p o s it io n .  Let f  be an enumeration o f  2ls- Then f  is partial  recursive 

in 0 (03/ ).

Proof.  Let us fix  a natural number 0/ such that / (0/ ) =  0. First we are going 

to show that

/ ( „ )  =  0 ^ = >  (G ® y (0/ , y) k  G ® ' (n , y ) )  .

Indeed, suppose that f ( n )  =  0. Take an y such that f ( y )  =  1. Then  we have 
G (/ (0 / ) ,/ (y ) )  and G (/ (n ) ,/ (y ) ) ,  and hence G * ' ( 0 j , y )  and G ®-^(n ,y). Now
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suppose that for some y, G s '(0/,?/ ) and G ® '(ra ,j/ ). Then f ( y )  =  1 and since 
G ( f ( n ) ,  1), we get that f ( n )  =  0.

In the same way one can show for k >  0 that

f ( n )  =  k < = >  3 x i .. . X k - i  (G^B/ ( O j , x i )  Sc . . .  & G ^ J ( x k ~ 2 i X k - i )  G'S j  ( x ^ ~ i , n )).

So the graph o f  / is enumeration reducible to £>(93/) and hence /  is partial 
recursive in £>(93/). ■

2.5. C o ro lla r y .  F o r  every enumeration f  o f  2ls, E < e £>(93/).

2.6. D e f in it io n . Let A  C N, a £ {T ,  e, h, he ]  and / be an enumeration o f 21e. 
Then A  is a-admissible in /  i f  f ~ 1( A )  < a £>(93/).

Now we are ready to describe the plan o f the p roo f o f Theorem  1.1. Let E be 
a total recursive predicate, for exam ple let E  =  Ar.O.

G iven a total set A,  denote by Q a, u £ [ e , h e ] ,  the class o f all sets which are 
cr-reducible to A.  In what follows we shall show that there exists an enumeration 
/ o f 21e having the fo llow ing properties:

(1 ) /  and hence £>(93/) is not 11};
(2 ) I f  a  £ {e ,  h e ] ,  X  £  Q a and X  is cr-admissible in /, then X  £  0CT.

Denote the set D (tB / ) by B.  Now  suppose that a £ { e , h e }  and X  < a A  and 
X  < a B.  Using the stability o f  21s, we obtain from  here that X  is cr-admissible in 
/ and hence, by (2 ), X  £ 0CT.

From here by Lem m a 2.3 we obtain for all a £  { T ,  e, h, h e }

X  < a A  L  X  < a B  => X  £  0a .

In the same way, using appropriate definitions o f the predicate E, we shall 
obtain also relativized versions o f the theorem.

3. G E N E R IC  E N U M E R A T IO N S

Every finite mapping o f N  into N  is called f inite part. By A  we shall denote 
the set o f all finite parts. Elements o f  A  w ill be denoted by lowercase Greek 
letters 6 , T , p , . . .  W e shall use “ C ” to denote the usual inclusion relation on partial 
functions. Clearly, “ C ” induces a partial ordering on A .

3.1. D e f in it io n . Let E  C  A  and /  be an enumeration o f 21s- Then;

(1 ) E  is dense i f  for every 6 £  A  there exists a t  £ E  such that i S C r ;

(2 ) E  is dense in the enumeration f  i f  for every finite part S C / there exists a 
t E E  such that 5 C r;

(3 ) / meets E  i f  there exists a finite part 6 £ E  such that 6 C f .

Notice that a dense set E  is autom atically dense in every enumeration o f 2ls.
Let J  be a countable fam ily o f subsets o f A .

3.2. D e f in it io n . A n  enumeration / is 3-gener ic  i f

(V E  £ 3 ) ( E  is dense in f  => f  meets E ) .
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Let D (E ) =  { ( n,E ) | E (n ) ~  e } .  Let a £  { e , h e } .  G iven a set A,  say that 
A  < a E if  A  < a D (E ).  For a function / let /  < a E  i f  g r a p h ( f )  < a D (E ).

3.3. Proposition. Let 6 £ A . There exists an T -generi c  enumeration f  o f  
2ls which extends S and such that f  £ h e E.

Proof.  A  usual fin ite end-extension construction o f  the mapping /. Start w ith 
6q =  S. Consider three kinds o f steps. On steps q =  3r ensure that /  is total and 
surjective. On steps q =  3r +  1 ensure the genericity. Finally, on steps q =  3r +  2 
consider the r-th he-reducible to E  partial function ibr and ensure that f  ^ i p r . m 

Denote by £ the class o f  all enumerations o f 2ls.

3.4. Definition. Let S  C N  x £. Th e  set S  is called complete relative to 37 i f  
for every n £ N , 6 £  A  there exists a t  D  5 such that i f  /  is T-generic and r  C /, 
then the pair (n , / ) belongs to S.

The next proposition is a generalized version o f Proposition  3.7 [8]. The simple
p roo f presented here is based on a suggestion o f V I. Soskov.

3.5. Proposition . Let S  C N  x £ be complete relative to 3". Then there
exisis a countable family T s  o f  subsets o f  A  such that i f  f  is Us-generi c,  then
V n ((n ,/ ) £ 5 ).

Proof.  Given a natural number n, let

E n =  { t  I V / (/  is T-generic & r  C /  => (n,  f )  £ S ) } .

It  follows from  the completeness o f S  that the set E n is dense.
Denote by T s  the fam ily { E n \ n £ N }  U T.  Suppose that / is Js-generic. F ix  

an n £  N. Since E n is dense, / meets it. Let r  £ E n be such that r  C /. Clearly, 
/ is T-generic. Hence, by the definition o f  E n , ( n , f )  £  S.  ■

Let cr £  {e , h e }  and let P q  , . . . ,  P " , . . .  be a sequence o f unary predicate let
ters. Assume that a satisfaction relation “ / 1=0P „  ( i ) ” is defined, so that for every 

enumeration /  o f  2ls

A  < ff D ((B / ) < = »  3a (A  = { x \ f  t aP°a { x ) } ) .

Suppose also that “6 lbaP a ( x ) ” is a forcing relation satisfying the follow ing f orcing  
conditions:

( F I )  8 C r  & 6 lhCT P a ( x ) => T lb<T E a ( x )'<

(F 2 ) There exists a countable fam ily J a o f  subsets o f A  such that for every J a- 
generic enumeration /, /  t=„ P<f(a:) < = >  (3<5 C f ) ( 6  Ibo- P ° ( x ) ) . .

3.6. Definition. Let A  C N . Th e  set A  has a cr -no rm al  fo r m  i f  for some 
a £  N , 6 £  A  and for all n £  dom(6 ) ,  x  £ N,

x e  A  3r(<5 C r ) ( r ( n )  ~  x & r  |b<T P % ( n ) ) -  (3.1)

G iven a set A,  call P<f an f -associate  o f  A  i f  for all n £  N

f ( n )  £ A  < = >  f  p,, P aCT(n ).

Assume that the recursive pairing function (•, •) is chosen, so that every natural 
number is a code o f an ordered pair.
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3.7. Proposition. Let Q  — { j4o, A i , . . . ,  A r , . . . }  be a countable fami ly o f  
subsets o f  N. Let the subset S  o f  N x £ be defined by

( (a , r ) , / ) £ S  <=>• A r has a cr-normal form  or P °  is not an /-associate o f A r .

Then S  is complete relative to

Proof.  Let us fix a natural number m  =  (a, r )  and a finite part 6. Assume that 
A r has a cr-normal form . Clearly, for every enumeration / the pair (m ,  f )  belongs 
to S.

Now suppose that A r does not have a cr-normal form . Then there exist natural 
numbers x and n £ dom(6 )  for which the equivalence (3.1) fails. W e have two 
possibilities. First suppose that

x £ A  k  V r (6 C r ) { r ( n )  ~  x  => t  JF«7 P a ( n ) ) .

Take a r  such that 6 C r  k  r (n )  ~  x. Let / be an T^-generic enumeration which 
extends r . C learly, f ( n )  =  x £ A T. Assume that / P £ ( n ) .  Then, by (F2 ), 
there .exists a p C  /  such that p Ih^ Pff  (n ). By ( F I )  we may assume that r  C p. A  
contradiction. So, P °  is not an /-associate o f A r and hence.(m ,  f )  £ S.

Now suppose that

x  0 A T k  3r ( 6  C r ) ( r ( n )  ~  a; & 7- Ihcr P a ( n ) ) -

Let / be Tff-generic and r  C /. Then, by (F 2 ), / t=ff P ^ (n )  but / (n ) =  x £  A T. 
Hence (m , f ) £ S. •

Combining the last proposition and Proposition 3.5, we get the follow ing

3.8. Corollary. Let Q  be a countable family o f  sets o f  natural numbers. There 
exists a countable fami ly  T  o f  subsets o f  A  such that i f  f  is T-generi c,  A  £ Q  and 
A  is a-admissible in f ,  then A  has a cr-normal form.

4. P R O O F  OF T H E  T H E O R E M

W e start by defining appropriate |=CT and \\-a relations for cr £ {e, he} .  Con

sider first cr =  e.

4.1. Definition. C iven  natural number a £ N  and enumeration / o f 2ls, let

/ t eP ' ( n )  3 v ( ( v , n )  £ W a k  D v C D (< B j ) ) .

From the definition above it follows im m ediately that for every enumeration / 

and A  C N
A  < e £ ( $ , )  < = >  3a ( A  = { n \ f  1= P » } ) .  (4.1)

The definition o f the forcing relation ||-e is a little  bit m ore complicated. Let 
6 be fin ite part. G iven a natural number u, let 6 \\-eu i f  u =  (1 , n , m , e )  for some 
n . m  in dom{6)  and G ( 6 ( n ) , 6 ( m ) )  ~  £ or u =  (2,n,£r) for some n £ dom(6 )  and 

£ ( 6(n>) ~  e.
For a finite set D  let 6 \\-eD  < = >  (Vu £ D ) ( 5  lbew)- 
Finally, given a £  N , let

6 lbeP a ( n ) < = >  3 v ( ( v , n )  £  W a & S Ih eA ,).
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It is obvious that the forcing conditions ( F I )  and (F 2 ) hold for |=e and ||-e, 
where the family. T e is empty.

4.2. Proposition. Let A  C N  have an e -normal  form.  Then A  < e E.

Proof.  Let 5 and a be such that (3.1) holds for all n £  dom(5 )  and x E N. F ix 
an n o 0  dom(5) .  Then

x £ A  <=>• 3t(<5 C r ) ( r ( n 0) ~  x k  r  ||- eP f { n 0) ) .

Assume that an effective coding o f the finite parts is fixed. From the definition 
o f Ihe, using the recursiveness o f G, we obtain that the set { r  | r  \\~eP Z ( n o) }  is 
e-reducible to E. Therefore A  < e E. a

Now let us turn to the hyperenumeration case. Consider two sequences 

R q} . . . , Raj  ■ • • ] -f̂ Oj • • ■ j Raj • ■ • 

o f new binary predicate letters. G iven an enumeration /, let

/ I=heR a ( x , s )  <=>- 3u((u, x, s) £ W a k  D v C D { ©y ) ) .

Let s denote (codes o f ) arbitrary finite strings o f natural numbers. I f  s =
( z j , . . . ,  zn) , then by s *  z we shall denote the string ( z i , . . . ,  zn, z ) . By () we shall
denote the em pty string.

Given a fin ite string s and a natural number x, define / t h e F a{x, s) by means 
o f the follow ing inductive

4.3. Definition.

I f  / l=/.e R a ( x , s ) ,  then / the F a( x , s ) ]

I f  V z (/  t h e  F a{ x , S * Z ) ) ,  then f  t h e  F a( x , s )  .

Suppose that / t=Fa(i ! ,s ) .  By |a;,s| we shall denote the first ordinal at which 
the pair ( x , s )  appears in the inductive definition. In other words,

<x  s | _  f  0, i f  f  the R a { x , s ) ,
’ \ sup(|:r, s * z\ +  1 : 2 E N )  otherwise.

4.4. Lem m a. Let A  C N  and f  be an enumeration o/2ls. Then

A  < h c <=> 3a(A = {a: | / the F a(x ,  ())}).

Proof.  By definition A  < h e if, and only if, for some a E N
x  £ A  -<=>• Vg 3n3v ( (v ,  x,  g ( n ) )  E W a k  D v C £> (© / )).

Hence A  < h e iff there exists a E N  such that

x  E A  <t=> V ff3n (/  the  Ra{x>g {n ) ) ) .

W e shall show that

' i g 3 n ( f  t h e  R a { x , g { n ) ) )  <=■=> f  t h e  F a( x , Q ) .  (4.2)

Suppose that the left hand side o f (4 .2 ) holds. Towards a contradiction assume
that / t h e  F a(x,  ( ) ) .  Then  there exists a sequence z0, z i , . . . ,  z„ , . . . o f natural num
bers such that i f  s „ =  ( z o , . . . ,  2n_ i ) ,  then

f  Phe R a ( x , S n ) k  f  the  F a(sn * Zn , x ) . (4.3)

107



The construction o f zo, z\ , . . . ,  zn, . . .  is by induction on n. Since / ¥ he Fa( x , Q ) ,  
f  Phe Ra (x ,  ( ) )  and for some 2 , f  £ kc F e(x ,  (2) ) .  Set r0 =  2 .

Suppose that 20, . . . .  zn are chosen, so that (4.3) holds. Let sn+i =  (20, . . . ,  zn ). 
By (4.3) / £ he R a(x ,  sn+ i )  and for some 2 , / F a(x,  sn+ i * 2). Take zn+1 =  2 . 

Now let g ( n )  -  zn . C learly, V n (/  P he R a( x , g ( n ) ) ) .
Given a finite string s =  (20, . . . ,  2„ _  1 ) and a function g, let

s C g < = >  (V& <  n ) ( g ( k )  =  zk).

To  prove (4.2) in the right to left direction, we shall show by means o f transfinite 
induction on |x,s| that

/ 1-he F a{x,  s)  =>Vg  D s 3 n ( f  1= R a( x , g ( n ) ) )  (4.4)

and use that every function extends the em pty string ().
Indeed, i f  / t=fte R a(.T ,s), then (4.4) is obvious. Suppose that / ¥ he R a(x , s ) .  

By induction (Vz) ( 'Jg D s * z ) 3 n ( f  t=^e R a( x , g ( n ) ) ) .  Suppose that g D s. Then for 
some z, g D s * z and hence 3n { f  !=/,<, R a( x , g ( n ) ) ) .  ■

Let / P he P ^ e( x )  / £ he F a( x , Q ) .

Our next task is to  define an appropriate forcing relation 6 |b/le P ^ e(x ) .  First
let

<5 Ibfce R a ( x , s )  3v ( ( v , x , s )  £ W a k  6 lbeD v ).

Clearly, we have as for enumeration reducibility:

( R l )  6 Ibfte Ra( x ,  s)  8 C T  =b T  Ibfte R a( x , s);

(R 2 ) For every enumeration /, / R a( x , s ) -<=> 36 C f ( 6  lbfce R a{ x ,s ) ) .

Now we are ready to define 6 lb/,e F a(x,  s) by means o f  the fo llow ing inductive 
definition.

4.5. Definition.

I f  6 lb he R a( x , s ) ,  then 6 lb/ie F a(x,s)- ,

I f  V2 £  ArV r D 63p D t ( p  IbAe F a(x ,  s *  z ) ) ,  then 6 lb;ie F a( x , s ) .

W e associate ordinals w ith the tuples (5, x, s) such that 6 lb/ie F a(x,  s) as usual:

15 x  s i — f  01 i f  6 l^he -Ra( :c’ s)>
(  sup(min(|p, x, s * z\ +  1 : p D  r )  : r  D 6, z £  N ) otherwise.

The next lem m a follows im m ediately from  Definition 4.5.

4.6. L e m m a . Let 6, t  be f inite parts, 6 C t  and 6 lbhe F a( x , s ) ,  then 

T lb he F a( x , s ) .

Let T j be the fam ily o f all subsets

Es,x,s,z =  {p\ P Ibhe F a( x , s * z)  k  |p, x , s * z  I <  15, x,  s|} o f A .

4.7. L e m m a . Let  f  be an h - g e n e r i c  enumeration, 6 C / and 6 |bhe F a( x , s ) .  
Then f  bhe F a(x ,  s).
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Proof.  Transfinite induction on |5, i,s| . Skipping the obvious case 
/ t-/ie Ra (x ,  s), assume / Yhe R a(x,  s). F ix  a z £ N  and consider the element

E  =  {p  I P  Ibfte F a{x, S * z )  &  |p, X,S * z\ <  |<5, X, s|}

o f . W e shall show that E  is dense in /. Let p C f .  Take а т  C /  such that p C r  
and 6 C t . Since /  Yhe R a( x , s ) ,  by (R 2 ), 8 W-he R a( x , s )  and hence, by Definition
4.5, there exists a p D r  which belongs to E.

From here, by genericity, there exists a p C /  which belongs to E.
Now we have that |p, x, s *  z\ <  |<5, x , s| and p Ithe F a(x,  s *  z).  Hence, by the 

induction hypothesis, / \^Fa{x, s *  z).
So we have proved that V z (/  I= F a(x ,  s *  2) ) ,  and hence / Yhe F a(x,  s). ■

Denote by S 2 the fam ily containing all sets { r  | 3zVp D r (p  F a(x,  s *  z ) ) } .

4.8. L e m m a . Let f  be S 2-generic and f  t=/ie F a{x ,s ) .  Then there exists a 
8.C f  such that S | | - / ie  F cl( x , s).

Proof.  Transfinite induction on Jar, s|. Assume that V(5 C  f ( 8  W-he F a(x ,s ) ) .  
Then the set E  =  { r  | 3zVp D r (p  JFac F a(x ,  s * 2) ) }  is dense in /. By genericity, 
there exist т C f  and 2 £ N , such that Vp D r (p  F a(x ,  s * 2) ).

On the other hand, / (=/,„ F a( x , s ) and f  Yhe R a{x ,s ) .  (O therw ise we could 
find a 8 C. f  such that 8 lh*e R a( x , s ) . )  Therefore f  Y F a(x ,  s *  z) ,  and hence, by 
induction, there exists a p C  / such that p ||-.Fa( 2: , s *  z ). By Lem m a 4.6 we may 
assume that r C p .  A  contradiction, в

Define 8 P a 4 x ) <:==;>  ̂ H e  F a(x ,  ( ) ) .
Let 3he =  и Т з -  Com bining the last three lemmas we obtain that Yhe and

Ihfte satisfy the forcing conditions ( F I )  and (F2 ).

4.9. P r o p o s it io n .  Suppose that A  has a he -normal  fo rm.  Then A  < h e E.

Proof.  Let 8 and a be such that for all n £  dom(8 ) and x

x € A  < = >  3 r  D 8 ( r ( n )  ~  x k  r  H e  F a(n,  ( ) ) ) .

Consider the set P  =  { ( r , n , s ) [ r  |h*e F a( n , s ) } .  W e are going to show that 
P  </,e E. For this purpose we shall give a game characterization o f the forcing 
“ Ibfte ” • Our gam e starts over a trip le (r , n, s) and has two players —  (V ) and (3 ). 
I f  T H e  R a( n , s ) ,  then the game stops and (3 ) wins. Otherwise the first player (V ) 
chooses a natural number 2 and a finite part p D  r . Then the second player (3 ) 
chooses a finite part i/D /i. The gam e continues over ( 1/, n ,s  * z) .  Now  our claim  is 
that r  ||-fte F a(n, s) iff there exists a strategy for (3 ) for w inning every game over 
(r , n, s). T o  form ulate this claim  precisely, we shall represent the possible moves 
o f (V ) by two total functions g 1 and #2, where g i ( r , n , s )  w ill choose the natural 
number 2 and g2( T , n , s )  w ill g ive the finite part p. W e shall call the pair ( 5 1 , 52) 
correct i f  VrV?rVs(r C 52( 1", тг, s) ) .

4.10. C laim , т  I bhe F a{n , s )  i f f  f o r  every correct pair  (5 1 ,52) there exists a 
f inite nonempty sequence (iz0, 1/1 , . . . ,  vu) o f  f inite parts such that i f

zi  =  5 1 (^ 0, n , s ) , z 2 =  gffv' i  , n , s *  Z i ) , .. .,zjfc -  5 ! (t/jfc-i, n.,s *  zx *  . .  . *  zk- \ ) ,  

then:
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a) t  =  j/0;

b) (V i <  fc)(02(j't , 'n 1s * 2 1 * C i/j+1);

c) i/fc lb/ie Ra(^l, S % Z [  *  . , . + Zk ) .

Proof.  The p roo f o f  the left to right direction is by induction on |r, n,s|. 
Suppose that t  Ibfte F a( n , s ) .  Let ((/1 ,(72) be a correct pair o f functions. I f  
T Ih/ic Ra (n ,s ) ,  then the sequence (r )  satisfies the conditions a )-c ). Suppose now 
that r  Ih/ie R a(n , s ) .  Let =  g i ( T , n , s )  and p. =  g2( r , n , s ) .  By the correctness 
° f  ( 9 1 , 9 2 ), t  C fi. By the definition o f  lh/,e there exists a D p such that 
('l lb/ie F a( n , s  * z i )  and s * zi \ <  |r, n,s|. By induction there exists a finite
non-empty sequence ( v \, . . . ,  vk) o f finite parts, satisfying the conditions a )-c ) w ith 
respect to (z/i,n,  s *  z 1 ). Now  it is trivia l to show that the sequence ( r , v  1 ,. . . ,  vk) 
satisfies a )-c ) w ith respect to ( r , n , s ).

Suppose now that r  1Phe Fain,  $)• W e shall show that there exists a correct pair 
(<7i, 9 2 )  o f functions for which there is no finite sequence o f finite parts satisfying
a )-c ). G iven finite part 6 and string t, check i f  there exist z and fi D 6 such that
(Vi/ D /j.)( 12 IFiie F a( n , t  * 2) ) .  In case o f a positive answer let g i ( 6 , n , t )  be one 
o f those 2 and 52( 6, n ,< ) be one o f those p. I f  the answer is negative, then let 
g i ( 6 , n , t )  =  0 and 52( 6, n , t )  =  6. Clearly, the pair ( 5 1 , 52) is correct.

Now assume that (i/o,. . . ,  i/k) is a sequence o f fin ite parts satisfying the condi
tions a )-c ). By a) we have vq =  r . Since uq V̂ he F a(n,s).,  vq R a( n , s ) ,  and

3z3fi  D  i/0V(/ D ]^he F a(n,  s * z ) ) .

By the definition o f 51 and 52 and b ) we get v\ \Ahe F a( n , s  * 21). So, proceeding
as above, we have that

"1 №he Fia(n, s *  21), v2 Jfhe R a(n,  s *  Zi * z2), . . . ,  vk ,ie R a(n, s * z i *  . . . *  zk). 

The last contradicts c). a

Using the C laim  and the fact that the set { ( r ,  n , s )  | r  ||-fte R a( n , s ) }  is enu
meration reducible to E, we obtain im m ediately that P  <he E and hence that 

A  <he E. s

Now we are ready to prove the main results.

4.11. Theorem . Let C  and A  be total  sets. There exists a total  set B  such 
that C  < t  B,  B  ^ iie C  and f o r  all a  G { T , e, h, he}  and all X  C N

X  < a A  Sz X  < 0- B  X  ^0  C.

Proof.  Let

Wj.') _  / Oi i f  x £ C,
I  1 otherwise.

Since C  is total, we have for all a £  { T , e, h, he}  that C  < a E  and E  < „  C ,  i. e. 

C = a E.
Let A  be a total set. Denote by Q a , cr £ {e , fie }, the fam ily o f all sets which are 

cr-reducible to A.  By Corollary 3.8 there exist denumerable families “J q  ̂ o f  subsets 
o f A  such that i f  / is TQ^-generic, X  £ Q a and X  is cr-admissible in /, then X  has 
a cr-normal form. Let / be an enumeration o f 2ls which is not fie-reducible to E
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and generic with respect to B q c U Tq ,ic . Denote £>(23/) by B.  Since the predicate 
E  is tota lly  defined, the set B  is total. By the stability o f  2ls, / < h e B  and hence 
B  -g-he E  and E < t  B.

By-Lem m a 2.3 it is sufficient to show for cr £ {e , fie }

X  < a A  k  X  < a B  => X  < a C.

Now suppose that X  < a A  and X  <<, B .  Since / is partial recursive in B,  

f ~ 1( X )  < a B.  So X  E Q a and X  is c-adm issible in /. From here it follows that X  
has a cr-normal form  and hence by Proposition 4.2 and Proposition 4.9, respectively, 
X  < a E. Therefore X  < a C .  ■

Notice that since 0 is total,' Theorem  1.1 is a direct corollary o f the above 

theorem.
I f  we start by an arbitrary, not necessarily total set C , then we can prove a 

similar result but on ly for the positive reducibilities < e and </le .

4.12. Theorem . Let C  and A  be subsets o f  N. There exists a subset B  o f  N  
such that C  < e B ,  B  ^/le C  and i f  a £ {e , he},  then f o r  all X  C N

X  < a A  k  X  < a B  => X  < a C.

Proof.  Let us define the partial predicate E  by

E ( i )  =  { 0, i f  a: £ C ,
1 undefined otherwise.

Now we have for a  £ { e , h e }  that E = a C .  From here the theorem follows by 

an almost literal repeating o f the arguments used in the p roof o f the previous 

theorem. ■

The method used in the proofs o f the theorems above allows further general

izations and applications. W e may add countably many satisfaction and forcing 

relations to the so far considered and !!■> , a £ {e , fie },  relations. In this way, 

considering the forcing for the E a hierarchy from [1 ] and [2], we can prove the next 

generalization o f Theorem  4.11.
I f  q  is a constructive ordinal, X  C N, then by X ^  we shall denote the a-th 

jum p o f X , see [4].

4.13. Theorem . Let C  and A  be total sets. There exists a total set B  such 

that C  < t  B ,  B  ft.he C  and f o r  all X  C Ff:

(1 ) Fo r  every constructive ordinal a , X  < t  A & X  < j  B ^  =>• X  < t  C ^ \

(2 ) F o r  every constructive ordinal a,  i f  X  is r. e. in A ^  and X  is r. e. in 

then X  is r. e. in

(3 ) X  < h A  k  X  < h B  => X  < h C\

(4 ) X  < he A  k  X  < he B  => X  < he C.

Other applications o f the method w ill be presented in the forthcom ing [7].
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К нига 1 —  М атем ати ка  и механика 

Том  89, 1995

A N N U A IR E  D E  L ’U N IV E R S IT E  DE S O F IA  „S T . K L IM E N T  O H R ID S K I

FA C U LT E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre  1 —  Mathématiques et Mécanique 
Tom e 89, 1995

A SIMPLE PROOF OF A COINCIDENCE THEOREM 
OF RUBINSTEIN -  WALSH AND GENERALIZATIONS*

P A V E L  G. T O D O R O V

We give a simple p roof o f the Rubinstein -  Walsh coincidence theorem that the 
classes o f functions ( l )  and (2 ) can be represented in forms (4 ) and (5 ), respectively. 
W e prove also that the more general classes o f functions (8 ) and (9 ) can be represented 
in forms (4 ) and (5 ), respectively.

K e y w o rd s :  coincidence theorem, subordination, rational functions, meromorphic
functions.
M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 26C15, 30C45.

1. Let R \ { D )  and f?2(D )  denote the classes o f rational functions

t i z ~ ak

and

respectively, where

^ A *  =  l ,  Ak >  0, I a* I < 1, 1 ^ к < n, n > 1. (3 )

fc=i

Lecture presented at the Session, dedicated to the centenary o f the birth o f N ikola ObreshkofT.
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In [1, Lem m a 2 (a )] Rubinstein and Walsh prove that the functions (1 ) and (2 ) o f 
the classes R \ ( D )  and R.2 ( D ) can be represented in the corresponding forms

«*> = « )
for |z| >  1 , and

v { z )  =  i ^ b u ) '  = “ ( ; ) '  (5)
for \z\ <  1, where a ( z )  and /?(z) are analytic functions w ith |ar(z)| < 1 and |/3(z)| ^ 1 
for |z| >  1 and |z| <  1, respectively. First we shall give a simple p roof o f this 
theorem o f Rubinstein and Walsh.

Proof.  For convenience we shall exam ine the class R ^ D )  only. From (2 ) and
(3 ) we obtain

R e * ’ (
(z ) 1 _  1 ^  A ^  1 +  akz _  1 ^ - 1  A 1 -  \akz\2 ^ n , , ^

2 ~  2 f ^  k I  -  akz ~  h \l -  akz\2 ’ |z| <  ( )

The inequality ( 6) shows that the function tp(z)/z. is subordinate to the function 
1 /( 1  — z ) in |z| <  1 , i. e.

According to the subordination (7 ) there exists an analytic function /?(z) in |z| <  1' 
satisfying |/?(z)| g  1, for which the representation (5 ) holds. I f  in (5 ) we replace z 
by 1/z, we obtain (4 ).

Th is completes the proof.

2. Let M i and M% denote the more general classes o f  meromorphic functions 
with representations (4 ) and (5 ), respectively. In [2] we introduced the classes Si(D) and £ 2{D) o f analytic functions

f{z) = j j ^ l  eSl(D), | z | > l ,  ( 8)

D

and

i p { z ) ' = f { l ) = J J r ~ ^ e S 2 { D ) ' | z | < 1 ’ (9)
D

respectively, where D {C | |CI ^  1 } and  i±{Q is a unit mass measure on D, i. e.

d f i ( 0  =  1 , dfj, 't 0. ( 10)
// '

I f  in ( 8) and (9 ) the unit mass is concentrated at n points o f D ,  then, having in 
mind (10), we obtain sets R \ ( D )  and R 2 { D )  o f  rational functions (1 ) and (2 ) w ith 
the conditions (3 ), respectively. In the end o f  our paper [2] we put the problem
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whether the classes S \ ( D )  and 8 2 ( D )  are corresponding subclasses o f the classes 
M 1 and M 2 or not. Now  we shall solve affirm atively this problem.

T h e o r e m . The classes S i ( D )  and S 2 ( D )  o f  funct ions  ( 8) and (9 ) are corre
sponding subclasses o f  the classes M\ and M 2 o f  funct ions  (4 ) and (5 ).

Proof.  For convenience we shall examine the class 8 2 ( D )  only. From (9 ) and 
( 10) we obtain analogously

From (11) we obtain successively the subordination (7 ) and the representation (5 ) 

for the functions tp(z)  determ ined by (9 ) and (10). By replacing z by 1 j z  in (5 ),

Th is completes the p roo f o f the theorem.

R e m a rk . I f  in ( 8) and (9 ) the unit mass is distributed on the circle C ,  |C| =  1, 

then, having in m ind (10), we obtain the sets S i (C )  and 8 2 ( C )  o f Schwarz analytic

respectively, where f i ( t )  is a probability measure on [0,27t],

I f  in ( 8) and (9 ) the unit mass is distributed on the segment [—1,1], then, having 
in m ind (10), we obtain the sets N\ and N 2 o f Nevanlinna analytic functions

respectively, where n ( t )  is a probability measure on [ - 1 , 1 ].

According to the proved theorem the separate classes S i ^ C )  and N \ t2 are 

corresponding subclasses o f the classes M i i2 as well.

j j \ « < ) > » ,  W < 1 . ( 1 1 )

D

we obtain the representation (4 ) for the functions f ( z )  determ ined by ( 8) and (10).

functions

2ir

0

and

|z| <  1

0

1

and
1

- 1
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Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В . К Л И М Е Н Т  О Х Р И Д С К И “

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И  И Н Ф О Р М А Т И К А  
Книга 1 —  М атем ати ка и механика 

Т ом  89, 1995

A N N U A IR E  D E  L 'U N IV E R S IT E  D E  S O F IA  „S T . K L IM E N T  O H R ID S K I“

F A C U LT E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre 1 —  Mathématiques et Mécanique 
Tom e 89, 1995

STUDY OF THE SCIENTIFIC WORK 
BY QUANTITATIVE METHODS: SOME RESULTS 

ON ACADEMICIAN NIKOLA OBRESHKOFF’S WORKS

V A S S IL IY  T O D O R O V , M A R A  A P O S T O L O V A , E M IL IA  B R A N K O V A , 

S T E F K A  Z L A T E V A , V E N E T A  T E N E V A , D IM IT A R  K H R IS T O V

Some results o f studying the work o f one o f the most productive Bulgarian m ath
ematician by quantitative m ethods are presented. The study is based on the data from 
the world-wide known review journals “ Jahrbuch iiber die Fortschritte der Mathe- 
m a tik ", “ Zentralblatt fur M athem atik und ihre Grenzgebiete” and others, representing 
most accurately the world scientific information flow, structuring it by domains of sci
ence and their areas. Graphically are shown: distribution o f ObreshkofT's works over 
domains o f mathematics according to divisions o f mentioned review journals, distribu
tion o f scientific activ ity  over years, domains o f mathematics and their areas, etc.

This study is based on the so-called Reference Database (R D B ) allowing flexible 
retrieving, systematizing, aggregation and generalizing data.

1. IN T R O D U C T IO N

Academ ician N ikola  Obreshkoff is a Bulgarian scientist known not on ly to 
the Bulgarian mathematicians. He is respected by the whole Bulgarian scientific 
community for his over 40 years long scientific and publication activity. Th e  goal 
o f  the present paper is to estim ate by quantitative means his interference w ith the 
international scientific community.

Some results o f using quantitative methods to explore his publication activity 

are presented in the paper. The notions o f  relevance criterion and the so-called 
Reference Database (R D B ) are introduced. Th e  data in the R D B  on N. Obresh- 

koff are compared to the known bibliographies o f  his works. These bibliographies
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are not used as sources to build a RD B , because they are lists o f works, ordered 
chronologically or alphabetically. They  are not organized according to the domains 
o f scientific fields the scientist works in. N o matter how complete they are, they 
do not give an adequate image o f the interaction between the scientist and the 
international scientific community. Th is characteristic feature is the main reason 
to study the publication activ ity  by R D B  organized according to some classification 
o f scientific domains.

2. W O R L D -W ID E  F L O W  O F S C IE N T IF IC  IN F O R M A T IO N  
A N D  R E L E V A N C E  C R IT E R IO N

The mentioned interaction between scientists gives the so-called world-wide 
flow o f  scientific  in form ation  built by an immense quantity o f scientific works in 
different fields o f science, published in numerous scientific journals, proceedings 
o f conferences and workshops, monographs and so on. T o  manage that flow, the 
scientific community created the powerful tool o f auxiliary reference editions —  
review (abstract) journals, bibliographies etc.

The consideration o f the participation o f a given scientific work in this infor
mation flow provides a useful b ibliom etric criterion —  whether the paper has been 
or not reviewed in the world-w idely known abstract journals. The use o f that cri
terion when exploring the scientific work mirrors the publishing activ ity  o f given 
scientists and the dynamics o f  their scientific interests as the international scientific 
community looks at them.

Thus the idea is arisen o f using the Reference Databases with published scien
tific works o f one or m ore scientists —  a computer database keeping data extracted 
from scientific reviews published in the abstract journals. Such a database can be 
explored by computer and quantitative tools from  different points o f view. Th is ap
proach makes it possible to find some interesting and sometimes unexpected points 
in the entire work o f a given scientist. The authors o f the present paper are de
veloping similar R D B , fu lfilling the project “A  quantitative study o f the scientific 
production o f lecturers o f the Sofia University from  1889 to 1950” 1. Th is project 
continues the research o f  the authors published in [5].

In this study the selection o f sources is done follow ing the above mentioned 
criterion: published works are taken into consideration only i f  they are reviewed in 
world-w idely known abstract journals. These journals assign the reviews to sections 
in accordance w ith the domains o f different fields o f science. Th is is a good reason 
to use such journals for purposes o f building RDB.

In the field o f M athem atics the follow ing journals were selected to build a RD B : 
Jahrbuch über die Fortschritte  der Mathematik  (Fortsch. d. M ath .), Zentralblatt 
fü r  Mathematik und ihre Grenzgebiete (Zbl. M ath .), Mathematical Reviews and 
Referaiivny Zhurnal. Th e  first one was founded in 1868 and was issued regularly 
until 19382, the second was founded in 1931, the third —  in 1940, and the last —  
in 1953.

1 Contract No 97/1996 o f the Sofia University Scientific Research Fund.

It was stopped several years later.
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3. U S IN G  R D B  T O  PR O C E SS  T H E  D A T A  O N  N. O B R E S H K O FF

The data in R D B  concerning the works before 1939 are extracted from  two 

abstract journals: Jahrbuch über die Fortschriite  der Mathematik  and Zentralblatt 
fü r  Mathematik und ihre Grenzgebiete , and concerning the works after 1939 —  from  
three abstract journals: Zentralblatt fü r  Mathematik und ihre Grenzgebiete, Math
ematical Reviews and Referativny Zhournal. The search in the journals was con
ducted for a period starting several years before 1920 (the year o f N. Obreshkoff’s 
entrance in the lecturer community o f Sofia University) and continuing up to 1970, 
Vol. 178 o f Zbl. Math. The assignment o f entries to the sections and subsections 

before 1939 is made according to these o f the Fortsch. d. Math., and concerning 

the works after 1939 —  according on ly to the sections and subsections o f the Zbl. 
Math. The way o f assignment is changed because the issuing o f the first journal 
is suspended after 1939. Conform ing all R D B  to the classification before 1939 is 
useless. Thus, there is a boundary d ivid ing the entire work o f N. Obreshkoff into 
two periods: the first one from  1920 till 1939 (44% o f the whole duration) and the 
second one from  1940 till 1963. For this reason works, for instance, belonging to 

the domain o f Analysis, may have entries in section II ( i f  the work is published 

before 1939) or in section V  ( i f  the work is published after 1939) in the RDB.

The creation o f the R D B  on N. Obreshkoff’s work is based on a modification 

o f a first variant o f RD B  on lecturers in the Faculty o f Mathematics and Physics, 
built by the authors. Th is makes the investigation much easier.

4. RE SU LTS

A. A  Q U A N T IT A T IV E  IN F O R M A T IO N  O N S C IE N T IF IC  A C T IV IT Y  

IN  T H E  PE R IO D  1920-1939

The R D B  has 99 entries for this period, assigned to the follow ing domains 
in the field o f Mathematics: I. Arithm etics and A lgebra (21 reviewed works);

II. Analysis (76 reviewed works); III . G eom etry (2 reviewed works).

Fig. 1 shows the publication activ ity  (the number o f  all works from  1920 to 
1939) distributed over different domains. The domains I and I I I  contain entries 
assigned to one area in each domain. The most o f entries are in the domain o f 

Analysis, assigned to several areas. Fig. 2 shows the distribution o f  the works 
over areas. It allows ranking the activ ity  o f N. Obreshkoff in this period. Thus, 

his scientific interests are oriented in the first place to the areas o f Infinite N u m 
ber Sequences Theory  and General Theory o f  Real Functions  (50% o f all works). 
Near 31% o f  them are in the areas o f  General Theory o f  Functions with Complex 
Arguments and Functions o f  Complex Variables.

The scientific activ ity  is often represented by the number o f published works 

per year. The distribution o f works in different domains per year is given on Fig. 3 
representing the dynamics o f scientific interests. Being concentrated in the domain 

o f Analysis, the number o f works varies —  there is an alternation o f decreasing and
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Fig. 3. Distribution o f works over domains o f mathematics per year (before 1939)

increasing in the activ ity  in this domain; when the activ ity  in the area o f Analysis 
decreases, this one in the area o f A lgebra increases (a  contre-tendence).

B. A QUANTITATIVE INFORMATION ON SCIENTIFIC ACTIVITY 
IN THE PERIOD 1940-1963

The RD B  has 93 entries for this period assigned to the follow ing domains in 
the field o f Mathematics: IV . A lgebra and Number Theory (34 reviewed works); 
V. Analysis (57 reviewed works); V I. G eom etry (1 reviewed work), V II . Probability  
Theory. Statistics. Applications (4 reviewed works).

Fig. 4 shows the publication activ ity  distribution over domains o f M athem at
ics. It confirms the conclusion about concentration o f interests in the domains o f 
A lgebra and Analysis.

F ig. 5 illustrates the activ ity  over areas o f analysis after 1939. In this period 
the classification is different compared with that o f the first period. Nevertheless, 
F ig. 5 shows that the biggest part o f  published works is in the areas o f Real Function
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Fig. 5. A c tiv ity  over areas o f analysis (a fter 1939)

Differentiation and Integration  and Integral Equations, Integral Transformations. 
There is a work not related to any area o f Analysis, according to the subsections 
o f Zbl. Math., so the sum o f the numbers in different areas is 56.

On Fig. 6 “ D istribution o f works over domains o f Mathem atics per year (after 
1939)” the dynamics o f N. Obreshkoff’s works is shown. W ith  concentration in the
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Fig. 6. Distribution o f works over domains o f mathematics per year (a fter 1939)

domains o f Analysis and Algebra, sim ilar to the first period, some equalising o f 
tendencies near 1963 is observed. The number o f works in the domain o f Analysis 
prevails over the works in the area o f A lgebra  near 1940. An interruption in the ac
tiv ity  between 1943-1945 can be explained by the difficulties in publishing because 
o f the W orld W ar II.

C . A  G E N E R A L IZ E D  Q U A N T IT A T IV E  IN F O R M A T IO N  ON T H E  E N T IR E  

S C IE N T IF IC  W O R K  IN  T H E  P E R IO D  1920-1963

The distribution o f published works over the age o f the scientist is given on 
Fig. 7. There is a period o f extrem ely high activ ity  starting in 1932 (when N. 
Obreshkoff was 36 years o ld ) to 1939. The end o f this period coincides w ith the 
beginning o f the W orld  W ar II. Here 67 published and reviewed works can be seen 
or 35% o f all published and reviewed works. During this 7 year long period there 
are two absolutely m axim al values o f the activ ity  (in 1934 and 1939). The second
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maximum hints a new period o f increase in the work o f N. ObreshkofT, stopped by 
the beginning o f the war.

It is interesting to compare our data with the known bibliographies o f N. O- 
breskofF’s works. The most complete one has 247 entries [6]. The bibliography in 
[4] has 219 entries. The bibliography in [3] includes works from  1940 to 1963. A ll o f 
them were compiled after N. Obreshkoff’s death in 1963. T w o  previous bibliogra
phies are given in the first Almanacs o f Sofia University the first one in 1929 [1] 
and the second one in 1940 [2]. They were compiled by N ikola ObreshkofT himself. 
The bibliography o f 1929 includes entries missing in the later bibliographies, the 
one o f 1940 is selective and its worth is Obreshkoff’s own classification o f works into 
groups o f “principal works” , “other works” and “ diverse” . Fig. 8 shows the distri
bution o f published works over the years according to the biggest bibliographies [4, 
6] which include not only reviewed works. The noticeable difference in 1930 can be 
explained by the fact that the Annuaire o f the Sofia University was not reviewed 
before 1930. Another difference in 1949 can be explained by the difficulties in the 
cultural relations in Europe in the end o f the W orld  W ar I I  and after it.

Each domain o f mathematics has two corresponding sections in this imple
mentation o f  R D B . For this reason, in order to retrieve a quantitative information 
relative to the entire period from  1920 to 1963, the data are grouped into four do
mains: A .  A lgebra  and Number Theory; B . Analysis; C . Geom etry; D . Probability 
Theory. Statistics. Applications. The distribution o f works over these domains is 
presented on Fig. 9.

Analysis Qaômetry

Domains Dfmathemaflcs

Probability
Tliaory.

6&19Ü C 5.
Applications

Fig. 9. Distribution o f works over domains o f mathematics

The reviewed works are published in nearly 50 journals, 3 monographs, 6 text
books. Most o f the papers are published in: Comptes Rendues Acad. Sci., Paris —  
36 papers, Annuaire Univ. Sofia, Fac. Phys.-M ath., L ivre 1 —  25 papers, Comptes
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Rendues Acad. Sci. Bulgare —  24 papers, Izvestia M I B A N  —  14 papers, Jahres- 
bericht D .M .V . —  11 papers.

5. C O N C LU S IO N S

The results presented in the paper allow to make: ( i )  deductions about the 
publication activ ity  o f  N. Obreshkoff, and ( i i )  quantitative evaluation o f  dynamics 
o f his scientific interests. Specific features o f the activ ity  like the contra-tendencies 
in its alternation are demonstrated.

The predominant orientation o f interests to the Analysis and A lgebra, shown 
graphically, can be compared to Obreshkoff’s own view on his principal works [2]. 
There are 22 works, 15 in the area o f Analysis (over 2/3) and only 7 in the area 
o f A lgebra. O f these principal works 15 are reviewed: 3 on A lgebra (20% ) and 12 
(80% ) on Analysis.

The results obtained show that the application o f RD B  was useful in exploring 
the work o f the scientist. The data on scientific publication activ ity  were consid
ered according to different points o f view. They were represented in different ways, 
and numeric evaluation, dynamics and distributions were obtained. The method o f 
RD B  is outlined as a necessary foundation in research on a scientist’s publication 
and other activity, on its significance for evaluating the development o f the corre
sponding scientific domain in Bulgaria and comparing it with the general tendencies 
in the development o f the science in the world.

Last but not least, the RD B  allows to explore the abstract journals themselves 
—  their scope, degree o f discordance in their classification schemes etc. This is an 
im portant area in research, based on the use o f abstract journals.

R E FE R E N C E S

1. Almanac o f Sofia University (1888-1928), Printing house “Khudozhnik” , Sofia, 1929 (in Bul
garian).

2. Almanac o f Sofia University “St. K lim ent Ohridski", Second ed., Court printing house (P h o 
totype edition, Publishing House o f  Sofia University), Sofia, 1940 (in  Bulgarian).

3. Almanac o f Sofia University (1939-1988), Publishing House of Sofia University, 1995 (In
Bulgarian).

4. Centenary o f Bulgarian Academ y o f Sciences (1869-1969), Vol. 1, Publishing House o f Bul
garian Academy o f Sciences, Sofia (in Bulgarian).

5. K h r i s t o v ,  D. e t a 1 s. New Information on the History o f Sofia University “St. K liment
Ohridski” undertaken by Quantitative Methods and Computer. 1888-1939., Publishing 
House o f Sofia University, Sofia, 1990 (in  Bulgarian).

6. O b r e s h k o f f ,  N. Works. Vol. 1, Publishing House o f Bulgarian Academ y o f Sciences,
Sofia, 1977 (in  Bulgarian).

7. O b r e s h k o f f ,  N , Works. Vol. 2, Publishing House o f Bulgarian Academ y o f Sciences,
Sofia, 1981 (in  Bulgarian).

Received on 04.07.1996
E-mail address: wassiliy@fmi.uni-sofia.bg

127

mailto:wassiliy@fmi.uni-sofia.bg


Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В .  К Л И М Е Н Т  О Х Р И Д С К И “ 

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И И Н Ф О Р М А Т И К А
Книга. 1 —  М атематика, и механика 

Т ом  89, 1995

A N N U A IR E  DE L ’U N IV E R S IT E  D E  S O F IA  „S T . K L IM E N T  O H R ID S K I“

FA C U LT E  DE M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  
L ivre 1 —  Mathématiques et Mécanique 

Tom e 89, 1995

A FIRST-ORDER IN THICKNESS MODEL FOR FLEXURAL 
DEFORMATIONS OF GEOMETRICALLY NON-LINEAR SHELLS

C H R IS TO  I. C H R IS TO V

The shallow shells, characterized by deflections o f the order o f unity, small defor
mations and still smaller curvatures, have most thoroughly been studied in the liter
ature. However, the momentum terms, due to which the shell differs essentially from 
a membrane, are not negligible only for the short-wave-length deformations, when the 
deflections are small, the deformations —  o f the order o f unity and the curvatures —  o f 
the order o f the inverse o f the small parameter. In order to treat consistently the case 
o f momentum supporting shells, the formulas for covariant differentiation in the shell 
space are revisited. It is shown that the geometrical non-linearity contributes terms o f 
the same order o f m agnitude as the momentum stresses. For the flexural deformations 
an equation o f Boussinesq type is derived containing fourth-order dispersion and cubic 
non-linearity.

K e y w o rd s : shells, geometrical non-linearity, flexural deformations.
1991 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 73K15.

1. IN T R O D U C T IO N

Since the turning o f the century and especially in the late forties the theory o f 
thin shells attracted much attention and many papers were devoted to its mechan
ical and m athem atical aspects. Yet, it is far from  completion. It  goes beyond the 
framework o f the present paper to g ive the historical account and the perspective 
o f the numerous shell theories. W e generally accept the attitudes o f the compre
hensive review  [9] and the monographs [6, 8, 10] in assessing the vast body o f the 
existing literature.

The theoretical approaches for m odelling shells fall generally into two main 
groups. T o  the first belong the theories in which the governing equations are
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derived as averaged properties o f a very thin curved 2D elastic layer in the 3D 
space. The second approach originates in [14, 5] and consists in direct application 
o f the mechanical laws to the 2D continuum representing the m iddle surface o f the 
shell. The Cosserat concept was applied in [7]. For the problems arising in the 
asymptotic analysis o f thin shells we refer the reader to the works o f P. Ciarlet, 
E. Sanchez-Palencia and co-workers (see the recent works [4, 11] and the literature 
cited there).

W hen deriving the shell equations from  the 3D elasticity, the deflections are 
assumed to be finite while the strains are small. Th is implies long wave length 
o f the deformations, resulting in even smaller curvatures. Th is is the so-called 
“shallow shell” model. S trictly speaking, the shallow-shell approach is not generic 
for shells but it is rather adequate for membranes, because the momentum stresses 
that are supposed to make the difference between a shell and a membrane are 
proportional to the curvature o f the deflections. Hence, in a consistent small- 
strains/smaller-curvatures approach, the moments are to be neglected to the first 
order o f thickness unless the stiffness coefficient is extrem ely large. However, large 
values o f the stiffness are very unlikely since the stiffness is proportional to bulk 
Young modulus and the square o f the thickness, the latter being very small. Hence, 
the short length scale o f  the deformations is the case where the moment stresses 
are really important.

The difference between shells and membranes becomes really im portant when 
the strains are much larger than deflections, and curvatures —  much larger than 
strains. It is clear that such a structure must be geom etrically highly non-linear. 
W e derive here a consistent first-order approximation in the shell thickness for the 
said case.

The assumptions o f the present work are:

1. The thickness h o f  the shell is much smaller in comparison w ith the length 
scale L  o f the flexural deformations o f the m iddle surface, i.e. h <C L  or 
e =  h/L  -C I- N o restrictions on L  are imposed, e.g., L  L q  is also an 
admissible case, where L d  is the length scale o f the structure itself.

2. The thickness o f the shell is constant w ithin the adopted asym ptotic order. 
Hence the derivatives o f the thickness scaled by the thickness itself should 
not be large values, i.e. ||/i- 1 (V/i)|| ss 0 (1 )-  The latter means that the 
length scale o f changing the thickness is o f order o f magnitude larger than 
the length-scale o f the deformations.

3. The loads, e.g. the normal pressure and the tractions on the shell faces, are 
com patible w ith the above assumptions, i.e. they possess the necessary asymp
totic in order to secure 2D strain and stress states.

4. I f  the deformations created by the boundary conditions at the rim  o f the shell 
structure (the contour-line o f the m iddle surface) are not com patible w ith ( 1 ) 
and ( 2 ), then only the portion o f the shell is considered, which is far from  the 
rim, i.e. the 3D effects o f the said boundary conditions can be neglected.

5. For the sake o f simplicity, no tractions are exerted on the shell faces.

It should also be mentioned that when the thickness o f a shell is very small, 
then the contributions from  the physical non-linearity o f the material are negligible 
and geom etry is the only source o f non-linearity. For this reason, in the present
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work we consider only the linear constitutive relations for elastic continuum (the 
so-called S t-Venan-K irchhoff materials [3]).

2. G E O M E T R Y  O F  T H E  SH E LL  SPA C E

In this section we develop further the derivations o f  [12] and [6] incorporating 
the dependence on the transverse co-ordinate in the shell space. As it w ill turn 
out, this is essential, because after averaging some o f the terms, neglected in the 
mentioned works, they become commensurable w ith those that had been left into 
the considerations.

Consider an TV-dimensional Euclidean space and a structure immersed in it, 
defined as a thin layer o f v irtually  constant thickness h (in  the sense o f require
ment (1 )).  It  is approxim ately equipartitioned (in  the same sense) by the m iddle 
hypersurface o f dimension ( N  — 1 ).

Assume that the m iddle surface is parameterized by the curvilinear co-ordinates 
£a , a  =  . , N  — 1. The TV-th co-ordinate £N  is defined as the normal line to the
particular point o f  the m iddle surface. As far as the shell does not intersect itself, 
the so defined set o f  curvilinear co-ordinates is not ambiguous. In addition, it is 
orthogonal and, w ithin the adopted asym ptotic order, it coincides w ith the material 
co-ordinates. W hen the shell thickness is not constant, then it is convenient to scale 
the normal co-ordinate by it, in order to transform the mathematical problem into 
one for which the shell faces are co-ordinate surfaces. Then the co-ordinate system 
is not strictly orthogonal but only to the order 0 (e 2), which is fu lly compatible 
with the attem pted here theory o f approximation 0 (e ) .  W e resort here to the case 
o f equidistant surfaces o f the shell and the words “ equipartitioned by the m iddle 
surface” mean that the m iddle surface is drawn inside the shell, so that the condition 
A ioU 1, • • • >£JV_1) =  —h u p it1, ■ ■ and hence h =  hup -  h\Q, always holds.

The curvilinear co-ordinates £“ , a  =  1 , — 1, are in fact material (La- 
grangian) co-ordinates. Th ey  are connected to the geometrical Cartesian co-or
dinates (originated somewhere in the /VD-space) through the follow ing functional 
dependences'.

a r ^ x ' t f 1, . . . , ^ ; * )  for i = l , . . . , N ,  ( 2 .1 )

where t stands for the time. Here and henceforth the Greek indices range from  1 
to N  — 1 and serve to mark the variables in the shell. Italics are used for indices 
when the space quantities are concerned.

Let us assume for definiteness that the initial state o f the shell is physically 
admissible (see, e.g., [13] for the definition). Then the in itia l state can be param
eterized by the same transformation ( 2 .1 ) but for the specific value o f time t =  i Q. 
W ithout loss o f generality we set t 0 =  0.

The m iddle surface is characterized by the first and second fundamental forms

( 1  JV..X , ( c l  r N . f )  def A  dvf  d r f
9aß\C, ,■■■,£ >t)  — Qta Qfß ' baß№ 1 • • • I? d )  2-*/ gca Qcß '

t =  l  i —1

In the last formula n* denote the Cartesian co-ordinates o f  the normal to the m iddle 
surface vector (say, n ) .  The outward normal is defined arbitrarily. W hen the co
ordinates are the lengths o f the arcs, then the second fundamental form  adopts the 
specially simple form  baß =  VqV/jC-
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The orts o f the curvilinear co-ordinate system are expressed as follows

N a i def Ox
9a — Q£a e °  ’

where e a are the orts o f the Cartesian co-ordinate system. In order to avoid confu
sion, we do not use throughout the present work the convention o f summation with 
respect to “dum m y” indices when Cartesian co-ordinates are involved. In such a 
case we put explicit sign £ . For the sake o f completeness we also add the relation

9 n  =  71 >

which is true by the definition o f  the normal co-ordinate. According to this defini
tion the radius vector r  o f  a point inside the TVD-space enclosed in the shell can be
expressed as

T =  r  +  sgN , (2.2)

where r  is the radius-vector o f  the normal projection o f  the said point on the shell 
m iddle surface. Here we introduce the notation

s =  ZN h ( t \ . . . , Z N - > )  (2.3)

as a measure o f the length alongside the normal co-ordinate.
From Eqs. (2 .2 ) and (2 .3 ) one obtains for the fundamental tensor o f  the space 

enclosed in the shell (see [1 2 , 6] )

f  d r  d n \  (  d r  d n \  ^  (  d r ’ dn l \ (  d r * dn'  \

aP ~ l a F  + sde )  ' + SW / ^  + )  \ W  + SW )

=  g * p ( Z \ .  ■ ■ . e " " 1) -  2sbaP^ \ .  . . , Z N - 1) +  s2caP( e , . . . , Z N - 1) ,  (2.4)

G n n  =  1, G ajv =  0 . (2.5)

Here cap =  basbp is the third fundamental form  o f the m iddle surface.

It  is clear now that the fundamental tensor o f the space filling the shell is defined 
both by the fundamental tensor o f the m iddle hyper-surface (the first fundamental 
form ) and by the tensor o f  curvature (the second fundamental form ). For further 
convenience we cite here the formulas for the contravariant components o f the
fundamental tensor. Since our aim  is a first order approximation w ith respect to
thickness, it fu lly  suffices to  retain here only the terms up to 0 ( s 2).

W ith in  the adopted order o f approximation o (s2) the contravariant components 
o f the fundamental tensor are given by

G ap =  ■ ■ ,ZN~1) +  2 s b ^ ^ 1 , ■ - ■ A N~1)

+ 3  s2c ^ ( ^ , . . . , ^ - 1) +  o (s2) ,  (2.6)

G NN =  1, G aN =  0 . (2.7)
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T h e  p roo f o f (2 .7 ) is triv ia l and is a straightforward corollary o f  the definition 
o f  the m atrix o f contravariant components as an inverse m atrix o f  the m atrix o f 
contravariant components. T o  prove (2 .6 ), we simply m ultiply it by (2.4) to obtain

GapG^ = gapgay + 2s{baPg^  - gapbâ ) + s2{capg^ -  4bapbâ  + 3gaPc^)  + 0(s3)

=  6j +  2s(bj  -  b j )  -|- s2( c l  -  4c} +  3cyp) +  0 (s3) =  6 j +  0 (s3) .

3. C O V A R IA N T  D IF F E R E N T IA T IO N  IN  T H E  SH E LL SPA C E

This section uses extensively the results o f  [12] and [6], but it is not possible to 
om it it because not all o f the necessary formulas are presented there. In addition, 
the terms proportional to s2, which are essential for our derivations, are absent 
in the cited works. In order to make the present paper self-contained, on the one 
hand, and to fulfill the gaps in the cited works, on the other, we compile here the 
necessary formulas, deriving those that are not present in the literature.

The covariant derivatives o f a vector and o f a second-rank tensor are given by

A n
d A n

+  T ?kA n
d A mn

+  T?kA kn +  r ?kA mk . (3 .1 )
d p  “  ’ i d p

The covariant Christofell sym bol in N  dimensions is given by

1 / d G j i  dGn d G i j \  k _ r kir

=  2 +  f o T  ~  ~ d xT )  ’ Ti i ~ G  T ij■''

The contravariant symbols are obtained from  the covariant ones through the 
procedure o f  “elevation” ( “ contraction” ) o f  indices. It is easily shown now that a 
Christofell sym bol is triv ia lly  equal to zero i f  it contains the index N  at least in 
two positions, i.e.

T aN, N  =  r  NN, a  =  ^ N N , N  =  0 i ^ a N  =  ^ N N  =  FjvjV  =  0 fo r  Or =  1, . . . , IV — 1 .

Let us treat separately also the symbols containing the index N  only in one 
position, namely:

F — r  -  1 ,1 a0,N — (3N%a — ^ — â/3 SCap .

Due to the specific properties o f the fundamental tensor, namely, that G Ni  =  6N i , 
one has

Tap =  G N jTap j  =  TqPiN =  bap -  scap .

Respectively,

=  \ G aK^ L =  ~ t i ° K +  2s6“ K +  3s2caK)(bpK -  sept)

=  -  bp +  scp -  s2caKbpR .
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Note that the last term  is obtained after the follow ing fa irly obvious manipu
lation is applied caKbpK =  3caKbpK — 2baKcpK.

Finally, for the Christofell symbols which do not contain the index N ,  one 
derives

Tpy,a =  [/?7 , a}9 -  2 s [0 j ,  a ]6 +  y  [/?7> °c]c , (3.2)

where

[/?7, a ]9 d=  -  ( ^9ßa +  д-?7а _  ^ 7
2 \ d x i  dxP d x a

=  (3 J )

r a -,1C def 1 . ( dcpa dcya ^ dcpy

[P 7 ' 1 ~  2 V д х -t +  dxP d x °

are the connections generated by the tensors gap ,b ap and cap, respectively. One
sees that due to the curvature o f the m iddle surface the connections in the shell 
space are more complicated making its restriction to the ( N  — l)D -surface non- 
Riemannian. Note that the first term o f  the connections, namely 9[f3y, a ], is noth
ing else but the Riemannian connection (TVD-Christofell sym bol) for the ( N  — 1)- 
dimensional space o f  the m iddle surface.

The related contravariant Christofell sym bol is expressed as usual

Г apy =  G aKTPytK =  ( gaK +  2sbaK +  3s2c“ K)  ([/?T , *]> -  2s [0 l t  к ]ь +  у  [0y, /c]c) . 

Then

T Py =  { p j }  + 2s{ / ? t }  + s 2 { / ? t }  ’

{/?“  У  = 9 ак[ Р ъ к ] 9 , { р у } Ь =  Ьак[/Зък]д - д ак[/3 7 , « ] ‘ .

{  } C =  д а к [0У, « Г  -  4«7ак[/?7, * ] ‘ +  3c“ K[/?7, « ] ' .

Now we are equipped to derive the expressions for the iVD-covariant derivatives 
I . for the space inside the shell. By definition we have

Я A m
=  y  +  (3.4)

Let us also introduce the notation 

A -
d£°

+ № ' ■  (3 .5 )

which w ill be called “restriction o f the covariant derivative.” For s =  0 it is nothing 
else but the covariant derivative in the ( N  — l)D -space o f the m iddle surface o f the 
shell.
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Since Eq. (3 .5 ) is valid for the whole space inside the shell, it can only loosely 
be called “ restriction o f  the covariant derivative” . W e shall return to this issue 
later on. For the tim e being it  is enough to be noted that the only variables (3.5) 
that depend on the normal co-ordinate s are the components o f  the vector A 11.

Combining Eqs. (3 .5) and (3 .4 ) and using the formulas for the Christofell sym 
bols, one derives the follow ing expressions for the covariant derivative II.:

=  A 11 + ( 2s{  L } ‘ + L } ‘ )  A‘ -  « - < + *2«'- ‘ « M "  -

It  is a generalization o f  the respective form ula o f Neuber because o f  the depen
dence on s o f  the components o f  the differentiated vector. Further on we have

aN 8 A N
T(ftyo  SCi/a^A =  ()£a  ̂ SCi/a^A ,

because as far as the subspace o f the m iddle surface is concerned, the component 
A n  behaves as a scalar, which means that

A n

In the same manner we obtain

d A a 2

8 A N

8£a

A a
N 8s

( 6“  -  sc“  +  s ca*bl/K)A '/ and A N
N

8 A N

8s

Following the same line o f reasoning, we obtain the formulas for the covariant 
differentiation o f tensors:

=  A ap +(2s[i/y,  a ] fc +  s2[vy, a ] c) A up +  {2s[i/y, P ]b +  s2[u7 , P ]C)A °

( 6“  -  sc“  +  s2caKb ^ ) A Np -  (bP -  scP +  s2c ^ b y K) A N
7 7

A ciN =  A aN +(2s[i/y, a ]6 +  S2\yy, a ] c) A vN

+  (6W7 -  scUy ) A av -  (6“ -  sCy +  s caKbyR) AaNN

A " P A ni3 +(2-s[i/y, /?]* +  s2[vy, P ]C)A N u

+  (bvy -  scUy ) A ut3 -  (bP -  set +  s2c ^ b y K)A NN

aN N aN N A(b„y -  sc!,y)A v +  (b„y -  sc„y )A vN

In the end we consider A N/3 and A a N , which are in fact components o f a vector 
as far as differentiation in the m iddle surface o f the shell is concerned:

4 aN 8 A aN

N 8s
( 6“  -  scav +  s2ca*bUR) A vvN
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A n P
N

d A N <3

ds
-  ( 6̂  -  s t f  +  s2cPKbl/K) A Ntl , A NN

N

3 A NN

ds

Let us note again that our derivations are not restricted (as it is the case with 
[12 ] and [6] )  to the m iddle surface but are valid for the entire shell space.

4. G O V E R N IN G  E Q U A T IO N S  IN  C A U C H Y  FO R M

W e prefer to derive in the beginning the averaged Cauchy form  and only after 
that to turn to constitutive relations, because even when considering stress balance, 
the role o f geom etrical non-linearity is conspicuous. The Cauchy form  o f the balance 
laws for a continuous m edia reads

[ p . a ’ - p V  ||. - F i ] g j = 0 ,  i , j = l , . . . , N ,  (4.1)

where p„ is the TVD-density o f the elastic medium filling the shell; g ■ are the 

above defined orts o f  the curvilinear co-ordinate system; P ' i  are the components 
o f stress tensor; a1 are the components o f the acceleration vector and —  the 
components o f  the TV-dimensional body forces. Respectively, 1̂  stands for the 

covariant derivative in (TV — l)-d im ensional space.
Upon substituting into Eq. (4 .1 ) the above defined connection o f ||. to the 

(TV — l)D -covarian t derivatives | the Cauchy law (4 .1 ) is recast into a system for 

the “surface” (lam inar) components and a scalar equation for the TV-th component, 
namely

p ,a a -  Pt3*  \ =  d- ^  -  ( 6*  -  s 4  +  s2c ^ b pK) P Na 

-  2 ( 6“  -  <  +  82ca*bVK) P N ‘' +  2 ( W  } ‘  +  s2{  ^  } ' )  P +  o (s2) , (4.2)

N
i f tu N N

~ p P N \ =  +  (6^  "  scP ^ pPv

(s 2) .  (4.3)- (sj - *4+ + (2s{ $v}' + / „ } “) p” 1+f"+o
W e sim plify the above system by taking into account the main assumptions o f 

the present derivations, nam ely that the shell is a thin layer h <C l  and that the 
length-scale o f the deformations in the .middle surface is L  h, then we have the 
small parameter t  =  h/L.  Dimensionless variables are introduced as follows:

s — hs , |or — L  j bap — Li bQp , cap — Li j

{ £ } ■  = * - { £ } ■ .  

c = v £  9  “ '‘ = 4 “"V; <4-4>
here g, is the shear elastic modulus and c is the speed o f shear waves. Note the 
special scaling for the tim e involving the square root o f  the parameter 6, which w ill
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be identified later on. In a sense we consider motions o f the shell that are o f certain 
characteristic time. O m itting  the primes w ithout fear o f confusion, the governing 
equations (4.2) and (4 .3 ) read

6aa -  p P a
1 d P Na

-  ( b p  -  S £ C p  +  S2£ 2C^K' b p K ) P N a
p  £  d s

-2 (bau - s £ c av + s 2£2c ° *b UK) P N ‘' + 2 ( 2 s £ { j * l/ } 6 +  SV { ^ } ^  P ^ + o ( £2) ,  (4.5)

_ 1 d P NN  

P~
6aN  -  pf>N

ds
+  (bpv ~  £scpu) p P u

It  is too early to make here assumptions about the relative asym ptotic order o f 
the different stress components. Y e t one can compare the terms containing the same 
stress component and to neglect those which are o f  higher asymptotic order. Since 
we only consider here the flexural deformations, we can neglect the acceleration 
terms in the equations for the lam inar components o f motion. Thus we obtain

_pPa

6aN p P N

_  1 d P Na 

p £ ds

1 d P NN  

£ ds
+  ( b p u -  £SCpu ) P l3v

(4.7)

(4.8)

The essential component o f derivation o f  any kind o f shell theory is the intro
duction o f averaged across the shell variables, namely

<xaP d=  J P ap ds , m aP = f J s P ap d s , qa = f J P Na ds . (4.9)

Integrating the asym ptotically reduced equation (4 .7 ), we get

ap =  0 , (4.10)

where it is acknowledged that there are no tractions on the shell faces. Th e  last 
equation has an obvious solution

(4.11)

which, depending on the sign o f kq, corresponds to the case o f uniform compres
sion/dilation o f  the m iddle surface o f the shell. Such a stress state is possible 
w ithout m otion in the m iddle surface. Henceforth we shall consider only the flex
ural deformations and the most complicated stress state in the m iddle surface w ill 
be given by Eq. (4.11).

M u ltip lying Eq. (4 .7 ) by s, integrating and discarding the tractions on the 
faces.we get



Let us assume now that on the shell faces different normal pressures act with 
difference o f order o f 0 (e ) .  Then

j N N =  0 , j N N
. _ A= cVr»

where eVg stands for the pressure difference. Here it becomes clear that one can 
have effectively 2D stress and strain fields only when the normal pressure is o f the 
above adopted order in the small parameter.

Integrating Eq. (4 .8 ) w ith respect to s, taking into account the boundary con
ditions for P N N  and using Eq. (4.12), yields

;/ ■
f f dB =  m ae \p \a + ^ - b pug ^  - c p . m ^  +  ^ V g . (4.13)

Obtaining the last equation has been the primary ob jective o f the present 
paper, because it gives the opportunity to identify the geometrical non-linearity, 
namely the terms o f type cpvm Pu containing the third fundamental form  o f the 
m iddle surface. Now  it becomes clear that the spatial derivatives o f the moment 
stresses are o f the same order as the geom etrical non-linearity. Th is is a new result 
and it is obtained due to the more consistent treatment o f the covariant derivatives 
in the shell space in comparison with [12 , 6].

5. C O N S T IT U T IV E  R E L A T IO N S . S t-V E N A N -K IR C H H O F F  M A T E R IA L S

W e shall not dwell much on the constitutive relations for the shell. The main 
assumption is that for the very thin shells under consideration the m aterial non- 
linearity is negligib le and that the hypothesis o f K irchhoff-Love holds true. A c 
cording to the latter, the laminar displacements u a in the shell space are related 
to the ( N  — l)D -displacem ents u a in the shell m iddle surface as follows:

u°  =  u a -  e s V aC . (5.1)

Being consistent w ith the lim iting case o f flexural deformation, we neglect in 
what follows the lamin; components uap o f  the displacement vector. Respectively, 
the transverse (fle x u red isp la c em en t and the acceleration, due to the latter, are 
given by

N  ,  . [  N  A 3 2Cu =  (, = >  / a ds =  e-
d t2

W e consider an elastic material (called St-Venan-K irchhoff m aterial) whose 
constitutive relations are linear regardless to the presence or absence o f geometrical 
non-linearity (see the thorough treatment o f these materials in [2]). W ithou t going 
into much detail one can derive the follow ing linear constitutive relations for the 
averaged stresses and momenta in the m iddle surface:

m Q/3 =  - D b a/} =  - Ë )V QV /3C , (5-2)

where
- D h  

~
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is the dimensionless stiffness coefficient, while D  is the stiffness o f shell. A lterna
tively, under the same assumptions the constitutive relation for the moment stresses 
can be postulated (see, [7]) and then the hypothesis o f K irchhoff-Love (5.1) is not 
necessary. Furthermore, the overbar w ill be om itted w ithout fear o f confusion.

Introducing Eq. (5.2) into Cauchy equations we get

S- ^  =  D [  - Д Д С  +  (V *  V e C X V ^ C X V "  V 4C) ] +  ^  ДС +  V, , (5.3)

where Д  =  V „ V " , Д Д  =  V „ V " ( V KV K).
Now it is tim e to assess the length and time scales for which the momentum 

stresses are im portant, i.e. when the shell is not essentially a membrane. These 
scales are the ones for which the different coefficients in Eq. (5.3) are o f the same 
order. For the sake o f brevity, let us consider the case Vg — 0 when the normal load 
is absent. In fact, one can think that either the shell is a vast sheet, compressed 
at its rims, or a sphere subjected to normal pressure. In the second case, part o f 
the membrane stress is balanced by Vg and one can subtract Vggatp from  the term 
Kobap. As a result the normal pressure drops o ff from  the equation and its sole role 
is to create the uniform  compression.

Thus the uniform  membrane tension must be o f order

M  =  %  (5.4)

and the dimensionless tim e scale 6 =  |/co[- Conversely, for a shell o f given stiffness 
and shear modulus Eq. (5 .4 ) defines the length scale o f the “shell-type” deform a
tions when the uniform compression/dilation «o  is selected. The governing equation 
then reads

^  =  . [ -Д Д С  +  (V ^ V {C ) (V /3V ^ C )(V MV dC)] +  s ign (Ko)A C  . (5.5)

One sees that Eq. (5.5) contains a very strong non-linearity —  the cubic power 
o f the curvature o f the deformation. In this way it looks very much like the Boussi- 
nesq equation [1], being in fact a Boussinesq equation for the curvature ДС, if  the 
m iddle surface is subjected to uniform dilation /Co >  0. For the opposite case kq <  0, 
when there is a uniform  compression, it is more proper to be called aniг-Boussinesq 
equation.

6. C O N C LU S IO N S

In the present paper a consistent asym ptotic treatm ent o f a 3D thin elastic 
layer is attem pted for the purposes o f derivation o f shell theory. The main small 
parameter is the ratio between the thickness o f the shell and the length scale o f 
the deformation o f the m iddle surface. No additional assumptions, such as “shal
lowness” o f the flexural deformation, are implied. For the “steeper” deflections the 
geom etrical non-linearity is identified and shown to be proportional to the cubic 
power o f the curvature o f  the m iddle surface. The equation for flexural deformations 
turns out to be a Boussinesq-like equation.
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Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В . К Л И М Е Н Т  О Х Р И Д С К И “

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И И Н Ф О Р М А Т И К А  

Книга 1 —  М атем ати ка и механика 
Т ом  89, 1995

A N N U A IR E  D E  L ’U N IV E R S IT E  D E  S O F IA  „S T . K L IM E N T  O H R ID S K I“

FA C U LT E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  
L ivre 1 —  Mathématiques et Mécanique 

Tom e 89, 1995

PERTURBATIONS IN A CHAMPAGNE BOTTLE

G E O R G Y  G E O R G IE V

The system describing the m otion o f a particle in a potential field shaped like 
the bottom  o f a champagne bottle (m ore precisely, an S 1 symmetric double well) for 
the K AM -theory  conditions is studied. W e show that the Kolm ogorov ’s condition is 
fulfilled everywhere out o f the bifurcation diagram o f the energy-momentum map and 
we make researches for the condition o f isoenergetical non-degeneracy.

K e y w o rd s : K AM -theory , Abelian  Integrals, K olm ogorov ’s condition, Isoenergetical 
non-degeneracy.
M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 34D10, 58F07, 58F30, 70H05.

1. IN T R O D U C T IO N

The question o f the integrability o f  Ham iltonian systems is one o f  most im por
tant problems o f  the classical mechanics (see [1]). Since the end o f the last century 
it has been known that most o f the Hamiltonian systems are not integrable. The 
main problem  after this result is to study Hamiltonian systems which are close to 
integrable ones. Th e  most powerful approach to non-integrable systems is the per

turbation theory and especially the KAM -theory. Im portant for the K A M -theory  
are the conditions o f  non-degeneracy and isoenergetical non-degeneracy.

Before g iving a b rie f account o f KAM -theory, let us display the structure o f 
the integrable Ham iltonian system (see Ch. 2 and [1] for details). Th e  phase 
space o f a general integrable Ham iltonian system with n degrees o f freedom is 
foliated into invariant manifolds, the typical fiber being an n-dimensional torus on 
which the m otion is quasiperiodic. As most o f  the motions o f  generic integrable 
systems are quasiperiodic, it is a logical question whether small perturbations can
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destroy them. K A M -th eory  [1, 3] gives conditions for the integrable systems which 
ensure the survival o f most o f the invariant tori. One typical condition is that the 

frequency map should be a local diffeomorphism. For any integrable Hamiltonian 
system defined by a Ham iltonian Ho one can introduce at least locally near a fixed 
torus canonical co-ordinates I \ , . . .  , I n , i p i , . . .  ,<pn such that I  =  ( h , . . .  , I n ) maps 
a neighbourhood o f the fixed torus into an open subset o f R "  and <p =  (931, . . . ,  1pn) 
are co-ordinates on any o f  the nearby tori. Moreover, the first integrals become 
functions on ly o f T h e  theorem stated by Kolm ogorov [3] maintains that 
in the perturbed system

defined by a small Ham iltonian perturbation o f H q, most o f the tori sustain the 
perturbation, provided that the Hesseian

is not identically zero. Th e  measure o f the surviving tori decreases w ith the increase 
o f both the perturbation and the measure o f the set, where the above Hesseian is 

sufficiently close to zero.

In this paper we study the frequency map

energy-momentum map.
Another condition o f  this type stated by V . A rnold  and J. Moser (see [1, 

App. 8] )  is that o f the isoenergetical non-degeneracy which we explain further. Let 
us fix an energy level H 0 — h0. I f  we get the Hamiltonian H 0 in action variables, 
then we can define the fo llow ing map F’/l0 from  the (n  — l)-d im ensional variety 

H o \ h 0) into the projective space P n_1 :

I f  the map Fha is a local diffeomorphism, we call this condition an isoener
getical non-degeneracy. Analytically, the isoenergetical non-degeneracy conditions

( 1.1)

where

for the studied m odel and prove for it a stronger result. W e prove that it is regular 
for all points out o f  the bifurcation diagram, i. e. for all non-critical values o f  the

F ha : J - > ( U l (7 ) : . . . : w „ ( 7 ) ) .

are

det (1.2)
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Some years ago the potentials o f the form  o f an S 1 sym m etric double well were 
o f interest to field theorists studying the Higgs field. In the present paper we study 
this condition for a model o f a particle m oving in a potential field shaped like the 
bottom » o f a bottle and determ ine thoroughly the set where it is violated for any 
energy level. It turns out to be either em pty or consisting o f two points. O f course, 

again the measure o f the surviving tori depends on the measure o f the set, where 
the above determ inant is too close to zero.

Usually, it is difficult to check the conditions (1 .1 ) and (1.2).
As far as I know, it has only been established for the spherical pendulum (see [4, 

5]), Neumann’s system, the geodesic flow on the ellipsoid (see [6]). The Kolm ogorov 
condition for the K irchhoff Top was proved in [9]. The condition o f isoenergetical 
non-degeneracy for the problem o f  two centres o f gravitation  was checked in the 
paper [8]. W e shall give the conditions (1.1) and (1.2) in terms o f Abelian  integrals 
and reduce the problem  (as in [4, 5]) to analysis o f these reminiscent and the study 
o f lim it cycles problems (see [7]).

2. T H E  A C T IO N  V A R IA B L E S

In this chapter we introduce some notations which we need in order to state 
the problem. W e follow  [2] and [4].

Let ( M , u )  be a sym plectic manifold o f dimension 2n, i.e. M  is a smooth 
manifold and w is a closed differential form  o f rank n.  Let H  be a smooth function on 
M . Denote by X h  the Hamiltonian vector field corresponding to the Hamiltonian

H.  Let also /i . . .  f n be n functions in involution, i. e.

{ f j ,  f i } = X f j f i  =  0, j , i = l , . . . , n .

Define the level set

M c =  { m  : f j ( m )  =  cj ,  j  =  1 , . . . ,  n} ,

and suppose that the differentials are linearly independent on M c. The follow ing 
theorem gives complete description o f the manifolds M c together w ith the natural 

co-ordinates near them.

T h e o r e m  2.1 (L iou ville  -  A rno ld ). Suppose M c is a compact component o f  

M c. Then:
a) M c is invariant under the flows generated by X j i., j  =  1, . .  ., n;

b ) there are a neighbourhood U  o f  M c and a diffeomorphism J  : f ( U )  —► V,  so 
that we have I  =  J  o f ,  and the symplectic fo rm  oj in the co-ordinates ( I ,  ip) takes 

a Darboux canonical fo rm :
ui =  ^ 2 d i p A d I .  (2-1)

(See [1] for the p roof.) Recall that I ,  tp are called action-angle co-ordinates.
Following [2] and [4], one can construct the action co-ordinates. Let (p, q) be 

local Darboux co-ordinates such that the level surfaces qj =  const meet transver- 

sally M c. W e suppose that the two-form  w is exact, u  — da, where u is an one-form.
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Define a basis o f  cycles 7j ( c ) ,  j  =  1 , . . . ,  n,  in the hom ology group H ( M C, Z). Then 
the action variables are given by

h  =  j> k -  1 , . . . ,  7i. ( 2 .2)

7k (c)

W e define a m odel using a potential in the plane by

V ( t )  =  r 4 -  r 2 , (2.3)

where r 2 =  x 2 +  y 2 and x  and y  are the Cartesian co-ordinates in R 2. Th e  Ham il
tonian o f a particle m oving in the plane under the influence o f this potential is

H  =  \  (p I + p I )  +  ( x2 +  V2) 2 ~  ( x2 + V 2)  (2 4)

in the usual canonical co-ordinates ( x , y , p x , p y ) .  W e change (2 .4 ) into polar co
ordinates

x  — r  cos0, y  =  r  s in 0.

Introducing the corresponding momenta p T — p x and pg =  p y / r 2, we obtain the 
Hamiltonian in the form

H = \ i f T + +7,4 ~ r2' 2̂'5̂

Now dpe/dt =  { pg , H }  =  0, since 9 is cyclic. Hence G  =  p$ is the conserved angular 
momentum. Th is means that the Hamiltonian system is com pletely integrable, 
because we have the two conserved quantities G  and H ,  whose Poisson brackets 
vanish.

W e want to understand the geom etry o f the map J  from  P  =  R 4 (the phase 
space) to R 2, which is given by

J : P  —> R 2 : ( x , y , p x , py) —  ( g , h) ,

where H  =  h.
The critical values o f  the map J  are (0, 0) and the curve is parameterized by

( g , h)  =  (± > / 4 r 6 -  2r4 , 3r 4 -  2 r2)  , r  >  2 ~ l l 2

(see [2] for proofs). Denote by Ur the set o f regular points o f  the map J  (F ig . 1). 
For points ( g , h )  £  Ur the level surface determ ined by the equations H  =  h, G  =  g 
is a torus T 9:h■ Choose a basis 7 1 , 72 o f the hom ology group H i ( T g[h, Z ) with the 
follow ing representations: for 71 take the curve on T 9ih, defined by fixing r  and pr 
and letting 6 run through [0 , 2tt]; for 72. fix 6 and pT and let r  and pg make one 
circle on the curve by the equation

h = \ ( p 2 +  ^ P l j  + r 4 - r 2 . (2.6)
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Fig. 1. Image of the map J

Now we can define the action co-ordinates 7i, / 2 by the formula (2.2), where 

a  =  pg A dQ +  pr A dr, w =  da =  dpg A dd +  dpr A dr. (2-7)

W e have

=  £ pe d9 =  27t</, ( 2 .8)

71

2̂ =  j> Pr dr  =  2 J l  (h, +  r 2 — r 4 — ^ 2  j  dr,

72

where 77 <  r 2 are the roots o f the equation pT — 0 (see [2] and [4]). Put 

z =  r 2, y — pr r , y2 =  2 (hz +  z2 -  z3) -  g2.

Denote the oval o f the curve

r  =  { ( 2/. 2) : y2 =  2 (hz +  z2 -  z3) -  g2}

(which exists for all (g , h )  E UT)  by 7 . Then we have

ip (h ,g )  =  / 2 =  J  j  dz.

(2.9)

(2 .10)

(2 .1 1 )

(2 .12)

Let us show what is the meaning o f 77 and r 2. I f  the polynom ial P ( z )  =  — 2z3 -f 
3z 2 +  2hz  — g2 has three real roots z\ <  22 <  Z3, then to 77 corresponds z2, and to 
r 2 corresponds 23 (F ig . 2) in the proim age transformation (2.10).
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L e m m a  2.2. The polynomial

P ( z )  =  —2 z3 +  3 z2 +  2 hz — g 2 

has three real different roots f o r  all (g , h ) G Ur .

3. S T A T E M E N T  O F  T H E  M A IN  R E S U LT

Denote by H ( I i, h )  the Hamiltonian o f our model in action co-ordinates. Our 

prim ary aim  is to state the next theorem.

T h e o r e m  3.1. F o r  (g , h ) G Ur the determinant

(3.1)

does not vanish.

The condition (3 .1 ) introduced by Kolm ogorov [3] is crutial in K A M -theory  
[1, 3], dealing w ith the existence o f  invariant tori for perturbations o f integrable 
systems. The procedure by which the invariant tori are constructed excludes the 

points, where the determ inant (3.1) is violated, together w ith their neighbourhoods, 
whose measure is proportional to the perturbation (see [1 ]).

W e shall g ive the condition (3 .1 ) an explicite form  in terms o f Abelian  integrals 

o f the second kind. Using expression for h ,  /2, we can determine G, H  im plicitly 

from  the equations

I\ =  2xG ,  / 2 =  ip (G, H ) .  (3.2)

/ d 2H  d2H  \

det
d l 2 

d2H

V <3/2 6U1

d h d h

d2H

d l l

L e m m a  3.2. The following form ula  holds true:

/ d 2H d2H  \ ( d 2ip d2ip

d l l d h d h
=  det

d2h dhdg

d 2H d2H d2iP d 2ip

\ d h d h d l 2 j \ dgdh dg2

(3.3)

(For the p roo f see [4].) 

Using [7], we have

dip f  dz

dh J  y
7^0 (3.4)

in Ur .
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L e m m a  3.3. For all (g , h) £ Ur the determinant

D  =  det

/ d2ip d2ip \

d2h dhdg

d24> d2tj}

\ dgdh W  /

# 0  .

This condition is equivalent to Theorem  1.

W e formulate the condition o f isoenergetical non-degeneracy in the next the
orem.

T h e o r e m  3.4. 1) F or  h 6 (-1 / 4 , 0) U ((7v/249 -  l )  /600 , + c o )  the map 

F h : H ~ \ h )  n  UT -  P 1, F h { I \ , h )  =  ( H fl : H h )

is regular everywhere;

2) F o r  h £ (0, (7\/249 — 1)/600] the map Fh has exactly two critical points.

N ext we would like to show that the entries o f  D  can be represented as elliptic 
integrals. I f  we differentiate ip(h, g )  twice formally, we get the follow ing expressions:

d2ij) f  z dz

W  =  ~ J
(3.5)

d 2ij) f  dz '

d h & j =  9 J 7 ’ (3 '6)
7

dip f  dz

dg 9 J  z y '
7

f ± . g =  =  (3 .7)
dg2 J  zy J  zy1 J zyd J  yJ

7 7 7 7

The differential forms containing y -3  have poles along 7 . There is a standard way 
to get rid o f  the poles on the integration path and we remind it below. Consider 

as an elliptic curve in C  defined by the equation for T 9th- Topologically, it is a

torus, whose one point is removed (see [4]). Now we deform the cycle 7 on into 

a new cycle 7 ' (F ig . 3) on which the function y has no zeroes. O f course, during the 
deformation the differential form  yz~ 1 dz must have no poles. Then by Cauchy’s 
theorem the function ip (g , h ) can be defined by the integral ( 2 .12 ), taken on the 
path o f  integration 7 ' instead 7 . W ith  this definition o f ij)(g, h ) the derivatives are 

well defined. W e denote again 7 ' by 7 .
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7'

Fig. 3. The deformation of the cycle 7

Let

■Wj(9,h) =  J  ^ d z ,  i  =  0, 1 . (3.8)

7

The next lem m a gives a representation o f D  as a quadratic form  in wq , uq, 
which we shall need throughout this paper.

L e m m a  3.5. The determinant D  has the representation

2
D  - -w i (2 h ,w0 +  w i )  -  g2WQ. (3.9)

Proof. W e have

(see (3 .5 )), 

(see (3 .6 )),

d2ip

w  =  ~Wl

d2ip d2if)
-  =  gw  0

dhdg dgdh

! -  
J  y3

=  -2 h w o  -  wx +  2 I  ^  dz 

7

(see (3 .7 )). W e need an expression for
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Let transform this integral in the follow ing way: we have

2z3 =  2 (hz  +  z2)  — g2 — y2,

because

Then

f ^ l dz =  1 f 2z3 d : -  1 f d( 2( hz  +  z2) - g 2 - y 2) )
J  y3 3 J  y3 3 J  y3
7 7 7

1 /* 2/i 4 / 2  ^ f  V , 2h 4

=  2 j  7 i z + 3 j  ? d‘ ~ s J  7 dv =  T m + z w"
7 7 7

/ ^  =  0.
7 2/

d2%p 2h 4 4h 2
—  =  —2hwo -  2wi +  y w° =  3 “ i =  — 3-^0  -  ,

this gives the representation (3.9).
W e see that D  does not depend on the sign o f g. That is why it is enough to 

prove Lem m a 3.3 only for g >  0.

4. P IC A R D -F U C H S  E Q U A T IO N S

L e m m a  4.1. Let g =  0. Then the functions wq and w\ satisfy the following  
system o f  P icard-Fuchs equations:

2 h { 4 h +  1 ) ^  =  -2 (7/ i +  2)iuo +  5u»i, (4 .1 )
ah

2(4/i +  1 ) 777-  =  wo — 10uq. (4.2)
an

Proof. D ifferentiating the expression (3 .8 ) w ith respect to h, we obtain

*  =  0. . .  ( « )

7

Put y =  0. Then we transform Wo in the follow ing way:

..2 r th-, _L ,2  3̂

7 7 7

2h dwo 2 dwi f  z3 ,

- 3  - d h - 2 J 7 dz '3 dh
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2J y sdz = I I 7 d2z3 = I J  ^  d̂ hz + ~ y2)
7 7 7

2h f  z J A f  z 2 2 f  z

=  T J  7 iz + i J  T ' dy

Then

Th is gives

7 7 7

2/i duio 4 dini 2 f  _3
'y d h "  "  9~d/T + 9 7 2 V

7

2/z rfufQ 4 c/u>i 2 f  dz 2h dwo 4 ch^i 2

~ 9 ~ d h ~ 9 ~ d h ~ 9 J  y * =  ~ ~ 9 ~ d h  ~ 9 ~ d h ~ 9 W°'

2h dwQ 2 dtui 2/i duio 4 duii 2 

0 3 dh 3 dh +  9 dh + 9 dh + 9 ° '

4/i du/Q 2 dwi

" »  =  - T j r - 7 i r -  (4 -4>

In the same manner we transform u>i and obtain

2h dwo 28h +  8 dwi

Wl  =  - 3 5 ^ h ~ - ^ ~ d h -  (4 '5)

Now  solving (4 .4 ) and (4 .5 ), for and we get the system (4 .1 ) and (4.2).
dh dh

W e also need the function

<«>

L e m m a  4.2. The funct ion  <r{h) satisfies the R ic ca t i ’s equation

2h{Ah +  1 ) 7 7  =  — 5<r2 +  A(h  +  1W +  h. (4-7)
dh

Proof. Obviously,

da I f  dw\ dw0\ 1 , _ 2 ,1
Th  =  ^  { " “ -dk - W i T h )  =  2M 4 M - l ) ^  + 4 ( A  +  l ) ^  +  ft).

When 3 =  0, the expression for D  factors is

D = ^ w l a a u  (4.8)

where a\ — a +  2h.
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2 (4h +  1 ) ^  =  -5o-i +  4(6/i +  l)cri +  8h 2 -  3h. (4 9)

W e need also some other functions both for the study o f o  and 04 and for the
case g ^  0. In order to  introduce them, we put the fam ily o f curves T  ̂into the
normal form

FP =  { ( u,  v)  £ C  : v 2 =  2(u 3 -  3u +  p), p £ ( - 2 , 2 ) }

by the transformation z — — t +  1 , y =  av, t =  j3u, a  =  j33/2, where
o

/? =  1 ^3 /1 +  1 , (4.10 )

1 /  h 2 g2 \ ,

p ~ / ^ V 3  +  2 7 _ 2 7 , ) ’ (4 -n ) i

p £ ( —2 ,2 ) (see [7]). In these variables the integrals w0( g , h ), w\{g, h)  become

/? f  du

W0 = - ^  J  <4'12)
i (p )

From (T\ we obtain the R icca ti’s equation

Wi
Q"

7 (p)

W e introduce the new functions

=  ( « 3 ,

f c ( l » = / S .  * . < P > = / £  ( 4. M )

7(p ) 7(p)

and their ratio

nfn\ - ------
#o(p) '

In these notations we have

e(p) =  r I S -  (4 1 5 )

<r(/i) =  -/ 3 g (p (0 ,h ) )  +  ^ .

L e m m a  4 .3. 1) The functions 9o(p), 9 i (p )  satisfy the P icard-Fuchs system 

6(4 — p2) - j^ -  =  7p9'o +  100!, (4.16)
dp

6(4 -  p2) ^ p -  =  140o +  bp6i. (4 1 7 )
dp
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2) The function g(p) satisfies the R iccati’s equation

3 (4 _ P2) ^  =  7 - p g - 5 g 2. (4.18)

The p roof is the same as the one o f Lem m a 4.1 (see [4]).

5. A S Y M P T O T IC  B E H A V IO U R  

L e m m a  5.1. The fo llowing formulas hold true:

lim  g{p) =  1, (5.1)
p —»2

l i m p ( p )  =  | ,  (5.2)
p— - 2  5

lim^ a {h )  =  ^  , (5.3)
4

lim  a (h )  =  0, (5-4)
/1—0 '

lim  a (h )  =  —oo, (5.5)/l—* -foo

lim  =  0. (5 .6)
/1-+00 h

that
P r o o f  The p roo f o f (5 .1 )  and (5 .2 ) is given in [4]. To  prove (5 .3 )—(5 .6 ) , note 

l im i p (0, h ) =  —2 , lim  p (0 , h ) — 2 .
4

Then we obtain

lim  cr{h) =  -  lim  0 lim  g{p) +  ^ .
h - * - \  P — -  2 3 It )

Next we have

l i m ^ )  =  - i  +  i = 0 ,

a (h )  3  1 7
l im —;—  =  — l im — l im g (p )  +  -  l im =  0. -  +  0 =  0.
- + o o  h h— +oo h p— - 2  '  '  3 1 — +00  5h—► -foo

And finally,
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6 . K O L M O G O R O V ’S C O N D IT IO N

Let us first consider the case g =  0.

L e m m a  6 .1 . The functions u {h ) ,  c r i (h ) satisfy the fo llowing inequalities:

1 ) in the region  — -  <  h <  0, cr( h )  >  0 and a i ( h )  <  0;

2) in the region 0 <  h <  + oo , a (h )  <  0 and <j\(h) >  0.

Proof. F irst we prove that a (h )  is positive in the interval ^ , 0^ and nega

tive in (0, + 00). Let h £  ^ , 0^ and suppose that hi is the first zero o f a (h )  in

this region. Then, using the R icca ti’s equation(4.7), we have

1
a ' (h  1 ) -

2 (4 * ! +  1 )
>  0.

The function cr'(h) is continuous. Th a t is why we obtain that a neighbourhood 
o f point h i  exists, where <r'(h) >  0. Then the function a (h )  is strictly increasing 
in this neighbourhood. Using(5.3), we obtain that a point ho <  hi exists, where 
cr(ho) =  0: an obvious contradiction. In the same manner we obtain that cr(h) can 
have no zero in the interval (0 ,+ o o ).  Using Lem m a 5.1, we obtain that <r(/i) >  0

for h £  ^>0^ an(  ̂ cr(^ ) <  0 for /1 £ (0 ,+ o o )  (see Fig. 4). In the same way we

obtain that the function cri(/i) is negative in the interval f  ^  , 0

Fig. 4. Image of <r(h)

In order to p roo f that <Ti(h) >  0, we need the next proposition.

L e m m a  6.2. The funct ion  g (p )  is decreasing on the interval ( —2, 2) and

1 < e{p) <  - . (6 .1)

(For p roo f see [4].)
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<7i(/ i) =  —/3p(p(0, h ) )  +  — +  2h >  —/3 +  — +  2h. (6-2)

Using(4.10) and the substitution y/3h +  1 =  f , where t G (1, + o o ) for /i G (0, + o o ), 
for the right hand side o f  (6.2) we obtain the new function

77( f )  =  2 f 2  -  t -  1 .

W e shall prove that 77( f )  >  0 for t G ( l , + o o ) .  Indeed,

=  At -  1 ,

that is why the function Tj(t) is strictly increasing on the interval (1, + o o ).  Now we 
have

77( f )  >  77( 1 ) =  0.

W e obtain that <ti(/i) >  0 for h G (0, + 00). Th is  completes the p roo f o f Lem m a 6.1 
(see Fig. 5).

W e have

C o r o l la r y  6.3. L  is negative f o r  g =  0.

W e turn to the general case g >  0.

L e m m a  6.4. 1) F o r  h G U (0 ,+ o o )  and g >  0 we have the represen

tation

D  =  j j w lP 2.F(p,/3),

where

F ( P ,f3) =  e2 -6 / 3 e +  W p - 2 .  ( 6.3)

2) The functions (3(h) and p (h ,  g )  map the set

Ur f l  1 h) : h G U (0 ,+ o o )|
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diffeomorphically on the set

Vr = \(p,/3): / ? e ( i  I) u (|. + o o ) l P 6 ( - 2 , 2 ) [ .

Proof. For D  we have (using (3.9 ), (4.10) and (4 .11 ))

D  =  |iwi (2hw0 +  w i )  -  g2w% =  ( 2 ( -/ 3 g  +  0  ^2h -  /3e +  ^ ) -  Zg2

=  ( 2p 2g2 -  l2/33e +  W 2 ~  \ ~  3-72

=  ^ 02 ( 2 p 2g2 -  12(33e -  | (3 h +  1) +  2(32 +  6P 2p 

=  l- w l  (2p 2e2 -  12 f g  -  4/?2 +  6p 3) =  ~ w 2/32 (0 2 -  6pe +  3Pp -  2) .

L e m m a  6.5. F o r  all ( p , b) £  Vr the function  F  is negative.

Proof. W e have

d F  d2F

a p  =  ~ 6e +  3p' P 7  = ' s ,+3># ’

because q' <  0 (see Lem m a 6.2).
d F

T h at is why we obtain that the function is a strictly increasing function 

o f p £ ( —2, 2). Now  we have

^ (2 ,/ 3 )  =  - 6e ( 2) +  3.2 =  0,

then F ( p yf3) is a strictly decreasing function of/? (/? >  ^ ). W e obtain
6

F( p ,  ( 3 ) < F  =  e2 -  e +  | -  2,

p i  
but —1 <  -  <  1 and —-  <  —q <  —1. So now we obtain 

2 5

p n 49 n 1
- * + § < 0 ,  , 2 < - ,  25 1

hence F (p ,/?) <  0. Th is completes the p roo f o f  Lem m a 6.5 and together w ith that 

the p roo f o f  Theorem  3.1.
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7. IS O E N E R G E T IC A L  N O N -D E G E N E R A C Y

Our aim  is the p roof o f Theorem  3.4. Here we find an expression for the 
function Fh in the terms o f  elliptic integrals. W e have Fh =  Fh(g), h =  const.

L e m m a  7.1. Let (g , h ) £  Ur . Then Fh has the representation

F^  = - h t {9' k ) = 9 f % ‘ (71)
7

The p roof is straightforward.

Lem m a 7.1 shows that we have to determine the zeroes o f the function

0 0 , 4 )  = - 2  ± F M

for a fixed h. W e shall study the curve o f zeroes o f the function ^(p,/*) for
d 2i> l 

dg2
( g , h) £ Ur - The statement o f the theorem easily follows from  the properties o f  this 
curve. Because o f the sym m etry o f  the set Ur w ith respect to the line g — 0, we
concentrate our attention on the set U + =  UT U [ g  >  0 }.

d2ip
L e m m a  7.2. F o r  g =  0 and (0, h) £ UT the funct ion  — r- does not vanish.

o g 2
The p roo f is a simple application o f Lem m a 6.1 and (3.4).
Now let <7 ^ 0. It is clear that we study only the case g >  0. W e have

W e know that (3 ^  0, that is why we obtain the equation

e"6',+ ̂  = 0’ 'Je(i5)UG,+°0)' <72)
e =  6 / J - p ,  i < e < \ -

Then we get

ße(l 7 + Vm
P ro o f  o f  Theorem  3.4. Let ß  £

3 ’ 60

1 v/249+7

3 ’ 60
. Then the equation(7.2) has

exactly one solution p (ß )  £  [—2,2], as Lem m a 6.2 implies. Th is  defines a function 

ß  —> p( ß) ,  ß  £ ^jjr, U which is strictly increasing. Our aim is to
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r\ 2 j
prove that the curve in U + , defined as the zero-locus o f the function - r -^ ,  has

o g 2

(  7 +  -v/249
exactly, one point o f  intersection with the line h =  h0 for h0 G 0, (the

fn ,  ■ * | o c  | 1 7 +  -\/249image of the interval /3 6 I - ,

600

by (4 .10 )). Suppose there are two points
3 ’ 60

<7i and 02 for which
d2il> 

dg

Then the images o f these points ( g j , ho )  by the transformation (4.10), (4.11), which

we denote by ( pj , bo) ,  j  =  1,2, satisfy the equation (7.2) for 0 q £ [ —, -
\ 3 60

Because o f g (p )  being strictly increasing, we obtain p\ =  p 2. But g >  0 and using
(4.10) we have g i =  g2. Th is finishes the p roof o f Theorem  3.4.
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Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И И Н Ф О Р М А Т И К А
К нига  1 —  М атем атика и механика 

Т ом  89, 1995

A N N U A IR E  DE L 'U N IV E R S IT E  DE S O F IA  „S T . K L IM E N T  O H R ID S K I"

FA C U LTE  DE M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  
L ivre 1 —  Mathématiques et Mécanique 

Tom e 89, 1995

ON THE “TRIANGULAR” INEQUALITY IN THE THEORY 
OF TWO-PHASE RANDOM MEDIA

KONSTANTIN Z. MARKOV

A  necessary condition on the two-point correlation function o f binary random 
media, noticed by M atheron [l ]  and called by him “triangular" inequality, is studied 
in this note. An  appropriate result, due to Achiezer and Glazman [2], is first recalled. 
Simple consequences o f this inequality are given, as well as a necessary condition for its 
validity in a statistically isotropic medium. It is shown that it represents a requirement, 
independent o f that o f the fam iliar positive definiteness, that should be additionally 
imposed on the two-point correlation function o f any realistic binary medium.

K e y  w o rd s : random materials, two-phase media, correlation functions.
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 60G60, 73B35,

Consider a random and statistically uniform medium that occupies d-dimen

sional space Th e  medium is “binary” , i.e., it consists o f two phases labelled 1 
and 2. Phase 1 (which needs not to be connected) occupies f l i  and phase 2 occupies 
its complement 1U■ The characteristic function o f f i i  is / j. Thus,

(  1 , i f  l e f l ] ,
/l ( x )  =  s

[  0, otherwise.

As it is well-known, the statistical properties o f  the medium follow from  the set o f 
multipoint probabilities or moments o f /,:

Vi =  ( / i ( 0 ) ) . < / i ( 0 ) / i ( * i ( 1)

where each zjt 6 see for instance [3]. The angled brackets signify ensemble
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averaging. Such m ultipoint probabilities are symmetric in their arguments. One 
point could be taken at the origin, because o f  the assumed statistical uniformity.

It is, in fact, convenient to work w ith 771 and the m ultipoint moments

M p( z i , z2, . . . ,  zp_  1 ) =  (/ i (0)/ j ( z i ) f [ ( z 2) .. ./ { (z p_ i ) )  , p =  2 , 3 , . . . ,  ( 2)

where

f [ ( z )  =  h i z ) -  m  (3 )

is the fluctuating part o f  the field / i (z ) .

O f course, not any infinite hierarchy o f functions M p can represent moments 

derived from  a random medium and, moreover, from  a two-phase one. The reason, 
well recognized and very clearly explained by Frisch [4], is that the function M p 
should satisfy, in particular, certain com patibility conditions. The real problem  in 
this connection arises when m odelling a random constitution o f practical interest. 
In such cases the first few  moments (as a rule the two-point and, more rarely, the 
three-point ones) are prescribed using certain, very often heuristic and not very 
rigorous arguments. Though the form  o f  the prescribed moments can, in principle, 
be checked experim entally, the question remains as to whether these moments can 

be inserted into the infinite hierarchy o f multipoint moments ( 2), i.e. whether they 
pertain to a real random medium. The problem  is even tougher when the two-phase 
m edia are dealt w ith, having in mind that the latter very often appear in applica
tion. Frisch [4], for example, presented examples o f two-point probability densities 
that look plausible but cannot belong to any real random medium. Another more 
recent example is connected w ith the often used “well-stirred” approximation for 
random dispersion o f  spheres, for which, as far as the two-point moment is only 
concerned, overlapping is forbidden and the sphere location is not statistically in
terconnected otherwise. Th is  approximation turns out to be realistic only at sphere 
fraction r)x <  1/8 in 3D, as shown in [5, 6].

For any statistically homogeneous medium one restriction that is generally 
known is that its two-point correlation function should be positive definite, so that 
its Fourier transform must be positive. The converse is also true, namely, for any 
positive-definite function there exists a random medium for which this function 
represents its two-point correlation (the Bochner or Bochner-Khinchine theorem, 
see, e.g., [3]). Further restrictions are known if  the medium is also statistically 
isotropic [3]. For two-phase media, as introduced above, it ought to be possible to 
find more restrictions but none are known; a conjecture on how to recognize realistic 
two-point correlation functions for such media was recently made by Matheron [1]. 
As a matter o f fact, a m ethod for deriving relations o f such a type has been proposed 

in the recent work [6] on the basis o f a certain variational reasoning.
Here we shall study in more detail a requirement, specific for the correlation o f 

a two-phase medium. Th is is an inequality first noticed, to the best o f the author’s 
knowledge, by M atheron [1] and called by him “triangular” due to obvious geom et
rical reasons. It  appears that this inequality closely resembles a certain property 
o f the positive definite functions, first pointed out by Achiezer and G lazm an [2] 
almost forty  years ago. Th a t is why we shall first recall the appropriate result o f 
Achiezer and Glazman.
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Following these authors, introduce the class Q o f real and even functions g (x ),  
■nel

F ( x , y )  =  g ( x )  +  g (y )  -  g (x  -  y) (4)

x  £ l d, for which the kernel

is positive definite, i.e. 

k

+ ^ ( ® j )  -  g (x i  -  X j )  aidj >  0, V i*  E Md, a* E /2. (5 )

P r o p o s it io n  1. Let 72( 2 ) 6e a rea/ positive definite and even funct ion  on Md. 
Then  1 — 72( 2:) G G (and thus A(1 — 72( 2; ) )  £  G as well, VA >  0).

Proof. Due to the definition (5 ), 1 — 72( 2;) G G i f  the kernel

T { x , y )  =  1 +  72( 2; - y )  - 72( 2:) - y 2(y )  ( 6)

is positive definite. T o  prove this, consider the identity 

2k 2k

^ 2  72 ( 2/i -  y j ) b>bj  =  72(^2. -  2/2j  — l ) b2 i b2j  — l
i , j - l  >,j = l

2k 2k

' 1+  ^  72(j/2i ~  y2 j ) b2 i b2j  +  ^  72(2/21-1 — y2j - l ) b2 i - l b2j - l
i,j = l i,j = l

2k

+  72.(3/2*— 1 — y2j ) b2 i - \ b2j -
1,2 =  1

Choose now j/2i =  0, 3/2 1-1  =  27, 62i =  - a i ,  621-1 =  ai. i =  Then

2k k

0 <  72(2/1 ~  y j) 6!'6!' =  X] [ l  +  72 (x i -  x j )  ~  72(27) -  72(®j) a.-aj.
t,j= i

Hence the kernel T { x , y ) ,  see ( 6), is indeed positive definite, which proves the 
proposition.

R e m a rk  1. Th e  Proposition  1 and its simple proof, given here for the sake o f
completeness, belong to Achiezer and G lazman [2], see also [7, p. 265].

Let the medium be two-phase and let

j ( x ' ,  x " )  =  7 ( 2/ -  x " )  =  ^ ( ! / i ( 2; ') - / i ( x " ) | 2)  (7 )

denote the so-called variogramme o f the field f i ( x ) .  Using the definition o f the 
two-point correlation, it is easily seen that

7 ( 2;) =  771772(1 -  72( 21) ) ,  ( 8)
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^   ̂ M 2( 0) </(2(0 )) ’ ^   ̂ "  ^ 2’

so that 72( 2:) is the most often used two-point correlation for which 72 ( 0) =  1 .

According to Proposition  1, 7 G Q,  since 72( 2;) is positive definite. Hence 
the field T (a ;,y ), generated by 7 ( 2;), see (4 ), is positive definite. The follow ing 
proposition shows, however, that for a two-phase medium an additional fact holds.

P r o p o s it io n  2. The variogramme o f  any two-phase random medium generates 

afie ld  r ( x , ?/) which is not only positive definite, but which is nonnegative itself. In  
other words, the so-called triangular inequality o f  Matheron  [1] holds:

7 ( 2: -  y) < l ( x )  +7(2/)> V x , y G M d. (9 )

Proof. Obviously,

7 ( x , v )  =  ^ ( l / i ( x ) “  /i(2/)|2)  =  -  A ( ° )  +  / i ( ° )  +  / i(y )|2)

=  ^ ( l / i ( * )  -  / i (0)|2)  +  ^ (| / i (0) -  / i(y )|2)  -  a ( x , y )

=  l i .x ) +  7 (y) ~ a (x ,y) ,

where

Q ( E . y )  =  ( ( / i ( ° )  -  M x ) ) ( h ( ° )  -  M y ) ) ) .

To prove (9 ) it suffices to  show that a ( x , y )  >  0. But, i f  the origin 0 lies in the 
constituent ‘2 ’ , then / i(0 ) =  0 and a( x ,  y) =  ( f i ( x ) f i ( y ) )  >  0. Similarly, i f  0 lies in 
the constituent ‘ 1 ’ , then / i (0) =  1 and again a ( x , y )  =  ((1 — / i ( x ) ) ( l  — / i (y ) ) )  >  0. 

Combining ( 8) and (9 ) yields

7 2 ( * )  +  7 2 (y) -  7 2 (2; -  y) <  1 ( 10 )

or

l  +  72( r / +  0 r " ) > 7 2 ( r ' )  +  7 2 (r " ), V 0 G [- 1 ,1 ) ,  (11)

having chosen |x| =  r ', r "  =  |y|. Th is inequality should thus be satisfied by the two- 
point correlation o f  any realistic statistically homogeneous and two-phase random 

medium.

C o r o l la r y  1. Let the medium be statistically isotropic as well, so that 72 ( 2:) =  
72( 7-), r  =  |x|. Then

72( 0) < . ± 72( r ) ,  Vr G (0, 00). (12)

Indeed, choose the vectors x, y colinear, once with the same directions and

then w ith the opposite directions; |y| =  A r, |n| =  r, r  >  A r  >  0. Then

72( A r )  +  72( r )  <  1 +  72( r  ±  A r )

where
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which, at A r <  1, implies (12).

Since 72( 0) =  1 and 72( r )  <  1, we have obviously 72 ( 0) <  0. The inequality 
( 12 ) is then equivalent to

I72W I  <  172(0)1, Vr £ (0 ,o o ), (13)

which means, in particular, that the steepest decrease o f the two-point correlation 
function 72( r )  o f  an isotropic two-phase medium is at the origin r  =  0.

C o r o l la r y  2. A positive definite funct ion  72( 7') may serve as a two-point 
correlation o f  a two-phase statistically homogeneous and isotropic medium, only i f

72( 0) <  0.

Indeed, (13) im m ediately shows that 72( 0) =  0 yields 72( 7") =  0, Vt- £ (0 ,o o ),
i.e. 72 ( r )  =  1 , which is impossible.

The inequality 72 ( 0) <  0 for a two-phase medium follows also from  the fact 
that —72( 0) is proportional to S / V ,  where S  is the specific surface (i.e. phase 
boundary) w ithin the small volume V ,  see [8] and especially [9, p. 177] for details 
and a proof. M ore precisely, S / V  =  -4 t ; i (1  -  771) 72( 0), which obviously implies 
72( 0) <  0 for such media.

R e m a rk  2. As it is well-known, not every real and positive function is positive 
definite and vice versa. Hence the triangular inequality represents a necessary 
condition that should be imposed on the two-point correlations o f random m edia 

in addition to their positive definiteness, i f  the modelled medium is two-phase. T o  
illustrate this consider as an example first the function

7 2 ( r ) =  (1 + ( r / O T  '

It is positive definite (since its Fourier transform is positive) and hence it rep
resents, according to the Bochner-Khinchine theorem, a two-point correlation o f 

a certain statistically homogeneous and isotropic random medium. On the other 
hand, 72( 0) =  0, so that the triangular inequality fails for this medium and the 
latter therefore cannot be two-phase.

Conversely, consider again the above mentioned “well-stirred” dispersion o f 
spheres. Its two-point correlation satisfies the triangular inequality for all values o f 

the sphere fraction 771 £  (0 ,1 ) (since the field f i ( x )  is b inary). On the other hand, 
the Fourier transform  o f this correlation is positive definite only at 771 <  1/8, as 
it can be directly shown. Hence the positive definiteness and triangular inequality 
are indeed two m utually independent necessary conditions that should be satisfied 
by the two-point correlation o f  binary random media.

In general, it seems hard to g ive a complete description o f the functions that 
satisfy the triangular inequality (10). (T h e  variogrammes under study cannot ob

viously be homogeneous o f degree 1 , i.e. 7 (A s ) 7  ̂ ^7 ( 2;), and thus they are not 
semi-norms on Md.) A  simple and rich class o f such function can be easily de
scribed though. T o  this end note that (11) implies 7 2 ( 0) >  0 for such a function
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and thus 72( r )  is convex and m onotonically increasing in a certain vicin ity o f the 

origin. I f  the latter properties hold for all r  £  [0, oo), it  suffices to claim  that the re
spective function is an admissible two-point correlation. M ore precisely, recall that 
in ID  a bounded even function which is convex on the right half-axis is positive 

definite [10, p. 187]. A  radially sym m etric function 72( 7’ ) in 3D with these proper
ties is not obliged to be o f  that k ind .1 However, for such functions the follow ing 
result holds:

P r o p o s it io n  3. I f  j 2 ( r )  is monotonically decreasing, nonnegative and convex, 
then it satisfies the tr iangular inequality ( 10).

Proof. Since 72( 7’ ) is m onotonically decreasing, in order to prove (10) it suffices 
to show that

1 +  72( r '  +  r " )  >  72( r ' )  +  72( 7-"),

having taken the vectors x, y colinear, w ith the same direction; r '  =  |a:|, r "  =  |y|. 
Let r ‘ >  r "  for definiteness. Then

1 -  72 ( 7-") =  72(0) -  72( 7■") =  - 7 2 « > " .  e ' e  (0, r " ) ,

72(7■') -  72 (r ' +  7-") =  - 7 ^ (0 7 - " ,  r  G { r ' y  +  r " ) .

Th e convexity o f 72( 7’ ) means that y ' f ( r )  >  0, so that y^if ." )  >  72(^ )>  because 
>  £'. Hence

1 -  72( 7’" )  >  72 (t1' )  -  72(t-' +  t-"), 

which proves the proposition.

A  simple example o f an admissible and physically reasonable two-point corre
lation is

72(7-) =  c - " r , (14)

proposed by Debye et al. [8]. Th is  is the so-called exponential correlation, dis
cussed, for instance, in the book o f  Stoyan et al. [9] (where a planar random set 

w ith this correlation is exp lic itly  constructed in Sec. 10.5.1). Being convex, positive 
and m onotonically decreasing, the function (14) satisfies the triangular inequality 
(10), as it follows from  Proposition  3. Its Fourier transform is positive. Hence this 
function may represent a two-point correlation for a two-phase statistically hom o
geneous and isotropic m edium  in for any d. A  more general class o f sim ilarly 
admissible correlations is obviously given by

OO

72( 7-) =  J  e~Ti dix(t ); (15 )

1 The function in 3D

-Y2( r ) = t 1 - T/a' i { T ^ a'
\ 0, i f  t  >  a,

t  =  |i|, is bounded and convex, but its Fourier transform l i ( k )  is proportional to 2(1 — cos a t )  — 
afc sin ak and hence it is not positive everywhere.
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here <r(t) is an arbitrary bounded and non-increasing function on ( 0, oo) such that 
/0°°d(T(<) =  1. ( I f  a ( t )  =  H ( t  — f i ) ,  Debye’s function (14) is recovered from  (16), 
H { t )  being the Heaviside function.) In other words, the class (16) gathers the 
Laplace transforms o f  all nonnegative functions on (0 ,o o ) (m ore precisely, o f  all 
bounded measures there).

Note finally that the class (15) coincides w ith the class o f the so-called com 
pletely m onotonic functions, according to  the well-known Bernstein theorem, see, 
for instance, [11] or [7]. It  is curious, however, that such com pletely monotonic 
functions (15) m ay represent correlations only for dispersions o f overlapping or 
touching particles. The reason is that non-overlapping always implies the condi
tion 72 (0 ) =  0, as it follows from  the results o f K irste and Porod [12], see also [13] 
and [5]. Th is condition, however, never holds for the functions (15).

Another exam ple o f  an admissible two-point correlation is the function

since it is obviously positive definite, nonnegative and convex. Hence it satisfies 
the triangular inequality (10) as well. Note that (16) is the two-point correlation 

o f  the so-called M ille r ’s cell m aterial [14] in the simplest case when the cells are 

spherical, see also [15].

ACKN OW LEDGEM EN TS. The support o f this work by the Bulgarian M inistry of 
Education, Science and Technology under G rant No M M 416-94 is gratefully acknowledged.

1. M atheron, G. Une conjecture sur covariance d ’un ensemble alealoire. Cahiers de 
Geostatistique, Fasc. 3, 1993, 10 7 -113 .

2 . Achiezer, N. I., I. M. Glazman. On certain classes of continuous functions generating  
H ermitian-positive kernels. Soobshcenija Harkovskogo Mat. Obshtestva, Harkov, vol. 
25 , 1957 (in Russian).

3. Vanmarcke, E. Random fields: Analysis and synthesis. MIT Press, Cambridge, Mas
sachusetts and London, England, 1983.

4. Frisch, H. L. S tatistics o f random media. Trans. Soc. Rkeology, 9, 1965, 293 -312 .
5. Markov, K. Z. On a statistical param eter in the theory of random dispersions of

spheres. In: Continuum Models of Discrete System s, Proc. 8 th Int. Symposium
(Varna, 1995), K . Z. M arkov, ed., W orld Sci., 1996, 241-249 .

6 . Markov, K. Z., D. R. S. Talbot, J. R. W illis. On stationary diffusion in heterogeneous
media. IM A  J. Applied Mathematics, 5 6 , 1996, 133 -144 .

7. Achiezer, N. I. The classical problem of moments. Gos. Izd. Fiz.-M at. Lit., Moscow, 
1961 (in Russian).

8 . Debye, P., H. R. Anderson, Jr. H. Brumberger. Scattering by an inhomogeneous 
solid. II. The correlation function and its application. J. Appl. Phys., 2 8 , 1957, 
679-683.

(16)

R E F E R E N C E S

165



9. Stoyan, D., W . S. Kendall, J . Mecke. Stochastic geometry and its applications. 
Akademie-Verlag Berlin, GDR/John W iley &; Sons Ltd., 1987.

10. Donogue, W . F., Jr. Distributions and Fourier transform s. Academic Press, New 
York and London, 1969.

11. W idder, D. V. The Laplace transform . Princeton University Press, Princeton, N.J., 
1946.

12. Kirste, R., G. Porod. Röntgenkleinwinkelstreuung an kolloiden Systemen, Asym p
totisches Verhalten der Streukturven. Kolloid-Z., 1 8 4 ,  1962, 1-7 .

13. Frisch, H. L., F. H. Stillinger. Contribution to the statistical geometric basis of 
radiation scattering. J. Chem. Phys., 3 8 , 1963, 2200-2207.

14. Miller, M. N. Bounds for effective electrical, therm al and magnetic properties of 
heterogeneous materials. J. Math. Phys., 1 0 ,  1969, 1988-2004 .

15. Hori, M. Statistica l theory of effective electrical, therm al, and magnetic proper
ties of random heterogeneous m aterials. I. Perturbation expansions for the effective 
perm ittiv ity  of cell materials. J. Math. Phys., 1 4 ,  1973, 514 -523 .

Received on September 17, 1996

Faculty o f Mathematics and Informatics 
"St. K l. Ohridski” University o f Sofia 
5 b lvd  J. Bourchier 
BG-1164 Sofia, Bulgaria 

e-mail: kmarkov@fmi.uni-sofia.bg

166

mailto:kmarkov@fmi.uni-sofia.bg


годишник
НА

СОФИЙСКИЯ УНИВЕРСИТЕТ 
„СВ. КЛИМЕНТ ОХРИДСКИ“ 

ФАКУЛТЕТ 
ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 2 —  П Р И Л О Ж И Л  М А Т Е М А Т И К А  
И И Н Ф О РМ АТ И К А

Т о м  89 

1995

ANNUAIRE
DE

L’UNIVERSITE DE SOFIA 
“ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE

Livre 2 — MATHEMATIQUES APPLIQUEE ET INFORMATIQUE

Tom e 89 

1995

С О Ф И Я  e 1998 • S O F IA  
У Н И В Е Р С И Т Е Т С К О  И З Д А Т Е Л С Т В О  „С В .  К Л И М Е Н Т  О Х Р И Д С К И “ 

PRESSES U N IV E R S IT A IR E S  “ST. K L IM E N T  O H R ID S K I”



Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В . К Л И М Е Н Т  О Х Р И Д С К И “

Ф А К У Л Т Е Т  П О  М А Т Е М А Т И К А  И  И Н Ф О Р М А Т И К А  
Книга 2 —  П ри лож н а м атем атика и информатика 

Т ом  89, 1995

A N N U A IR E  D E  L 'U N IV E R S IT E  DE S O F IA  „S T . K L IM E N T  O H R ID S K I"

FA C U L T E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre 2 —  Mathématiques Appliquée et Informatique 
Tom e 89, 1995
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SOLUTIONS

(Dedicated to the memory o f my young colleague K. L. Bekyarov)

C H R IS TO  I. C H R IS TO V

The paper presents the numerical implementation in 2D o f a Fourier-Galerkin 
expansion with com plete orthonormal basis system o f localized functions. The bilinear 
Laplace equation is considered as a featuring example. Coordinate splitting is used to 
reduce the cost o f inversion o f the linear matrices for the coefficients. The axisymmetric 
soliton is calculated as a 2D problem  and compared to a numerical solution, found by 
means o f a difference scheme.

K e y w o rd s : Fourier-Galerkin method, localized solutions, bilinear Laplace equation.

1991 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 65N30.

1. IN T R O D U C T IO N

Calculating the shapes o f localized waves, e.g. solitons, is o f  importance for 
the modern theory o f  non-linear waves. The difficulties are connected w ith the 

unboundness o f the integration domain. For example, in numerical treatment, 
when using finite-difference or finite-element schemes, one has to consider large 
enough domains in order to reduce the influence o f the truncation (the so-called 
“actual infinity” ). In ID  the problems o f domain size and mesh resolution can still 
be tackled, although sometimes up to 20000 grid points (see, e.g. [12]) have to be 
used. Clearly, in 2D, when the mesh size is at least the square o f  the ID  mesh-size, 
it is a very hard problem.

One o f  the ways to  circumvent the said difficulty is to employ a complete 
orthonormal (C O N ) system o f functions on the infinite interval and to devise an
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algorithm  for im plem entation o f one o f the spectral techniques: Galerk in ’s, pseu- 

dospectral, tau-m ethod (see [5, 3]). The successful application o f the Galerkin 

method requires, however, that the product o f two members o f  the system can be 
conveniently represented by means o f  the functions o f the system. C O N  system 

with the required properties was introduced first in [6] and applied for finding a lo
calized solution to the Burgers equation. Later on, the numerical Fourier-Galerkin 
technique was extended to Korteweg-de Vries (K d V ) and Kuramoto-Sivashinsky 
(K S ) equations [11] and the fifth order K d V  [1]. Boyd [2, 4] showed that the new 
C O N  system can be obtained by an algebraic mapping o f the Tchebishev polynom i
als on an infinite interval, see also [3]. In this way he derived a variety o f properties 

o f the expansion.

Em ploying a spectral expansion w ith a specialized C O N  basis system dras

tically reduces the required computational resources. They  can be even further 

reduced if  the resulting algebraic system is treated in the appropriate manner by 

means o f  a sp litting m ethod. The aim o f  the present paper is the creation o f an 
algorithm  for im plem enting the Fourier-Galerkin technique in 2D.

2. P O S IN G  T H E  P R O B L E M

Consider the fo llow ing generic equation (the non-linear Klein-Gordon equation) 

<32u o 2 ( d 2u d2u \_ _ _ _ u .+  3u +  ^ _  +  _ j  (2.1)

which, as is well-known, possesses localized solutions that propagate stationary. In 
the co-ordinate system connected with the center o f the localized structure (the 
so-called “m oving fram e” ) one can introduce new independent variables — c\t, 
j] — y — C2C where c i, C2 are the components o f the phase speed o f the center o f the 
localized structure. Then  for the stationary localized solution one arrives at the 

equation
, (  d2u d 2u\

~ u +  3u +  +  /?2 ^ j J = 0 ,  (2.2)

where /3; =  1 — c?. Here we consider only “subsonic” solitons for which /?* >  0. The 

boundary conditions stem from  the vanishing o f  the solution at infinity:

u —► 0 for £ ,77—+ ± 00. (2-3)

Clearly, the problem  (2.2 ), (2 .3) is a bifurcation one, since the triv ia l solution 
u =  0 always persists. A  sim ilar problem  was treated in [14] for the classical spec

tral method with harmonic functions in application to the sixth order Boussinesq 
equation. T o  avoid the triv ia l solution, one can impose a condition at the origin o f 

the co-ordinate system, say,

u (0 ,0) =  const. (2-4)
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Strictly speaking, (2 .4 ) w ill overpose the problem  unless some additional degree o f 
freedom is introduced, say, through an additional coefficient o f the non-linear term

- u  +  3 au2 +  ( P i g ç 2 +  ^ 2 d ^ )  -  °> ( 2-5)

which is to be calculated so as to fit the imposed boundary conditions at the origin 
o f  the co-ordinate system. The definitive relation for the new unknown is the 
equation taken in the origin:

1 (  d 2u d 2u \

3u2(0 ,0) O’ 0) -  ( f 1d ^ + ^ ‘ dij2 J
x=0, y=0

The last relation does not overpose the problem, since the equation in the 
origin is not used in the scheme for u, but rather it is replaced by the prescribed 
boundary condition (2 .4 ). Thus we arrive to a boundary value problem  (b .v .p .) 
which does not possess a triv ia l solution. In addition, for the unknowns ( u , a )  
explicit relations are available. Then the construction o f an iterative procedure is 

straightforward. In some cases, however, the convergence is achieved only when a 
relaxation for a  is performed.

Note that the above procedure is valid only when the expected solution has 
non-zero amplitude in the origin o f the co-ordinate system. W hen this is not the 
case (say, for solutions that are odd functions), one can impose a sim ilar condition 
on one o f the partial derivatives o f u in the origin. In order not to overload the 
presentation, we skip the details o f such a case and consider here only the case o f 

even functions.

*
3. F O U R IE R -G A L E R K IN  E X P A N S IO N

3.1. T H E  BASIS  S Y S TE M  O F F U N C T IO N  IN  L 2[-o o ,o o ]

The first C O N  system in L 2( - 00, 00) suited for non-linear problems was pro
posed in [6]. Th e  different formulas were compiled and verified in [7]. Here we cite 

the necessary formulas in order to make the paper self-content.
The products o f  members o f  series are expanded in series o f the system

1 0 0

CnCk = — - j=  [ Cn+k+i — Cn+k — Cn-k  + Cn- k - 1] = Pnk'iC,, (3.1)
2 V 2,r n = 0

1 03
SnSk — [ C n+k+ 1 — Cn+fc +  C n -k  — C n- k - 1] =  &nk,iCi, (3-2)

2v27t n _ g

00
SnCk =  J== [—Sn+jfc + l + Sn+k +  Sn-k — 5 n-fc_i] — 7nkjSl- (3-3)

2 v 2 i r  n
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The first derivatives o f  the functions o f the system are expressed as

dSn 1 r
=  2 + (n  + l)Cn+i],

d,C 1
=  ~  2 t " 5 " - !  +  (^ n +  1 )5 „ +  (n  +  l ) 5 „ + i ] .

Respectively, for the second derivatives one has

d2C  1
^ 2  = — 4 {^(ti — 1 )C„ _ 2  — 4n 2 C„_i + [712 + (71 +  l ) 2 + (271 + l ) 2] C„

—4 (ti -f l ) 2C n+ i +  ( ti +  1 )(ti +  2 )C n+2 } , (3-4)

d2S  1
=  ~ 4 { n ( n — 1 )^ - 2  — 4ti25 „ _ i  +  [ti2 +  (ti +  1)" +  (27i +  l ) 2] Sn

—4(71 +  l ) 2Sn+ i +  (71 +  1 )(ti +  2 )Sn+ 2 } . (3-5)

3.2. T H E  G A L E R K IN  E X P A N S IO N

The simplest and oldest spectral technique is the Galerkin one in which the 
sets o f test and trial functions coincide. The main purpose o f the present work is 
to provide an efficient iterative algorithm  for treating the linear part o f the system. 
For this reason we select a system with a quadratic non-linearity, for which the 

Galerkin method is the most efficient. W hen a more complicated non-linearity is 
present, then one o f the pseudo-spectral techniques should be used. In addition, our 
equation admits even solution. Th a t is why, for the sake o f  simplicity, we consider 
the follow ing series:

n —N

U -  ^  amnC m ( x ) C n (y ).  (3.6)
n=0

3.3. T H E  C O N D IT IO N S  FO R  C O U PL IN G  T H E  S YS TE M

Introducing the expressions for the derivatives in the differential equation, one 
gets a five-diagonal system for each subsystem o f coefficients C„, Sn . The system 
has to be truncated at ti =  0 (no terms o f  negative order show up, since they
are expressed by the functions o f positive order) and for certain sufficiently large
71 =  N .  Then  the problem  o f coupling conditions arises. Here we resort to even 
functions only and the formulas are sim ilar for the odd functions. The condition 
for coupling the system for n =  0 and n =  1 comes from  the very formulae o f  the 

second derivatives (3.4)

+  (3.7)
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d?C  7 q

~dxT  =  C o ~  2 C l  +  4° 2 ~  2 C l - (3 -8)

In the framework o f  the Galerkin m ethod, the truncation o f  the system at 
n =  TVTequires to  assume that C n =  0 and C n+1 =  0. Then, for the last two
members o f  the series one gets the follow ing expressions for their second derivatives:

d2 C n- 1 _  ( n - 2 ) ( n - l ) ^  ,

- C n- i  +  n 2 C n , (3-9)

d x 2 ~  4 C „ _ 3 +  (n  1) C n -2

3 n 2  — 3n +  1

2
d2 C n _  n ( n - l ) ^  , _ a„  3n2 +  3 n + l ^  /oinN

d x 2 — 4  b n - 2 "h H On—l ^ bn- (3.10)

Thus the second i-d er iva tive  in the governing equation (2 .2 ) is approximated 
by 5-point fin ite difference in the system. Denote by A xx and A yy the respective 
five-diagonal matrices which are obtained after half o f  the identity operator, |, is 
subtracted from  each o f  the second-derivative operators. Then  the original equation 
is approximated by the algebraic system

n i= N  m3= M  n2= N  m3= M

2m21muffiin iu'nan23a E E E E
n i =  0 m i= 0  ri2 = 0  m 2 = 0

+  (A xx +  A yy)a mn =  0, (3.11)

where /?* and /3'J are the matrices o f  coeificients from  (3 .1 ) for x  and y, respectively.
The system (3.11) is taken for all n ^  0 and m  ^  0. In the origin the boundary 
condition

O.Q0 — 1

is imposed. Respectively, the system (3.11), taken at n ~  0 ,m  =  0, gives the 
definitive relation for a, namely

—01 ( ~ 5 a00 +  <*10 — \a2o) — 02 (  — +  «01 — 5 *102)  1oN
, (3.12)r i i= N  mi ~ M  n ?= N  m i—M

^  E  E  E  E  0 n l mi,O0n3m3,Oam in 1Clm 3n3
n i =0 mi =0 112—0 m2 = 0

where the unknowns amn are from  the new iteration (fictitious-tim e stage) k +  1. 
Th e  relaxation for a  is perform ed as follows:

a *+ i <j£f

4. T H E  S P L IT T IN G  SC H E M E

In previous works on ID  problems ([11, 1]) we used the Brent’s routine for 
solving the non-linear system for the coefficients. Despite o f  the rather simple 
expressions for the products o f  members o f  system into series in the system (see
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(3.1) —  (3 .3 )), using a pseudo-Newton algorithm  like the Brent’s one becomes too 
expensive in 2D because o f the large size o f the Jacobian. Th is justifies the search 
for alternative algorithms. Here we use a simple iteration for the non-linear term. 
The appropriate series representation o f the products o f the terms in the system 
is rather “sparse,” so a lot o f iterations can be easily performed. It is desirable, 
however, to have the linear part approximated im plicitly. W e split it to reduce the 

calculations. Thus we use the follow ing scheme corresponding to the so-called (see 
[15]) scheme o f stabilizing correction:

~  3~ =  A xxa,ij +  A yj,a*,- +  F [a kA (4-1)

k 4* 1   ~
J i — ±  =  A n [ ^ _ akj l  ( 4.2)

Here r  is the tim e increment w ith respect to the fictitious time and it plays the role 

o f an iteration parameter. Respectively, F [ a n] is the expression for the non-linear 
term  when evaluated w ith the values for a,j from  the “ old” iteration

n — N  m  =  M

ak1 2  TJX 2 ,  T T l TTl 71

n =  0 m =  0
FI«*} = E E

A fter excluding the half-time-step variable a, one gets 

/ \   (A
y E  -f t '2A.xxX y y j -------------- =  ( Xxx +  A yy)a k+l  +  (4-3)

which converges to (3.11) in the lim it k —* oo, when ak+1 —► ak. The im portant 
feature o f the system (4 .1 ), (4.2) is that it requires inversion o f  five-diagonal m atri
ces for which special very fast elim ination algorithms are available. W e make use 
here o f the algorithm  from  [9].

The iterations are term inated when the follow ing criterion is satisfied

|afc+1 — a*I <  10-10.

5. R E SU LTS  A N D  D ISC U SSIO N

5.1. T H E  A X IS Y M M E T R IC  L O C A L IZ E D  S O LU T IO N

2D calculations o f  solitons are rarely found. Th a t is why there are no available 
cases for comparison. However, for =  /?2 one can compare a cross-section o f 
the solution obtained by the 2D algorithm  o f  the present work to ID  solution o f 
the equation when the axial sym m etry is acknowledged. Hence we consider the 
equation

„ ,  9 (  d u \  . .

“ - 3“ “ T a i r a ? )  = 0 ' (51)
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Fig. 1. The axisymmetric soliton for fa  =  fa  =  1 as obtained with N  +  1 =  20 functions
in the spectral expansion

for which a localized solution is sought in —oo,oo. T o  this end we em ploy the so- 
called M ethod o f Variational Im bedding (M V I),  proposed in [8] for the homoclinic 
solution o f  the Lorenz system. T o  an equation o f  the type o f (5 .1 ), but with a cubic 
non-linearity, the M V I was applied in [10]. The algorithm ic problems o f  application 
o f  M V I are elucidated in detail in [13] in application to the solitary-wave solution 
o f  the Kuramoto-Sivashinsky equation. For this reason we present here only the 
result for the axisym m etric soliton. Fig. 1 shows the shape o f this solution alongside 
with the well-known sech-solution o f the ID  case. It is seen that the axisymmetric 
soliton is taller (m axim um  height equal to 0.79735, while in ID  the maximum equals 
exactly 0.5) and o f slightly smaller support. The solution presented in the figure 
is taken as a reference when assessing the approximation o f the spectral scheme in 
the next subsection.

5.2. V E R IF IC A T IO N  O F  A L G O R IT H M

The practical convergence o f  the m ethod can be assessed i f  a cross section o f 
the 2D solution is taken as function o f  the radial co-ordinate. Fig. 2 shows the 
result for different number o f terms in the spectral series. Being reminded that the 

maximum o f solution is approxim ately 0.8, one sees that even 8 functions are able 
to provide approxim ation closer to the solution than 0.3%, and 20 terms in the 
series give approxim ation better than 0.006%. It  is to be mentioned here that no 
special care for optim ization  o f  the method has been taken in the present work. As 
shown in [11, 1], one can further improve the approximation w ith fewer number o f 
terms by means o f  scaling the independent variable(s) in order to bring it closer to 
the characteristic measures (length o f support) o f the basis functions C n , S n .
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r  =  y j x 2 +  y 2

Fig. 2. The difference between the spectral solution w ith different number o f functions 
and the finite difference solution with 401 points in the interval [0, 9.9875]

In two dimensions the shape o f soliton is presented in Fig. 3 as obtained by the 
2D algorithm  developed here. Note that a cross-section o f this solution is compared 
in F ig. 2 to the solution w ith radial sym m etry from  F ig. 1.

5.3. T H E  N O N -A X IS Y M M E T R IC  S O L U T IO N

As mentioned in the precedence, the convergence o f  the spectral series can be 
improved ([11 ]) i f  one succeeds to select the optim al scaling for the independent 
variable. Th is is especially im portant when in two dimensions the coefficients before 
the different highest-order derivatives differ significantly. In our case these are the 

coefficients 0\ and 02- Th e  optim ization needs a special attention together with 
an extensive set o f numerical experiments and goes beyond the framework o f  the 
present paper. Here we have on ly demonstrated the effectiveness o f the sp litting 

scheme for solving the algebraic system for the coefficients. For this reason we do 
not scale the independent variables even for the case shown in Fig. 4, where there 
is a considerable difference between the two coefficients 0 2  — 1 — 10/?i, 0i  — 0.1.

In this case a solution obtained by an independent numerical technique is not 
available and the convergence test is perform ed by the standard increase o f the 
number o f  terms in the expansion and by assessing the contribution o f the last 

term. Once again, em ploying 15 terms gives accuracy o f 0.1% and 20 terms bring 
the difference down to  0.01%. Th is means that even for one order o f  magnitude 
difference between the coefficients o f the second derivatives, 20 terms in the expan
sion is fu lly enough for securing a very good accuracy. W hen the ratio between the
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5

Fig. 3. The axisymmetric soliton for /3] =  /?2 =  1 as obtained with A/ + 1  =  7V +  1  =  2 0  

functions in the spectral expansion

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

- 0.1

Fig. 4. The soliton for =  0 .1 , 02 — 1 as obtained with A-f +  l  =  Ar +  l  =  2 0  functions
in the spectral expansion

coefficients /3,- is still larger, one can attem pt optim ization o f the algorithm  through 
different scaling o f  the independent variables (see [11] for the details in ID ).

6. C O N C L U S IO N

In the present paper a Fourier-Galerkin algorithm  for numerical treatm ent o f 
the bifurcation problem  for localized solutions o f 2D non-linear P D E  is developed.
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To avoid the always present triv ia l solution, an additional boundary condition is 

imposed in the origin  o f the co-ordinate system and a coefficient is added before 

the non-linear term. The equation itself taken in the origin serves as an explicit 
definitive relation for the new coefficient. The iterative procedure involves artificial 
time and co-ordinate splitting o f the linear operator corresponding to the partial 
derivatives. The convergence is secured through selecting the values o f the artificial- 
tim e increment and the relaxation parameter for the sought coefficient o f the non

linear term. In 2D the splitting-type procedure has a significant advantage over the 

direct New ton-type quasi-linearization algorithms for solving the algebraic system 
for the coefficients o f the Galerkin expansion.

Results are obtained for a generic equation o f  K lein -G ordon ’s type with a 

quadratic non-linearity. The ID  an axisymmetric soli ton o f the equation in the 
m oving frame is obtained by means o f two different techniques and the comparisons 
give the quantitative assessment o f the truncation errors o f  the spectral expansion.

ACKN OW LEDGEM EN TS. This work was partially supported by the National Sci
ence Foundation of Bulgaria under G rant NZ-611/96.

R E F E R E N C E S

1. Bekyarov, K. L., C. I. Christov. Fourier-G alerkin numerical technique for solitary  
waves of the fifth-order K dV  equation. Chaos, Solitons & Fractals, 1 , 1992, 423-430.

2. Boyd, J. P. Spectral methods using rational basis functions on an infinite interval. 
J. Comp. Phys., 6 9 , 1987, 112 -14 2 .

3. Boyd, J. P. Spectral M ethods. Springer-Verlag, New York, 1989.
4. Boyd, J. P. The orthogonal rational functions of Higgins and Christov and alge

braically mapped Chebishev polynomials. J. Approx. Theory, 85 , 1990.
5. Canuto, C., M. Y . Hussaini, A . Q uarteroni, T. A . Zang. Spectral Methods in Fluid 

Dynamics. Springer, 1987.
6. Christov, C. I. A  complete orthonorm al sequence of functions in l2( —oo,oo) space. 

S IA M  J. Appl. Math., 4 2 , 1982, 1337 -1344 .
7. Christov, C. I. A  method for treating the stochastic bifurcation of plane Poiseuille 

flow, nonlinear stochastic systems. Ann. Univ. Sof., Fac. Math. Mech., 7 6 , Livre 2, 
Mécanique, 1982, 8 7 -113 .

8. Christov, C. I. A  method for identification of homoclinic trajectories. In: Proc. 14-th 
Spring Conf. Sunny Beach, Sofia, Bulgaria, 1985, 571-577 .

9. Christov, C. I. Gaussian elimination with pivoting for multidiagonal systems. In 
ternal Report, 4, U niversity of Reading, 1994.

10. Christov, C. I. On the mechanics of localized structures in continuous media. In: 
Fluid Physics, eds. M. G. Velarde and C. I. Christov, World Scientific, 1995, 33-60.

11. Christov, C. I., K. L. Bekyarov. A  Fourier-series method for solving soliton prob
lems. S IA M  J. Sci. Stat. Comp., 1 1 ,  1990, 631-647 .

178



12. Christov, C. I., G. A . Maugin. An implicit difference scheme for the long-time 
evolution of localized solutions of a generalized Boussinesq system. J. Comp. Phys., 
1 1 6 ,  1995, 39 -5 1 .

13. Christov, C. I., M. G. Velarde. On localized solutions of an equation governing 
Benard-M arangoni convection. Appl. Math. Modelling, 1 7 ,  1993, 3 11 -3 2 0 .

14. S teyt, Y ., C. I. Christov, M. G. Velarde. Solitary-w ave solutions of a generalized 
wave equation w ith higher-order dispersion. In: Continuum Models and Discrete 
Systems, ed. K . Z. M arkov, W orld Scientific, 1996, 471-479 .

15. Yanenko, N. N. M ethod of Fractional Steps. Gordon and Breach, 1971.

Received on September 23, 1996

National Institute o f M eteorology and H ydrology 
Bulgarian Academ y o f Sciences 
BG-1184 Sofia, Bulgaria 
e-mail: christo.christov@meteo.bg

179

mailto:christo.christov@meteo.bg


ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ О ХРИ Д СКИ “

Ф АКУЛТЕТ ПО М АТЕМ АТИ КА И ИНФОРМАТИКА 
Книга 2 Приложна математика и информатика 

Том 89, 1995

ANNUAIRE DE L’UNIVERSITE DE SOFIA „ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES ET INFORMATIQUE 
Livre 2 — Mathématiques Appliquée et Informatique 

Tome 89, 1995

MOUVEMENT D’UNE SPHÈRE HOMOGÈNE 
DANS UN CYLINDRE HORIZONTAL 

AVEC UN MOMENT RÉSISTANT DE FROTTEMENT

SONIA DENEVA

In this paper some aspects of the classical problem concerning rolling sphere on
a homogeneous horizontal cylinder are considered.

K eyw ord s: motion of a rigid sphere, friction.
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 70E15.

Soit donné un cylindere droit circulaire de rayon R  posé en une position hori
zontale immobile. Avec le cylindre est lié un système de coordonnées Oxyz\ pour 
O y  nous choisissons l ’axe du cylindre et O z  a une direction verticale en bas. La 
sphère homogène de centre C , de masse m  et de rayon r  se roule sur la part inférieur 
du cylindre où elle a un point de contacte P .  Nous supposons que le mouvement 

devient avec frottem ent entre deux corps mais si le coefficient du frottem ent est 
grand il n ’est pas possible un mouvement avec glissement. Voila  pourquoi nous 
supposons que le mouvement de la  sphère est un roulement propre sans glissement 
mais nous prenons en considération qu ’il y a un moment résistant de frottem ent 
contre roulement d ’après Painlevé. Nous supposons encore que le plan équatorial 

de la sphère reste toujours sur le plan vertical O x z  du cylindre. La  position de la 
sphère sur le cylindre est donnée au dessin 1. D ’isi nous avons

6 =  R - r  =  O C .  (1 )

Désignons par 6 l ’angle (O z ,  Ô P )  qui déterm ine la position du point P .  Le vecteur
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Dess. 1

unique n  qui est normal à deux surfaces s ’exprim e par la formule

n  =  sin 9 i  +  cos 9 k.

Selon (1 ) et (2 ) nous obtenons

O C  =  6 sin 9 i  +  6 cos 6 k,

v c  =  <50(cos 6 i  — sin 9 k ) ,

où i,  j ,  k  sont orts du système Oxyz .
Puisque le plan équatorial de la sphère reste verticale, la vitesse angulaire ui 

de la sphère a la  form e

u> =  u i j , u  >  0. (4 )

Le mouvement est un roulement sans glissement et voila  pourquoi nous avons la 
relation pour le point de contacte

(2)

(3)

v p  =  v c  +  u> x C P  =  0. 

Ayant vu (2 ), (3 ) et (4 ), nous obtenons de (5 )

u  =  - - 9  
r

(5)

(6)

(la  grandeur 9 <  0 parce que 9 est une fonction de croissante du temps).
Nous montrons que tous les grandeurs de la cinématique et de la dynamique 

de la sphère peuvent s’exprim er comme des fonctions de 9.
Le théorème de la  résultante cinétique et la théorème du moment cinétique 

appliqué au point C  se traduisent par les équations

d- ( m v c )  =  m g  +  R ,  (7 )
d t

—m r 2— =  C P  x R  +  T. 
dt

(8)
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(11)

Ici R  est la force de la  résistance appliquée au point P\ T  est le moment résistant 
du frottem ent qui d ’après Pain levé se donne par la formule

r  =  - f " R n j  =  —f " R n — • (9 )
U)

Le signe moins montre que le vecteur T  a une direction inverse au vecteur u>, c ’est- 
à-dire le vecteur T  se résiste au roulement de la  sphère déterminé par le vecteur u>. 
R n est la  grandeur de la projection de la force R  sur le vecteur n . Le coefficient 
f "  du frottem ent est ordinairement une petite grandeur. Puisque tous les vecteurs 
dans (6 ) se trouvent dans le plan O x z ,  la force i l  a la form e

R = R x i  +  R zk.  (10)

De l ’équation (7 ) selon (10 ) on obtient

R x =  mô ( j )2 cos 6 — 9 sin 0^ ,

R z =  —mg  — m6 ( j )  sin 9 +  92 cos 9̂ j .

De l ’équation (11) selon (2 ) on obtient

R n =  mg  cos 9 +  mSÔ2. (12)

De l ’équations (8 ) et (9 ) on obtient

\ m r 2<̂ -  =  — r s i n 9 R z +  r  cos 6 R X — f "  R n - (13)
5 ai

Remplaçons dans (13) les relations (6 ), (11 ) et (12) et après quelques calculations 

on obtient

0 = - - - s i n 0  -  — 192 +  ^ ^ - c o s ^ .  (14)
7 o r  1 6 r

L ’équation (14) nous pouvons écrire à la form e

du 10 f "  10 g . . L 10/"<? -3
--------------------- u  = ------- — s m 0 + —  — — c o s p ;  u — v .  (15)
dQ 7 r  7 6 7 6 t

Ayant vu que le coefficient f "  est une grandeur petite, nous obtenons de (15)

« = * 2 = c ( i + y H  + y f ' “ 9 + i r T ? ^  (16)

où C  est une constante qui dépend des conditions initiables. Puisque 9 <  0 on

obtient de (16)

* = u + y Ç » )  + f f ' “ ( + ^ T ; sin^ (17)

En fin nous obtenons de (6 ) et (17)



Les grandeurs R n , R x, R z s’expriment aussi par l ’angle 0 des formules (10) et (11).
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COOPERATION OF CLIENT ROUTINES IN CLIENT-SERVER 
NETWORK ARCHITECTURE WITHOUT USING OF SPECIAL 

MONITOR ROUTINE ON SERVER

P E T E R  D IM O V

A method for communication between client routines without monitoring by a 
special routine, working on a server, is proposed. The base o f the method is a message 
transferring engine, but not in the classical form. The method is oriented to data 
sharing between computers in a client-server architecture network. A ll data are stored 
on a PC  disk space and there is no need to store data on the server. The server 
is used only for files lock and unlock purposes and its disk capacity is used only as 
an intermediate storage. The method ensures higher information security level than 
the traditionally used methods. Communication between computers allows to develop 
applications for cooperative work and documents routing. In a more global aspect the 
described engine is applicable in both single and multiprogram environments.

K e y w o rd s : message transferring engine, network architecture, communicating rou
tines.
1991/95 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 94-99.

1. IN T R O D U C T IO N

Let us use the term  “ server” to denote the main node o f the network, respon
sible for sharing resources between users. Let us use the term “ cl ient” to denote 
workstations on the computer network. Then  we would use the terms “ cl ient rou
t ine” and “ server rout ine” to denote routines, working on user workstations and 
server platform . In this way we w ill describe the typical features o f the client-server 
architecture computer network.
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“ M o n i t o r ” denotes a user-written routine, which must take control over user 
routines (client routines) and is used on client-server architecture network. The 
method proposed does not use any monitor.

The method requires the server routine to be able to:

—  share resources —  lock/unlock files or part o f their contents;
—  store tem porary data on server disk storage as interm ediate storage.

The operations o f  sharing the resources are non-interruptible and the server 
routine cannot affect logically the cross-user communications. Then we w ill have 
to discuss only client-routine relationships.

T o  describe the method, we w ill use the term “protocol” to denote the sequen
tial actions, undertaken by the client routines, and the corresponding states the 
client routines m ay reach during the process o f message transfer.

The m ethod serves the follow ing “protocol” (the states are shown after the 
description o f  every action):

( i )  the “ sender” sends a message to the “ receiver” ( “W ” );
( i i )  the “ receiver” accepts the message sent by the “ sender” , takes some actions 

and sends an answer back to the “sender” ( “C ” );
( i i i )  the “ sender” accepts the answer sent by the “ receiver” ( “ M ” ).

It  is possible anyone o f  the two communicating user routines (each o f both 
users) to take the role o f the “sender” and consequently the other user routine 
must take the role o f the “receiver” .

Because the answer does not have only the role o f an acknowledgment, this 
protocol is provided to  realize the interchange o f  a w ide range o f inform ation —  
every transferred portion o f  information (message) can have the form  o f  a request, 
query, command. The type o f the message depends on its form . The answer from  
the receiver can be a request, query, command  as a nearer result or a complete 
document.

The protocol described above facilitates the transfer o f any message from  the 
side o f the sender and the reply on the side o f the receiver after some processing ( i f  
needed). Because each o f the communicating user routines can take the role o f the 
sender, the protocol is the base for creating channels between the user routines in 
both the simple and t i : ' duplex modes.

2. A  M E T H O D  F O R  M E SSA G E  IN T E R C H A N G E

T o  transfer messages between two users (client routines) it is necessary to:

—  establish a connection between the client routines;
—  provide resources for the message transfer and sharing.

W e w ill use, whenever it is possible, the term  “ user” instead o f “ client routine” , 
because users communicate through client routines. Every user must identify itself 
by a user identifier and must place a request for communication in the form  o f CSB 
(Com m unication Sign-on B lock), labelled by the same user identifier. Every record 
in this block must point to the identifier o f the other user, w ith which the CSB
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owner wants to communicate. Each client routine must also check the existence o f 
a CSB for each user, marked by a record in its own CSB. A  connection between 
two client routines is considered established when:

(i)"C SB s labelled by two user identifiers exist at the same time;
( i i )  a record o f one CSB points to the corresponding CSB and vice versa.

W hen ( i i )  is not satisfied, it means that the CSB points to different (m aybe 
already connected) users.

A ll resources may be realized as files. In this case the network server must only 
lock and unlock files (or parts o f the files’ content) in response to client routines 
requests.

T o  provide synchronization between two communicating client routines, a “post
box” must be created. In this “post-box” , realized as a file too, the information 
must be recorded as follows:

(i )  field “State” contains the code o f the current state, which the client routines 
can reach ( “W ” , “ C ” or “M ” );

(i i )  field “ Ident i f ier” must point to the identifier o f the user, that must receive 
a message or an answer;

(i i i ) field “ Message/answei>>.

The states shown above are common o f the two communicating client routines. 
It  is enough to store only the codes “W ” , “ C ” and “ M ” about the three states, 
which the user routines can reach. F ield “ Identifier” points (except when field 
“State” contains “W ” ) to the user (the client routine), which must be activated by 
the message/answer transfer in itiator to receive a message or an answer. T o  cause 
changes in the other client-routine state (the client routine to be activated to receive 
a message or an answer), the client routine, which wants to send a message/answer 
must:

( i )  store into the field “State” a new state code;
( i i )  store into the field “ Identifier” the user identifier o f the corresponding client 

routine to be activated.

Each client routine must check the “post-box” to determine the state (the 
states are common o f  both client routines, as described above).

A ll read/write operations w ith a “post-box” information are possible only after 
the post-box file has been locked. W hen one o f  the client routines locks the “post
box” file, the other client routine at this tim e must wait (or take actions, which must 
not affect the “post-box” content) until the “post-box” can be locked again. W hen 
one o f the communicating client routines cannot find its own user identifier stored 
in the field “ Identifier” , that routine must im m ediately unlock the file (except when 
the file “State” contains the code “W ” and the routine wants to send a message). 
Th is is possible when there are differences in the speed o f the two client routines’ 
execution. In this case im m ediate unlocking resolves the problem and makes the 
m ethod independent o f the relative speed o f the communicating routines’ execution.

Now we can describe the protocol used as follows:

(i )  the “sender” writes a message to the “ receiver” into the field ’’ Message/ans
wer” , stores the identifier o f the “receiver” in the field ’’ Identifier” and changes the 
state to “C ” ;
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( i i )  “receiver” accepts the message sent by the “sender” , takes some actions, 
writes an answer in the field “Message/answer” back to the ’’ sender” , stores the 
identifier o f the “sender” in the field ’’ Identifier” and changes the state to “ M ” ;

( i i i )  the “sender” accepts the answer sent by the “ receiver” and changes the 
state to “W ” .

A  client routine must create resources (excluding CSB ), e.g. a client routine, 
executing on the computer o f the user w ith a higher identifier (in  lexicographical 
order). On disconnection, resources must be released in the order of:

(i )  disconnection-initiator acting as a “sender” sends the message “ quit” to the 
other client routine (the “receiver” );

( i i )  the “receiver” releases the corresponding record in its own CSB and returns 
an answer back to the “sender” ;

( i i i )  the “sender” accepts the answer sent by the “ receiver” and makes sure 
that the “receiver” w ill no more use the shared resources, then the latter releases, 
in his own CSB, the corresponding record.

Every user (c lien t) routine control flow can be proposed as a graph. The 
nodes correspond to the states a routine can involve. The arrows are used for 
signals, which cause changes in the routine state. Fig. 1 displays a graph o f two 
client routines presented by their states and corresponding signals according to

Fig. 1. Graph of communicating user routines
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the described method. States “W ” , “C ” and “ M ” are common to both routines 
(processes).

Denotifications:

s j : ’ the “sender” sends a message to the “ receiver” and changes the state 
to “C ";

s^: the “ receiver” changes the state to “M ” ;

Sgi the “sender” changes the state to “ W ” ;

r^ : the “sender” changes the state to “C ” ;

r^ : the “ receiver” sends an answer to the “sender” and changes the state 
to “M ” ;

i g :  the “sender” changes the state to “W ” ;

it iij: a message from  the sender;

a j i  : an answer from  the “ receiver” .

3. A P P L IC A T IO N  O F  T H E  M E T H O D

The method is applied by the author for work w ith M SDOS —  for providing an 
environment as a rem ote service facility in the client-server architecture network. 
T o  execute M SD O S —  a command or a file on a remote computer, the command 
must be transferred to the other client routine, working on the remote computer, 
as a message. T o  return the messages, produced at the execution time, a file for 
the messages is used as a tem porary disk space on the server. The steps are listed 
below:

—  sending the command, entered by the user, to the client routine, working 
on the remote computer;

—  receiving the message by the remote client routine, executing a command 
on the rem ote computer, recording the messages produced in the file for messages 
and returning an answer to the command in itiator v ia  the “post-box” ;

—  receiving the answer, sent by the remote client routine, and typing on the 
screen the messages, stored into the file for messages.

File-transfer commands are realized as multipartitioned commands, which run 
on both computers sequentially. Synchronization is provided by the message- 
transfer method, described above. The steps are listed below:

—  To  get files from  the remote P C  disk space:

• in state “W ” the command is to be sent to the remote client routine (rem ote 
com puter);

•  in state “C ” the rem ote client routine copies the files into a tem porary direc
tory on the server and transfers the answer to the file-transfer in itiator;

• in state “M ” the in itiator receives the answer, displays the messages from  the 
file for messages, and copies the files from  the tem porary directory on the 
server into his own disk space.
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• in state “ YV” the in itiator copies the files into a tem porary directory on the 
server and transfers the command to the remote client routine;

• in state “C ” the remote client routine copies the files from  the tem porary 
directory on the server into his own disk space, then sends an answer to the 
file-transfer in itiator;

• in state “ M ” the in itiator receives an answer from  the remote client routine 
and displays the messages from  the file for messages.

It is possible for each user to take the in itiative for a command execution or 
file transfer.

—  To  put files into the remote computer disk space:

4. A D V A N T A G E S  O F T H E  M E T H O D

Data security. There is no need to store data for permanent use on the server 
disk space. Documents can be stored partially on the user’s disk space. Each side 
can access only the part o f the information, provided for his (her) own use. High 
security level is reached when the messages, transferred between the users (the user 
routines) are encoded. The resource identifiers can be generated as words and/or 
numbers and they are accessible in the communicating routines at the tim e o f the 
connection established by them and put in the corresponding GSB records.

Unauthorized access prevention.  The user access is protected by a password. 
Passwords are not registered in the file o f common access. The user can change his 
(her) password. The user must provide secured access to his (her) own data.

Groupwork.  Th e  method can be used for transferring data between people, 
working in a group. In this case the method provides fast access to the information, 
supported by each o f the members o f the group.

Coordination. The method provides coordination both between the client rou
tines and the people working in the group.

Documents routing. Documents routing depends on the needs o f the organiza
tion.

Electronic mail. It is easy to send a message or a document to any group 
member.

Establishing connections. It  is possible to establish connections between every 
two users. In this way every user can communicate at every tim e w ith som ebody 
else. The method provides opportunities for simultaneous connections between the 
users.

Server machinery requirements. The server can have enough disk space in
stalled, but the latter can be smaller than the space used when the data is stored 
entirely on the server. There are no special requirements to the server processors.

Workstations requirements. W orkstations have usually enough disk space in
stalled. Software can be stored on the server when needed. M ore space is needed 
to complete entire documents.
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Relationships between applications, based on this method and traditionally wri t 
ten applications. Th e  method, described in this paper, does not exclude the sharing 
o f data files and the application o f  software on the network server.

5. C O N C LU S IO N

The applications o f the method and any further developments are independent 
o f the network and the server types. There is no need to create or use any server 
m onitor routines. A ll the changes in one application do not affect the other appli
cations. It is not necessary to reconfigure and recompile the server and network 
software.

The method developed by the author is applicable in cooperative work on 
computer network, designed on the base o f  a client-server architecture.
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ON THE BRITTLE FRACTURE OF A PIN-JOINTED FRAME

G A L J A  M . D R A G A N O V A , K O N S T A N T IN  Z. M A R K O V

The aim  o f the paper is to report some prelim inary results concerning rupture 
through damage accumulation o f a simple pin-jointed frame under tension. Under the 
elastic and stationary creep conditions (at small strains) this is a well-known problem 
o f strength o f m aterial and mathematical theory o f creep. Here we assume additionally 
that damage also evolves in the rods, obeying the classical Kachanov’s law, which es
sentially complicates the problem. In the brittle  case, the only one, considered in detail 
in this paper, the problem  is formulated eventually as a coupled nonlinear system o f dif
ferential equations for the damage variables in the rods. This system, in general, does 
not admit a close form  analytical solution unlike the classical examples o f contimium 
damage mechanics, so that numerical treatment is needed. That is why the special, 
but realistic case o f a  common “damage exponent" o f the rods is only considered and a 
simple explicit solution for the damage evolution is found and discussed in more detail.

K e y w o rd s :  b rittle  fracture, damage mechanics, pin-jointed frames.

1991 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 73M25, 73K05.

1. IN T R O D U C T IO N

Consider the pin-jointed frame, shown in Fig. 1. The tensile force F  is applied 
in the direction o f the rod B D .  F inding the stresses in such a fram e is a well-known 
exercise in strength o f  materials, provided the rods behave elastically, see, e.g., [1] 

and many other textbooks on the subject. I f  the rods’ behaviour is governed by 
stationary creep law equations, the stresses in the system and, in particular, the
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creep rate o f the loaded node D,  are first found by Kachanov [2], provided the creep 

deformation is small (so that the so-called elastic analogy applies), see also [3].
Our aim here w ill be a more detailed investigation o f the strain and failure o f 

the frame when damage in the rods appear and evolve follow ing some o f the classical 

schemes o f continuum damage mechanics initiated and developed by Kachanov [4, 
5], see also [6] for further results and generalizations. Since the rods undergo 
different stresses, dam age within them w ill reach different levels and w ill thus lead 
to a more com plicated picture o f stress and damage distribution than the ones 
treated in the classical examples o f damage mechanics. In this prelim inary stage 
o f our investigation, only the purely brittle case w ill be dealt with. Th e  problem  is 
rigorously posed in Section 2. But even in this simpler case, unlike the examples o f 
damage mechanics, no simple analytical solution w ill be possible, since the problem 

under study w ill be eventually formulated as a system o f  two coupled nonlinear 
differential equations governing the damage evolution in the rods which admits, in 
general, only numerical treatment. T h a t is why the particular, but realistic case 
o f a common “damage exponent” i> o f the rods is on ly considered in Section 3. In 
this case it appears that the damage parameters o f the rods are proportional and 
a simple explicit solution for the damage accumulation is found in Section 4. Th is 
solution is discussed in more detail in the final Section 5.

2. P O S IN G  T H E  P R O B L E M

Let all the rods possess in their undamaged state one and the same cross-section 
So and Young ’s modulus E v . Denote as usual by ip the continuity parameter, so 
that ui =  1 — ip is the damage variable. In the brittle regime under discussion the 

damage accumulation in a single rod (under uniaxial tension) is governed by the 
well-known Kachanov’s law
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where cr0 =  F / S q is the applied stress, C  and v  are m aterial constants [4, 5]. The 
brittle time-to-rupture, t J, o f such a single rod is given then by the known relation

C ( l  +  i / K ’ (2 '2)

see again [4, 5]. Hereafter the dimensionless time-scale

T = t / t ;  (2.3)

w ill be used, since is a natural time-unit for the problem  under study.
T o  derive the damage evolution equations in the rods, let us w rite down first 

the only non-trivial statics equation for the problem, namely,

2T) cos Q T  T  — F  , (2.4)

as well as the equation o f the com patib ility o f the strains in the nod D ,  namely,

— £ cos2 a  . (2.5)

Hereafter all quantities w ith the subscript ‘ 1’ refer to the rods A ! D  or A ” D ,  and 
those w ithout a subscript —  to the central rod B D .  Hence, in particular,

<t i — T i /So , <t =  T / S o , (Tq =  F / S o (2-6)

are the stresses in the rods, T\ and T  being the respective magnitudes o f  the tensile 
forces in them, see Fig. 1; <r0 would be the stress in any o f the rods if  they were 
single and subjected to the same force F q. Note also that dealing w ith brittle 
fracture solely implies that strains are small, so that the angle a  in Eqs. (2.4) and

(2.5) remains constant — ■ something that does sim plify the study (in  the ductile 
and m ixed brittle-ductile failure this angle changes considerably during loading and 
hence an additional non-linear equation involving this angle should be added to the 
basic equations).

Assume next that the rods A ! D  and A " D  have the same “damage exponent” 
v  but different m aterial parameter C\ in the Kachanov’s law (2.1) than the central 
one B D . 1 Th is means that Eq. (2 .1 ) applies for the central rod B D ,  but in the two 
“side” rods A ' D  and A " D  damage accumulates according to the law

“ . =  C . ( £ ) \  (2.7)

where C  ^  C\. Th e  reason to take different m aterial parameters C  and C\ is that
the well-known elem entary elastic solution for the fram e under study suggests that 
the central rod is obviously more stressed than the two “side” ones, i.e. a  >  <r\.

'N o te  that the more general case when the exponents v  o f the rods differ as well can also 
be treated without much effort, though no closed form  solution is possible. This case w ill be 
considered elsewhere.
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This means that the central rod w ill fa il faster. Th a t is why, to make the frame 
more “damage-resistant” , one should accordingly choose for the central rod C D  a 

more “damage-resistant” m aterial which accumulates damage slower, i.e. C  <  C\ 
at one and the same fixed damage exponent v. Hence for a given u and C\, the 
dimensionless tim e-to-rupture o f  the frame

r )  =  t ' j /t l  =  T ( C / C 0  (2.8)

w ill be a function o f  the dimensionless parameter C/C\,  as we shall see below. As 
a matter o f fact, the function T  w ill be o f central importance in our study, since 
its behaviour (loca l extrem a i f  any, monotonic decrease and/or increase, etc.) w ill 
allow us to draw non-trivial conclusions, concerning optim al “damage-resistant” 
design o f the fram e under study, i.e. to get its time-to-rupture rj- as big as possible 
through an optim al choice o f the damage m aterial constants o f the rods.

3. B A S IC  E Q U A T IO N S

Let us now write down the above formulated basic equations in a dimensionless 
and more convenient form.

First, the equation o f  statics (2.4) in such a form  reads

2si cos a  +  s =  1 , (3-1)

where

si =  cti/ctq , s =  <r/<r0 , (3.2)

w ith (T\ and defined in Eq. (2.6).
Next, the damage law (2.1) can be recast as

du 1 {  s '  v
(3.3)

see Eqs. (2 .2 ), (2 .3 ) and (3 .2 ). In turn, the appropriate damage law for the side-rods 
becomes

1 (3 .4 )
d r  £ ( l  +  t/) \ip i 

where the dimensionless quantity

£ =  C / C i  (3.5)

determines, so to say, the relative “damage-resistance” o f  the central rod as com
pared to that o f  the side ones (a t a fixed “damage exponent” u for all rods, let us 
recall).

To  find the stresses in the rods and thus the damage accumulation rates by 
means o f Eqs. (3 .3 ) and (3 .4 ), use is to be made now o f the strain com patib ility 
condition (2.5 ). Recall to this end that the rods are assumed to possess, in the virgin
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state (ip =  ipi =  1). °ne and the same You ng ’s modulus E v . T w o  possibilities are 
open now.

First, as the simplest and rough approximation, one can assume that the 
Young ’s modulus is not influenced by damage. Then, from  Eq. (2 .5 ) (d iv id ing 
both its sides by E vao),  one gets

si =  s cos2 a  . (3 6)

Together w ith Eq. (3 .1 ), the latter relation yields the well-known elastic stresses in 
the rods, namely,

_  a  1 _  171 _  cos2 a 
(To 1 +  2 cos3 a ’ 1 (To l  +  2cos3 a ’

which therefore are not affected by the damage process taking place in the rods. 
In this way damage accumulation in them is not coupled in the case under study, 
cf. Eqs. (3 .3) and (3 .4 ), and hence they can be solved separately. The failure w ill 
have two distinct stages: in the first one all rods w ill sustain load (ip, xpi > 0 ) ;  in 
the second stage either the central or the two side rods w ill already have failed, 
depending on the ratio £, see (3.5), so that the eventual failure w ill happen when 
the last o f the rods w ill fa il as well. O f course, these two stages w ill appear in 
the general case as well, but here, when damage accumulation in the rods is not 
coupled, the investigation and the appropriate formulae for the time-to-rupture are 
not difficult to be derived; that is why they w ill be skipped here.

Instead, let us treat in more detail the more realistic assumption when the cur
rent Young ’s modulus is influenced by damage, i.e. E  =  E( ip) .  (Th is  assumption, 
as well as the idea to measure damage through the observed change in the elastic 
moduli o f a dam aging solid, is discussed in detail in [6], where the appropriate 
references are given as w ell.) The simplest approximation is to assume that

E(il>) =  E viP =  E v ( 1 - w )  (3.8a)

for the central rod and, accordingly,

E{xpx)  =  E vtP i =  E " {  1 -  w i )  (3.8b)

for the two side-rods, E v denoting the Young’s modulus for the virgin rods. It 
is noted that such an assumption is natural enough i f  one recalls the original 
Kachanov’s interpretation o f the continuity parameter rp as the fraction o f the
undamaged rod cross-section area that only sustains load. A lso, this assumption,
roughly speaking, reflects the well-known Voigt approxim ation in mechanics o f com
posite media, i f  the damage parameter ui is treated, somewhat loosely o f course, as 
the void volume fraction in a porous solid. In this case, noting that

<Ti =  E^ipie i  , <t =  E vtp£ 

in virtue o f  Eqs. (3 .8 ), one finds from  Eq. (2.5)

~T~ =  ~r cos2 a  (3-9)
ipi ip
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which, when coupled w ith  Eq. (3.1 ), yields

V>i cos2 a

tp +  2tpi cos3 a ’ 1 tp +  2ipi cos3 a

Not surprisingly, for undamaged rods (ip =  ipi =  1) the purely elastic solution, 
Eq. (3.7), is recovered once again from  Eq. (3.10).

W hen inserted into Eqs. (3.3) and (3.4 ), the stresses from  Eq. (3.10) now lead 
to the basic system o f coupled differential equations that describes the damage 
accumulation o f  the rods, namely,

^  = - / ( ^ .  V’i )  ,

dtpi 1 f f  i i \

(3.11a)

w ith the notations

/ ( i M i )  =  t —  (V> +  2V<i cos3 q )  " , A = — , (3.11b)
1 +  v  '  '  cos-*" a

since w =  1 — ip, u>i =  1 — i p i . The system (3.11) should be solved under the natural 
in itial conditions

ip =  1, ipi =  1 , at r  =  0 , (3-12)

reflecting the fact that the rods are undamaged at the moment t =  0 when loading 
is applied.

4. S O L U T IO N  O F  T H E  B A S IC  S Y S T E M  O F  E Q U A T IO N S  (3.11)

The solution o f the basic initially-value problem  (3.11) -  (3.12) is elementary. 
First, d ivid ing equations (3.11a) gives

=  A  , i.e. ip =  A(Vu -  1) +  1,
dtp i

or
u  =  1 — tp =  Aui i , w i =  1 — tpi . (4-1)

Hence an im portant consequence o f  the assumption o f  common damage expo
nent v  o f  the rods is the fact that their damage parameters are proportional, w ith 
the proportionality factor A,  given in Eq. (3.11b). In this way it turns out that the 
value o f  the factor A,  i.e. o f the dimensionless ratio £ =  C / C i ,  determines which 
o f  the rods w ill fa il first. M ore precisely:

a ) i f  A  <  1, i.e. A  = ■ <  1 or C  <  C\ cos2l/ a  , (4.2a)
cos a

198



then the two side-rods fa il simultaneously first;

b ) ■ i f  A = l ,  i.e. A  =  =  1 or C  =  C i cos2" a  , (4.2b)
cosJJ/ a '

then all rods fail simultaneously;

c) i f  A  >  1, i.e. A  =  — 1 > 1  or C  >  C i  cos2" a , (4.2c)
coslv a

then the central rod fails first.
It is noted that these results are natural enough since, e.g., the inequality 

(4.2a) means that the “damage-resistance” o f the central rod is considerably higher 
than that o f the side ones because the constant C  o f the former is considerably less 
than that o f the latter. The central rod accumulates thus damage slower than the 
other two and, not surprisingly, it ruptures last.

Now, introducing Eq. (4.1) into the second o f  Eqs. (3.11a) gives

t - A i h ) {Al +  A" * ' r  (43)

with the constants
A '  =  l - A ,  A "  =  A  +  2 cos3 a . (4.4)

The integration o f Eq. (4.3) gives

(  A/ , AD / \ "+ i
A  +  2 cos3 a

( l  +  2 cos3 a )  -  ( A '  +  A"jl>i y + l \ . (4.5)

Solving Eq. (4 .5 ) w ith  respect to V>i and using Eq. (4 .1 ) lead to the needed explicit 
time-dependence o f  the rods’ damage parameters during the loading in the frame 

under study.

5. D ISC U SS IO N  A N D  C O N C L U D IN G  R E M A R K S

Consider now in m ore detail the above mentioned three particular cases a) 
—  c), see Eqs. (4 .2 ), in order to determine the eventual time-to-rupture rj? o f the 

frame.
Let first A  <  1, i.e. the case a) takes place. Then, at the end o f the first stage 

o f failure o f the frame, when ?/q =  0 and the side-rods fail, the damage parameter

o f  the central rod has the value wj  =  A  <  1, see Eq. (4 .1 ). As it follows from  Eq.
(4.5 ), this happens at the moment

TI  =  a  - l 9^ ~3 [ ( l  +  2 cos3 q ) i/+1 — ( l  — A )^ +1] (A  <  1 ). (5.1a)A  +  Z  C O S °  O f L J

In the second failure stage, when r  >  r jf , only the central rod “works” , so that 
one should solve Eq. (2 .3 ) w ith the in itia l condition w =  wj  at r  =  Tj in order to
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find the final tim e-to-rupture, t J  , o f the whole frame, corresponding to the moment 

when uj =  1. E lem entary calculations give

t )  =  T<a> (0  =  r/ +  (1 -  A ) v+1 (5.1b)

with Tj given in Eq. (5.1a). (N o te  that in this second failure stage T  =  F ,  so that 

s = l . )
Let us point out that r/ =  0 at A  =  0, i.e. rjf =  1 at A  =  0 as it should 

be. The reason is that A  =  0 means that C\ =  oo, so that the two side-rods 

fail instantaneously and from  the very beginning only the central rod sustains 
load. Moreover, the time-to-rupture r )  as a function o f A  should be increasing 

in the interval A  £  [0,1], since increasing A  at fixed C  and v  (and thus at fixed 
f j )  implies that the parameter C\ decreases; hence the side-rods become more 
“damage-resistant” which increases, naturally enough, the life-tim e o f the frame.

Next, from  Eqs. (5 .1 ) one im m ediately finds the tim e-to rupture r j  in the case
b ) when all the rods fail simultaneously, just putting A  =  1 in them:

t )  =  t M ( ( )  =  (1 +  2 cos3 a ) "  ( A = l ) .  (5.2)

Let now A  >  1, i.e. the case c) takes place. Then, at the end o f the first stage 

o f failure o f  the frame, when ip =  0 and the central rod fails, the damage parameter 
o f the side-rods has the value uij =  \ j A  <  1, see Eq. (4.1). Th is happens at the 

moment

A

. A  +  2 cos3 cv
( l  +  2 cos3 a y +1 — (  2 cos3 a {A  >  1 ), (5.3a)

as it again follows from  Eq. (4.5). In the second failure stage, when r  >  r f , only 

the side-rods “work” , so that one should solve Eq. (3.4) w ith the initial condition 
u> =  u>[ at t  =  Tj in order to find the final time-to-rupture, tJ , o f the whole frame, 
corresponding to the moment when wi =  1. E lementary calculations give

t)  =  T M ( 0  =  T- ;  +  2"(1  -  A ) u+1 cos3" a  (5.3b)

with Tj given this tim e by Eq. (5.3a). (N o te  that in this second failure stage 

2T  cos a  =  F ,  so that si =  1/2 cos a . )

It is noted that tJ —» oo at A  —» oo, which again is natural. Indeed, at fixed 
C  >  0 (in  order that the basic time-unit makes sense, cf. Eq. (2 .2 )) A  —*• oo only 

i f  C i —► 0, so that in the lim it A  =  oo the side-rods do not accumulate damage. 
The only damage phenomenon w ill be in this case the failure o f the central rod 

which will happen at the moment

A -
lim  Tj =  ( 1 + 2  cos3 a ) " +1 — 2 "+1 cos3( " +1) a ,

as it follows from  Eq. (5.3a).
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Com bining now the formulae (5 .1 ) to (5 .3 ) gives

r ]  =  n o  =

( T ( a )( 0 ,  i f  £ <  cos2" a,

T (6)( 0 ,  i f  £ =  cos2" a,

T (c )(£ ), i f  £ >  cos2"  a,

(5.4)

which accomplishes our aim  —  analytic evaluation o f  the function T (£ ) ,  see 
Eq. (2.8 ), that gives the time-to-rupture tJ o f  the whole frame for a given di- 

mensionless ratio £ =  C / C i o f Kachanov’s material parameters o f the rods (w ith  
a fixed and common “damage exponent” u).  The superscripts in Eq. (5 .4 ) corre

spond obviously to the three different situations a) —  c) o f frame failure, discussed 
in Section 4, see Eq. (4.2).

For illustration the p lot o f the function rjT =  T (£ )  for a typical angle a  =  ît/4 
and v  =  3 is shown in Fig. 2.

Fig. 2. Dimensionless time-to-rupture r* o f the frame as a function o f the parameter 

A  =  (C /C iJ/cos2"  or at or =  ir/4 and u =  3

A  more detailed numerical investigation shows that r j  is always a monotoni- 
cally increasing function o f the ratio C j C \ .  Th is means in the damage mechanics 
context that for a given central rod one should add side-rods for which C\ is as 
small as possible, i.e. their “damage-resistance” is as high as possible. O f course, 

this result should have been expected qualitatively. The above analysis allows us, 

however, to draw quantitative conclusions as well, i.e . 'to  evaluate sim ply the rela
tive time-to-rupture increase o f the fram e as compared to that o f the central rod if  

it were a single one and subjected to the same tensile force F .
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SOME EXAMPLES OF LEXICOGRAPHIC ORDER 
ALGORITHMS AND SOME OPEN COMBINATORIAL 

PROBLEMS

D IM IT A R  L. V A N D E V

A  general reasoning based on the lexicographic order is studied. It helps to create 
algorithms for generation o f sets o f words having certain natural and good properties. 
Several examples are considered and the performance o f the proposed algorithms is 
calculated. An  open combinatorial problem regarding the set o f partitions arises.

K e y w o rd s :  enumerating algorithms, lexicographic order functions.

1991/95 M a th e m a t ic s  S u b je c t  C la ss ifica t ion : 68E05, 65C20.

1. IN T R O D U C T IO N

There are numerous examples o f sets o f words —  vectors o f natural numbers, 
which as one set o f entities may be used for some computational purposes: sets o f 
all permutations, combinations and many others. In many cases one needs to go 

across such a set and perform  some computations for each member. (See [3] for 

many examples in combinatorial calculations.)

The problem  o f the efficient generation o f all elements o f a class o f combinatorial 

configurations w ith given properties is considered as an im portant problem in the 
theory o f algorithms. The generation in a prescribed lexicographical order is one 
o f the most investigated cases, see [5, 4].

In the present paper an attem pt is made to use the lexicographic order o f 
these words as a too l for creating enumerating (or generating) algorithms. It turns 
out that the proposed scheme is useful also for calculating the performance o f the
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algorithms. In some cases it is possible to calculate it easily, while in others an 
open problem  arises.

A  part o f these examples were presented as a short communication at the 
Seminar o f Statistical D ata Analysis in Varna, Bulgaria, see [7].

2. D E F IN IT IO N S  A N D  N O T A T IO N S

Let N  be the set o f  natural numbers { 0 , 1 , . . . ,  n} .  Call N  alphabet. Denote 
by S  =  S ( m , n ) the m-times Cartesian product o f the set N .  The elements o f the 
set S  are called words w ith a fixed length m  and a common alphabet N .  It  is clear 
what a lexicographic order in this set means. One word is called “ larger” than 
another if  its first (a fter the common beginning o f the two words) letter is larger 
than the corresponding letter o f the second word. Note that the set o f numbers 
(w ith  leading zeroes) w ith digits from  N  is ordered in the same manner.

For any subset W  o f  the set S  this order induces the same order for the elements 
o f W . To  make things more formal, we shall call the word form ed by the first k 
letters o f the word w prefix and denote it by w(k) .  The notation w(l ,  fc), I <  k, w ill 
be used to denote the set o f  letters in the places from  I t o k. For prefixes with fixed 
length we have the same induced from  S  linear order. Formally, the em pty word 
uj(O) is the unique element o f  the set S (0 ,n ). W e introduce two sets o f mappings 
(projections preserving the order) from  S  onto W .  I f  the word belongs to W ,  these 

mappings w ill preserve its prefix. In the follow ing we shall consider the set W  fixed.
D e f in it io n  1. For s 6 S, z =  F irs t(& , s) is the first member z £ W , such that 

z (k )  >  s (k ), i f  it exists. In any other case it is the first member o f W .

D e fin it io n  2. For s £ S, z =  Last(fc , s) is the last member z £ W , such that 
z ( k ) <  s (k ) ,  i f  it exists. In any other case it is the last member o f W .

I f  w £ W , z — F irst(fc,u>) is the first member o f W  and z =  Last(/ ;,iij) is 
the last member o f W  w ith the same prefix z (k )  =  w(k) .  So the element wq =  
F irs t (0 , w)  is the very first in W  and lo =  L a s t(0 , w ) —  the very last in the global 
linear order.

W e shall introduce also a mapping In crease (& , w),  which w ill be used to in
crease only the Ar-th letter o f the word w. Th is mapping is not defined for all 
elements o f  W  or S.  Moreover, its result (when defined) is not obliged to belong 

to the set W .

D e f in it io n  3. W e say that In crease (& , w)  equals the smallest word z £ 5, 
such that w (k ) <  z (k ) ,  i f  this word exists. In any other case it is not defined.

Obviously, not for all elements o f W  this definition w ill lead to increasing o f 

only and exactly the k- th  letter.

3. M A IN  RE SU LTS

First we shall prove some simple consequences o f these natural definitions. 
Then an algorithm  w ill be presented and a theorem about its completeness w ill 

be proved. Then' a simple theorem which helps to estimate the effectivity o f the
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algorithm  w ill be stated. It  w ill concern the mean number o f  steps needed to 
produce the next to w word in W .

Lem m a 1. Both mappings First and Last are well  defined and idempotent  
with fixed k: First(&, First(fc, s)) =  First(jfc, s), Vs £ S.

Proof.  Denote by Iq =  Last(0, s). Then  the set S  m ay be split into two subsets:
S  =  S i  +  S 2 =  { s  : s(& ) <  l o (k ) }  +  {s  : s (k )  >  /o(fc)}.

W hen s £ S\, the im age z — First(fc, s) exists, because it may be represented 

as intersection o f  non-empty subsets o f W .  It  is unique because o f  the linear order. 
When s £ S2, we have w0 — First(fc,s) according to the definition. Th e  second 
statement is obvious because o f  the definition too. Th e  same argument works for 
the mapping Last. □

Lem m a 2. I f  z =  Last(A:,u;), then f o r  each i  >  k, z =  Last(i, z) .  I f  z =  
First(fc, w),  then f o r  each i  >  k, z =  First(i, z) .

Proof.  Suppose that z =  Last(fc,w), but z <  Last(i, z)  for i  >  k. W e have
w <  z =  Last ( k , z ) .  Then  Last(fc,z) <  Last(z, z ). However, the first k letters o f
these two words coincide —  which is a contradiction. Th e  same reasoning works 
for the dual statement. □

Let fix  in £ W  and consider the set o f equations w =  Last ( k ,w ) .  Note that 
w =  Last (m ,  w)  is true for each w. According to Lem m a 2, there exists a m inimal 
k for which this equality holds. For the last word in W  we shall have k =  0. Again  
the same is true for the first word in W  (in  this case the mapping First should 
take place in the equations).

These considerations g ive us the possibility to  construct the follow ing algorithm  
for consecutive com puting o f the ‘next’ to w word in the set W :

function next (w ord)
1 k — n;
2 while word =  Last (k , word);
3 Jfc =  k -  1;
4 end_while;
5 i f  k =  0 stop;
6 word :=  Increase(&, word)-,
7 word :=  First(£, word)-,
end

Th is algorithm  needs some explanations. Lines 1-4 perform  the search for the 
largest k for which w Last(A:, w).  As the purpose o f  these lines is to find the inte

ger k, it seems natural to  combine them into a function: k =  Last_Not_Last(ui). 
Another reason to make this w ill be seen in the examples —  in most cases it is easier 
to calculate the function Last_Not JLast than the mapping Last. The number k 
may be easily interpreted as the position o f  the first letter changing when m oving 
from  the given word to  the next one in a lexicographically ordered set W . Line 
5 prevents the use o f  the program  after the last word Iq — Last(0, w)  has been 
reached. Line 6 increases the &-th letter o f the word to the next letter allowed
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(given the prefix w(k  — 1 )). Line 7 simply uses the mapping F ir s t ,  but the prefix 
is now one letter longer —  w(k) .

Usage o f the function L a s t_ N o t_ L a s t  simplifies the algorithm:

function n e x t (w o r d )

k =  L a s t  J N o t_L as t(iu o rd );
I f  k =  0 stop; 

word : =  In c rea se (& , word))-, 
word : =  F irs t(& , word)-, 

end

T h e o r e m  1. Start ing with wq =  F irst(0 ,u> ), the above algori thm exhausts all 
elements o f  the set W ,  i.e. Iq =  Last(O .u i) is reached.

Proof. The first thing is to check the possibility to define and use the mapping 

In c re a s e  properly. Let k >  0. As the element w is not equal to L a s t ( k , w ) ,  there 
exists a word z 6 W ,  such that z (k )  =  w(k )  and w <  z. Let us choose the next 

to w element z E W .  Suppose now that the &-th elements o f z and w are equal. 
This means that z ( k )  =  w (k )  and we have w <  z, but Last(fc , w)  =  w. Th is is a 
contradiction. Thus, there exists a word z 6  W  C S  w ith greater fc-th letter. Such 
a word exists in S.  So in our algorithm  we may use the function In c re a s e  when 
the proper k >  0 is found.

Now we shall show that no word z 6 W  may be skipped by the algorithm. 

I f  m  =  1, the statement follows from  the definitions o f In c re a s e  and F ir s t .  I f  
In c re a s e  does not produce a word from  W ,  then this w ill be done by F irs t .

The induction on m  uses the fact that each part o f the set W  w ith a fixed 

prefix uses the same definitions o f the functions F irs t , L a s t, In c rea se . I f  for any 
fixed first letter the algorithm  is exhaustive, it w ill be exhaustive for the whole 
set. □

C o m m e n t 1. The study o f this simple p roo f shows that the definition o f 
In c re a s e  may be made more complicated —  not simply to increase the correspond
ing letter, but to choose it in such a way that the corresponding prefix “ belongs” 
to W . The function F ir s t  does not need to be defined for any word in S.  For the 
index k achieved at the first step, there always exists a number in the alphabet put 
at the fc-th place in the word, so that F irs t (& ,iu ) :=  F i r s t (2 ,u;) is well defined. 
Th is situation is effectively explored in some o f  the examples below.

C o m m e n t  2. It  is easy to see that if  one defines the mapping In c re a s e  to do 

nothing when k =  0, the proposed algorithm  w ill loop infinitely across the set W  
starting from  the beginning again and again.

C o m m e n t  3. The same argument may be used for the statement concerning 

the reverse order. The mapping F ir s t  may be replaced by L a s t, the mapping 
In c re a s e  —  by the correspondingly defined mapping Decrease.  A ll the statements 

above w ill remain true except for the order —  it w ill become the inverse order. 
There is one more form al duality in the lexicographical order -  the interchanging 
o f the letters. Th e  most natural interchanging is to read the word backward. Then
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the first letters o f the word are changed while the last are kept fixed. W e shall 
call such an order dual. W ith  any set four different orderings into the set S  can 
be defined. The definitions above are to be changed correspondingly for any such 
order. A n y  o f  these orderings m ay be useful to consider when an enumeration is 
performed.

T h e o r e m  2. Denote by Wk the set o f  all different prefixes w (k )  o f  words 
in W .  We shall assume that |W0| =  1 and W n =  W .  Suppose that f o r  each 
k — 0 , 1 , 2 , . . .  , n  — 1, we have \ Wk |/| fk t+ i | <  q <  1. Then according to the uni form 
distribution on W  the expected number o f  steps to reach the address o f  change 
E (n  — k)  fulfills the inequality

2
E (n  — k)  <  --------.

P r o o f  The set W  may be represented as a graph —  a tree with to ta lly  N  +  1
vertices and N  edges. Each vertex corresponds to a fixed prefix. Then the total
way o f our algorithm  to generate all the members o f the set is proportional to 2N .  
Denote rk =  \Wk\- Th e  expected number E (n  — k)  may be represented in the form

2 N  2
E(n -  k)  <  |^|  <  — (r 0 +  T-i +  r 2 H------ 1- r n )

= 2 / rori . . . r n. 1 +  + + A 21 -  g"+1
V r i r 2 • ■ • Di 7-27-3 . .. r n )  1 -  q

C o m m e n t  4. I t  is clear that the assumption o f the theorem may be weakened 
in a number o f ways. For exam ple, it is enough for k to run over the set 0 ,1 , . . . ,  n — j .  
Then the expectation w ill be lim ited by j  +  1/(1 — q).

As we shall see in the next section, despite that the assumption is not fulfilled 
in many cases, the average number o f  steps remains finite. On the other hand, the 
set consisting o f two words {1 , 1 ,1 , . . . ,  1 } and {2 , 1 ,1 , . . . ,  1 } w ill need an expected 
number o f  steps proportional to n. It  is an open question, what, in general, happens 
to the expected number o f  steps when all the dualities mentioned in Com m ent 3 

are explored.

4. E X A M P L E S

In the next examples we shall construct the mappings F ir s t ,  L a s t, Inc rease  
and the function L a s t _ N o t  JLast for different subsets o f S.  W e shall try also to 
calculate the com putational com plexity o f the algorithms. In fact, one needs only 
the distribution o f k —  “ the place o f first change” in lexicographically ordered 
words. I t  is clear that the proposed algorithm  w ill be as effective as closer to n  the 
expectation o f  this place is situated. For that purpose one has to calculate also the 
size o f the corresponding data set and assume uniform  probability on it. So, the 
mean effort for constructing the next element should represent the com plexity o f 
the embedding o f  the data set in the given order. It  w ill be seen that the use o f 
different embeddings is o f prim ary interest.
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The first two examples have been extensively studied in [4, 5]. 
are mentioned only to show that the idea we use leads to natural and 
algorithms.

4.1. PERMUTATIONS OF N  ELEMENTS

In Tab le 1 a part o f the set o f all permutations o f 5 elements is 
lexicographic order.

T A B L E  1 . Part o f permutations o f 5 elements

1 2 3 4 5 1 3 2 4 5 1 4 2 3 5
1 2 3 5 4 1 3 2 5 4 1 4 2 5 3
1 2 4 3 5 1 3 4 2 5 1 4 3 2 5
1 2 4 5 3 1 3 4 5 2 1 4 3 5 2
1 2 5 3 4 1 3 5 2 4 1 4 5 2 3
1 2 5 4 3 1 3 5 4 2 1 4 5 3 2

It is clear that the mapping L a s t  sim ply orders all the elements o f w after 

(and including) the A-th one in a decreasing order, while for the mapping F ir s t  
this order is increasing.

The function L a s t_ N o t_ L a s t  finds the smallest k such that after it all elements 
are in a decreasing order. Denote j  =  n — k. Then  it is clear that j  runs from  1 to 
n. For a given k , this function needs j  subtractions and comparisons.

The mapping In c r e a s e  is more complicated. It  takes the next larger than 
w(k,  k ) integer from  the set o f  integers w(k,  n )  and should replace it w ith w ( k , k). 
The last step F ir s t  is equivalent to inversion o f the sequence o f  the last j  integers.

Theorem  2 can be applied to the set o f  permutations w ith k running up to n —j  
and q =  1 Jj\. However, it m ight be interesting to calculate exactly the expected 
number o f steps o f the algorithm . Th is is done in [5, Section 5.1], in the terms o f 
transpositions and comparisons. The expected number o f integer calculations then 
is proportional to  (e — 1) and remains finite as n —► oo.

4.2. SUBSETS O F  M  E L E M E N TS  O U T  O F  S E T  O F  N

In Table 2 the set o f  all subsets o f 4 elements, taken from  the set o f  6 elements, 
is shown in a lexicographic order. One calls the objects combinations o f  n elements 
o f class 4. Here the letters are kept in an increasing order inside the word —  they 
should not coincide.

T A B L E  2. Subsets o f 4 elements out o f 6

1 2  3 4 1 3  4 5 2 3 4 6
1 2  3 5 1 3  4 6 2 3 5 6
1 2  3 6 1 3  5 6 2 4 5 6
1 2  4 5 1 4  5 6 3 4 5 6
1 2  4 6 2 3 4 5

Here they 
well-known

shown in a
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The mapping L a s t  changes the last m  — k elements o f w into the largest 
elements o f N ,  while F ir s t  sets these elements to the smaller ones follow ing the 

k - l h  element o f w. The function L a s t_ N o t_ L a s t  finds the largest k such that 
w(k, k)  is not equal to n -  ( m  -  k). The mapping In c re a s e  sim ply adds 1 to the 

corresponding element o f w. This is also well-known algorithm  [5, Section 5.2.2].

The number o f combinations o f n elements class m  is ( ^ ) . In a sim ilar way, as 
in permutations, we find the number o f calculations as a function o f j  =  m  — k to 
be about Aj. The distribution o f j  is also easy to construct:

( n - m !-;■)

So, we come to even stronger result, namely, that w ith the growth o f n — m  the 
expected number o f calculations decreases.

Here the application o f Theorem  2 is also possible, which yields =  (n _ (™_ i ))

4.3. P A R T IT IO N S  O F  A N  IN T E G E R  I

T o  generate the set \V o f all partitions o f a given integer n into a sum o f number 
integers is an easy problem  for this algorithm. In Table 3 all partitions o f 10 into 
the sum o f up to 4 numbers are given (except the trivia l 000 10). Th is presentation 

allows to split easily W  into partitions o f exactly 2, 3 and 4 non-zero numbers. 
These subsets fo llow  consecutively. In the next examples other representations will 

be used.

T A B L E  3. Partitions o f 10 into up to 4 members

0 0 1 9 0 1 3 6 1 1 2 6
0 0 2 8 0 1 4 5 1 1 3 5
0 0 3 7 0 2 2 6 1 1 4 4

0 0 4 6 0 2 3 5 1 2 2 5
0 0 5 5 0 2 4 4 1 2 3 3
0 1 1 8 0 3 3 4 2 2 2 4

0 1 2 7 1 1 1 7 2 2 3 3

The mapping L a s t  distributes the remaining portion o f n  into maximum equal 
portions among the remaining numbers after the k- th one. The mapping F ir s t  
states all these numbers to w ( k , k ) and the remainder from  m  is added to the last 
number. The function L a s t  _N o t_ L a s t  finds the largest k such that w ( m , m )  — 
w ( k , k ) >  2. The mapping In c re a s e  simply increases by 1 the corresponding 

element o f w. Th is algorithm  is due to Hindenburg (see [1, Section 14.3]).

In order to apply the theorem, we have to calculate =  \ Wk\. Th is is not an 
easy problem, however. Consider the unlim ited case —  all partitions o f n w ill be 
fixed as words o f  length n w ith non decreasing elements.
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One sees that the number Wk is a sum o f partition  numbers, subjected to two 
kinds o f restrictions —  concerning the maximum number o f  elements and the size 
o f the largest element.

W e have w0 =  1 and Wk =  lu^-xl +  1 until n — k >  [n/2]. Starting from  

[n/2] +  1 until n — k =  [n/3], we have Wk =  W k - i  +  2 or Wk =  W k - i  +  3. Here the 
choice depends on the remainder o f the division on 3.

Th is exam ple shows that in this case Theorem  2 is not applicable. Indeed, 

w[n/2 ] + i / w[n/2 ] =  1 +  1 /n and it tends to one as n increases. Nevertheless, we hope 
that the average number o f  steps is finite in this representation also. The exact 
statement remains an open problem.

4 .4 . P A R T IT IO N S  O F  A N  IN T E G E R  I I

Here we use the representation which follows from  the formula

n

in-i =  n.
i - 1

Here the numbers n* represent the number o f members o f size i in a particular 
partition. The number o f  members in each partition is ]>3"=1 n,-. It is clear how to 
convert one representation into another. Tab le 4 contains the set o f all partitions 
o f 10 into members less than 8, but in another lexicographical order according to 
the new presentation. Instead o f the restriction on the number o f  members, we now 

pose a restriction on the m axim al member o f  the partition.
Here we shall exp lo it the dual order and present the same partitions in an order 

with a fixed suffix. In this order it is easy to add the additional restriction on the 
maximum member o f  the partition, say, it is equal to 7: starting w ith a\ =  N  this 
new algorithm  produces all partitions o f 10 to members not bigger than 7.

T A B L E  4. A ll partitions o f 1 0  into numbers up to 7

10 0 0 0 0 0 0 
8 1 0 0 0 0 0 
6 2 0 0 0 0 0  
4 3 0 0 0 0 0  

2 4 0 0 0 0 0
0 5 0 0 0 0 0 
7 0 1 0 0 0 0  
5 1 1 0 0 0 0 
3 2 1 0 0 0 0
1 3 1 0 0 0 0

4 0 2 0 0 0 0
2 1 2 0 0 0 0
0 2 2 0 0 0 0

1 0 3 0 0 0 0
6 0 0 1 0 0 0
4 1 0 1 0 0 0
2 2 0 1 0 0 0
0 3 0 1 0 0 0
3 0 1 1 0 0 0
1 1 1 1 0 0 0

0 0 2 1 0 0 0
2 0 0 2 0 0 0
0 1 0 2 0 0 0
5 0 0 0 1 0 0
3 1 0 0 1 0 0
1 2 0 0 1 0 0
2 0 1 0 1 0 0
0 1 1 0 1 0 0
1 0 0 1 1 0 0
0 0 0 0 2 0 0

4 0 0 0 0 1 0
2 1 0 0 0 1 0
0 2 0 0 0 1 0
1 0 1 0 0 1 0
0 0 0 1 0 1 0
3 0 0 0 0 0 1
1 1 0 0 0 0 1
0 0 1 0 0 0 1

The function L a s t_ N o t_ L a s t  finds first k from  the beginning such that k <  

I =  Y l i = i  i -ai- Then  a,k is increased by one. F ir s t  nullifies all elements in the 
beginning and makes o i =  I — k.
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Let us try to  estimate the performance o f  the algorithm . As usual P ( n )  =  \W\ 
is the number o f  partitions o f n. Denote by n, the number o f different suffixes in 
the words o f the set W . It  is clear that r „ _ i  =  P ( n ) ,  r 0 =  1, n  =  2.

Consider now the case: 3 <  k <  n — 1. It is clear that the set Rk may be 
mapped into the set R k + i ,  so that the additional element (a t place m  — n — k)  is 
zero. However, it is possible to make one more mapping o f the same set Rk into 
elements o f Rk + \ w ith non-zero elements at the same place m.  Th is can be done 
if  every suffix is shifted left until the first non-zero element occupies the place m.  
The remaining portion  o f  the suffix is filled w ith zeros. Th e  on ly exception for this 
second mapping is the suffix consisting o f zeros only. So we have the inequality

r k / r k+\ <  1 / 2 +  1 / n t+ i <  5/6.

According to Theorem  2 this means that the mean number o f  steps is finite 
and does not increase a s n - t  oo. The exact value o f  this mean, as well as the exact 
distribution o f the number o f  steps remain an open problem  in this presentation 
also.

4.5. BELL POLYNOMIALS

For exact definitions see [3, Ch. I, p. 10]. Th is example is included merely to 
illustrate the use o f  the algorithm  working in the reverse order. Consider the set o f 
all vectors o f natural numbers satisfying the follow ing two equalities:

OO CO

ki =  m, iki =  n.
1=1 1=1

The summation above is assumed to be infinite for simplicity. It  is clear that 
only the first n — k +  1 elements may be non-zero. Th is set is o f some interest 
in many applications. In addition to computing Bell polynomials, it is used in 
the distributions o f  order k. Aga in  we have partitions and the problem  could be 
solved using the first representation o f partitions in Section 4.3 and then screening 
partitions w ith number o f members less than m. However, we shall give here an 

explicit solution.
In Table 5 the solutions for n =  13 and m  =  6 are shown in reverse order. The 

reverse order is chosen because o f  the sim plicity o f the mapping L a s t  in this case.

T A B L E  5. Bell Polynomials n  =  13 and m  =  6

5 0 0 0 0 0 0 1
4 1 0 0 0 0 1 0
4 0 1 0 0 1 0 0
4 0 0 1 1 0 0 0
3 2 0 0 0 1 0 0
3 1 1 0 1 0 0 0
3 1 0 2 0 0 0 0

3 0 2 1 0 0 0 0
2 3 0 0 1 0 0 0
2 2 1 1 0 0 0 0
2 1 3 0 0 0 0 0
1 4 0 1 0 0 0 0
1 3 2 0 0 0 0 0
0 5 1 0 0 0 0 0

The reverse algorithm  w ill be used. The mapping Decrease  decreases by 1 
the corresponding element o f  w. Th e  mapping L a s t  sets all elements w ith indexes
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greater than k to zero, then w(k +  1, k +  1) =  rrxk — 1, and finally adds 1 to the 

number in position k+n.k — +  Here m i and are the values o f the sums in
the definition o f Bell polynomials, taken over indexes greater than k. The function 

Fi r .s t -N o tJ F i vs t  finds the largest k such that w (k : k)  >  0 and w(k,  k ) <  ma x — 2. 
Here ma x  is the index o f rightmost non-zero element.

In order to estim ate the performance o f the algorithm, in this situation, we 

shall point out that the representation o f partitions given in Section 4.3 is much 
more economical. Moreover, the additional restriction m  =  Y ^ i  h  in this case is 

in concordance w ith the presentation. It means that it makes no sense to use this 

second representation if  one needs effectivity.

4.6. P A R T IT IO N S  W IT H  A N  A D D IT IO N A L  R E S T R IC T IO N  1

Let us consider the algorithm  for the follow ing partition problem with the 
additional restriction:

I ' i
k{ =  m, y y  ki2 =  n.

1=1 1=1

By using the algorithm  described in Section 4.3 and simply screening the second

equation, an easy solution could be given o f this problem. As an example, the results

are presented in Tab le 6 for words o f length 15, m =  16 and several values o f n.

T A B L E  6 . k, =  1 6 ,52 != ! k>2 =  71

n

18 1 1 1 1 1 11 1 1 1 1 1 1 2
20 0 1 1 1 1 11 1 1 1 1 1 2 2
22 0 0 1 1 1 11 1 1 1 1 2 2 2

0 1 11 1 11 1 1 1 1 1 1 3
24 0 0 0 1 1 11 1 1 1 2 2 2 2

0 0 11 1 11 1 1 1 1 1 2 3
26 0 0 0 0 1 11 1 1 2 2 2 2 2

0 0 0 1 1 11 1 1 1 1 2 2 3
28 0 0 0 0 0 11 1 2 2 2 2 2 2

0 0 0 0 1 11 1 1 1 2 2 2 3
0 0 0 1 1 11 1 1 1 1 1 3 3
0 0 11 1 11 1 1 1 1 1 1 4

It would be interesting to investigate the combinatorial properties o f this set 

and to study the properties o f the algorithm  in this case.

'T h e  author is grateful to Prof. G. Zbaganu who mentioned this problem at the 8 -th Seminar 
on Statistical Data Analysis, Varna, 1992, and then helped to reformulate the algorithm.
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Consider the set Fn'n  ̂ o f  words o f fixed length n, consisting o f zeroes and ones, 
and having the property that they do not contain m  or more than m  consecutive 
ones. (Th is  example was proposed by P. M ateev.)

It m ay be easily proved that the cardinalities o f satisfy the follow ing 
recurrent relation:

m

/£m) (4-1)
i = 1

W hen m  =  2, these numbers form  the well-known Fibonacci sequence. For

arbitrary m  and starting conditions — 0 and f [ m  ̂ =  1, Gabai [2] called

them Fibonacci numbers o f order M .  Ph ilippou [6] calculated them as sums o f
multinomial coefficients. For the words o f zeroes and ones, however, the starting

conditions are /^  =  1, =  1, as w ith the original Fibonacci numbers. For the(3)
particular case m =  3 we have /A — 1,1, 2 ,4 ,7 ,13 , 2 4 , . . . ;  n =  0 ,1 ,2 , . . .  In Table 

7 all the zero-one words are presented.

T A B L E  7. Fibonacci words for n  =  5 and m =  3

4.7. GENERALIZED F IBONACCI NUMBERS OF ORDER M

0 0 0 0 0 0 1 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 0 1 0 1 1 0
0 0 1 0 0 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 1 0 0 0 0 1 1 0 0 1
0 0 1 1 0 1 0 0 0 1 1 1 0 1 0
0 1 0 0 0 1 0 0 1 0 1 1 0 1 1

The algorithm  for generating such n-tuples is extrem ely simple. The function 

L a s t  JSTot_Last has to  find the first zero preceded by less than m —1 ones, In c re a s e  

puts one at this place and F ir s t  nullifies all elements with greater indexes.

Here the mean value o f the needed calculations is obviously proportional to 

the place j  =  n — k o f  the zero to change. Denote this mean value by j n . The 
above recurrence relation then leads to a new relation for the mean values. In order 
to obtain this relation, we shall use the p roof o f the recurrence formula (4.1). A ll 

n-words may be d ivided into M  disjoint subsets Si ,  S 2 , • ■ ■, Sm (we suppose that n 
is large enough). The /-th subset Si has an arbitrary prefix and last numbers are 

fixed:

Si =  { w e  : {wu  w2, . 0 ,1 ,1 ,1 , . . . ,  1 )}.

These subsets cover the whole set The cardinalities o f the sets are clearly

fffU'J- In each subset the algorithm  stops at the first 0, perform ing exactly / steps, 
or enters the prefix looking for the next available zero. In the first case the prefix
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should end w ith  exactly m  numbers —  a zero and m — 1 ones. Its cardinality equals 

to f t l m -  So we come to  the formula

■ E f e l ( ( j 'n - i  +  ~  / n - l-m ) +  i f [n - >i - m )

£~/i=l in - t  

m m

— jn  — m — i )  “h  ̂S'lUf ■
i= l s=l

The proportions in; =  f =  1,2, ...,771, are fixed as n —* oo. The
sequence j n then obviously converges to the fin ite number Y^iLi  itn ;*lim (/n+m//„).

5. P E R F O R M A N C E  A N D  C O N C L U S IO N

Both forms o f  the algorithm  have quite different performances. For the first it 

is quadratic in j .  One hardly expects a comparison o f two words o f length j  to be 
made for shorter time. I t  m ay be expected a good performance from  the second 

form  when the function L a s t_ N o t_ L a s t ,  as well as the mapping F ir s t  depend 

linearly o f  j .  In all examples above this was made possible.
In the case when the distribution o f  j  has a fin ite mean, not depending o f n, 

the asym ptotic properties o f  the algorithm  are extrem ely nice.

W e do not know the distribution o f j  in the case o f Bell polynom ials and the 
performance o f  the presented algorithms in this case remains an open problem  
which would be interesting to  be solved.

It  is clear that building up programs in such a way, one can hardly expect that 

they w ill be fast w ithout some additional efforts. However, in all cases above it 
turned out that on ly slight m odifications were needed to make the programs work 

quite satisfactorily.
Another useful hint may be to try the other orders to change the mappings 

F irs t , L a s t  and In c re a s e , correspondingly, and to see what w ill happen to  the 

program . It  m ay becam e shorter and faster.
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Г О Д И Ш Н И К  Н А  С О Ф И Й С К И Я  У Н И В Е Р С И Т Е Т  „С В . К Л И М Е Н Т  О Х Р И Д С К И “ 
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Том  89, 1995

A N N U A IR E  D E  L ’U N IV E R S IT E  DE S O F IA  „S T . K L IM E N T  O H R ID S K I“

FA C U LT E  D E  M A T H E M A T IQ U E S  E T  IN F O R M A T IQ U E  

L ivre 2 —  Mathématiques Appliquée et Informatique 
Tom e 89, 1995

ON THE EFFECTIVE CONDUCTIVITY OF A CLASS 
OF RANDOM DISPERSIONS

KRASSIMIR D. ZVYATKOV

A  new class o f random dispersions is considered in which not only the location 
o f the spheres is random, but their conductivity is random as well. The classical 
variational principles are employed in which classes o f trial fields in the form o f suitably 
truncated functional series are introduced. In this way three-point variational bounds 
on the effective conductivity o f the dispersion are derived and discussed in more detail 
for some particular statistical distributions o f sphere conductivity. A  rigorous formula 
for the effective conductivity, correct to the order square o f sphere fraction, is finally 
obtained which contains only absolutely convergent integrals.

K e y w o rd s : random media, effective properties, polydisperse structure.
1991 M a th e m a t ic s  S u b je c t  C la ss ific a t ion : 73B35, 73S10.

1. IN T R O D U C T IO N

Consider a dispersion o f homogeneous non-overlapping spheres o f random con
ductivity Kf ,  immersed at random into an unbounded m atrix o f conductivity Km . 

For convenience o f notations hereafter we represent the conductivity Kf  in the form  
Kf =  KfS,  where Kf  =  (Kf ) is the mean conductivity o f the sphere, embedded 
into the m atrix. Then  s represents their “non-dimensional conductivity” for which 

(2)= 1.
Let { x j }  be the random system o f sphere’s centers and at the position Xj  a 

sphere w ith conductivity Sj ,  random as well, is centered. Thus a set o f  marked 
random points {X j , S j }  is defined whose statistical description suffices for the dis
persion. A  sim ilar marked random system was considered by Christov and Markov
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[1, 2] in the study o f  dispersions o f spheres w ith random radii a. (For the general 
definition o f  sets o f  marked random points see [3].) W e assume henceforth, for the 
sake o f sim plicity solely, that the spheres possess a fixed and non-random radius a. 
Then the random conductivity field k (x )  o f the dispersion has the form

k (x )  =  Km +  K j s j  -  Km) h ( x  -  xy ), (1.1)

i

where h (x ) is the characteristic function for a single sphere located at the origin. 
In Sec. 2.1 we briefly discuss the statistical description o f the system o f marked 
random points {x y ,s y } ,  sim ilar to that used in [1, 2].

For definiteness we shall deal w ith the problem  o f  heat conduction through 
the random dispersion as a simple representative o f a wide class o f sim ilar trans
port phenomena. Th e  governing equations o f the problem, in the absence o f body 
sources, are

V - q ( x )  =  0, q (x )  =  k (x )V 0 (x ), (V 0 (x ) )  =  G , (1.2)

where 0 (x ) is the random temperature field, q (x )  —  the heat flux vector, G  is the 
prescribed macroscopic value o f the temperature gradient, the brackets (•) denote 

statistical averaging. Hereafter the m edia are assumed statistically homogeneous 
and isotropic. The solution o f Eqs. (1 .2 ) is understood in a statistical sense, so that 

one is to evaluate all multipoint moments (correlation functions) o f  £?(x) and the 
jo in t moments o f /c(x) and 0 (x ), see, e.g., [4]. Am ong the latter is the one-point 
moment

(x (x )V f l ( x ) )  =  k * (V 0 (x ) )  =  k *G , (1.3)

where k * is the effective conductivity o f the medium.
As argued by Christov and M arkov [5], the solution 0 (x ) o f  the random problem 

(1.2) can be expanded as a functional (Vo lterra-W iener) series, generated by the 
conductivity field k ( x ), namely,

0 (x ) =  G  • x  +  j A 'i (x  -  y X ( y )  d3y

+  j J A 2(x  -  y i , x  -  y 2) K ( y i X ( y 2) -  M 2« ( y i  -  y a)] d3y i d3y 2 +  ■ ■ ■, (1.4)

w ith certain non-random kernels T), i  — 1 ,2 , . . .  They  also proposed to truncate 

this series afterwards. In Eq. (1 .4 ) k '(x )  =  /c(x) — ( k ), (x  —  y )  =  ( k ' ( x ) k ' ( y ) ) .  
(Hereafter the integrals w ith respect to spatial variables are over the whole M3 if 

the integration domain is not explicitly indicated.) T w o  types o f applications for 
such truncated series could be envisaged. The first is to use them as approximate, 
in a certain sense, solutions o f the problem  (1.2). Th is possibility was discussed 
in more detail and worked out in the case o f random dispersions o f spheres by 
M arkov [6, 7] and M arkov and Christov [2]. For the dispersion under study this 
kind o f application w ill be explained and worked out in Sec. 2.2. The second is 
to use such truncated series as classes o f trial fields for the variational principles
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[8, 12]. Th is idea was developed by M arkov [8] on the base o f the classical principle, 
corresponding to the problem  (1.2), namely,

W A [0(- ) ]  =  ^/c(x)|V0(x)|2^ — ► min, (V 0 (x ) )  =  G , (1.5)

m inW^i =  k * G 2 , see, e.g., [4]. For example, the simplest non-trivial class is
obtained when the functional series (1.4) is truncated after the single integral term,
i.e.

£ a ) =  j 0( x ) I 0 (x ) =  G - x  +  j  / M ( x - y K ( y ) d 3y j  , (1.6)

where K i ( x )  is an adjustable kernel. Th is class was introduced and discussed in 
detail by Markov [8], where it was shown that m inim izing W a [Q{-)\ over the class 

gives the best three-point upper bound k (3) on the effective conductivity n * ,
1.e. the most restrictive one which uses three-point statistical information for the 
medium. In order to obtain the appropriate three-point lower bound on /c‘ , it is 
necessary to consider the classical dual variational principle for the problem  (1.2) 

formulated w ith respect to the heat flux q (x )  =  V  x 3?(x),

* W b [ * ( - ) ]  =  (& (x )| V  x $ (x )| 2^ — > min, ( q (x ) )  =  Q , (1.7)

min W b  — k * Q 2 (here & (x ) =  l//c(x) and k* =  1 //c*), over a class o f the kind (1.6). 
In Sec. 3.1 we shall derive the optim al three-point bounds for the dispersion making 
use o f an alternative variational procedure successfully applied in the monodisperse 

case, see [8, 9, 12].
Moreover, M arkov [8] showed how the earlier proposed variational techniques 

could be put into this general frame. For example, the Beran method [13] is a R itz 
type procedure in which the kernel K\ in (1 .6 ) is chosen to be proportional to  the 

fixed (B eran ’s) kernel Kg' -

K \ ( x )  =  A A b (x ) ,  K b (x )  =  G  • V ^ ,  (1.8)

where A 6 M is an adjustable parameter. The question o f the optim ality o f Beran’s 
procedure for the dispersion under study w ill be discussed in Sec. 3.2. It  w ill be 
shown that it is not optim al even to the order c, where c is the volume fraction o f 
the spheres. Finally, in Sec. 4, using some o f the author’s ideas o f  his recent work 
[14], an exact c'2-form ula for the effective conductivity k * o f the dispersion under 

study w ill be found in a variational way.

2. S T A T IS T IC A L  D E S C R IP T IO N  O F  T H E  D IS P E R S IO N  A N D  F A C T O R IA L
F U N C T IO N A L  E X P A N S IO N

2.1. S T A T IS T IC A L  D E S C R IP T IO N  O F  T H E  D IS PE R S IO N

The system o f marked random points { x j , S j }  can be considered as a set 
o f points random ly distributed in the four-dimensional domain M3 x U, where 
U  =  (0 ,+ o o ) .  S im ilarly to  the monodisperse case, this system is fu lly described
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by the multipoint probability  densities F n( y u . .. , y „ ; s i , .. . , s n ) , see, e.g., [1, 2, 8]. 
The latter define the probability

d P  =  F n (  y i ,  ■ • • , y n;s i ,  • • •, sn ) d3y i  . , . d 3y n dsi . . . d s n (2.1)

to find simultaneously a center o f sphere within the infinitesimal volumes

y i <  y  <  y* +  dyi  (2.2a)

o f the spatial positions y^ w ith conductivities s\, . . . ,  Jn in the vicinities

S{ <  s <  Si +  dsi (2 .2b)

o f the values s i , . . . ,  sn , respectively, i  =  1 , . . . ,  n.

The functions Fn( y i , . . . ,  y „ ;  S ] , . . . ,  s „ )  define too rich a class o f dispersions 
whose study seems very complicated in general. Th a t is why, i f  our aim is to 
reach certain tangible results, one must narrow this class. Th e  follow ing arguments 
lead in a natural way to such a simplification. Let dP y  be the probability to find 
simultaneously a center o f sphere in each o f the volumes (2.2a), regardless to the 
conductivity o f the latter. Obviously, d P  <  dPy  and

dP y  =  / n (y i , • ■ • i y n) d3y i  . . .  d3y n , (2.3)

where the functions f n ( y i , . . .  , y „ )  are the m ultipoint probability densities for the 
system o f non-marked random points Xj ,  i.e. they are the same that appear in the 
monodisperse case, see, e.g., [8]. Then d P  =  d P y d P * ,  where d P *  is the conditional 
probability, namely, the probability to find simultaneously a center o f sphere in 
the volumes (2.2a) w ith conductivities s ) , . . .  ,s n in the regions (2.2b) respectively, 
provided a center o f sphere is found in the volumes (2.2a). Hence

d P *  =  V n (s i , .  . . , s n | y i , . , . , y n ) d s i  .. ■ dsn ,

where

F n(y i ,  • . . , y n ;s i,  • • ■ , s „ )  =  / „ ( y i , .. . ,y „ )? 7 „ (s i ,  • . . , s „  | y i , . . .  , y n), (2.4)

n =  1 ,2 . . .  Obviously, the dependence o f functions i]n upon y i , . . . ,  y „  reflects the 
“selectivity” o f these sphere’s locations toward spheres o f  certain conductivities. 
The consideration o f dispersions in the general case, when such a “ selectiv ity” is 
arbitrary, seems a hopeless problem. Th a t is why we adopt now the follow ing 
sim plifying assumption concerning the structure o f the dispersions: There exist 
no locations in the space M3 which possess selectivity toward spheres o f  certain 
conductivities. Hence we assume that

Vn (s i , -  . . , s „  | y i , .. . , y „ ‘ ) =  P n ( y i ,  • ■ - ,y n ) 

or, according to (2.4),

Fn ( y i , . . . , y „ ; s i , . . . , s n) =  f n ( y i , . . . , y n ) P n ( s i , . . . , s „ ) ,  (2.5)
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which means, as a m atter o f fact, that there is no correlation between location and 
conductivity o f the spheres. The functions P n ( s i , . . . ,  sn) are the multivariate prob
ability densities o f  conductivities o f  spheres, regardless to the spatial positions o f the 
latter; they give the probability dP$  o f n arbitrarily chosen spheres o f the dispersion, 
having conductivities in the vicinities (2.2b), to be d P § =  P n (s 1 , . . . ,  sn) dsi . . .  dsn .

Since the dispersions under study are assumed statistically homogeneous and 
isotropic, the system { x j }  has the same properties. Hence, in particular, f i  — n 

and fk =  f k { y 2, i , • • • > yfc,i), where y,-j =  y j  - y ,• and n denotes the number density, 
i.e. the mean number o f points Xj per unit volume. Obviously, n =  c/Va, where 
Va =  a3 is the volume o f a single sphere. Moreover, we shall assume, as usual, 

that fk ~  n k, i.e. fk has the asym ptotic order nk at n —* 0, k =  1, 2 , . . . ,  see [8]. 
W e shall note also that the assumption o f  non-overlapping o f spheres yields

/ jt (y i, • • • ,yjfe) =  0, i f  |y» — y j  I <  2a for a pair

Taking into account this assumption and (2 .5 ) for the first pair o f probability den

sities F i and F 2 we have

F i ( y , s )  =  n P ( s ) ,  i '2( y i , y 2;s i ,S 2) =  n 2gQ( r ) P 2( s i , S 2 ), (2.6)

where P ( s )  =  P i ( s ) ,  r  =  |y2 — y  1 1 an(l go is the zero-density lim it o f the well-known 
radial distribution function g ( r ) =  /2(r )/ n 2, i.e. g { r )  =  go ( r )  +  O ( n ) .

Let

1>(x]s)  -  ^ 5 ( x  -  x j ) 6 { s  -  S j )  (2.7)

i

be the Stratonovich random density field generated by the system o f marked random 

points { x j , S j }  (see [15, 2]). According to Eq. (1.1) the field k (x ) can be written 

then as

k ( x )  =  ( k )  +  j J ( K j s -  Km) h ( x  — y )V ,/( y ; s) d3y  ds, (2.8)

where i p ' (y , s )  is the fluctuating part o f the field i p(y,s ) .  (Hereafter the integrals 
with respect to the mark s are over the semiaxis (0, + 00) . )  The random field i p (x -s )  
is uniquely defined by the random set { x j , S j }  and vice versa. In particular, the 

multipoint moments o f i>(x;  s) can easily be expressed by means o f  the probability 

densities Fk'.

s )) =  -F i(y; s) =  n P ( s ) ,

( i > ( y i\ s i ) ip ( y 2-,S2 ) )  =  F i ( y i ; s i ) 6 ( y i ,  2) 5( 51,2) +  f r2( y i , y 2; s i ,S 2), (2.9)

(V> (y i; « i )V ’ ( y 2; S2 )^ (y3 ; S3) )  =  ^ i ( y i ;  s iM (y i,2 )i (s i,2 )t f (y i,3 )5 (s i,3)

+ 3 {5 ( y ll3)i5 (s i,3 )i;l2 (y i ,y 2 ;s i ,S 2 ) ) i +  f r3 (y i ,y 2 ,y 3 ;s 1,s 2,s3),

etc., see [1, 2], where { - } s denotes sym m etrization w ith respect to all different 
combinations o f  indices in the brackets, S i j  =  Sj — s,-.
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2 .2 .  O N  T H E  c 2 - V I R I A L  S O L U T IO N  O F T H E  P R O B L E M  ( 1 . 2 )  F O R  T H E  D IS P E R S IO N

Sim ilarly to the considerations in [6, 7] (for monodisperse case) and [2] (for the 
dispersion o f spheres w ith random radii), it is reasonable to develop the random 
temperature field 0 (x ) in the follow ing functional series

0 (x ) =  TQ(x )  + J J T i (x  -  y , s )A ^ 1)(y ; s) d3yds

+ J j J y 7 2 ( x - y 1, x - y 2,S i ,s 2) A (2)(y i ,y 2 ;s i ,S 2 )d 3xic/3y2dsids2 +  " - ,  (2.10)

where

Л ^ ) =  1. A ^ ^ y ; « )  =  ^ (y ; s ) ,

А ^ ( у 1 , ■ , y * ; s i ,  . . . , s k) =  d’(y i - , s 1) [ ^ ( y 2-,s2)  -  <5(y2,i)<Hs2,i)] (2.11)

• • •[V'Cyk',sk) -  6 ( y kA)6 (s kii )  ^(у*,А-—i)<5(sfc fc _ i) ] I k =  2 ,3 , . . .  ,

are the random fields, generated by the random density field ф(x ;s ) ,  and called in 
[7] factorial fields. The kernel T k in (2.10) can be easily expressed by means o f the 
first к kernels o f  the series (1.3). According to a basic result o f [7], the series (2.10) 
is virial in the sense that the truncation after the p-tuple term  o f its gives results 
for all m ultipoint moments o f the solution 0 (x ) to the random problem (1 .2 ), which 
are correct to the order cp provided the first kernels T ), i =  0 , . . .  , p, are properly 
identified. A  general procedure for the identification o f the kernels 7 } is described 
in [2, 6, 7].

Since our aim  is the evaluation o f the effective conductivity k * to the order 
c2, we are interested in the solution o f the problem  (1.2) to the same order. To  

sim plify the analysis, after [2, 6, 7] we render the series (2.10) n2-orthogonal in the 

sense that the averaged value o f the product o f  any pair o f its different terms has 
the order o ( n 2). T o  this end we introduce the follow ing linear combinations o f  the 
factorial fields (2 .I I ) : 1

D ^ ] =  1, D ^ 4 y < s) =  A ^ 1}( y ; s )  -  n P { s )  =  f ( y , s ) ,

£^2)( y i , y 2;s i ,S 2) =  A ^ ( y i ,  y 2; s i, s2) -  n2fifo(y2, i )F 2(s i ,  s2)

- n 2ffo (y2, i )F 2( s i , s 2)[£ )^ ) ( y i ; s i ) / P ( s i )  +  D § \ y 2\ s2) / P ( s 2)],

D $ \ У ъ  • • • .Уу; s i, ■ • •, sk) =  A ^ ( y i >  • - -y * ; s i , . . . ,  sk), (2.12)

к =  3 ,4 , . . .  As a consequence o f Eqs. (2.9) and (2.11) it can be easily verified that

( - ^ ( y ; « ) )  =  0, ( ^ 2)(У 1 ,У 2; « 1 ,в2) )  =  ° (n 2), (2.13a)

( ^ 1)(У 1 ; « г ) ^ 2)(У 2, У з ; « 2, « з ) )  =  o ( n 2). (2.13b)
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Since the series (2.10) is virial, these relations suffice to claim that the fields (2.12) 
form  an rc2-orthogonal system. Then let us truncate the series (2.10) after the 
four-tuple integral term. Thus we obtain the kind o f the c2-solution o f the random 
problem («1.2) for the dispersion. In the truncated series we rearrange the terms in 

such a manner that only the n 2-orthogonal fields D ^  and enter:

0 (x ) =  G  x + y y  X i (x  — y , s ) D ^ \ y ,  s)  d3yds

+ J J J J t 2(tc -  y u x  -  y 2, sx, s2) D ^ \ y i , y 2, s u  s2) d3y i d 3y 2 dsxds2. (2.14)

The new kernels T\ and T 2 here (no new notations are used for them ) are linear 
combinations o f the kernels To, T\ and T 2 o f  the series (2.10). The zeroth-order 

term in (2.14) is indeed G  • x, since and are centered and (V 0 (x ) )  =  G , 
see Eqs. (2.13) and (1.2).

The identification o f  the kernels T i and T 2 can be perform ed by a procedure, 
proposed originally by Christov and Markov [5], see also [2, 6, 7]. I t  consists in 
inserting the truncated series (2.14) into the random equation (1.2), m ultip lying the 

result by the fields D ^ \  p  =  0 ,1 ,2 , and averaging the results. In this way a certain 

system o f  integral-differential equations for the needed kernels o f  the truncated 
series can be straightforwardly derived. Here we employ an alternative method, 
recently proposed in [14] for the monodisperse case. Namely, the truncated series 
(2.14) w ill be inserted into the classical variational principle (1.5) as a class o f trial 
fields, varying the kernels. Since this class contains the actual temperature field 
to the order c 2 , the obtained equations for the optim al kernels T l  and T 2 are the 
same as those for the needed kernels in (2.14). In particular, this procedure leads 
in passing to the exact determ ination o f the effective conductivity to the order c2.

In what follows we shall need also the follow ing formulae for the moments o f 
the field ( 2 .12 ):

^£>^1 ) ( y i ; s i ) D ^ ) ( y 2; s 2) )  =  ra P (s i)6( y i i2) 6( s i ia) -  n2f t 0( y i ,2; s i , s 2), (2.15a)

(■0̂ 1)(yi;a1) ^ 1)(y2;s2) ^ 1)(y3;s3)) = rcT(si)6(yi,2)6(si,2)<5(yi,3)6(si,3)

—n 2 3{<5(yii2)<5(sii2) f c 0 ( y 2l3 ; s 2 , s 3 ) } s , ( 2 .1 5 b )

( ^ ( y i . y z i  s i ,  s 2) ^ 1)( y 3 ; s 3 ) £ )i,1 ) ( y  4i s 4) )

=  (-0 2̂) ( y i . y 2;s i> «2)-D^2) ( y 3 , y 4;s 3 ,S4) )  =  n2ffo (y2, i )T 2( s i , s 2) (2.15c) 

X [<5( y 3li)<5(s3i l ) 6( y 4i2) 5(s4i2) +  <5( y 4, i ) 5(s4,i)<5( y 3l2)<5(s3l2)],

( ^ 2 ) ( y i , y 2 ; « 1, « 2 ) ^ 2)( y 3 ,  y 4 ; S3 , s 4 ) D ^ \ y 5 \ s5) )

=  n 2g0( y 2, i ) P 2{ s i , s2)[<$(y5,i)<5(s 5, i )  4- <$(y5,2) 6( 35,2)] (2.15d)

x [6 (y 3,l )6 (s 3, l )6 (y 4i2)6 (s4i2) +  6( y 4, i ) 6(s4ji ) 6( y 3|2) 6(s3|2)],
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t e o (y 2, i ; s i ,S 2) =  P ( s i ) P ( s 2) - f fo (| y 2,i|)-P2( s i , s 2) ; (2.16)

they are correct to the order n2 and represent straightforward consequences o f 
Eqs. (2 .9), (2.11) and (2.12).

3. V A R IA T IO N A L  T H R E E -P O IN T  B O U N D S

3.1. THE OPTIMAL THREE-POINT BOUNDS FOR THE DISPERSION

It is natural to begin the consideration o f the classical variational principle
(1.5) on the simpler class o f trial fields that it yields when the factorial series (2.14) 
is truncated after the one-tuple integral term. Namely, we introduce the class

where

1)TAl )  =  j 0( x ) | 0 (x ) =  G - - K + J j T 1( x - y , s ) D ^ ) ( y \ s ) d 3y d s ^  , (3.

where T i ( x , s )  is an adjustable kernel. Obviously, this class contains the actual 
temperature field to the order c only. That is why one can obtain the exact value 
o f effective conductivity k * to the same order only, together w ith certain bounds 
on k * for the higher order o f c.

Th is class is the counterpart o f the class (1.6). Due to Eq. (2.8 ), the classes
(1.6) and (3.1) coincide: i f  a transition from  k ; ( x )  to is performed according

to Eq. (2.8), the kernel A '] ( x )  is transformed into the kernel 7 i (x ,  s) by means o f 
the convolution w ith the characteristic function h (x ):

T i (x ,  s) =  ( K j s  -  n m) ( h *  A 'i )  (x )  =  ( K j s  -  Km ) J h ( x  -  y )A ' i ( y )  d3y . (3.2)

Consequently, the upper bound on n * , obtained from  the restriction o f the func

tional Wa  over the class coincides w ith the optim al third-order bound see 

Sec. 1. Moreover, due to Eqs. (2 .8 ) and (2.9 ), we can claim  that the bound k ^  is 
the best one for the dispersion which employs the statistical information provided 
by the two- and three-point probability densities P 2 and F3.

M aking use o f  Eq. (2 .8 ) and the formulae (2.15) for the moments o f the fields 

D ^ \  the restriction k U ^ [T i (- ) ]  o f the functional W a  over the class (3.1) becomes

=  W A |T ( l )=  < « ) f f 2 +  t i ( k ) { y y  |V T i(z , s)|2/-‘ (s ) d3z ds

- / / / / * • <  Zi -  z 2; s i, s2)V T ’i ( z i ,  s i )  • V T i ( z 2, s2) d3z y d3z 2 dsi ds;

+  2n G  • ^ J  J ( K j s  — /cm)/ i (z )V T i (z ,  s ) P ( s )  d3 z ds

~ n I  JJ^KjSl ~ Km)-^0 ẑ ;S l ’ S2) V r i ( z ,S2 ) rf3z

224



where

+  n {  J ( K J S ~  Km )h {z )\ V T i ( z ,  s)\2P ( s )  d3z ds

^I I I I ~  /îm) l̂ ( Z l ) ^ ° ( Z2.1> s i >S2)V T l ( z i,s i )

■ V T i ( z 2, s2) d3z i d 3z 2 dsids -2 

> J J J  T a(z\s i, s2)| V 7 i(z , s2) I 2 d3z  dsi ds2]  | +  o ( n 2), (3.3)

• ? o (z ;s i , s2) =  J h ( y ) n 0(z  - y , s x, s 2) d y .  (3.4)

Hereafter the differentiation is w ith respect to the appropriate spatial variable.
The optim al kernel T i (x , s ) ,  i.e. the solution o f  the Euler-Lagrange equation 

for the functional W A \  is looked for in the viria l form

T i ( x , s )  =  X i(x ,  s; n)  =  T i i0(x ,s )  +  T i , i (x ,  s) n H  (3.5)

Th is representation o f  7 i (x ,  s) induces the appropriate viria l expansion o f the func

tional (3.3):

W ^ p i O ]  =  ( k )  G 2 +  W ^l l l ) [T lio (-)]n  +  l ^ 1'2)[T1,0( - ) IT i , i ( - ) ]n 2 +  • • • (3.6)

The functionals and W A ’2̂  depend on the indicated virial coefficients as
follows:

W (a1A) '^ P l . o O ) ]  =  Km J y  I V T i io (x , s)|2P (s )  d3x d s

+  j J ( K j s  — « m)/ i(x )[ V T 1|o(x, s) +  2 G ] ■ V T i io (x , s ) P ( s )  d3x  ds, (3.7)

w l ll2 )[7 i,o (-), □(■)] +  2 J P ( s )  ds

X y v  ■ {K mV T i,o (x ,s )  +  ( K j s  -  Km)/ i (x ) [G  +  V T i i0( x , s ) ] } T i , i ( x , s ) d 3x,

(3.8a)

W ^ f T x . o O ]  =  ( K j  -  Km)V a J j |VT1,0(x ,s )| 2P ( s )d 3x d s  

- I I J -  Km)/ i(x1)| V T lio (x 2,s 2)|27 i0( x 1 — x 2; s i, s2) d3x i d3x 2 ds i ds2 

+  KmJ I J  J  V T i ,o (x i ,  S i) • V T i i0( x 2, s2)7^o(xi — x 2 ; s i , s2) d3Xi <f3x 2 d s i d s 2 

- 2  j y {K m V T i i0( x i , s i )  +  (A '/S i - /cm) / i ( x i ) [ G + V T i , 0( x i , s i ) ] }  d3x i  dsi
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II
The optim al kernel T i (x ,  s) satisfies the equation 6 =  0, so that we have,

in particular,

w i 1'1)[T1,0(.)] =  0, S W ^ i T M ,  T l A (-)} =  0. (3.9)

The first o f  these equations yields straightforwardly

P ( s )V  • { « :mV T i io (x 1 s) +  ( K j s  -  /cm)/ i ( x ) [G +  V T i i0( x , s ) ] }  =  0, (3.10)

which is just the equation for the disturbance, T ^ ^ (x , s), to the temperature field 
G  ■ x  in an unbounded m atrix, introduced by a single spherical inhomogeneity o f 
conductivity K j s , located at the origin. The analytic form  o f this disturbance is 
well-known:

T li0(x , a) =  T ^ ( x ,  s) =  3/?(s) G  • V p (x ) ,  P ( s )  -  ! l JS * m ; (3.11)
h t s  +  ZKm

V T i io (x 2 , s2)7^o(x i -  x 2; S!, s2) d3x 2 ds2. (3.8b)

here

V’ (x )  =  h *  J T T .  i e - V>(x ) =  /  , I d3y
47t|x | J  47t|x  -  y|

is the Newtonian potential for a single sphere o f radius a, located at the origin. 

(W e  assume, obviously enough, that P ( s )  ^  0.)
W ith  T i i0(x , s) already found, one should vary only T i ^ x ,  s) in the functional 

(3.8) in order to derive the Euler-Lagrange equation for the latter. However, this 
is not possible, because Eq. (3.10) yields

W ^ 2\ t 1i0( - ) , T 1i1( . ) ] = W ^ 2)[ T M  (3.12)

Hence, according to Eq. (3 .6 ) for the optim al upper three-point bound /ĉ 3) we have

k * G 2 <  k ^ G 2 =  ( k ) G 2 + ^ w [ 1'1\ t 1,0( - ) ] c + ^ W {a ’2)[T 1i0(-)\c2 +  o( c2). (3.13)
Va Va

The foregoing reasoning has two implications. First, we can conclude that the 
optim al upper bound to the order c2 depends only on the field T ^ ^ x ,  s); the 
explicit form  o f  T i i (x ,  s) is not required at all, see Eq. (3.13). Second, the kernel 
7 \ (x ,s ) is optim al to the order c2 i f  its leading coefficient T i ^ x ,  s) in the viria l 
expansion (3 .5 ) is proportional to the single-sphere disturbance field T ^ \ x , s ) .  In 
this connection it is to be noted that the known R itz  type procedure o f Torquato [16] 
leads to the optim al bound to the order c2. (For the latter the kernel T i (x ,  s) in (3.1) 

should be chosen as T\ (x , s) =  AT ^ \ x , s ) ,  where A is an adjustable param eter.) 
Th is fact holds also for dispersions o f radial inhomogeneous spheres w ith random 
radii, see [17]. T o  the order cp at p >  2, however, the cluster bounds o f Torquato 

are not optim al even for the monodisperse case, see [9, 12].
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Repeating the above arguments w ith respect to the dual principle (1.7) leads to 

a fully sim ilar conclusion for the optim al lower bound, namely, that to the order c2 
the latter, is fully determ ined by the disturbance q(\)(x, s) to the heat flux Q in an 
unbounde'd m atrix, introduced by a single spherical inhomogeneity o f conductivity 
K j s ,  located at the origin.

Let
AC*
 =  1 +  o,ik.c +  a,2Kc2 +  • ■ • (3.14)

be the virial expansion for the effective conductivity o f the dispersion. M aking use o f
Eqs. (3.10) and (3.11), the connection o f the disturbances T ^ ^ X js )  and q ^ ) (x , s ) ,  
and the relation / i (x )V T (^ (x ,  s) =  — /3(s)/i(x)G , we easily get as a consequence o f
(3 .7 ), (3.13) and their counterparts for the dual variational principle (1 .7 ), that

OO

a ls  =  31V, N  =  N [ P ( - ) }  =  </?(2)) =  J  p ( s ) P ( s )  ds, (3.15)

o

so that the upper and lower bounds coincide to the order c, as it should have 
been expected. A fter simple algebra, based on Eqs. (3 .8 ), (3.10), (3.11), (3.13) and 
their counterparts for the lower bound, we get the follow ing inequalities for the 
c2-coefficient 02« :

« 2K <  q2k <  a L .  (3.16a)

4k = 3{-N2 + J  s hm ds! J  P 2{s2 ) M 2(s i ,  s2)ds2 > , (3.16b)

{ CO CO

N 2 +  J  — ^ — — dsi j P 2(s2) M 2(s u s2)ds2 \ , (3.16c)3 « = 3

where
OO

M 2( s u s2) =  J  ^  T 0{ r \ s i , s 2) d r  (3.17)

is a statistical parameter for the dispersion; the function T o [ r \ si, S2) is defined in 
Eq. (3.4 ), r  =  |x|.

The formula (3.15) clearly indicates that the effective conductivity k* depends 
on the statistical distribution o f  conductivity o f spheres even to the order c. (L e t 
us recall that the c-coefficient a\K is independent o f the size distribution for a 

dispersion o f  spheres o f  random radii, see [1, 17, 18].) Moreover, it is to  be noted 

that in general (P ( s ) )  ^  /?((*)) =  /?(1) =  { K j  — Km ) / { I \ j  +  2/cm), so that the 
dispersion is not equivalent to a monodisperse dispersion o f  sphere (w ith  the same 
sphere fraction c) o f the mean conductivity I\ j  even to the order c, see Eq. (3.15).
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3.2. ON THE BERAN’S BOUNDS FOR THE DISPERSION

According to (3 .2 ), the Beran’s kernel A'b ( x ), see (1 .8 ), is transformed into 
the kernel

T f l (x ,  s) =  (A y s  -  Km) G  • V p (x )  (3.18)

at the transition from  ft '(x ) to ^ ' ( x ; s ) .  Due to Eq. (3.11), the kernel A 'i (x )  

=  AA'b (x ), A E R , w ill be optim al to the order c and consequently to the or
der c2 also (see (3 .12 )), i f  and on ly i f  T ^ ^ X jS )  =  AT b ( x ,  s) for a certain A £  1  
and f o r  all s such that P ( s )  ^  0. It is shown, however, that it is possible only if 
P ( s )  =  6(s — so), i.e., i f  the probability to find a sphere o f  conductivity different 
o f K f SQ is equal to zero; in other words, for the usually considered dispersions o f 

spheres possessing one and the same conductivity. Hence, we can conclude that the 
Beran’s bounds are not optim al even to the order c for the considered dispersions.

The above arguments im ply the follow ing simple way for a generalization o f 
the Beran’s procedure. Namely, i f  we choose the kernel A 'i ( x )  in the form  A 'i (x )  

=  A (s )A 's (x ) ,  see (1 .8 ), where now A (s ) is an adjustable function, then the optim al 
bounds to the order c2 w ill be obtained.

Let us note that the Beran’s bounds are more complicated for the dispersion 
under study. For example, the m inim ization o f the functional (3.7) at T i o (x ,s )  =  
ATg( x , s )  with respect to A E IK leads to the follow ing upper bound on the
c-coefficient ayK\

„ *  n*  ( ( I < j s - Km) 2) 2
Ik -  1K(B)< i « ( B )  Km Km ( ( K j s - K m) 2( K j s  +  2Km) ) '

the equality sign, being achieved at P ( s )  =  S(s — s q )  only, i.e. i f  the
spheres have one and the same conductivity.

3.3. EXAMPLES

W e shall illustrate the influence o f  the statistical distribution o f conductivities 

o f spheres on the obtained c2-bounds (3.15), (3.16). First, we note that i f  we adopt 
the assumption o f statistical independence o f the conductivities o f each two spheres, 

i.e.

P 2 ( s i , s 2) =  P ( S l ) P ( s 2), (3.20)

which sounds reasonable enough (a t least in the dilute case under study), then the 
form  o f the bounds (3.16) becomes more or less similar to that in the monodisperse 
case. Namely, in the fram e o f  this assumption

f t o ( x i2; s i , s 2) =  A (s i ) P ( s2)A (x i2), ^ o (y ; s i ,S 2) =  P ( s i ) P { s 2) F Q(y ) ,

where

A (x X2) =  1 -  ff0(x i2), A0(y) =  J /i(x)A(x -  y ) d3x
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are the same functions that appeared in [8] when dealing w ith the monodisperse 
case. Then the formulae (3.16) simplify:

4 ,  =  3 { a 2 +  (/32(5 ))  ^  KfSI ~ ~ m )  m 2| ,

<  =  3 { at2 +  (/?2( S ) > ^ — ^ m 2l ,  (3.21)
L J

where
OO OO

1 f  F f ( r )  f  X2
m2 =  ~  2* J  ~  dr =  2J  ( A2 _  i ) 3g° ( Aa) ( 3.22)  

0 2

is the same statistical parameter as in the monodisperse case, see [8]. In particular, 
i f  the spheres have non-random conductivity kj =  A 'y , then

4 *  =  3/?2 j l  +  ~ m 2| > a2K =  3/?2 | l  +  ~ m 2| , (3-23)

where [/c] — kj  — Km , (3 — /3(1) =  [k]/(k/ +  2Km), see [8] again, which coincides 
w ith the monodisperse result o f  Markov [8]. Under the assumption (3.20) we shall 
consider the fo llow ing two examples.

3.3 .1 . “Tr iangular” distribution. Since the conductivity kj  =  K j s  >  0, it is 
impossible to adopt the popular Gaussian distribution. Th a t is way we consider 
the “ triangular” (S im pson) distribution o f kj in the interval [ K i , K 2] as a certain 
counterpart o f the Gaussian one. Then

P ( s )  =

2 K t |A'i +  A  2 — 2A/s|

A  j
at K j s  e  [A 'i, A '2],

(3.24)

0 otherwise,

where K j  =  (A 'i  +  A '2)/2. A fter simple algebra, based o f Eqs. (3.15) and (3.24), 

we get

» 1«  =  37V, N  =  1 +  - A j  [4(7 +  2) ln (2T +  4)

-  ( 7(2 -  u )  +  4) ln (T (2 -  « )  +  4) -  ( 7(2 +  w ) +  4) ln (T (2 +  w ) +  4 ) ] ,  (3.25)

where 7 =  K j / k m and u  =  (A '2 — A 'j ) /K j  is, so to say, the “divergence” o f 
the non-dimensional sphere conductivity. Since A 2 >  A 'i >  0, then 7  >  0 and 

0 <  u  <  2 .
Similarly, w ith Eq. (3.20) taken into account, the bounds (3.16) read 

4 K =  3 { N 2 +  T ( 7 ,u ))A (7 ,w )m 2}  , a%K =  3 { N 2 +  (7 -  1)A(7, w )m 2 }  , (3.26a) 

where

T ( 7 , u )  =  1 -  [(2  -  u )  ln(2 -  w ) +  (2 +  u )  ln(2 +  u )  -  4 In 2I , (3.26b)
JU)Z l J
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A ( ? 'w ) =  1 +  ^ J 2 [2( 2T +  7) ln (2T +  4)

-  (7(2 -  u )  +  7) ln (T (2 -  u )  +  4) -  ( 7(2 +  w ) +  7) ln (T (2 +  w ) +  4 ) ] .  (3.26c)

The quantities aiK, al7). and as functions o f  the parameter uj are

shown in Fig. 1 and 2 for 7 =  5. The “well-stirred” case 0O(r) =  1 at r >  2a 
is considered, when m 2 =  ^  -  | ln 2  ss 0.14045, see [8]. In Fig. 1 the value o f 

approximation a iK := 3(7 — 1 )/ (7 +  2) for a\K is also given, which corresponds to 
the rough assumption that the dispersion is replaced with a monodisperse one o f

Fig. 1 . The variations o f the c-coeflicient a iK o f the effective conductivity of the dispersion with 

“divergence” u> in the “ triangular” case ( 7  =  K f / n m  =  5); a iK —  the exact value (3.15);

—  the Beran's upper bound, see (3.27); a\K —  the “monodisperse” approximation

Fig. 2. The variations o f the c2-bounds a l2 and a%K o f the effective conductivity o f the 

dispersion w ith  “divergence" w in the “ triangular" case ( 7  =  K j / K m ~  5)
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sphere’s conductivity that equals the mean value K j  (the “monodisperse” approx
im ation). It  is seen that this approximation is non-realistic; it is only justified at 
the lim it case w —► 0. Th e  dependence on u> o f the upper Beran’s bound 
which now has the form

a“  - , !  1 (T2“ 2 + 24(7 ~ 1)2)2
1K(B) T 72 7 3w 2 +  8(7 — l ) 2( i  -I- 2) ’ ( >

is p lotted as well in F ig. 1.

3.3 .2 . A  Dispersion Containing Two Kinds o f  Spheres. Consider the case when 
there exist on ly two kinds o f spheres in the dispersion, having the conductivities 

k 1̂\ K ' p  and volum e fractions c\, C2, respectively, c =  Ci +  C2. Then

■P(s) =  P i K s ~  s^ )  +  P2$(s -  s & ) ,

where sW =  k ^ / K j , pi =  c,/c, i  =  1,2, K j  =  P \ K ^  +  p2K ^  ■ In this case the 
c-coefficient a i K becomes

“ Ik =  3(pi/?l + P 2 P 2 ),

where

f t = « . ( 0 ) =  i ^ L  « 1 =  i ,  i =  1,2.
K j  +  2 K m  +  2 Km

Similarly, the bounds (3.16) on the c2-coefficient a2K read

4 .  =  3 ^  ( PiPi +  ( l  -  ^  ^  P?m?
2 =  1 

2

a2* =  +  (p iq i +  P2Q2 -  i)/?,?m 2).
t= i

Let us note that the dispersion under study represents a three-phase medium: 
in the m atrix two types o f spherical particles o f different conductivities are dis
tributed. The generation o f the above formulae for n-phase media o f this kind is 
straightforward.

4. V A R IA T IO N A L  D E R IV A T IO N  O F  c2-F O R M U L A  F O R  T H E  E F F E C T IV E  
C O N D U C T IV IT Y  O F T H E  D IS PE R S IO N

Consider now the series (2.14) as a class o f  trial fields:

t a2) =  j 0( x ) I 0(x ) =  G  x + / J T ^ - y , s ) D ^ \ y , s ) d 3y d s  

+JJ j  J  T 2{ x  -  y i , x  -  y 2 l S i , S2 ) D i 2) ( y i , y 2; s i , S 2 ) A i  d3Y2 dsi ^ s 2 j  , (4.1)
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where now the kernels T y( x , s )  and T 2(x , y , S ! , s2) are adjustable. Using the for

mulae for the moments o f the fields and D ^ \  see Eqs. (2.15), the restriction 

W A [T1( . ) , T 2(., •)] o f  the functional W A over this class becomes

w ^ [ T 1(-),T2(; - )} = wA I (a) =  +  O . T a O , - ) ] ,
A

where

[T i ( - ) ,T 2(•,•)] =  Ti2/cm J J  J J go (y 2 , i ) P 2 { s i , s 2) |Vr T ’2( x - y i , x - y 2,S i ,s 2)|2 

+  V I T 2( x - y 1, x - y 2, s 1,s 2) ■ V I T 2(x  -  y 2,x  -  y i ,  s2, S i) d3y 1d3y 2 dsx ds2 

+  2n2 J -/ 1 / So ŷ2 '1^ 2^ 1’ S2  ̂ ( A /Sl _ K m ) h ( x - y i ) V T i ( x - y 2,s 2) 

+ (A 'y s 2- K m) f i ( x - y 2) V T i ( x - y i ,  sx) • V r T 2( x - y i , x - y 2,S i ,s 2) d 3y i  d3y 2 dsx ds2 

+  n2J j / / , o ( y 2, i )P 2( Si , S2) [ (A '/Si -  ftm)A (x  -  y i )  +  (A '/s2 -  Km)h (x  -  y 2)]

x [|VxT 2(x  -  y j , x -  y 2, si ,  s2)|2 +  V xT 2(x  -  y i ,  x  -  y 2, su  s2)

•VxT 2( x - y 2, x - y 1,s 2,s i ) ]  d3y 1d3y 2 ds 1 ds2 +  o (n 2).

The optim al kernels T i ( x , s )  and T 2(x , y , s i, s2) are looked for again in the 
virial form  (3 .5 ) for T\ and

T 2{ x , y , s u s2) -  T 2( x , y , s 1,s2\n)

=  r 2io (x , y , 51, s2) +  T 2ii (x ,  y , S i ,  s2) n +  ■ ■ ■ 

for T 2, which implies the respective viria l expansion o f the functional W A , namely,

W™ [T 1( - ) , T 2(., •)] =  ( * )  G 2 +  W{A1A) [T 1i0(-)] n 
+  W ^ 2 ) [Th0( . ) l T l i l ( - ) 1l \ 0( - r )] n 2 + o (n 2), (4.2)

where

W {2'2 ) [T l f i { - ) , T i , i ( - ) , r 2i0(-, ■)]

=  ^ i 1,a)[ r i 1o O ,T i , i (0 ]  + ^ m . o C O . T a . o O , - ) ] ;  (4-3)

here W A '^  and W A '2̂  are the viria l coefficients from  Eq. (3 .6 ) for which, let us
(2)

recall, Eqs. (3.11) and (3.12) hold. Hence, the m inim ization o f  the functional W A 
is reduced to that o f the functional

W ^ l T 2io ( - r ) ] = w l 2 ) [ T ( % ) , T 2, o ( - r ) } :
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« 2) j « m ( V Zl +  V Z2) • [ f fo (z i -  z 2) ( V z , +  V z 2)T 2io (z 1, z 2, s i , S2)

+  ( V Zl +  V z 2) • ffo (z i -  z 2) [ (A 'y s 1 -  Km) h ( z i ) V T ^ { z 2 , s2)

+  (/ {/S2 - K ro)f t (z 2) V T ( 1) ( Z l|S l) ] '

+  ( V Zl +  V z 2) ■ [f fo (z i -  z 2) [ ( KjS\ -  Km ) h ( z i )  +  ( K j S 2 — Km) h ( z 2)]

+ (V z ,  +  V z 2) T 2io ( z i , z 2, s i, s2) j I  = 0  (4-4)

w ith the notation

^ 2, o (z i , z 2, ®i, s2) =  T 2io ( z i , z 2, si ,  s2) +  T 2,o (z2l Z i, s2, S i).

Taking into account that ( V Zl +  V z 2)ffo (z i -  z 2) =  0, an appropriate change 
o f variables allows to recast Eq. (4.4) as

5o (z )P 2( s i , s 2)|/cmA ;cf 2io (x >x  -  z, s i , s 2)

+  V r • [ ( K j s i  -/cm)/ i (x )V T (1)( x - z ,  s2) +  (A 7 s 2-/cm) / i ( x - z ) V T (1 )(x , s i ) ]  (4.5) 

+  V i  • [(A 'y s i -  Km)/ i(x ) +  ( K f s 2 -  Km) h ( x  -  z ) ] V i f 2i0( x , x -  z, s i, s2) | =  0. 

Sim ilarly to the monodisperse case [5], the solution o f Eq. (4.5) is

f 2]o (x ,x  -  z , s i , s 2) =  T (2 )(x ,s  1 ; z, .Ç2) -  T (1)(x , sx) -  T (1)(x  -  z , s 2) , (4.6)

where T^2\ x ,  s i ; y , s 2) is the disturbance to the temperature field G  • x  in an 
unbounded m atrix o f conductivity Km , generated by two spherical inhomogeneities: 
one o f conductivity K f S X located at the origin, and the other o f conductivity K j s 2 
located at the point y .

M aking use o f  Eq. (4.4 ), the minimum value o f  the functional IT j f  can be 
recast now in the form  in which the field T 2|o (x , y , s i, s2) enters linearly:

min W ^2)t [T2|0(-, •)] =  n 2 j  j  JJ so (z i -  z 2)P 2( s i , s2)

x f (A ';S i  -  Km)/ i ( z i )V T (1 )( z 2,s 2) +  { K j s 2 -  /cm)/ i(z2) V T (1) ( z i , s i ) ]

• ( V Zl +  V Zj ) T 2io (z 1, z 2, s i , s2) d3z i  d3z 2 dsi ds2

=  n 2 J j  JJP2(s\,s2)(Kf si -  Km)s o (y )/ i (x )V T (1)(x  -  y , s 2)

• [ V i T (2 )(x , s u y , s 2) -  V T (1 )(x , s i )  -  V T (1 )(x  -  y , s 2)] d3x d 3y  dsx ds2. (4.7)

The Euler-Lagrange equation for the latter is
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Taking into account Eqs. (4 .2 ), (4 .3 ), (3.11), (3.12) and the formulae

J h ( x )  d3x  J  g0( y ) V T w ( x  -  y , s2) • V T (1)(x , s i )  cf3y  =  0,

P 2 ( s i , s 2) J h { x )  d3x  j f fo (y )| V T (1^ ( x - y , s 2)|2 d3y  =  3p2(s2) M 2( s i , s2) V 3, 

one finds for the c2-coefficient

a2K =  31V2 +  a'2K,

where

a2k =  -^ 2  j J p 2(si , s2 ) —^ — — dsids2

x J h ( x ) d 3x J 5o (y )V xT ^ ^ (x  — y , s 2) • V r T ,̂ 2^ (x , s i ; y , s 2) d 3y . (4.8)

Let us recall that the latter result follows from  the fact that the solution o f the 

random problem (1.2 ), asym ptotically valid to the order c2, is one o f the trial 

fields from  the class T ^ \  see Sec. 2.2, over which the energy functional W a [Q{-)\ 

is minimized. The formula (4 .8 ) is the counterpart o f the formula (3.9) in [14] in 

the monodisperse case. Note that the formula (4.8) contains absolutely.convergent 

integrals only, see [10, 11] for details, so that no “ renorm alization” is needed, similar 
to that used by Jeffrey [19].

Finally, it is to be noted that the coefficient T i i ( x , s )  in the expansion (3.5) 

cannot be found w ithin the frame o f  the above performed variational n2-analysis. 

For the full solution o f  the random problem (1.2) to the order c2 in the explained 

above sense i t ' i s  necessary, however, to know the viria l coefficients T i ^ x . s ) ,  

T i , i (x ,  s) and T 2|o(x , y , s j , s2): for example, when evaluating the two-point corre

lation function (0 ' (x )0 '(y ) ) ,  the convolution f  T\ f i {x  — y , s )T\:\ (y , s )  d3y  appears, 

see [6] for details. T h a t is why, in order to obtain function T i ^ x ,  s)  and as a 
consequence the full statistical solution o f problem (1 .2 ) to the order c2, either the 

higher degrees o f n  in the virial expansion o f  the functional W a  should be consid

ered or the procedure o f  Christov and Markov [5] should be employed instead. In 

the latter, however, conditionally convergent integral in the formula for the effec

tive conductivity w ill show up w ith a correct mode o f integration extracted in the 

course o f  the appropriate solution, see again [2, 6, 7] for details.
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