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ON THE TRANSFORMATIONS OF THE
LOGARITHMIC SERIES

NIKOLA NAIDENOV

In this paper we consider transformations of the series

oo:l_n o0 Z2n+1
() = — and L(z) =
(=3 Srand L= 5y

in the forms: (A) I(z) =322, Anz" (B) L(z) =3 B

z
n=1 1—apx’ n=0 1—b:z2 (I—an2
_ =) Cpz"” sos . . .
and (C) Il(z)=372, Ty (=) Minimization of the coefficients in (A)
and (B), under the restrictions |an|, |Bn| < 1, is explored numerically. The resulting

>4n+1

hypothesis is that we can accelerate the convergence like a geometric progression. We
prove that the unique lacunary series I(z) = > 2 Al’ifz;l and L(z) =32, %
diverge for z # 0 and z # 0. Assuming |yn| < 1 we prove lower and upper bounds for
the optimal rate of convergence of (C). A similar upper bound for (A) is proved. Also,
some new accelerated series for the logarithmic and other transcendental functions are
obtained.

Keywords: Logarithm, Series acceleration, Recurrences, Rational approximation.

2010 Math. Subject Classification: Primary: 65B10; Secondary: 41A25,41A20.

1. INTRODUCTION

In this study we consider some rational transformations of the series

f(z) == a1z + apx® + aza® + -, (1)
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which is assumed to have radius of convergence equal to 1. Mainly, we restrict
1 1

our attention to representations of I(z) := 111(17), i.e. with a, = —, and other
—x n

related functions of the forms

Alx Ag(EQ A3x3
/(@) 1—a1x+1—a2x+1—a3x+ @
and
2 3
f(:r) C1CC CQQL‘ ng (3)

R R ey G ey Qs 1 e ¢ s g

The symbol "a” can be considered as coincidence of formal power series, or as
asymptotic expansion for z — 0. The goal is to obtain series that converge faster
than the initial one and that coincide with the corresponding function in a neigh-
borhood of = 0. The form (2) is a sum of geometric series, while (3) is similar
to a Newton series and having the same computational efficiency as (2) it allows
much easier treatment.

Everywhere in this paper, if the area of validity of an equality involving series
is not specified, then it can be considered as certain neighborhood of the origin or
more specifically, the disk {w € C : |w| < |p1]}, where p; is the closest to 0 non-zero
singular point (sometimes 0 will be a removable singularity).

As there are extremely fast methods for computing the logarithmic function
(see e.g. [4, Ch.1.3]), transformations (2) and (3) of (1) do not bring something new
in this area. Actually, I(x) serves as a model function in studying the possibilities
of the forms like (2) and (3) for acceleration of power series. Such transformations
can occur in calculating other transcendental functions like Liy(z) or the Euler
digamma function. Another aim of the study is to point out to some interesting
and difficult analytical problems which appear meanwhile.

Note that for the transformation of (1) in the form (2) (similarly for (3)) the
convergence of the series does not matter. Given {a,}, if we fix the series {a,},
then the numbers {A,} in (2) are obtained easily by the recursive formulas

A1Q?71 + A204372 + 4 Anfloénfl + An = Qp. (4)

Conversely, if we choose in advance {4, }, then the numbers {«,,} are obtained by
the same formulas, provided no division by zero is encountered. Formally, it is an
easy task to rewrite the series (1) in the form (2) with coefficients {A, } that tend
arbitrarily fast to 0. However, the requirement the series in (2) to converge to f(x)
in a neighborhood of z = 0 poses the restriction on the poles {1/a,} to be distinct
from zero, that is, the sequence of parameters {c,,} to be bounded.

What we have is a coding of the power series (1) by using twice as much
parameters { A,,, ap } (or {Cp,¥n}). From this point of view we arrive at an extremal
problem of optimizing over the extra parameters according to certain minimization
criterion. We shall try to formulate simple criteria in order to decompose the

4 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3—44.



minimization of the overall series {A,} ({C,}) by greedy type algorithms, which
determine the series step by step. Also, we study numerically other rational forms
generalizing (2).

Finally, lacunary series are of great interest. We shall prove that the unique
transformation of I(z) in the type (2) with Ay, = 0,k = 1,2,... is divergent. In
contrast, it is easy to obtain lacunary representations of {(z) in the type (3) that

) 1+ .
converge. Actually, the well known series for ln(1 Z), |z| < 1, can be written as
—z

3 5 7
=T

which is of type (3) with parameters sequences {7, } = {%, %, %, .. } and {C,} =

2 4
{%, 0, é (%) ,0, % (%) ,0,..., } Also, this example shows that there is a choice of
a bounded sequence {v,} in (3) for {(z), having rate of convergence of {C,} as a
geometric series with ratio %

The paper is organized as follows. In Section 2 some classical methods for
accelerating series are applied to I(z) and L(z). In Section 3 we describe numerical
experiments for optimization of the representations of I(z) and zL(z) in the form

(2) and the lacunary form f(z) ~ >, fﬁ(lfzij)kz

we found parameter sequences such that |o;|(|8i—1]) < 1 and |4;|(|Bi—1]) < ¢ 1,
i=1,...,i1 (g <1). The above representation with 8; = p is of particular interest.
This special case is partially investigated for convergence in Section 4. As a result,
the following theorem is proved there:

Using different algorithms

Theorem 1. The unique lacunary representations

0 A2t B, it
a)l(x)zzm and b) L(Z)%Zm
=0 =0

are divergent for every monzero value of the argument.

In Section 5 we consider the representation (3) for I(x) and prove the following

Theorem 2. Let {C,,} and {y,} be the parameters in (3) for f(x) = l(z).
Then, for every e € (0,1],

a) there exists a choice of {y,} such that v, € [0,1] and the corresponding
coefficients satisfy |Cp| < M(4 — &)™ for every n € N with some M = M(e).

b) there is no choice of {v,} such that v, € [0,1] and |Cp| < M (8 +¢)~™ for
every n € N with some M = M ().

As a consequence of this we obtain

Theorem 3. Let f(z) = l(x) and the parameters {a,}$°, {yn}$° satisfy the
restrictions |aml, |vn| < 1. Then for the sequences {A,}3° and {C,}5° determined
by (2) and (3) correspondingly, there is no positive number M such that

|An| <M -317" forevery ne€N or |Cp|<M-25"" for every n € N.
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Also, in this section some concrete series with periodic {7, } are obtained and a
comparison of the series (3) with continued fraction representation for I(x) is done.
Finally, in Section 6 we consider some accelerated series for other transcendental
functions, including Lis(z) and ¢(z).

We finish the introductory section with presenting another point of view.
The form (2) can be considered as a power series with varying coefficients, i.e.,
f(z) = >0° Fo(z).a™, where {F,(x)} are functions of a specific class (in (2),
F.(z) = 1_“‘;”%). Obviously, the simplest choice F,(z) = A, + Bpz brings noth-
ing for the acceleration of (1). The next natural choice actually is the complete
linear fractional transformation F,(z) = %. This form perhaps deserves
more attention than (2) because of the following property, which is preserved by
the form (3), but not by (2). Namely, if the first n poles {7, *}7_; in (3) inter-
change their order, then the residual (and the n-th partial sum) do not change.
Similarly, in the above generalization of (2), we can change the order of two
poles, with an appropriate change of the other parameters, so that the residual
(679 + ﬁnm n anJrl + Bn+1‘rxn+1

1 — TnT 1- ’7n+1$
be the sum of two consecutive terms. Then, if 7,41 # 0, we have the identity
on + /an " @n-‘rl + 67L+1x.’1,‘n+1

of the series remains the same. Indeed, let S =

5= 1=z 1—v.x , where &y = an, B = Qg1 — QnYnr1 +
n n
g:ﬁ, Qnt1 = anTn + Bn — % and Bp41 = ’yn%. In the exceptional case
Qp + Q1T «Q +
Yni1 = 0 we have S = —* ntl® g 4 nin + 2" 4 8,122 and the last
1-0x 1 -y

summand can be joined to the next term in the series.

2. SOME SIMPLE EXAMPLES

Let us consider the case a,, = 1,n =1,2,3,.... Then it is easily verified that

() 1 ( z? x T )

= ().
U1\ 127 23 34
This is a Kummer type acceleration but also it can be explained as follows. I(z) has
a singularity at x = 1 which have logaritmic order divergence. Then (1 — z)i(z) is
“more regular”, having at least finite limit when x — 1. This explains why the later

function has smaller Maclaurin series than I(z). Following this line of reasoning,
for every r € N, we can write the acceleration formula:

n

L) iw=ra(3)+ Y TEESCET)

n=1

where P,_1(z) is a polynomial of degree r — 1. The proof easily follows if we

. . . . _1)r _1)k
substitute in the infinite sum n(n+1f__(n+r) = { T!) AL py L5 () (n+)k . For

6 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3—44.



example, when r = 2 it follows that ([3, 1.513])

n

142 1 3 = T
(1_5> l(x)zg_§+2;n(n+1)(n+2)'

Since it is not easy to improve formula (5) for I(x), by the end of this section
we are going to accelerate L(z). Similarly as above we get

1 z 23 20 27
) L(z)=1-2 <7 4242 )
(z Z) (2) \i3Ts5 57 70"
and ) 5 5 .
1 1 5 z z z
L= P ).
(z Z) (&)= 328135 357t 570 "

For another type acceleration let us consider the changes of the variables

ZZn

s n 0 t n
L(z) :an::o o+ 1 :ZHZ::O o+ 1 220”(1—;%) = 2f(m),

where t = 2%, T

=1 r and p is a real parameter. We shall see that the best
-p

choice for p, when the sequence {C), } decreases in the fastest way, is p = % Indeed,

since the change 7 = % and its inverse t = T _:pT are regular in a neighborhood

1—pt
of the origin, the same is true for the function f(7). The radius of convergence of

f(7) depends on its smallest singular point. For real 7 we have

%ﬁln}jﬁ’ for t € (0,1)
_ 1 — - = .
f(r) = | gy=parctany/=t, for t€[-1,0), =
1, for t=0

It is quite clear from this expression that the singular points of any analytic continu-
ation of f(7) are T = —% and 7 = ﬁ, when ¢t = 1. (Note that 7 = 0 is a removable
singular point.) Then the radius of convergence of f is R(p) = rnin{ﬁ7 ﬁ} and
it is easy to verify that max,cr R(p) = R(1/2) = 2. As a result we conclude that
the optimal acceleration of L(z) by this transformation gives coefficients {C),} that
tend to 0 like a geometric series with ratio % Next, with p = %, it is easy to check

out the identity f(7) +7(2+ 7)f'(7) = i:ﬁ from where we find the recurrence
formula

2n+1)Cp+(n—1)Cph_1 =2"" n=1,2,3,... (Co=1).
Thus, the transformed series starts as follows

633 . 22
61’ T

1 11 39
Liz)=z |1+ -7+ 2 3 4y

3" T osn™ TomT TRon”
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An acceleration of the same order but with more explicit coefficients can be
obtained using Euler transform applied in certain succession. If F(z) = Y7 j apa™

1 t >
then the Euler transform is defined by the identity T tF (—) = Z(A"ao)t”,
n=0

1+t
where Aa; = a;11 — a; and A"a; = A(A" 1a;). Sometimes by Euler transform it
is understood the particular case for x = —1, i.e. when t = 2, which converts an

. . . . . _ 1

alternating numerical series usually into a faster converging one. For a, = CTESE
. . n

n = 0,1,2,... it is easy to find that A™ay = (—1)”% Then, the Euler

transform leads to

22

n —
17222 2n+1” 2R Ak e (©)
which is the well known series ([3, 1.515])

In(\7+vVI+y . (2n)!! —
NaEST —nz:%(—l) m(\/@ i

Note that the series (6) has approximately the same rate of convergence as (5), and
if we apply the Euler transform to (6), then we return exactly at (5). Actually, the
idempotence is a general property of the Euler transform after the change y = —t
(see [5]). The key observation for accelerating L(z) in this way is that an application
of the Euler transform from a larger index is more effective. So, leaving the first
term in (5) unchanged and applying Euler transform to the residual we get

22 1 2! 41 o 6!! 22
L(z) = {1+1—z2[3 FIEA T A T AR }} YT
Again leaving the first term in the square brackets and applying the Euler transform
to the residual (with argument —y) we obtain
[ 2 2 2

2 6
— =t +} :

1
L 14y
(2) = { TP uaE et trg” ton

3

Continuing in the same way we find

1 2 oM 4l 6l
Lz = {1+3y_35y2 — 3 [7” on? T 1Y _}}

1 2! 3! 4l 41 4!
z{1+y =zt — =yte” +y224[ + 22+ z4+-~~}}

3 51 el 5.7.9 7.9.11 9.11.13
1 2! 3! a@ 5, 4 6!! 8!
— - 1,3 .4 2
_Z{Hsy ST TR TR [11!! Yt Y }}
and so on to arrive at the series
B 1! 21, 3l 41 5 A 5! A 6! 5 4
L(z)—z{l—&—?,”y—wyz 7”y —|—9”y —&-Hny BT (7)

8 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3—44.



The same result can be obtained more directly. Namely, starting from (6) and using
the identities 1z = 1+ y and y? = y2?(1 + y) we can transform L(z) as follows:

1 2 4l 6l , 8!,
L) = Z{”gyy[suwy*gny T }}

1 2! 3l 3.4!! 3.6!! 3.8!!
= {1+ Y- yz{ oY = ERs s - 4+—-~~}}

3 sty oV Y T Y

L2 3! 5,24 6! 8!
LR Tt e el T TR T

B 1 2 3! L T4l 54N 560, 58I,
Z{H:’)y EIEGR TR [9" Y Y Y 7]

T2t 5 3l 4] 5! 4 4 4 4 61 8N
= Cy— oyt — = —5 _ 2
—Z{1+ T 7”y z +9”y 244 T Slly~z { +-- }

3 1 131 1517
[l 2 31 A1 5 s a gy a0 O 76!
=2 U g g e g e o g e

and so on. Finally, let us remark that formula (7) is of type (3) with 22 = x.

3. SOME COMPUTER EXPERIMENTS

1. We start with the choice of the parameters {a;, }° ; in the form (2) of f(z) =
l(x), suggested by the simplest greedy algorithm. Namely, we choose every next
ay, such that |A, 41| to be minimal. Thus we arrive at a lacunary representation
of I(z). Let us explain the derivation of the first four coefficients. Clearly A1 =1
and the requirement A, = 0 leads, by (4), to the equation A;ja; +0 = , ie.
to ap = % As a result of A5 = 0, we have no control on A3 and the relatlon
Ajad + Asag + Az = % gives Az = 1—12 Next, the choice A4 = 0 is possible because
the equation A;af + 0+ Azas +0 = 1 has a solution a3 = % Continuing in this
way we obtain

{an} = {27 727 %, 12’*7 85077 | 167344077283 _ 1() 504 19.809.... %, ...}:

6324 7 7 15930229780
{An} ={1,0,15,0,— 55,0, 255, 0, — o130, 0, 42.385...,0, =5174.4..., .. .},

where ”*” means an arbitrary number. It is seen that the obtained series diverge

rapidly and we shall prove this in the next section. An heuristic explanation is from
the type of the recurrence relations (4). Once an |ay,| larger than 1 occurs, then
larger and larger numbers will appear in (4), which most likely will draw {|A4,|} to
infinity. A similar behavior is observed in the following lacunary representation

L)~ 2 - 44525 i 0.043699... 213 0.26698... 27
T1-L2 T 1Bz 1602 Ty 4444827 1 - 8.4284... 22

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3—44. 9



2. In view of the above observations, in the next two examples we pose the
requirement for the summands to be regular in the open unit disk, i.e. |an| < 1.
We have that

PRV 0322 2%/1875  a%/300  27/101.35.. a®/694.44...
1-02z 1-08=z 1—=x 1+04zx 1-08x 1—=x
2T/T67.54..  a%/2425.6..  a°/9582.6... ,
1-0x 1+ 1—agx ’

where the coefficients satisfy |A4,| < 3'7", n = 1,...,9. For the method used for
obtaining this series see the next example. Now we formulate the following

Hypothesis 1. There is a choice of {a,,} C R with |ay,| < 1 such that the
coefficients in the form (2) of I(z) satisfy |A,| < M ¢"™ for some M >0 and ¢ < 1.

For the function L we found that

L(2) z 23/5.329...  2°/22.96... 27/806.9... 29/259.3...
z)~ 51 1009 - 59 .2
7ﬁ2 7?002 1722 1+W2 1722 (8)
211/1039.7...  213/4274.2...  215/16697.9... 2'7/73749.6...
l—éi’gng 1+ 22 14 22 1—ag2?2 7

where the n-th coefficient is less than 41 =" for n < 9. The method is the following
branch and bound algorithm. Fix an integer m and consider k nested cycles for
ap,n = 1,..., k ranging from —1 to 1 with step 2/m. The bound is A,; < 47"
and if this is not fulfilled, the corresponding cycle continues with the next iteration,
avoiding going into deeper levels. The algorithm works successfully up to k& = 7.
For (8), a modification was used to justify the coefficients to k = 8.

3. Consider the following lacunary representation

(9)

>4k+1

> z
L(z) ~ ;Bk(l i

The parameters in (9) are uniquely determined, with the first several of them given
by:

By=1, po= %; By = % = %25, B = % = 0.23809...;
By = % = 43.14_._, Ba = % = 0.21475...;

By = 3781.6“., B4 = 0.197876...;

Bs = ﬁ, Bs = 0.193803...;

10 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3—44.



Thus, we can formulate the following

Hypothesis 2. The representation (9) of L(z) converges when z belongs to a
certain disk centered at the origin.

Note that the analogous representation for [(x) leads exactly to (5).

4. Let us consider the following combination of (2) and the above form:

L)~ 22 (=) + b (+— )5+ B> (+— )9+
1— b02’2 1-— 5022 1-— b12’2 1-— ﬂle 1-— b22’2 1-— 5222

(10)
In this form, keeping the lacunary property, we have a series of extra parameters in
order to optimize the coefficients. Say if we choose {3, }, the parameters {B,,} and
{b,} are uniquely determined, provided it does not appear division by zero. The
following choice satisty: |B,|,|bn] < 1forn=0,...,3; |B,| <207" forn =0, ...,4;
and provide a possibility for arbitrary small |Bs| with |54] < 1:
{Bn}3 = {0.4254,0.1427,0.0238, 0.411};
{b,}3 = {—0.092066...,0.889557...,0.925184..., —0.478074...};
{B,}¢ = {1,1/20.1111..., -1/521.310...,1/19118.7...,1/161497.8...}.

The method is by considering the graphs of two consecutive B, and Bji1
with respect to 8,1 and 3, in order to choose S,,_1. The graph of B, (8,-1) is a
parabola and we introduce the notion balanced choice of the previous parameters
if the graph intersects the abscissa for 8,1 € [—1,1], that is if we can make |B,,]|
arbitrarily small. But if we take B;, = 0 then B, 1 becomes undefined because of
division by zero. This is clearly seen from the second graph of By, 1+1(8,—1, 8n) which
has infinite branches, at the places where B, = 0. So, it is good to choose f3,,_1
close to these vertical asymptotes (the zeros of B,,(8,—1)) so that the corresponding
section of the 3D graph (which is the planar graph for the next step) crosses the
zero level. Actually, considering the 3D graphs is an auxiliary process, and we can
avoid this. We can try several specific values of 3,,_1 close to the zeros of By, (8,-1)
so that |B,| is small and the next graph of B,+1(8n), Bn € [—1,1] has zeros, i.e.
the choice of 5,_1 to be balanced. If, say, B, (8,—1) has two zeros in [—1, 1], then
it can happen to exist four appropriate areas for choosing 3,_1, on the both sides
of the two zeros. An additional reasoning which helps the choice is the goal to
keep the parameters {b,} in [—1, 1]. Then, the choice of 8, _; has to be such that
|br—1] < 1 and since the function b, (8,) = A(Bn—1)Bn + B(Bn—1) is linear, it is
easy to estimate in advance the range of b,, when 3, € [—1,1].

A natural question is if there exists a balanced choice of {8,-1} for every
n € N.

Revisiting example (9) considered as a particular case of (10) we make the
following observations. The choice of {ﬁi}?;ol is balanced up to n = 30, as the
graphs of B,,1(8,) (with specified previous {3;}) have two roots in [—1,1] and the
specific value for f,, in (9) is between the middle of them and the second root. It

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3—44. 11



seems that the series {5, } has a limit around 0.17 and the ratios By, +1/By, belong
to (0,1/2).

Other interesting choice is to specify 3, at the extreme point of the parabola
y = Bn11(Bn). On the basis of calculations made up to n = 30, the situation
appears to be very similar to the one described above, but now 3, is exactly the
middle of the two roots of By,+1(8,). Surprisingly, we observe that b, = 3, and
seemingly this series tends to the same limit as above.

Clearly, there is much subjectivity in the approach described above, but it
is not easy to avoid it. For example, if we use the least squares criterion M,, =
AnBZ 4+ (1 — X,)B2,, — min then the subjectivity transfers to the choice of the
A-s. The function M, (Bn—1,5,) usually has several local extrema and a decent
optimization of the sequence {B,}" needs considering of a tree of possibilities.
Note that the attempt to manage the parameters by minimizing of the three term
sums A\, B2 + p1, B2 | + v, B2, , was not successful because of the complicatedness
of this three variable function.

4. CONVERGENCE CONSIDERATIONS

Let us consider the representation (10) with equal parameters 8, = p,n =
0,1,2,.... This form is motivated as a simple generalization of the lacunary variant
of (2) (for zL(z),x = 22), which hopefully will converge for certain p. We start the

study of the series {B,(p)} and {b,(p)} with some particular examples. For p =0

we have the second lacunary example from 3.1, while for p = i we have

{B,} = {1,1.0972...10"",2.1442...10 %, 4.5910...10 %, 8.9862...10 " *, —7.5297...10 ",

3.0626...10°, —3.8502...10 7, 3.4662..., —1.2595...10°, 1.6502...10°, . . .};
{b,} = {1/12, -0.15898..., —0.25539..., —0.20173...,0.17256..., —6.7384..., —8.4293...,
—17.216..., —33.759..., —64.545..., —122.64...., .. . }.

The behavior of this sequence is typical: For common values of p, in the begin-
ning |B,,| decreases like a geometric series, later on the decreasing slows down and
changes to increasing and finally we observe again a rapid divergence to co. Slightly
before the turning of {B,,} it is preceded by breaking the restriction |b,| < 1. Espe-
cially, for p = 0.17 the decreasing lasts up to n = 336, when Bszg = 9.1654...107 119,
and after that again | B,,| goes to co. A natural question is whether there exist real
values of p for which {B,(p)}5° is bounded. However, a numerical search for such
values encounters some difficulties. For example, the above number was obtained
by using long arithmetics and a precision of 200 decimal digits was not sufficient.

Usually we get the limit behavior b, ~ A.q" and B, ~ (—1)"B.¢"™ ~°" with
g > 1. While A, B and « in the above empirical formulas depend on p, it is
interesting that ¢ ~ 1.894 is an absolute constant. Indeed, assume that the above
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relations hold as asymptotic equivalences ”~” and |g| > 1. By (10) with 8, = p we
obtain the following system for the coefficients B,, and b,,:

2n—2 2n—4

2n
o I N i omd—i 1
Bod pW" 4 B > (T By Y (P e B =
1=0 1=0 =0
2n+1 ) ) 2n—1 - ) 2n—3 o )
Bo Z PRI 4B, Z (4jz)pzb§n7171 + B, Z (si_rz)plbgnfiiﬂ 4. (11)
=0 i=0 1=0
1
+Bu(ba + (n +1)p) = 1=

We observe that, for a sufficiently large n the back terms in (11) are significant,
while the first terms are relatively small (we assume that |p| < 1). Also, the first
summands bijfj&, 0 € {0, 1} in the rear sums (for i = 0) are equivalent to the whole
sums. For example, next to the last term in the left hand side of the first equation
is By—1(b2_1 4 (4n—3)pby—1+ (2n—1)(4n—3)p?) ~ B, _1b2_, for n — co. That’s
why the terms containing p are negligible for n — oo according to the assumption.
Thus, for a sufficiently large n we come to the limit system

Byl 4 Bpo1.b2_y + By_a.by_o+ -+ Bo.b§" = o(B),
Bpby + By1.b)_ + By ob) o+ -+ Bo.bg"tt = 0(B,,).

Substituting here the asymptotic relations for b,, and B,, we see that A%" and ¢*"
are combined. Then, with u = A2%¢®, letting n — 0o we come to the following
system

1 22

f 4 ut.qg? — ug.q_?’2 +--=0,
1—ug 2+ ¢ 23—l g 344+ =0

1—uqg™

We did not investigate this system for all real solutions, but considering truncated
systems, which are algebraic, we found a series of real solutions that stabilizes to
(¢, u) = (1.8947...,6.1450...).

In order to understand better the behavior of the series {B,} and {b,} we
consider first the truncated recurrence system

B+ Buot [y + (") pbas + (V5 )2 = 4n1+ 1 12
By (bp+(4n+1)p)+ B,y [bi_l + (") oty + (M) PPl + (47?1)1’3} - 4n1—|—3 '
and its specification (with p = 0)
B, + B, b2 | = 4n1+ 1
Bnby + B b3, = ! : Y
4n + 3
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The system (13) appears to have a similar behavior as (11) in qualitative sense,
but in quantitative sense it is weaker. Depending on By and by, in the general case
the series fluctuates in the beginning and from some place on stabilizes to the
asymptotic formulas b, — p, |p| > 1 and B,, ~ C(—p*)". It is possible that the
series terminates if some By vanishes and consequently b, = ¢/0. We shall prove
a 7divergence criterion” which imply the asymptotic formulas (if they hold) for a
concrete initial pair (B, bo).

Consider first the case when By, = ¢ for a sufficiently small |¢|. Then, by = ¢/e
and let us assume that |c| is not very small, say ¢ = o(c) for £(Byg,bg) — 0 and
By = const. For the next terms, we find from (13)

B g - & = (2) Bt 00)
3

— %)/BkJrl = bk<1 + O(E))

bk+1 = (m

2\J
Similarly, By, = (f %) Bk.(l + 0(5)) and by = bk(l + 0(5)) for every fixed
€
j € N. Thus, if By happens to be very close to 0, then the asymptotic formulas
take place immediately after k with a large p.

Proposition 1. Let {(By,by)} satisfy (13) and for a fized k the conditions
lbr_1| > > 1 and |Br_1b;_,| > with @Q > 3 hold true. Then

4k +1

r(Q - 3)°

147
bl >r — ——— d |Bpb? —_—
\k|_7" Q-1 an | k | 4k +5)(Q — 1)

Proof. From (13) it follows |Bk\ > |Bj_1b7_,|— 4k+1 and Bkbb" +(4k+1 Bk>

= YY1 Therefore, |By| > dirr and [ By - |5

4k+3 °
b < 14+1/r
a consequence we have ‘bk—l 1] < o-1"

latter number is positive (Q > 3), we obtain that

1/r 14+1/r
4k+1 + 353 < T A

1+1/r

<

, and since the

1+1/T)ZT(1_1+1/7‘):T_ 1+r

el > b (1= 5 o o1

and

—2r —1\2 2(Q-3)2
|Bkb‘_ (rQ r )> rQ-3)"
4k + 1 Q-1 (4k+5)(Q — 1)
O
The following assertion (which is a divergence criterion) makes use of the fact

that for a sufficiently large @, the estimates from Proposition 1 essentially repeat
recursively and imply that {B,} increases at least as a geometric sequence.
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Corollary 1. Let {(Bm bn)} satisfy (13) and for a given k the estimates |by| >

q+c¢e and |Bkb | > 4k+5 hold true, where ¢ > 1, € > 0 and Q > 3. If in addition

e(Q—3) > q ~L+, then for every j € Ng we have

(Q —3)¢*¥

(Q—3)¢* —1
4k+4)+5

d |Bgy; > .
an | k+]+1‘ = 4(k+j)+5

brtsl > @, |Bresbiy | >

Before proving Corollary 1, we will prove a technical lemma.

Lemma 1. For given ¢ > 1, € > 0 and Q > 3 let us define the sequences
{e}6° and {Q;}8° by eo = &, (¢ +cj41) = <q+sj> — B and Qo = Q,
Qjt1 = (q—I-EJ)Q((QQ’j 3)’ . If in addition e(Q — 3) > q —L5, then for every j € Ng the
inequalities €5 > % >0 and (Q; —3) > (Q — 3)¢* > 0 hold true.

Proof. Clearly, it is enough to prove the assertion only for j = 1, as for larger
7 it follows inductively. For brevity, set @ := @ — 3.

We start with the proof of inequality (Q; — 3) > (Q — 3)¢?. It is equivalent to
(4 +9)°Q* > (Qd° +3)(Q +2).

In view of the additional assumption for €, the above will follow from

3 4

_ 293 _
q2Q2+qﬁlQ+( 31)2 > (Q¢® +3)(Q +2),

q4

(¢ —1)?
parison of the summands in the left- and right-hand sides, taking into account that
qg> 1.

2¢° - ~
which is . 3 lQ + > (2¢* + 3)Q + 6 and easily follows by termwise com-

2

. . q
The inequality e; > —————,
'S (g 1)(@ -3)

@1 > 3, is equivalent to

(5= - g=t] oot 92 05

It is not difficult one to verify that the first factor in the left-hand side is positive,

by the definitions and the just proved

2

as it is positive for e replaced with its lower bound %' Therefore, the above
inequality will hold true if it is true with ¢ = M’w, which is

[ ¢ Q-2 _1+q}.[(q+ ¢ )Q(Q—3)2_3}> q
-1 (@-1)(@Q-3) Q-1 (-1)(@Q-3)/ Q-1 Tq-1

The latter is equivalent to the inequality

[?+Q] [*(a—1)°Q*+2¢°(¢—1)Q+¢* —3(¢—1)*(Q+2)] > ¢*(¢—1)*(Q+2)°Q
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which after simplification takes the form AQ? + BQ + C > 0 with coefficients
A=(q-1)(2¢* + (¢ - 1)(¢" —4¢> = 3)), B =¢" +2(g — 1)¢° — (¢ — 1)*(7¢* + 6)
and C' = ¢*(¢* — 6(q — 1)?).

It is easy to verify that polynomials A, B and C are positive for ¢ > 1. The
positivity C follows from ¢*—6(¢—1)? = (¢—1)*+4(¢—1)>*+4(g—1)+1 > 0. To check
that A > 0 we write 2¢° + (¢ — 1)(¢* —4¢* —3) =2¢°> - 7(¢— 1) + (¢ — 1)(¢®> — 2)?
and 2¢> —7(¢g—1) = 2(¢ — 1> +6(g—1)2—(¢g—1)+1 > 0 since ¢ — 1 is
majorized either by (¢ — 1)% or by 1. Finally, to verify that B > 0 we rewrite it
as (q4 —6(q — 1)2) +¢*(q — 1)(2(13 —7(q — 1))7 where the positivity of the both
summands was already shown. The lemma is proved. O

Proof of Corollary 1. Define the sequences {;}5° and {Q;}§° as in Lemma 1.
The definitions are coherent with Proposition 1 so that (by induction) |bg+;| > ¢+¢;
and |Bk+jbi+j| > ﬁ for 5 > 0. The conditions of Proposition 1, ¢ +¢; > 1
and Q; > 3, are ensurecf by Lemma 1 on the basis of the additional condition for
and Q. Furthermore, the estimates from Lemma 1, ¢; > 0 and (Q;—3) > (Q—3)¢*,
imply the first two claimed estimates in the corollary. The third inequality is an

elementary consequence from the second one and the first row of (13). O

The next assertion claims that, essentially, the above lower estimates describe
the asymptotical behavior of the series generated by (13).

Corollary 2. Under the conditions of Corollary 1 the asymptotic relations
b = p, lp| > 1 and B, ~ C(—p?)™ hold for n — oo, where p = p(Bo,by) and
C = C(By, by).

Proof. Denote B,b% by M,,. Increasing if necessary the index k in Corollary 1,
we may assume that > 6, hence (4(k + j) + 5)Myy; > 3 for every j > 0. Using

(13) we obtain Byyj41 = =My (1 - and

1
W)

1 1
T Mysbers + ey bew T g
bryjr1 = B = 1 =i bk (14 o)
kti+l T RN+ My,

Then we have

1 1 1 q 1
AR+ My, — GHEFDT)bkt; Mi+y < (4(k+j)+5 * 4(k+j)+7) | M|

1— = 1 — I
(4(k+35)+5) M+ (4(k+5)+5) | M|
2 1 3 1/2
< - < = < -
(4(k +J) +5)[My45| 1=1/3 = (Q —3)g* — ¢

|Ths] =

Therefore, for every natural n > k and j the inequalities

i—1 j—1 ) oo
boii
b L = H(l +7—n+i) > H(l - |Tn+i|) > H(l - ‘Tn+i|) >1- E ‘Tn+i|
n i=0 i=0 i=0 i=0
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and

j—1 j—1 0o 0o
bot;
bn] = H(l + Tnti) < H(l + [ Tnil) < H(1 + |Tntil) < exp (Z |7'n+z'|>
i=0 i=0 i=0 i=0
hold true. As a consequence, in view of the estimates for 7,,,, we obtain
(1/2) by, (1/2)
. S O VN Y
2R (1 —¢-2) = b, > CXp 2R (1 — ¢-2)

Since these bounds can be arbitrarily close to 0 for a sufficiently large n and {|b., |}
is bounded (by the same inequalities with n = k), we conclude that the sequence
{bm} is fundamental, and hence convergent to a limit p with |p| > ¢ > 1.

In addition, letting j to infinity, we find the estimates

1/2

TER(I— g7 S

—1§exp(1—/2>—1, n > k.

s
bn q2(n7k)(1 - q72)

Or, we can simplify these to

p c(q)
E—l‘ﬁm, n >k,

where ¢(q) = max,¢, 1 %{exp (lfgz_g) - 1] Then, with b, =: p/(1 + 6,,), the

bound [0, < ¢(¢)¢**~™ holds for n > k. Next, by the first equation in (13) it
follows that

_ 2
Bgizl =-tn (1 b2 (4n i 5)Bn> T +p9n)2 (1 " (4n —|—15)Mn)'

Thus, for n > k we have

n—k—1
2\n— -2 :
By = Bi(—p*)"* 130 (1+0) (1‘<4<k+j>+5>Mk+j)'

Finally, the estimates |05 ;| < c(¢)g~% and 0 ensure the

1 < 1
4(k+5)+5) [ My +5] — (Q—3)g%
convergence of the infinite product P := H;io (1+ H;CH)_Q 1-— m)
(In view of Corollary 1 we have B,, # 0 and the all factors in P do not vanish.)

Therefore, the partial product is asymptotically equivalent to its limit and we obtain
B,, ~ B P(—p?)"~* = C(—p*)". The proof is complete. O

Let us consider an example for application of Corollary 1. Let By = 1 and
bp = 0. By (13) we obtain: By = 1/5, by = 5/7; By = 4/441, by = 153/77;
B; = 0.04111..., by = —0.10924...; By = 0.05833..., by = 0.90318...; By = 3.4754...x
1075, by = 14.4152...; Bg = 0.03277..., bg = —2.04617...; By = —0.10275..., by =
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—3.04678...; Bg = 0.98415..., bg = —2.92393...; By = —8.38692..., bg = —2.93641...;
etc. It can be verified that the assumptions of Corollary 1 hold for £ = 7 with

qg=28,e=0.2and @ = 31. Then, this particular sequence tends to infinity like
28(2.8)%" 141

a geometrical series and the lower bounds |b,| > 2.8 and |Bj4+1] > yr

hold for all n > 7.

Remark 1. It seems that there are bounded solutions of (13) even with
By = 1. We have not a strict proof but there is a particular candidate - the
sequence with By = 1 and by = b*, where b* € (0.9512609,0.9512610).

Let us turn our attention to the system (12). For p # 0 the usual limit
behavior of the sequences defined by (12) is B, ~ C(p, by, Bo)(—4p?)"n![(n — 1)1
and b, ~ —2pn?. A divergence criterion is given by the following

Proposition 2. Let {(By,b,)} satisfy (12) and for certain k > ﬁ there holds

|Bi| > 1. Then the sequence {|Bn|} tends to infinity faster than any geometrical
series.

Proof. Let us set L, := b2 + (4n + 1)pb,, + (4”;2)]92. It is easily verified that

L, > %(471 +1)(4n + 3). Then by (12) and |By| > 1 we have

1 1
= _ > - @@
| Bl ‘4k+5 B’“Lk‘ = (L’“ (4k+5)|Bk|)‘Bk| )
1 P2 1
> - > (2 S .
> (Lk (4k+5))|B’“‘— (4(4k+1)(4k+3) (4k+5))‘B’“|

Now, the condition k > ﬁ imply that (4k +1)? > 1% and by (14), |Bg+1| > | Bkl
It follows inductively that |B,11| > |Bn| > 1 for every n > k. Now, take an
arbitrary ¢ > 1. In view of the last inequality for B,, we may assume that k is
sufficiently large so that pg := %(4]6 +1)(4k + 3) — m > ¢q. Then (14) yields
|Br+1| > q|Bg|. Since py, is increasing, we can prove by induction using (14) that
|Br+1] > q|By| for every n > k. O

Now we will prove that in the general case (except eventually for some special
values of p) there is a choice of (By, bg), such that the sequence {B,} is bounded.
The basic observation is that the asymptotic formulas B,, ~ % and b, ~ g(4dnp)

are compatible with the system (12) if § &~ —0.62654 is the unique real solution of
the equation y> + y% + % y+ % = 0. The next assertion states the existence of such
type solutions of (12).

Proposition 3. For every nonzero real number p there exist k € Ny and

By, br, € R such that the sequences {B,} and {b,} determined by (12) for n > k
satisfy B, = O(n=3) and b,, = O(n) as n — oo.
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For the proof of this proposition we need the following auxiliary result.

Lemma 2. Let (o, 8) belongs to the domain D = {(c, 8) € R? : |al,|8] < &}
Then the equation y3 + y? + H'T‘X y+ % = 0 has a unique real solution y(a, B) €
(—0.75, —0.5] which is a Lipschitz function in D. Moreover, if (o, 5;) € D, i=1,2,
then |y(az, B2) — y(a1, B1)| < §|0¢2 —ai|+ %|52 — Bl

Proof. Let f(y) = y* + 4> + 2y + XL Then f/(y) = 3y% + 2y + 132
has a negative discriminant when || < & and hence f/(y) > 0 for every y € R.
Consequently, for («, 8) € D the equation f(y) = 0 has one real solution, which is

i _3 _3Y3 L (3)2 090 3y 11
denoted by y(a, ). Next, since f(—=3) < (= 2)" +(-3)"+%(-3)+ L <0
3 2

and f(-3)>(=3)"+ (= 3)"+5(-3) + %2 =0, then y(a, B) € (—0.75,—0.5]
provided (a, 8) € D.

For (ag, o) = (0,0) and fixed (a1, 1), (aa, B2) € D let us set y; := y(ay, 5;)
and f;(y) == y® +y? + 2y + 15§ =0,1,2. Then

Qa2Y2 B2 a1Y1 B1

0 = foly2) = filyr) = fo(y2) — fo(yr) + 5 Ty
= fé(n)(y2 —y1)+%(y2 _y1)+ (6% ;(Jélyl + ﬁggﬂl

with some 7 € [y1,y2] (or [y2,y1]). Therefore,

Qg — —
|y27y1|§(| 22 1||y1|+|ﬂ26ﬂ1|)/

(&%)

fo(n) + o5

Using that n € [~2, —1] we obtain

T 32 4oy 4045 > 0.2,

fé(n)+%:3n2+2n+ !
hence
=1l < (Sls — ol + 5162~ Bul) x 5= 22 Jaz — ] + 216z — .
The lemma is proved. O

Proof of Proposition 3. Let us define the sequences {(by s, Bni)}oo ., for i =
0,1,2,... and k € N, which will be specified later, by the recurrence formulas:

6|7 _
(4n + 1)2(4n + 5)p?’

bno = (4n + 1)py, By o =

b+ Bt [W,+ (P2 + (5 D)0+ ()]

1
T Brt1,i-1 (bn+1,i71 + (4n + 5)]9),
n n 1
Bri: Bn {bi,i + ()b + (1 ;2)1?2} e Byt
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Set bn,i = (1 + 5n,i)bn,i—1 and Bn,,‘ = (1 + An,i)Bn,i—l- We shall show that the
relative distances 4, ; and A, ; decay (with @) like a geometrical series, from where
it will follow that (b, ;, By ;) converge to a certain limit as ¢ — oo.

We estimate separately d,,,; and A, ;. Theratio X = X, := bnyl/((4n—|—1)p) is
a solution of the equation X°?+ X241 3 (1+ 4n+1)X+ 1 (1+ 4n+1) (1+ﬁ) = Ay,

where Ag := ﬁ — Bt O(bn+1 o+ (4n + 5)p)] / [(411 + 1)3p33n,0] Let us set

a = ﬁ and 8 = B = 47;:_1 + m 6A¢. In view of the definitions of b, o
and B, o we have

3 2 dn+5 1 6(1+7)

< .
18] = dn+1 * (4n +1)2 + dn+7 (dn+1lpy| (4n+1)(4n + 9)p?

L3+ 1.6/lp] 2+2.25/p?

An+1 antz P
Now, choose k such that B, < g5 for n > k. Thus, |8 < 55 and 4n+1 < 5
i.e. |a| < 5. Then, an application of Lemma 2 gives
_ 15 15/8 5/6
X~ 1 = Iy, 8) ~y(0.0)| < Dt 21 < B850 <75

20

Therefore, X € (—0.7,-0.553) and |6,.1| = |bp,1/bno — 1| = | X/5 — 1| < 0.118.
Before estimating A, ; we estimate

1 1+«
L1 =02 +(4n+1)pb, 7(1 7)4 1)2p% = (4 1“(}(2)(—)
1 1t (dn+1)p ,1—&-2 +4n+1 (4n+1)"p (4n+1)°p +X+ 5
Since X € (—0.7,-0.5) and o € (0, 55), then Ly, 1/(4n + 1)%p* € (0.25,0.3). This,

in view of

B = (o= Buris) [ ns = Bus (g gy )/ [ /407

and ir/Llp|1 < 0.03 (a consequence of 3,, < o) implies that By, 1 /By € (0.883,1.065)

(the numerator belongs to (0.265,0.2661)). Therefore, |A,, 1| < 0.117.

Our goal is to prove by induction that |8, ;|, |A, ;| < 77%. The above estimates
prove this assertion for ¢ = 1, and we assume that ¢ > 2 by the end of the proof.
Next, with ¥; =Y, ; := bw'/(éln + 1)p, we have

1 1 1 1
Yi3+Yf+§<1+ )Y+ <+ )(1+

2 )—Az
dn + 1 dn+ 1 an+ 1) b

where A;_; := {le — Bni1,i-1(bns1,i-1 + (4n+ 5)p)}/[(4n + 1)3p3Bn,i71:|- As
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above, we set o = ﬁ and = B, = —6A;_1. Then

3 2
4n+1 + (4n+1)2

ﬁ{_ﬂ,_—b’/p2 1/p(1_1>
T T U +1)3 |4n+ T\ Bpi1 Bni_s

bn i— Bn i— bn i— Bn i—
_( +1,i—1 +4n+5> +Lli-l ( +1,i—2 +4n+5> +1, 2} .
p B p By i

Consequently,

(1/]pl) | K] |brt1,io/p+4n+5| By io| M|
(4n+7)Bn,i,2 Bn,if2

6/p?

L <
|ﬁn,1 Bn,z 1| ~ (4n+1)3

], (15)

_ Bn,i—2 _ bnt1,i—1/p+4n+5 Bnii,i—1  Bn,i—2
where K = 1— and M =1-— bt s pTInTS Bosiios Baio . By induction,

the following estlnmate for K holds true:

1 ‘_ ‘Anz 1‘ 49

71 i
1+An,i—1 1+Anz 1748

\K|:‘1—

Here we have used [An ;1| < 45 for i > 3 and |A, 1| < 0.117 for i = 2. Now, we
estimate the factor M. By 1nduct10n

Bpiii-1 Bni—2 14+ Ap41i1 {1 e 71_1}
Bni1i-2 Bnio1i 1+Ani 14717071 - 717

and let
bny1,i-1/p+4n+5 brt1,i—1 — bpy1i—2

bot1i—2/p+4n+5 bny1,i—2 + (4n+5)p

=:1+e¢.

Then |¢| = |5n+1,i—1\/‘1 + éﬁjaz ‘ and we need to estimate the denominator. For

i = 2, by definition it is |1 4+ 1/7| =~ 0.5961 (hence |¢| < 0.2), while for ¢ > 3 we
have (see above)

i—2
1 (4n+5)p bn+1 -3 bn+1 i bn+1 1 (4n+5)p -1

. = = LA 2 e 2 = |: (1+5 ):|
Y10 X | I ]
b brti,i2 bpy1,i2 bppis  bpp2 by s

By induction we conclude that

n_-l-ll,i—Q € ({X

—

(1773} |x ﬁ1+7ﬂ} 1)C(—1.853,—1.395),

2

J

where we have used X = X1 € (—0.7,-0.553) and [[;Z,(1 + 7~ 7) ~ 1.02388,
[[;25(1 = 777) = 0.97626. Hence, [¢] < 2.54 x 7',
It follows from the above estimates that

14770 1—i 1-7 1—i
Me 1= o (14 2sax 7)1 - s (1250 ) .
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1—17 . .
As a consequence, |M| < %71_’ <572 x T (i >2).

The remaining factors in (15) we estimate by the induction. For j = 0,1 we
have

Btji-2

0.883,1.065), for i =3
=1 +Anpj1) - (T+Apyji2) € {( )

Bnijo (0.862,1.091), for i >3

From Y, Y, _, = Unt5p ¢ (-1.853,-1.395) we infer (b io/p+4n+5)/(4n+5) €

bni1,i—2

(0.283,0.461), and the latter inclusion holds for ¢ = 2 as well. Then (15) implies

|Bn,i — Bni—1| <

6/172 1/|p] 49 1—i 1—i
(G I % 08635 [(4n+7) X 35X T H0461(4n+5)x 1091 B, 11 0% 5.72 X7 }

< 7t [L.@ 2.877x6] < [13.24/|p| 140.2/]92] e
~0.862(4n+ 1) Lpy| 48 * (4n+9)p2)l — L d4n+1 = (4n+1)2

Hence, from ir/l‘f‘l < 0.03 we get |Bn.i — Bn.i—1| <0524 x 770 (i > 2).
1

Inductively, similar inequalities hold for all {5, ; };;2 and we conclude that

0.524 x 772 1 1

i
|Brn.il <181l +jz::2 1B, = Brj—1l < = + 20 < 10

Therefore, we can apply Lemma 2 to find for ¢ > 2

IY; = Yia| = [y, Bn,i) — yla, Bn,ia)| < % x 0+ %\ﬁn,i — Bui1] <0437 x 77,
Also, Lemma 2 gives the estimate Y;_; € (—0.75,—0.5] and we obtain
0nl = Y/ Yicy — 1| = |Y; = Yiq|/[Yic1| 0874 x 7T7%, i >2.
In order to estimate A,, ; for ¢ > 2 we use the identity

A Bni 1— 1/(4n+5) — Bpi1,i—1 Ly _q
" B Ly 1/(4n+5) — Byy1,i—2 ’

where L, ; := b2 ; + (") by + (" ?)p?. Clearly,

|Ln,i = Lni—1] = [bp,i = bni—1| X b, + bnjim1 + (40 + 1)p|
= [bni—1 0n | x (4n +1)|p| x |Y; + Yiey + 1.

Recalling that Yo=7 and Y1 =X €(—0.7,—0.553) we can refine the estimate Y; €

(—0.75, —0.5] by |Yi| < |X|+[Y1 —Ya|+- - -+[Vi_1 —Vi| < 0.74243TXT2 0,711, e,

Y; € (—0.711, —0.5]. The same holds for Y;_; as well. Hence, |Y;+Y;_1+1| < 0.422
and we get
‘ Lni 1] < 0.369 x 7 |by,i—1(4n + 1)p 0.369 x 77|z

Lyi-a 62 iy + (4n+ Dpbniy + ("5F2)p?] 22 +2+1/27
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bni—1
(A4n+1)p —

where z = i—1. The last expression we estimate by

] 1 1 1
22+ z+1/2 \z|—1—|—ﬁ 9(|z]) ~ mingso g(t)

Therefore, % - 1‘ < 0.891 x 7% Next, let
N oo 1/(4n+5) — By i 1 By,i1 — By io 1 Brtii2 Appa i
' 1/(47’L+5) - Bn+1,if2 1/(4n—|—5) — Bn+1,i72 1/(4n+5) — Bn+l,i72 ’

We found above % € (0.862,1.091), hence (4n+5)Bp11,—2 < %

< 4.102 x 0.03%2 < 0.0037. As a consequence, 1/(4nfg)+i’1i3711 — < 0.004. Therefore,

|1 — N| <0.004 x 717 = 0.028 x 7= and, finally,

N ‘L - ’ (0.028 + 0.891)7"
N Lni/Lyia =108l x 7"

1Al <0937 x 778 i>2

The claimed estimates |d,, ], |A, ;| < 77 are proved.

These estimates imply that the sequences

bn,i = bn,O H(l + 611,]) 5 Bmi = Bn70 H(l + An,j)

j=1 j=1

converge as ¢ — 0o to certain limits b and B}, n > k. By the definitions of
{(bn,i, Bn,i) }o2 . it follows that the limit sequences satisfy (12). In addition, b}, /by o

and B} /B, o are bounded, i.e. b} = O(np) and B} = O(1/n3p?). O

Thus we proved the existence of a solution {(B,,b,)} of (12) with bounded
B, and b, = O(n) starting from a certain index k(p). It is easily seen that (12)
considered as a system for (B,,_1,b,_1) is solvable in R? provided Wl—‘rl - B, #0.
Then, with the exception of some very special values for p, we can complete the
obtained bounded sequence to the starting values (Bg(p), b5(p)). For example, when
p = %, the condition ), < 55 is fulfilled for & = 32 and the values (B3,,b3,) =
(6.7280929... x 1075, —40.023137...) allow to complete uniquely the sequence up to
(Bg,b5) = (0.28687201...,0.34268557...) (b% < 0,n > 1). Note that in contrast
to the backward calculations, which are stable, in order to get the above values
for (B3,,b3,) starting from (B§,b5), the latter have to be given with at least 100

decimal digits.

Remark 2. In the special case By = 1, by = % — p, which is of interest for us
(see (11)), it seems that there is no real p which determines a bounded sequence
{B,} satisfying (12). This claim is based on exhaustive computer experiments.
For example: when |p| > 2, |Bi| = |t — [( —p)* + p(5 — p) + p?]| > 1 and by
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Proposition 2, |B;,| — oo; when p € [0.04277,0.0428], the graph of log|Ba3(p)| is
clearly positive and Proposition 2 implies |B,,| — oo in this case, too.

In view of the above results it is reasonable to consider lacunary transforma-
tions of L(z) depending on two parameters. We formulate the following

Hypothesis 3. There is a choice of the real parameters p and ¢ such that the
representation

Btintl z
L(= )th+zl—b 22’ tzl—p22

has coefficients satisfying B,, = O(p") for some p > 0.

There is even some reason to expect the validity of Hypothesis 3 for p = 0,
i.e. when ¢t = z. This is because B,, is a rational function of ¢, whose numerator
is an odd degree polynomial, and hence for every n there are values of ¢ producing
arbitrarily small B,,.

Of course, the magnitude of b, is also important for the convergence of the
series. If { B, } is bounded, but {b,} is not, then still it is enough b,, to be negative
for n > ng and the convergence will hold in a real neighborhood of z = 0.

For the system (11) we will consider theoretically only the case p = 0. We can
prove the following divergence criterion.

Proposition 4. Assume that the sequences {Bn}5° and {b,}3° satisfy the
system
Bp 4 By 103 | + Bp_obt 5+ -+ B = d\¥

16
Bpbp + Bp 1b3 4 By ob® o+ -+ Bob" Tt = dV, (16)

where |d(])| <1 forj=0,1. Let us denote Yy, := by /bp_1, Zy := —Bp/(Bn_1b%_,),
X, ==Y, Z, and (Z*, X*) := (0.30834705, 0.58425448). Then the conditions

|Zk—i - Z*|a |Xk—z - X*| <r, i= 07 1a2737

| Zy— 4—Z*| | Xp—a — X*| <5x107°; (17)

(1+Z|Bb W) J|Ba| <1078, j=0,1;

_1| = i >1

12 1| Jnax [bi| > 1,
for a given k > 5 and r = 10~ imply that |B,| tends to infinity faster than any
geometrical series and |b,| — co.

Proof. We first change the variables and introduce vector notations. It is not
difficult to verify that (16) is equivalent to

1=1/Zp 41/ (Zp 201 V2 ) = 1)(ZpZns Zn 2 Y2 YA S) + - = dY)B,
1=1/(ZnY0) 41/ (ZnZna Y Y2 ) = 1) (ZnZins Zon2 Y Y2 Y2 5) 4+ -+ = dYB, by,
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which is

Znor | InaZd 5 ZaaZ3 275 4 dy
In= 1=+ 53 T ye2 oo
Xn 1 anan72 anan72Xn73 anlbnfl (18)
Zo oy | ZpiZns  ZniZnoZp s dy”
Xp= 1- + 3 X5 3 5 Tt T
Xfi 1 X Xn 2 Xn—1Xn—2Xn—3 Bn—lbn—l

where the sums are expanded to Z; and X7, respectively. In this way we reduce
the problem to the proof that the stationary point near (Z * X *) is stable. Indeed,
then it will follow that, for n — oo, b, = A.(Y*)", where Y* = X*/Z* ~ 1.8948
and |By,11/Bn| = Z*b2 — .

To prove the stability of the stationary point (Z*, X*) of (18) we use the
approach based on fixed point theorems (see e.g. [8] and the references therein).
Note that, formally, we will not use the existence of (Z*, X*).

In what follows we care mainly for the impact of the first four summands in
(18) (excluding 1) while the remainder we estimate with less precision. So, let us
denote V., := (Zn, Xny Zn—1, Xn—-1, Zn—2, Xn—2,Zn—3, Xn_3)T, then (18) becomes
Vo= f(Va_1)+ 0,, or more precisely,

V(1) = ¢V )+6n
Va(2)=9¢(Vn)+
Vali) =V, (2—2) i=3,...,8,
where
4 . . .
o(21,@1, ..., 24,74) ;= 3" + Z(fl)lzl .. z?l_l/(azf xth),
i=1
~ 4 . . .
P21, 21, .., 24, 24) == 0" + Z(fl)lz% L€ R )
i=1
Here
it =1+ Z(_l)z(Z*)ZZ/(X )z(z—i-l) and b* =14 Z )z(z+1)/(X*)i(i+2)

=5 =5

are approximations of the remainders of the sums in (18) when (Z,,, X,,) approaches
the stationary point (Z*, X*). Assuming convergence of {(Z,, X,,)}, the residuals
€, and 6, will become very small, but do not tend exactly to 0, because of the
difference between (Z*, X*) and (Z*, X*).

Our next step is to prove that conditions (17), but with & = n and r = 2x 1075,
imply the representation

Vos1 = V) =J.(V, = V*) +5,, (19)
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where V* = (Z*,X* ..., Z*, X*) € R®, J is a given approximation of the Jacobi

D(f) « 7
% calculated at V* and |[Ep|]ee < € := 10"

Before doing this, we adopt the convention (for this proof only) that || - || :=
[|  [loo and « = § will mean that § is the rounded value of « to the corresponding
decimal digit. For example o &~ —1.230 x 107° means |a+1.23 x 1075| < § x 1075,

The Jacobian D(g, ¥, v1, ..., v6)/D(v1, ..., v8), U = (21, ..., T4), at the pomt V*,
is calculated to be J* a2 J := (g1, g, €1, €2, €3, €4, €5, €6) T, where

matrix J* =

g1 = (—2.2431, 2.3676,2.0593, —1.4491, —0.2532, 0.1604, 0.0071, —0.0043),

g2 = (—2.6966, 2.1347,0.7911, —0.5219, —0.0451, 0.0278, 0.0006, —0.0004),

and e; is the unit row vector in R?® whose j-th component equals 1

It is important that the spectral radius p(.J) ~ 0.2539 is less than 1. This
means that the iterations of (19) will remain bounded provided the perturbation is
sufficiently small. Now we start with the estimation of g,.

We have V.1 = f(V,,) + 0,41 and set 1= 0,11 = (€11, 0n41,0,...,0)T

Next we justify the approximation f(V*) V* by introducing 22 = f(V*)—V*,
hence (V11 — V*) = f(V,) — f(V*) + 81 + 82

Applying Taylor’s formula to the second order around V* we get

FV) = FO7°) + (Vo = V) 4 5Q(V = 77),

where Q(V) is a vector Whose components are quadratlc forms of V and more pre-
cisely Q1(V) = ¥ ; 5o (m)ViVi, i € V2, V], Qa(V) = 5, 52 (i) ViV,
iy € [V*,V,,] and Q; ( )=0fori=3,...,8. We denote $Q(V,, — V*) by & and
then (Vpy1 — V*) = J*.(V, —V*)—i—zl LB

Finally, the Jacobian J* is calculated approximately, hence with AJ := J* — J
and 2 := AJ.(V,, — V*) we arrive at

4
(Vg1 = V) = J.(V, — Z

The estimation of £ is easy: we have

P — ~ 1
[ < ATV = V7| < 8- 5 x 1074 = 8 x 107°.

1 ~ _
In order to estimate |[2°|| = 5! II_laX'Qi(Vn -V < ma ||Ql|| -12/2 we use
the obvious inequality: || Zaijvzvjﬂoo = max ’ Zaijv,»vj’ < Z la; ;.
i i i

[[o]|=1
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The quadratic form @Q; has coefficients %(m) = 21:1(— ) o (i),

0v;0v;
where o (0) := (21,21, s 24,24) = 21287 1/ (23..23%) (for k < 4). Since ¢y,
(and 1y, below) has the form 2 ...zz‘kxl_ﬁl...x;’g’“, a;, B; € N we can use the general
estimate

Die; iy + 3, MG

0? @ =SB,
Z‘ @k(ﬁl)‘§22§ zxizﬁz

- dv;0v; 22
Dici BiBi + 22 Blotl) >oi B
+ 5 +
Tr— 24T
. .\ 2 . .
:Z§Qi$:2ﬁi[(zaz+252) _Zgz+z2ﬁz}7
Zy x_ 25 2

where 2, (x_) is an upper(a lower) bound of the odd(even) components of 7j;. Then,
from 77, € [V*,V,] and Vi — V*|| < 7 it follows that ||[7; — V*|| < r. Hence, we
can take z, = 0.3084 > Z* +r and z_ = 0.5842 < X* —r. So, for k = 1,2,3,4 we
have

D, B =()$Z,]

2 z
Lo (m)\ <%
la 3) (2 4) = Zz N 81)781)1 (

— + 4 }<36;
(

G=(1,3,5), B=(2,4,6) = ¥, |2
(1,

d|

2
+£) — 4+ 5] <urg

dv;0v; 61)] (nl)

1,3,5,7), B=(2,4,6,8) = ¥, ,

9? P4 (5
0v;0v; (771

As a consequence, ||Qy]] <37,

2 _
For00; (1)

Analogously, Q2 has coefficients m(ﬁg) = Ziﬁ(*l)ka?igﬁ.(@)a where
T J 4 J

V(D) = i (21, 21, ooy 24, 24) = 230287/ (25..27"T1) and hence ||Qq]| is estimated
by the sum of

> aig;j (’72))<59;;’aig;(m)‘<6&;'aig)ij ) [<10; Z‘amau] )<L

Thus, [|Q2|| < 138 and therefore |[£2|| < max (||Q1]],]|Q2]])r?/2 < 4 x 1075.

Next, we have

= (p(V*) = 2", (V") = X*,0,..,0)"
00 i *) - 0 i(Z*)i(i"’l) . -
<;0 e 7 ’§<—1) Gy X 0,...,0)

~ (—8.0x 10*9778.1 x1079,0,...,0)",

and the Leibnitz type series are easy to estimate, yielding |[22|| < 1078.
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For an estimate of 2! = (€,41,0n41,0,...,0)T we write

(0) %)

InZ3 725 32 37 dy iy i (ZN*)l
€ntl = _X§X4 X0, X" SXn—4 + - (to Xy) — 7Bnb% — ;(—1) W
_ (Z7)% gy (2"
= [— 905(va . ,Xn_4) + (X*)30:| + [ . ] — ;(—1) W
=:A+B+C.
_ (27)* (20)% (2% () (2%
|A| = }¢5(Zn,...7Xn,4)— (j(*):so < max{’ (o )30 (X* 30| ‘ 74 )30 - (j(*)so ‘}

where z; and z_ are as above while z_ := 0.30829 and z := 0.58431. Note that
Z*4+5x107% € [z_,z¢ ] and X*£5x107° € [z_, 2], so in view of (17), {Z,_i}’y
and {X,,_;}1_, belong to these intervals, too. Thus, we find |4] < 1.3 x 1078,

For the estimate of |B| we return to the initial variables and use (17):
n—=6 )
IB| < (Z |Bib2 "0 4 |d§1°+)1\)/\Bnbi| <1078,
=0

We also easily find |C| < (Z2*)36/(X*)*2 < (2.)%/(z_)*2 < 3x 1077, As a
result we have |e,+1| < 3 x 1078, In a very similar way we estimate

7274 76 78 10 a® 0 , (Z*)i(i—i—l)
671 - _ Kn n—1“n—2n—-3“n—4 — (% X n+} _ 1 7 -
T OUXEXE XT X9 X1 + (to X1) + B,b3 ;( ) (X+)iG+2)
(Z*)SO e ) (Z*)i(i+1)
= |~ Zna"anf = ] |:j|_ -1
Vs ( 1) + )5 + ;( ) (X))

=1 Ay + B+ Cq,

whence [0,41| < |A1| + |B1| + 01| < 7x 1071041078 +6 x 107 < 2 x 1078,
Thus we obtain |[£'|| < 3x 1078 and hence |[z,]| < Sr_, [[E]] < 9x 1078 < e.
The relation (19) is proved under the corresponding conditions.

Now we will prove the following

Claim. Let conditions (17) are fulfilled with 7 = 2 x 107® and assume that
| Zyi — Z*|, | Xppi — X*| <7, i=1,...,6. Then ||V, —V*|| <7 Vn >k, ie. the
above inequalities hold for all 4 > 0.

First note that from (17) with any positive » < 2 x 107> they follow all but
the first two similar inequalities with k + 1 in place of k. Indeed, the relations
| Zy1-i — 2%, | Xpy1— i — X*| <r, i=1,2 3 are contained in (17) and the
inequalities |Zg41-4 — Z*|, | Xg41-4 — X*| < 5 x 107° are obvious consequences.
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The last condition follows from |by| = |Yibr_1| > z—;\bk_ﬂ > 1.894[by_+1|. Tt
remains to estimate for j =0, 1

R — (1 + Z |B; b (k2 HD/!Bkﬂka’

k—6 B b
< (148 X B B ) /Bt | 52
=0 k+1
<b2+’(1+Z|Bb (k41 Z|+(b’“ 5) | By_sb?? |)/\B bQ\-‘il |
- k—5Y%—5 kO 7 b2+
=0 k+1
1 o
B |Zk+1 (Yig1Yr) 2+j] {1078—" (kal'"Yk%) ’ J|‘p5(2k""’X’“74)‘]
Zy1 2}

‘X X2(Y1 Vi) | [1078 + (v /24 ) 78749225 /23]
k+1

where we have used Y,, = X,,/Z, angi Ly < zy, Xi_i>xz_fori=0,...,4. Now,
by (19) we conclude that |[V41 — V*|| < ||J||r + & < 8.54r + & < 2 x 1074, which
implies Zx11 < 0.3086, X1 > 0.5840 and Yy, 1 > 1. Therefore, in view of Y, > 1,
we get RU) < 0.2522[1078 + 233 /23] <1078, j =0, 1.

From this and the conditions of the claim we conclude that (17) and (19) are
fulfilled for n =k, ...,k 4+ 6. Therefore we have

6
Visr =V = |[J.(Vigs = V) +Eppe]| = - = [T (Ve = V") + Zﬂ?k%ﬂ‘”
i=0

<7+ 31

We calculated ||J|| ~ 8.53, ||J?|| ~ 11.13, || J?|| ~ 11.13, ||J*| ~ 11.13,
|75 & 11.13, ||J9|| ~ 2.38 and ||J7|| & 0.274. Thus we obtain

|[Visr — V*|| < 0.275r + 56.5e < 1.2 x 107° < 7,
and the claim follows by induction.

To accomplish the proof of Proposition 4 it remains to show that conditions
(17) with » = 107% imply the conditions of the claim. Indeed, it follows from the
claim that b, /b,—1 =Y, > x_/zy > 1.894 for n > k, and hence |B,,/B,_1| =
Zpb2 1 > (2)b2_; — oo.

Let (17) be fulfilled with » = 1076 and for a j € {1,...,6}, |[Vii — V¥ <
2x1075%4=1,...,5— 1. Then (19) holds for n = k,...,k+j — 1 and

||Vk+j — ‘7*“ = ij(Vk — ‘7*) + jj_l.fk + -+ jofk_,_j_lH
< 11147+ 54.1e <2 x 1072,
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This observation inductively implies the conditions of the claim and completes
the proof of the stability of (Z*, X*), i.e. the proof of Proposition 4. O

Proof of Theorem 1. We apply Proposition 4 to the series a) for I(x) with
B, =A,, b, =a, and dgf) = 2n+11+j, 7 =0,1. It is calculated that for k = 13 the
conditions of the proposition are fulfilled. Namely,

{Z, - Z*} g ~ {1 x1075,9 x 1078, -6 x 1075, —1 x 1075, -1 x 1079 };
(X, - X*}13 g~ {2x107%,7%x 1078, -9 x 1078, -1 x 107%,7 x 107%};
(1 D yAia?““*H)ﬂ |)/\Akai+f’\ ~3x1072,6 x 107! for j =0,1;

K2
Q-1 = MaXi<k—1 |a1| ~ 1744.92 Z 1.
Then, by Proposition 4, |A,| tends to oo faster than any geometrical series,
while a,, in the denominator behave as C.(Y*)". Therefore, the common term in
the sum of a) does not tend to 0 (unless for z = 0) and the series diverges.

A very similar argument holds for the series b). Now, d,(lj ) =
and again for k£ = 13 the conditions of Proposition 4 are fulfilled:
{Z, = Z*} 12y = {1 x1076,5x 1077, -3 x 1078, =3 x 1078, =5 x 107°};

{X, — X*}}fzg ~ {3 x 1076, 7x 1077, -7 x 1078, -4 x 1078,2 x 10*9};
(14 S [ Babd 04 /1B ] &3 % 1079,6 x 1071 for j = 0,1;
br—1 = max;<k_1 |b;| = 1399.65 > 1.

Then, Proposition 4 implies the divergence of b) for z # 0. Theorem 1 is

proved. (]

1 o
Intitz;0 J = 0,1

5. BOUNDS FOR THE RATE OF CONVERGENCE OF (2) AND (3).

We first note an useful formula connecting the coefficients in the representation

A Ax Asz? >
4 : + 2 o Y ana,
-z (1—ax)(l—az) (1 —apz)(l —aix)(l — asx) =
Namely,
Ag =ap; A1 = a1 — apap;
Ay = ay — (ag + a1)ar + (apar)ap;
A3z = a3 — (ap + aq + az)ag + (a1 + a1ag + asag)a; — (@ az)ao; (20)

Ay = a4—01(a0, ...7a3)a3+02(a0, ...,Oz3)(l2—0’3(0[0, ...,043)(11+U4(O[0, ...7043)(1();

where o (g, ..., a,) = Z o, ..., . Formulas (20) easily follow by in-
0<ip <---<ix<n
duction. Indeed, the relations for Ay and A; are easily verified. Let the formula
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holds for Ay with a fixed k > 1 and arbitrary parameters {o;} and {a;} . Then,
removing the denominator 1 — agz, subtracting Ay and dividing by x we obtain

A + Az —|—--~~ia 2" — ia x™
(1-az) (1—a12)(1—asx) — i 0 —

So, by the induction and the linearity, for the coefficient of wk/Hfill(l— ;)

we find
Apia :[ak+1 —o1(ay, ., ag)ag + o2(aq, .. a)ag—1 — -+ (—1)k0k(a1, . ak)al]
—ap [ak —o(ay, ey ag)ag—1+ -+ (—1)kak(a1, ey ak)ao]
=ag4+1 — o1(Q, ..., g )ag + (02((11, oy k) + agor(aq, -, ak))ak_l — 4
+ (fl)k(ak(al, ey k) + @oog—1(aq, ..., ak))al + (fl)kﬂaoal...ak - ag ,

as for k = 1 the middle terms in the brackets do not appear. For k > 2 the
induction step follows by the properties of the combinatorial sums {o;}.

In the particular case ag = g = 0 and a,, = %, n > 1, we arrive at the formula

Oll’ 02132 03583

O e T T =m0 T = mo)(1 - ) =)
where
Cp = 1—01(71 'kal)i+‘72('71 coes k1) ! — e (D k)
k B k—1 Y k—2

/O (@ =m)(x = y-1)d. (21)

Let us consider some concrete representations of I(x) with periodic {v;}. As
was mentioned before, the choice {7;}5° = {11}5° leads to the series (5). Let now
{7} ={0,a,b,a,b,...}. We take v; = 0 in order to write the series in the form

I(x) = Doz + (By + Dyx)u + (By + Dyx)u® + (Bs + Dax)u® + - - -, (22)
2
where = ———~ ___ Then Dy =1 while for n > 1, from (21) and

(1 —az)(1—bx)
B,z (bB,, + D)z +1

(Bt Dt = G T = a1 = bt (1= 00) (1 — o (1 = b}

it follows that B, = [ z[(z—a)(x—b)]""'dz, Dy+bB, = [} a(z—a)" (z—b)"d,
hence D,, = fol 2*[(z — a)(z — b)]n_ldx — $B,,, where s = a + .
Introducing A,, = fol [(z —a)(z —b)] "z, C, = fol 22 [(x — a)(z — b)] e

and @’ =1 —a, b =1 —b, one can easily verify the recurrence relations

'p\n n A _
g, = @) =@ s, o (@) 4 (24 1)sB, —abd,,
2n 2 2n+1
D, =C,, — sBy; Anv1 =D, + abA,.
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To minimize the asymptotics of the coefficients in (22) we choose (z—a)(x—b) =
22—+ %, which is the Chebyshev polynomial of the first kind T (x), transformed
to the interval [0,1]. Recall that the polynomials T} (z) = z* + --- associated
with the interval [, 3] provide the minimal uniform norm on [a, 5] amongst all
polynomials of the form z* + Zf;ol a;z" and the value of this minimal norm is
(ggﬁ)f ([4, Ch.2.2.3]). In the our case, ||T5||cpo1 = —T5(1/2) = § which yields

n

that the above integrals are asymptotic to c‘\’}‘st (— é) for n — oo. For this choice

we have s = a + b = 1 and the recurrence relations simplify to

1 1 n

1

1
An = s 7157 T 744n];s anfAn, Dn:An *7An-
1 2n+1[8n 74 2 g
n—1 1 —2na,
It is convenient to substitute A4,, = (%) Qp, where a1 = ﬁ. Then,
2n +1

the rate of convergence of this special case of (22), considered as a series of type

(3), i.e. with each summand counted twice, is like a geometrical series with ratio
2—‘{/% ~ ﬁ (x — 0). In addition we can rewrite the series in a lacunary form.

Namely, by the recurrence formulas and Dy = A; = 1 we get

I(x)

1 1 1 1
Az + (§A1 + (A2 — gAl)x)u + (§A2 + (A5 — gAz)x)u2 + .-
(23)

o (5= ][ v o]

where A,, satisfies the above formulas and u = (The second factor is

2
T=ota2/s"
lacunary, considered as a series of the form (3).)

Remark 3. Although the series (23) converges faster than (5), and is lacunary
as well, it is still less effective. This is because the coefficients are more complicated.
Indeed, let us count only multiplications and divisions as the most costly arithmetic
operations with equal cost. Then every next term in (5) needs two operations
(22n+ = 2271 % 22 and 22"*1/(2n + 1)), while every next term in (23) needs
three operations (a1 = (14 ay,)/(2n + 1) — ap, (u/8)" = (u/8)" 1 x (u/8) and
ant+1 X (u/8)™). Actually, even the example below hardly improves (5).

Remark 4. We see that the first factor in (23) vanishes for z = 0 and z = 2.
In fact, [(0) = 0 but {(2) = log(—1) # 0. Recall our adoption that when the region
of validity of some identity is not specified, it is certain neighborhood of 0. In
particular, (23) converges for || < 1 and represents [(x) in the open unit disc. On
the other hand, a continuation of (23) for x outside the unit disc is questionable
because of {(1) = oc.

Consider now ”periodic” representations

3

(1—az)(1—bx)(1 —cz)’

l(x) =box + cor? + Z(an +byx + cpz™, v =

n=1
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i.e. of the form (3) with {7;}3° = {0,0,a,b,¢,a,b,c,...}. Transforming (3) in the
above form, in view of (21), we find the following integral formulas for n > 1:

1

/0 £2[(t — a)(t — b)(t — )" d;

Qn

1

b, = /0t(t—a—b—c)[(t—a)(t—b)(t—c)] T dt;

n—1

Cn = /ltz( —(a+b+c)t+ab+bc+ca)[(t—a)(t —b)(t—c)]"  dt.
0

For simplicity let us assume that the points a, b and ¢ are symmetrically placed
[0 1], or more precisely let a + b =1 and ¢ = 1/2. Then, with the notations

fo )|"dt and J,, = fo )]"dt where P(t)= (t — a)(t — b)(t — ¢), we
easﬂy get Igm_l =0 and Jy,, = Igm Next, using P(t)= (%P’(t) + 4ab= 1)(t — 7)
we calculate

PRI [(4ab - 1)<Jn_1 - %In_l) n ﬂ(&b)”};

3n+1 n 2
n/2 11 2ab +1
., I, 2b7—(Jn_ - In_)
J 3n—|—2[ -+ (2a ) ! L
ab 1—-(=1)™
+ (4ab -1 7};
* ( 2) (n ( ) 3n )
2ab + 1 1—(=1)" sab\"
ap =Jp_1 — I+ #(7) 5
3n 2
1 b
by =1, — (ab + i)Jn—l + %In—ﬁ
b
cn =Jn + %Jn_l.

In particular, a nice formula is obtained if we take a =0 and b = 1. Then

; _{—11237;;2(]”_1 for odd n >0

1 n
713?—}-1‘]”*1 for even n >0,

an + bpr + ¢ 2 = (%_%)Jn—l +x2Jn for odd n
T ! (1 - %)Jn—l + (2% +22)J, foreven n.

The starting value is Jy = % and even the second formula holds for n = 0 with
3
T

J_1 := 0. Therefore, with v = ==/ =a)

l( )_ (_’_ﬁ_’_(l_f) )[1+i2!’l}2+i 4!U4 +L 6[1)6 + . :|
V=T T3 T )Y 48 5.7 ' 4825.7.11.13 ' 48%5.7.11.13.17.19
1 x v 1 3W° 1 51p°
-z [7 = S } 24
24(Cr +( 2)“) 5 185711 T A82hraLi3AT (24)
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The both parts of (24), considered together and as a series of type (3), converge
(x — 0).

6/ L g~

like a geometric series with ratio {/ 25 o

Proof of Theorem 2. To prove a), we denote by 0 < 21 < @9 < -+ < 23, < 1
the zeros of the Chebyshev polynomial T} (z) for the interval [0,1] and take the
periodic sequence {v;}5° = {z1,...,2k, 21,...,Zk,...}. Then, by (21) we have

1
|Cn+1| < / |T];k(t)|m |(t o ’Ykm+1)«~~(t o ’Yn)|dt < (2—2k+1)m < 2(—2Ic-i-l)(7l/k—1)7
0

where n =km+r, r€{0,...,k—1}. Hence,

linlsup|0n+1|1/n < 4112k _. q(k).

Therefore, with a fixed € € (0, 1], the inequality g(k) < ﬁ holds true, provided k&
is sufficiently large. With such a k, the sequence {~;} above satisfies a).

To prove b) we shall exploit some properties of the Legendre polynomials
Py(z) = 5[z — 1)")(™. Let p,(z) = P,(2z — 1) be the normalized Legen-
dre polynomials for the interval [0,1]. It follows from fil P, (2)Qm(x)dx = 0 for
every polynomial @Q,,(z) of degree m < n that fol Pn(x)gm(z)dx = 0 provided

deg(gm) = m < n. In addition, fil P}(x)dx = 525 implies fol pa(r)de = 5.

Now consider a representation of I(z) in the form (3) with 4; € [0,1]. By
(21) Cpq1 = fol on(t)dt, where ¢, (x) := [, (z — 7). Given a fixed n € N, let

2n+1
i=n+1>

us represent p,(z) by the Newton interpolation formula at the points {;
namely

() = an['YnJrla ooy Ytk 1) (T = Yrg1) oo (T — Yngr)
k=0
n (k)
Pn "Mk
=> 7]5‘ )(1’ = Yn+1) - (@ = Yntn),
k=0 ’

1
where 7, € [0,1], £ = 0,...,n. Now we will use the relation P,(z) = PTS2)(x)
and the following properties (see [7, Ch.4.7,7.33]) of the ultraspherical polynomi-
als P,(LA)(x) (note that here A represents a parameter, and not derivative order):

d
P @) ) = 20P0 D (@) PR (1) = ("2 and_max [PO(x)] = P (1),
for A > 0. Then, with A = k + 1, we have P{¥ (z) = (2k — )'PY, (2) and hence,

for k=0,...,n,

(n + k)!
)] = 24120 2 = D) < 2P oy = 2P0 (1) = (o
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In particular, for k = n we find that the leading coefficient of p,(z) is ¢, = (**).
Thus, from the above representation of p,(z) and (21) we obtain

1 n (k)
I, := /0 on(2)pn(v)dz = ,;) - k(!nk)cn+k+1~ (25)
On the other hand
1 1 n!)?
I, =q," /0 (4000 (2) = () + pu())pu(@)d o = ¢! /0 Pl = (2221)'

Therefore, for at least one summand in (25) we have that

k
(n})? _ )(nk)c
(m+1D)2n+1)! — kv
(n +k)! n n
: W'C"’%“‘ = (") O Cnsrsa] < 2P| Crppgal,
i —n—3k (nh)? _ 2—n—3k n+k .
fee [Cnspia| > 2 C(ADEADT T () e+ 1) (30) > (n+1)(2n+1)( )" As

a consequence, the inequalities |C;| < Vj € N can not hold true for any

M
(84¢)7
positive M and e. Hence part b) and the theorem are proved. O

Proof of Theorem 3. First we shall prove the assertion for {C,,}. We can apply
the same reasoning as in the proof of part b) of Theorem 2 to the estimation

(n)? pi” ()
< Cotpsts 26
(n+1)@2n+1)! = & A (26)
for some k € {0,...,n}, but now the restriction is |ni| < 1. So, we need of an

upper bound for |p£lk) (nk)]. In view of the monotonicity of \Pék)(:sﬂ for |z| > 1 we
have
P )l = 2K PP (2 — 1)] < 2’“\P(k)( 3)| = 2*(PM ( )\
= 2an(32*$1 )(3 *5172 ) <2Q
where @, and {£z;;} are the leading coefficient and the zeros of PT(Lk)7 re-
spectively. From the definition of P,(x) (by the Rodrigues’ formula) we find
n—k

Qnk = 2L from where \p;’“) (k)] < (2n)! (%) . Hence, taking mod-

27 nl(n—k)! nl(n—k)!
ulus in (26), we can write

2 n 2 n n—ky-1
(n+1)(2n +1)|Crsperr] > E%'z)) pk(')> [(1) (k) (g) k}

- ety [ Y ] (]
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Now, if we choose a = 12 4+ /160 < 25, that is, the positive root of the equation

z = 16/z+24, then for any fixed M > 0 we obtain [Crik1| > grpy@me ™" >

M - 25~ (k41 provided n is sufficiently large. The assertion for {C,} is proved.

In order to prove the impossibility of the bounds for {4,,} in the theorem, let
us assume that for some M > 0, ¢ < 1 and {a,,} such that |a,| < 1, the estimates
|An| < Mq™, n=1,2,... hold true. Then for |z| < 1 we have

0o 2A m— — 2m 24 . am
l(an) = l(a:) + l(_x) — Z 2m—102m—1T N o

—a? 2 — a2 72’
= 1o, 1—oa5,x

. . g ylnt1)/2]
That is, a representation I(u) nzz:l T
Bn €0,1] and |B,,| < 2M¢"™. We shall show that this series can be written in the
form (3) with parameters {v;} = {81, 52,0, B3, 84,0, B35, Bs, . . .} This will follow
from the possibility of the representations

holds true for |u| < 1, where

k
u™

ajnu’
_ 27
1— Buu ; (1 =mu)... (1 —u) Za]’"cj (27)

where m = |28 ] and k = n+m — 1 = [2%1] ie y = B,. Note that {v;}}
contains m — 1 zeros. Then, with v = 1/u we have ¢;(u) and (for

_ 1
T (v=1)-(v—5)
v #£0,71,...,7) equality (27) is equivalent to

gn—-1(v) == (v =B1)... (v = Bn-1) Zak in (V=) - (V= Yh—it1),

where the indices of {;} decrease, so the first product in the sum is assumed
equal to 1. Thus, we have a representation of g,—1(z) by the Newton interpolating

formula at the points v, ..., 71, hence (k > n) the representation exists and a; ,, =
0 (e

Gn—1[Yks- -], 3 =1,..., k. As a consequence, ay—; n = g"’ill(&), where &; € [0,1]

since {7;} C [0,1]. The last equality implies that a1, =+ = @m-1,, = 0 and

n—1 i i n—1 .
ainl = ("7 W6 =)ol < (M) i=0n-

7

where {xiz)} are the zeros of g,(le(ac). Using these estimates and (27) we obtain

1_5nu ZB Z ajncj(u ZCJ u) Z Brajn

n=1 ngj<ind 2EL <n<2j

oo

>

n=1

=: Z CjCj (u)

l(u)
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Thus we have written [(u) in the form (3) with coefficients that satisfy
L (n—1 21
|Cj| < Z 2Mgq <k— ) <2M Z q <L3n—1j _ >
2l <p<j J 24l <n<j 2 J

The numbers I,,(j) == [3%2] —j, n = [2337+1L ..., 27 belong to {0,...,2j —1} and
are distinct. So, in view of 3 > [3%=L] = [, (j) + j,

2j-1 .

2040 (27 —1 25 2j-1 2

Cjl <2M ) qg(l”)( jl ) = 2Mq% [1+ )77 = My[q"? +q] 7.
1=0

J
Therefore, the assumption ¢ < % leads to |C;| < M, (é) which is a contradiction
to Theorem 2 since v; € [0,1]. Theorem 3 is proved. O

Now we shall make a comparison between the form (3) and the method of
continued fractions (see e.g. [1, Ch.4] for the used results). The similarity of the
two approaches is obvious — in both cases the n-th partial sum of the Maclaurin
series is recovered. We mean the usual representation of a function by a continued

fraction bz vz ez
1 2 3
z) =bg +

) 0 by + by + b3 +
But there are also some essential differences. Only seemingly the form (28) depends
on two sequences {a;} and {b;}. In fact, a nonsingular continued fraction (28), i.e.
with a;,b; # 0, i > 1, elementary can be transformed into an equivalent form, say
with a; = 1 or with b; = 1. For example, the fraction

z 12z 12z 22z 2%z n?z n?z
log(1 = ——— — ... - - ... 29
B = T Sy 3T 1 5 Tt mrid (29)
is transformed (by dividing the numerator and the denominator of the 2n-th and

2n + 1-th terms to n+/z) into

NE 1 1 2/1 1
1/Vz) + 2/Vz) + B/IWz) + (2/Vz2) + (5/2v7) +

n/(n—1) 1

2/Vz) + (@n+1)/nyz) +

This form has the advantage to (29) that it is close to a continued fraction F =
K°,(1/b;) (with unit numerators). The convergence of such a fraction is very easy
to realize in view of the Seidel’s theorem which states that when the elements {b; }$°
are positive, then F is convergent iff the series > b; is divergent. Moreover, for
"relatively large” elements (say |b;| > 3,7 > ng) the fraction converges approxi-
mately like [b1bs ...b,] 2. In the case of log(1 + 2), and equivalently of [(z), this
rule gives an approximate rate of convergence like [(2/1/2)"]72 = (2/4)" (z — 0).

log(l+2) =
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The above arguments can be done precise using the formulas

oo Z

=1 (a;/b;) Z H aj,

where A, /By, = by + K!_,(a;/b;) is the n-th convergent of the fraction, and

A = bAii+aAio, Ag=1by, A1 =1;
B, = bBi_1+a;Bi_2, Bp=1, B_1=0.

In particular, for a fraction with a; = 1 the remainder is

N . e e} -1 i—1
Ry :=KZ(1/b;) — KiL i (1/b;) = Z %
et 1 i1 Di—

Then, for "relatively large” |b;|, the relation B; = b;B;_1 + B;_o usually implies
B; ~ b;B;_1 and B; — oo for ¢ — oo, which in turn yields the approximate rule
|R,| ~ 1/|BnBns1| =~ B2 Tt has to be mentioned however, that there are some
special cases for the data {b;} when the principal asymptotic behaviour of {B;}
as a solution of the above three term recurrence relation is suppressed and the
magnitude of the sequence is not the usual one. This corresponds to a fraction of
value 1/0 = oo and, in our case of interest, for I(z) with |z| < 1, such situations do
not appear.

Now, the question is which is the right correspondence for comparing the two
methods for accelerating power series? We argue that the most natural way is to
compare the n-th partial sum of (3) with the n-th convergent of (28). The calcu-
lation of both approximations can be organized in different ways, say backward,
and the formal counting of the the cost of arithmetic operations then gives the
same result (2n). Indeed, the coeflicients in the continued fraction for I(x) are
much simpler, but (as we have seen) taking {7;} at the zeros of Ty (z) and grouping
summands we obtain rational parameters in the series, too.

Let us summarize the above comments. Both methods transform a series with
rate of convergence like 2" into a series (sequence) converging approximately as
(z/4)™. This accelerating factor (1/4)™ appears often in the continued fraction
expansions, for example in
2,2

z 222 n?z?

1- 3- 5-  2m41-—

L(z) = arcth(z) =

Thus, in many cases the both methods have approximately the same efficiency.
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6. ACCELERATION OF SERIES FOR OTHER FUNCTIONS

First we consider the function

1 T x? x3

f:fa(x)::a_|_1—|—a+2—i—o<+3—|—oz+'”7

which contains I(z) and L(/z) as particular cases. We describe some transfor-
mations of f, allowing its effective computation. Let us change the variable by
t = =175 An explicit formula for the coefficients in f = Yoo o ant™ =: So(t) can
be written using the Euler transform, but it is not convenient for computation and
estimation of {a,}. More important is the recursive rule, which follows from the
differential equation

ﬁ _ 2 Fo 1
dt— t24+t)"  t(1—t/2)
a consequence of f = - OI Zla__; dz = 1+t/2)a fOHt/Q Elanta —dz. We have
1 n 1
pt1 = (27_56‘")/(”+1+a)’ ap = —. (30)

When a > 0, it is easily seen from (30) that a, € (0,2'~™), n > 0, hence the
transformation gives an acceleration of f,(x), for x — 0, like 27™.

An interesting consequence is obtained when we replace the coefficients in
=507 apt™ from (30), namely

( )fa(1+t/2) 772f"(

By differentiating the identity fo (z) = >_°0

t 14+«

) 2tw/o afo‘(1+z/2) z, a>-—1.

an(a)t", where fo := fo— L, with

n=14
respect to a at a = 0, we obtain another interesting result. Note that fo = [ ( ) and
2 4
the above transformation leads to (5): {a,(0 }1 = { ;0,3 (%) ,0, % %) ,0,... }
Also, by (30) it follows (n + 1)aj,,1(0) 4+ ant1(0) = —na, ( )/2 and one easily
represents {na,, (0)2"} as certain sums. With z = ¢/2 = , this gives
, L
Lisx)= 5+ Ttz t

SRS G DE-D (e DG ]

at
Lis(z )_2[11+ (1 +1)%+ (1+1+1)i+-~-} CL2(2). (31

11 1 3 1 3 5/5
The explicit formula fo(z) = 3%, ﬁ% —: S)(z), which follows
from the Euler transform and (o) := a(a+1)...(a + k — 1), is also of certain
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interest. This identity gives an acceleration for f if # < 0 and especially when
x =~ —1. Note that the larger is «, the smaller are the terms in the series. Therefore,
it makes sense to shift the parameter to the right according to the formula f,(z) :=
S0 e +aF fark ().

Similarly to I(z), fo(x) has an analytic continuation in Dy = C\ [1, c0). From
now on f,(z) will mean this continuation of the series f,(z). Then, let us justify
the domains where the above identities take place. Note that some series repre-
sentation S(z) of f,(z) coincide with the function in this connected component of
the intersection of the definition domains, which contains z = 0. Since the domain
of convergence of S1(z) is |f_2| < 1 and a part of the boundary, depending on «,
then Si(z) represents f,(z) in the half-plane Re(z) < 1/2. Similarly, the domain
of convergence of So(l_—zzm) is included in Dy, then this series can be used for cal-

culation of f,(z) in the half-plane Re(z) < 1. The remaining part of Dy can be
covered by the following two formulas which are consequences from the relation

afa(z) = F(l,a;1 + a;2). (32)

For the properties of the hypergeometric function F(a,b;c;z) see [2] and the
multiple labels below refer to this book. Now, applying the identity 2.1(17) (which
is 2.9(34)) we obtain

1 gy w(=2)7e
fa(Z)—;fl—a(Z )+W’
where 37 = ef1980(¥)  According to the above note this relation holds for z €

C\ [0,00) and o € Z. (When « is an integer, then f,(z) reduces to I(z) and its
analytic continuation is clear.) Another easy consequence of this formula is that
when the variable z crosses the segment (1,+00) at 2o in positive direction, then
the value of f,(2) jumps by 2miz, *.

The next transformation changes the argument to 1 — z and is very useful for
z =~ 1. Notice however that f, belongs to the set of the so-called degenerate cases
of the hypergeometric function and many known identities can not be used directly
but after a limit passage. Thus, from 2.9(33), applied for F(1, ;1 + a +¢; 2) with
e — 0, or directly by 2.3(2) with [ = 0, we get

/1 1 1 1 1 1 a)p n
PO =3 (a3 et e )

n=l () (33)

—(¥(a) + C +log(l—2)) > n!” (1—2)",

n=0

where () is the digamma function and C is the Euler-Mascheroni constant. The
relation (33) holds in the domain {|z — 1| < 1} \ [1,2).

Some other consequences of (32) are:

1 a—
fale) :/O = ;tdt, Re() > 0, x ¢ [, 00),
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which follows from the Euler integral 2.1.3;

fo() 1 o’x 1?2z (a+1)2%z 22z (a+2)%
az = — e N
a— a+l— a+2—- a+3 - a+4—- a+d —

see 2.5.4; next, the forth equality at the definition of u; in 2.9 gives

o0

falz) =1 —2)"

and again there, from the second equality, by a limit pass with respect to any
parameter of F(a,b; c; x), it follows

oo

1 1 1 z
l(x)fa(x)—z(hn+a+a+1+”.+a+n—1)a+n'

n

n=1

Another interesting identity is obtained from the relation f,(z)=®(z, 1,v). Namely,
the formula 1.11(9) (which holds for m = 1 as well), in view of 1.10(11), gives

fole) =27 { 3 Bol) QB2 T1) — w) — togon | } LGy

n n!
n=1

where B,,(v) are the Bernoulli polynomials and |log z| < 2.

Finally, we consider the digamma function, because it is closely connected

with fo(2). Indeed, if in place of the divergent series fo(1) = Y 0" %ﬂ we take

Yla) =327, (l - W) then ¢ (a) = ¢(a) + C + L. As effective methods for

calculation of 9(a) (and () one can use (33) or (34). Also, the formula 1.7(30):

_ z lz(z=1) 1z2z—-1)(z2-2)
’L/)(CL—FZ)—I/)((I)—FE 2a(a+1)+3 (a+1)(a+2) B

can serve for this purpose. Namely, assume that z = O(1) and the value ¥(x) is
needed with accuracy 277%. Then, with a = k and z = x + k take 2k summands
of the formula. The terms at that place are approximately (k!)3/(3k)! and decay
as const/3". So, eventually taking several additional summands we stop when the
last one becomes less than the required accuracy. Also, the Shift formulas 1.7(9):
(k) = hy_1 — C and 1.7(10): ¥(z + 2k) = (z) + 22’“ ' L are needed for the
calculation, and they require 3k additional divisions.

We refer to [6] for more recent methods for computation of ¢ (z) (and I'(z)).

Actually, the series 1(«a) easily can be transformed into a series that converges
like 1/n!, but the problem is that there appear infinitely many unknown constants.
For example, such a rearrangement is given by the following formula of type (3)

- [Xe cza2 03043

e T sy Ry N (P Ry ey A
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where e = Y307 e =, =230, Rt = 0.8857... , ¢ =310, it =

n=1 n?2
0.6102... , ca =4> 7, (nl)(nnw = 0.4663... , etc. The above series is a
consequence of the more general relation

« « « o coa?

+ + o= + +
ri(a+x)  za(a+ax2)  wz3(a+x3) at+z1 (a+z1)(a+x2)

. o ) 1 ca _ 0 mp—x1 Cc3 o (zn—z1)(xn—x2) .
with £+ =377, T e = Yoo gt 0= D omes e provided
the series are convergent If we set xx11 = Tpy2 = -+ = 00, then the relation

becomes a polynomial identity, which is not difficult to verify.

Other interesting series are obtained by expanding i(a) on rational terms
containing a(™ := a(a — 1)...(a — n + 1), for example

5 2{1. a %.( ala—1) 1 ala=1)(a-2) }

¥le) 1 Oerl+ a+Da+2) 3 (a+1)(a+2)(a+3)
(a? —12)...(a? — (k—1)?) (8k —3)ar+ k(10k — 3)

(14 @)ox (2k = 1)(2k)

M

k=1
3)

_ (
(ritan) " et )t et o)

(4)
_ ?4) (ai4+214>+*

|
Q

Note that the last two series converge like a geometrical series with ratio i.
We shall prove in details only the first identity. We start by proving the formula

k () (k—1)U-1
o
_§ where ¢ (k) = 2j—— | —=1,23,...
2 1 , ere ¢;(k) j S ,2,3, (35)

To prove the existence of such a representation with certain coefficients we remove
the denominators and divide by « arriving to an equality between polynomials
of degree kK — 1. Now, choosing the coefficients {cj}’f successively by substituting
a=1,...,k, the equality follows by the uniqueness of the interpolating polynomial.
In order to verify the formula for the coefficients we multiply the identity by (a+1);
and obtain

k (1)
«
a+1): =aP;_ 1) E (k) ——
a+k( )J k 1(a) (a )] ¢:j+161(k) (Oé—}—]-)i’

where P;_;(«) is a polynomial of degree j — 1. Rewriting the last equality as

(I+a);-(1-k); (Q-Fk; . 4"' L (a—1)0D
a+k a+k _Pj_l(a)+<a+1)ji§r161(k) (a+1);
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and noticing that the second term on the right-hand side vanishes for o« =1,..., 4,
we conclude that Pj_q (o) — % is the interpolating polynomial for %

In particular the leading coefficient equals

(1), 1 =w

B) 4+ dej(k) —1=-if o j]="2"
cr(k) 4+ +¢;(k) otk [1,2,....4] (k+1);
which easily implies the formula for ¢;(k).

Now, we substitute ;S from (35) into Y(a) = 302, Tagry and rearrange

the summation with respect to the basis {%}, which is admissible since the
J

double sum has positive terms. Then for the coefficients we get

o0 o0 5 .
ch(k) » (k—1)U-b 2;! o 2
=2 = 7 F ) 72 - 17 1) = )
I L (k) jt1 (J)j+1 (332 ) J

where we used that F(a,b;c;1) = %

For the proof of the second relation one can use the identity

. The first formula for () is proved.

o Lat+j-nE

a+n = (a4 1)g;

(ej(n)aerj(n)), n=123,...,

where e;(1)a+d;(1) = o+ 1 and

n(2j71)

m((llj—l)(na—jz)—j(5j—2)(oz—n)), n=2,3...,

ej(n)a+d;(n) =

while the third one is a consequence of

n—1 j— n— n
a :ZLW HUONC B DL S
(n+1); (n+1)p—1 a+n
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and of the jump operator in the upper semilattice of the w-Turing degrees.
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1. INTRODUCTION

The investigation of the reducibilities between sequences of sets of natural
numbers is initiated by Soskov. In the work [8] he introduces the w-enumeration
reducibility <., which compares the informational content of sequences of sets in
a way that generalizes the Selman characterizing theorem for the enumeration re-
ducibility!. As a preorder, the reducibility <,, induces a degree structure — the
structure D, of the w-enumeration degrees. Again in [8] it is given a definition of a
jump operation ' over the w-enumeration degrees. In [9] Soskov and Ganchev con-
tinue the studying of the structure D,,. They derive that D,, is a proper extension of
the structure D, of the enumeration degrees whose group Aut(D’,) of the jump pre-
serving automorphisms is isomorphic to the automorphism group Aut(D.) of D,.
Recently Ganchev and Sariev show that in D, the jump operation is first-order
definable in the language of the structure order. In this way each automorphism of
D,, is jump preserving, so the structures of enumeration and w-enumeration degrees
have isomorphic automorphism groups: Aut(D, )= Aut(D,,).

IThe Selman Theorem states that A <¢ B <= (VX Cw)[B <c.e. X = A <c.e. X]
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The w-Turing reducibility <7, arises as a ‘“Turing’ analogue of <, and just like
the w-enumeration reducibility compares the informational content of the sequences
of sets of natural numbers. In this computational framework the informational
content of a sequence is uniquely determined by the set of the Turing degrees of
the sets that code the sequence. We say that a set codes a sequence iff uniformly
in k, it can compute the k-th element of the considered sequence in its k-th Turing
jump:

X Cwcodes {Agtrcw <= Ap <r X®) uniformly in k.

Having this, we shall say that the sequence A is w-Turing reducible to the sequence
B iff each set that codes B also codes A:

A<p, B < (VX Cw)[X codes B =X codes AJ.

This reducibility is introduced in [6], where its basic properties are explored.
The relation <7, is a preorder on the set of the sequences of sets of natural numbers
and in the standard way induces a degree structure — the upper semi-lattice Dr,
of the w-Turing degrees.

Again in [6] is defined a jump operation on sequences, which induces a cor-
responding jump operation in the degree structure. Namely the jump A’ of the
sequence A is defined in such a way that:

X codes A" <= (FY)[X =r V' & Y codes A].

How Dr,, can be seen as an extension of the structure Dr of the Turing
degrees? By the uniform properties of the Turing jump, it is well known that for
all A, X C w:

A<y X = AW <, x*) uniformly in k.

Thus, the informational content of the set A, described in the Turing universe by
the set of the degrees of the sets that decides A, is the same as the content of the
sequence {A®)} ., in the context of the w-Turing reducibility. This observation
allows us to define a very natural embedding of the Turing degrees into the w-
Turing:

degy(A) — deg,,  ({AM}rcw).

This embedding preserves the order, the least upper bound operation and even the
jump. In this way we may assume the Turing degrees as a proper substructure of
Dr . But there are much more strong connections between the both structures. In
[6] it is shown that Dy is definable in Dy, by a first-order formula in the language
of the structure order and the jump operation. Also it is proved that the group
Aut(Dr) of the automorphisms of the Turing degrees is isomorphic to a subgroup of
the automorphism group Aut(Dr,,) of Dr,, — namely to the subgroup Aut(D}yw)
of the jump preserving automorphisms of the w-Turing degrees.

The purpose of this paper is to show that in order to prove that the jump
operator is first-order definable in the w-Turing degrees it is sufficient to prove
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that the jump OTM’ of the least element is definable by a first-order formula in the
language of the structure order. We also show that the definability of O’ implies
the definability of D7 only in the language of the structure order.

2. PRELIMINARIES

2.1. BASIC NOTIONS

We shall denote the set of natural numbers by w. If not stated otherwise, a, b,
¢, ... shall stand for natural numbers, A, B, C,... for sets of natural numbers, a,
b, c,... for degrees and A, B, C, ... for sequences of sets of natural numbers. We
shall further follow the following convention: whenever a sequence is denoted by a
calligraphic Latin letter, then we shall use the Roman style of the same Latin letter,
indexed with a natural number, say k, to denote the k-th element of the sequence
(we always start counting from 0). Thus, if not stated otherwise, A = {Aj}r<w,
B = {Bi}r<w, C = {Ck }k<w, etc. We shall denote the set of all sequences (of length
w) of sets of natural numbers by S,,.

As usual A @ B shall stand for the set {2z |z € A}U{2z+ 1|z € B}. By A"
we shall denote the set A @ (w\ A).

We assume that the reader is familiar with the notion of Turing reducibility,
<r, and with the structure of the Turing degrees Dy (for a survey of basic results
on the Turing degree structure we refer the reader to [2, 3, 4].

The relation <7 is a preorder on the powerset 2% of the natural numbers and
induces a nontrivial equivalence relation =7. The equivalence classes under =7 are
called Tuirng degrees. The Tuirng degree which contains the set A is denoted by
degp(A). The set of all Turing degrees is denoted by Dp. The Tuirng reducibility
between sets induces a partial order <7 on D7 by

degr(A) <r degp(B) <— A <r B.

We denote by Dr the partially ordered set (Dr, <r). The least element of Dr
is the Turing degree O of (. Also, the degree of A® B is the least upper bound of
the degrees of A and B. Therefore Dr is an upper semi-lattice with least element.

The (Turing) jump A’ of A C w is defined as the halting problem for machines
with an oracle A,

A" = {e | the e-th Turing machine with oracle A halts on input e}.

The jump operation preserves the Turing reducibility, so we can define deg,(A) =
deg(A’). Since A < A’, then we have a <7 a’ for every Turing degree a. The
jump operator is uniform, i.e. there exists a recursive function j such that for every
sets A and B, if A <p B via the Turing operator with index e, then A’ < B’ via
the operator with index j(e).
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2.2. THE w-TURING DEGREES

The w-Turing reducibility and the corresponding degree structure Dr,, are
introduced by Sariev and Ganchev in [6]. An equivalent, but more approachable
definition in the terms of the uniform Turing reducibility is derived again in the
same paper. Here we shall present only on the latter definition. According to it,
the sequence A is w-Turing reducible to the sequence B, denoted by A <7, B, iff
for every n < w,

A, <7 P,(B) uniformly in n.

Here, for each X € S, P(X) is the so-called jump sequence of X and it is defined as
the sequence {Py(X)}r<w such that: Py(X) = Xy and for each k < w, Pr11(X) =
(Pe(X)) @ Xpps1.
Clearly <7, is a reflexive and transitive relation, and the relation =7, defined
by
A=rwB <= A<r,Band B<r, A

is an equivalence relation. The equivalence classes under this relation are called
w-Turing degrees. In particular the equivalence class deg, (A) ={B|A=r. B}
is called the w-Tuirng degree of A. The relation <7, defined by

a<r,b < JAcadBecb(Alr, B)

is a partial order on the set of all w-Turing degrees Dt ,. By Dr ., we shall denote
the structure (Dr,, <r.). The w-Turing degree 07, of the sequence 0, = {0} k<.
is the least element in Dr,,. Further, the w-Turing degree of the sequence A® B =
{Ak @ By} <. is the least upper bound a V b of the pair of degrees a = deg, (A)
and b = deg_ (B). Thus Dr,, is an upper semi-lattice with least element.

It is not difficult to notice that each sequence and its jump sequence belong to
the same w-Turing degree, i.e. for all 4 € S,

A=7, P(A). (2.1)

In this way, P(A) is an equivalent to A sequence, whose members are monotone
with respect to <7 and each its member decides the halting problems of the previous
members.

Given a set A C w, denote by A 1T w the sequence (A,0,0,...,0,...). The
definition of <7, and the uniformity of the jump operation imply that for all sets
of natural numbers A and B,

Atw<r, Btw < A<r B. (2.2)
The latter equivalence means that the mapping « : D7 — Dy, defined by
r(degp(X)) = deg, (X Tw),
is an embedding of Dy into Dr,,. Further, the so defined embedding & preserves

the order, the least element and the binary least upper bound operation.
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We shall refer to x as the natural embedding of the Turing degrees into the
w-Turing degrees. The range of x shall be denoted by D; and shall be called the
natural copy of the Turing degrees.

The following theorem makes the connection between the original definition of
the w-Turing reducibility and this one we took here.

Theorem 1 Let a € Dr,, be a w-Turing degree and C C D, be at most
countable set of w-Turing degrees. Let for each x € C, x £, a. Then there exists
f € Dy such that a <7, f and for each x € C, x ﬁT,w f.

A full proof? of this result can be found in the PhD thesis of the first author, [5].
From the above property easily follows that each w-Turing degree is uniquely
determined by the set of the degrees in Dy, which bound it,

a<r,b <= (VxeD.)b <r, kx) = a<r, kx), (2.3)

and hence, as one can see, D; is an automorphism base of Dr,.

2.3. THE JUMP OPERATOR

Following the lines of Sariev and Ganchev [6], the w-Turing jump A’ of A € S,
is defined as the sequence A" = (P;(A), Ay, Az, ..., Ag,...).

Note, that A" =71, {Pr+1(A)}k<w, because for each k, Py(A") = Pi1i(A).

The jump operator is strictly monotone, ie. A <, A" and A <7, B =
A" <rp, B'. This allows to define a jump operation on the w-Turing degrees by
setting

deg, (A) =deg, (A).

Clearly for all a,b € D7, a <, a and a<7, b=a' <r,Db"
Also the jump operation on w-Turing degrees agrees with the jump operation
on the Turing degrees, i.e. we have

k(x") = k(x)', for all x € Dr.

We shall denote by A(™ the n-the iteration of the jump operator on A. Let
us note that

A(H) = (Pn(A)a An+1a An+2, .. ) =Tw {Pn+k(A)}k<w- (2-4>

2here we present only a sketch of the proof: the idea is to use a similar result for the w-
enumeration degrees. First note that there is an embedding ¢ : D7 — D, of the Turing degrees
into the enumeration degrees such that a <1 b < 1(a) < ¢(b). Similarly, there is an embedding
tw : D7, — Dy of the w-Turing degrees into the w-enumeration degrees such that a <7, b <
tw(a) <w tw(b). And finally, there is an embedding ke : De — D, of the enumeration degrees
into the w-enumeration degrees such that a <. b < ke(a) <o ke(b). More precisely these
mappings are described, for example, in [6]. The property we use in the proof is that for each
a € Dr, wu(k(a)) = ke(t(a)). The last part of the proof is the counterpart result of Theorem 1
concerning the w-enumeration degrees. The main difference in it is that the degree f is not only
in ke[De], but additionally is in ke o ¢([D7]. The proof of this result can be found in [10].
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It is clear that if A € a, then A" € a(® | where a(™ denotes the n-th iteration of
the jump operation on the degree a.

In [6] it is proved that the range of the jump operator is exactly the upper
cone over the first jump Or,," of the least element. Again in the same paper, it
is shown even a stronger jump inversion property, which do not posses neither the
Turing degrees, nor the enumeration degrees. Namely, for each natural number n
if b is above a(™, then there is a least w-Turing degree x above a with x(") = b.
We shall denote this degree by I7(b). An explicit representative of I7(b) can be
given by setting

I'N(B) = (Ao, A1, ..., Ap_1,Bo, B1,..., By, ...), (2.5)

where each A € a and B € b are arbitrary.
In the case when a = 07, and n = 1, for the sake of simplicity, we shall use
the notation I instead of Ig . . Sariev and Ganchev [6] show that the operation I
is monotone,
Or. <rwx<roy=Ix)<r.,Iy).

3. THE TURING DEGREES GENERATE Dy,

Our goal in this section is to prove that the isomorphic copy D of the Turing
degrees under the natural embedding x generates D7, under the greatest lower
bound operation A. More specifically, we will prove that for every w-Turing degree
a there exist degrees g and f from D; such that a = g A f. We begin with the
simple observation that each w-Turing degree is bounded by a degree in D;.

Lemma 2 Let a € Dr,. Then there is a degree g € Dy such that a <p, g.

Proof. Recall that a <7, a’. Then by Theorem 1 applied for C = {a'}, there
is g € Dy, such that a <7, g, but a’ £r,, g. So g is a degree from Dy, which
bounds a. O

Lemma 3 Leta,g € Dy, and a <r, g. Then there is a degree f € Dy such
thata=gAf.

Proof. Leta <r, g. Consider theset C = {x € Dy, | x <1, g & x £, a}.
Clearly C is countable and, hence, by Theorem 1, there exists a degree f in D,
such that a <7, f and for every x € C, x fT,w f.

Finally, let b <7, g,f. Then b ¢ C and so b <7, a. Thusa=gAf. O

Combining the above lemmas, we have the following.

Theorem 4 LetacDry . Then there are degrees g,f €Dy such that a=gAf.
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As a corollary we also have that (the isomorphic copy of) the Turing degrees
form an automorphism base for the w-Turing degrees.

Note that for each degree a = g A f with g,f € Dy, the jump a’ can be
expressed as the greatest lower bound of two degrees g1 and f; from D;. The next
lemma shows that g’ and f’ are such a pair.

Lemma 5 Let a,g and f are w-Turing degrees such that a = g A f. Then
a’' =g/ Af.

Proof. Let a=gAf. Then a <r, g,f and by the monotonicity of the jump,
a ST,w gl7 f'.

Now let b is a lower bound of g’ and f’. Let b; = bV 0r,’. Then b <r,
by <7, g'.f and 07" <1, bi. Let ¢ = I(by). Since the jump inversion operation
is monotone, we have that ¢ = I(by) <7, I(g) <r., g and ¢ = I(by) <p,
I(f') <p, f. Buta=gAf, soc <p, a Thus b <p, by =c <p, a’ by the
monotonicity of the jump. O

4. A PROPERTY OF THE LEAST TURING DEGREE

The aim of this section is to provide a characterizing property of the least
Turing degree O, which shall help us later to find a definition of D; in the terms
of Or,’. We start by showing that Or is the only degree x in Dr, such that for
each Turing degree b, if x Vb > 0. then necessary b >7 0%.. In order to do so,
we first need the following notion of minimal complementation.

Definition 6 We shall say that the (Turing) degree d >r Op satisfies the
minimal complementation property (MCP) if for every degree Or <p a <p d there
exists a minimal degree m <t d such that aVm = d (and therefore aAm = Or):

MCP(d) = (Va < d)[a # 07 — (3m)[m is minimal & aV m = d]].

In [1] Lewis proves that every degree d >p 0/ satisfies the minimal comple-
mentation property.

From here, one can easily derive that if x is a nonzero Turing degree, then
there is a degree y such that x Vy >p 0/, but y is not above 07.. Indeed, let
x € Dy be a nonzero. Then x’ >p 07, and hence MCP(x’). Since Oy <7 x < X’
we have a minimal degree y <p x’ such that x Vy = x’. But y is not above 0,
because it is minimal. Thus 07 £ y.

Note also, that the formula: ¢(x) = (Vy)[xVy >1 0 — y >7 0] is satisfied
by the Turing degree 07 of the recursive sets. Thus, we have proven the following
proposition.

Lemma 7 The least element Op is the only Turing degree x such that

(Vy)xVy >p 07 =y >7 07].
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As an end of this section we move to the structure of the w-Turing degrees,
where we shall investigate the degrees defined by the formula ¢. Namely, we shall
describe all the w-Turing degrees x such that

(Vy)[x vy ZT,UJ OT7w/ -y ZT,w OT,w/]-

First let us consider a sequence X = {X}, }r<,, such that Dy, = w(degTW (X)).
In other words, X is such that for each sequence Y = {Yj }r<w if 0. <rw XOY
then 0, <rw Y. Noting that for each sequence A = {Ax}r<w, 0., <re Ais
equivalent to () <7 Ag, and then using Lemma 7, we conclude that Xy = 0.

Now, let X = { Xk }r<o be such that Xg =r 0 and the sequence Y = {Y% }r<w
be such that 0’ <rw X @Y. Then we have that (' <p Xo @Yy =r Yo, and hence
(Z)w/ ST,w y

Thus, the degrees in Dr,, which satisfy the formula ¢, are exactly these that
contain a sequences whose zeroth element is the empty set. Further we shall denote
the set of all these degrees by D1,

D; = {x €Dy, | (H{Ar}hew €x)[ Ao =01}

5. DEFINABILITY IN THE w-TURING DEGREES

In [6] Sariev and Ganchev show the first-order definability of the natural copy
D; of the Turing degrees in Dy, in the terms of the structure order and the jump
operation. In this section we shall improve this result by showing that only in the
language of structure order and using Or,,’ as a parameter, we can define Dy in
Dr,,. As a consequence, we derive that the definability of O7," implies this one of
the whole jump operator.

Theorem 8 The following are equivalent:

1. the jump operator is first-order definable in Dr,;

/

2. the jump 07" of the least element is first-order definable in Dr ,;

3. the isomorphic copy D1 of the Turing degrees is first-order definable in Dr,,

Proof. (1) = (2): obvious;

(2) = (3): Note that the first-order definability of Op " implies the first-order
definability of the set ﬁ, defined in the previous section. But using the set ﬁ a
simple definition of Dy can be derived. Indeed, for each a € Dp,, denote by u(a)
the least (w-Turing) degree x, for which exists degree y € D; such that x Vy = a.
It is not difficult to see that the operation p is correctly defined. Moreover, for
each a, if {Ag}r<w € a then u(a) contains the sequence (A, 0,...,0,...). In order
to prove this, first note that

(Aan)a i) .,@, e ) @(07"4171427 ce 7An7 O ) =Tw {Ak}k<w-
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Thus the degree of (Ao, D, ...,0,...)is such that there is a degree in D; which cups it
to a. Suppose now that x and y € D; are such that xVy = a. Let us fix sequences
{Xi}kcw € x and {Yitk<w € y with Yo = 0. Then {Xi}r<w ®{Yi}bcw =10
{Ag}k<w. In particular, Xog ® Yy =1 Xo =r Ap. Therefore,

(AOa (Z)a ) (Z)a .. ) ST,w (XOa (2)7 ey (2)7 .. ) §T7w {Xk}k<w-

Hence, the range of p is exactly the copy D; of the Turing degrees under the
embedding &:
D, = {u(a) |a€Dru}.

Thus the Turing degrees are first-order definable in the structure Dr, of the
w-Turing degrees.

(3) = (1): By Theorem 4 and Lemma 5, for each w-Turing degree a there are
w-Turing degrees g, f € D1, such that

a=gAf and a' =g Af, (5.1)

and if there is another pair of degrees, whose greatest lower bound exists and is
equal to a, then the greatest lower bound of their jumps also exists and is equal
exactly to a’.

As we stated in the preliminaries, Dy is closed under the jump and the w-
Turing jump agrees with the Turing jump. Also, by Shore and Slaman [7], the
jump operator is definable in the structure D of the Turing degrees. Hence the
restriction of the w-Turing jump operator over D, is definable in the structure
(D1, <7, V). Thus, by (5.1), we conclude that the definability of Dy implies this
of the jump. O

The definability of 07, alas, still remains an open question.

Question 9 Is the jump Or,’ of the least element first-order definable in
Dr,?

One of the main consequences of the definability of the jump operator will be
that each automorphism of Dr, is jump preserving?, i.e. Aut(Dr ,)=Aut(Dr,).
This combined with the previously mentioned result by Sariev and Ganchev [6]
stating the isomorphicity of the groups of the automorphism of the Turing degrees
and of the jump preserving automorphism of the w-Turing degrees, implies that
the groups Aut(Dr) and Aut(Dr,,) are isomorphic.

3a mapping 7 : Dz, — D, is said to be jump preserving, if for each degree a € Dr,,
w(a') = w(a)’.
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STRONG CONVERSE INEQUALITIES
FOR THE WEIGHTED MULTIVARIATE
BERNSTEIN-DURRMEYER OPERATOR

ON THE SIMPLEX VIA MULTIPLIERS

BORISLAV R. DRAGANOV

It is demonstrated that multiplier methods naturally yield better constants in strong
converse inequalities for the Bernstein-Durrmeyer operator. The absolute constants
obtained in some of the inequalities are independent of the weight and the dimension.
The estimates are stated in terms of the K-functional that is naturally associated to
the operator.

Keywords: Bernstein-Durrmeyer operator, strong converse inequality, K-functional,
orthogonal expansion, multipliers
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1. A CHARACTERIZATION OF THE RATE OF APPROXIMATION OF THE
BERNSTEIN-DURRMEYER OPERATOR

For z = (x1,...,74) € R? we set |z| := Zle |z;]. Let S be the standard
simplex in R? given by

S:={(x1,...,xq) ERY:2; >0, i=1,...,d, |z| <1}.
The Jacobi weights on S are defined by

Wo(x) =2 - af? (1 — |z))*, oy >—1,i=1,...,d+ 1. (1.1)
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We have set o := (a1, ...,aq44+1). Forp € [1,00) and a Jacobi weight w,, we consider
the space Ly ., (S) of Lebesgue measurable functions f defined on S such that

MMWF(memmmmfm<m

Let, as usual, L (S) denote the space of the essentially bounded Lebesgue mea-
surable functions on S, equipped with the sup-norm on S. For brevity we set
Leoo,w, (S) = Loo(S) and || f|loc,w, := esssup,eg|f(x)|.

We proceed to the definition of the multivariate Bernstein-Durrmeyer operators
with Jacobi weights given by Ditzian [13]. For n € Ny and k = (ky,...,kq) € N¢
with |k| < n we define the polynomials

d
o n! k; n—|k|
pole) = i @

The Jacobi-weighted Bernstein-Durrmeyer operators on L, ., (S) are defined by

—1
Myaf@) = X s ([ st an) [ 16 puacoratn an

[k|<n.

These operators in the univariate case and with no weight, i.e. w, = 1, were
introduced independently by Durrmeyer [16] and Lupag [19]; their multivariate
generalization was given by Derriennic [11]; and their univariate weighted form was
considered by Berens and Xu [2, 3]. These operators were extensively studied by
many authors and it is very difficult to summarize all the results. That is why we
shall restrict our attention only to those which are directly and most closely related
to the subject of the present paper. In the next section we shall recall several of
their basic properties. They were proved by Ditzian [13] in the general case, and
earlier by Derriennic [11] and Berens and Xu [2, 3] respectively in the multivariate
unweighted case and the univariate weighted case.
Ditzian [13] introduced the K-functional

Ka(fat)p = geggf(s){Hf _.‘JHp,wa +t||Pa(D)g

|p7wo¢}

in order to characterize the rate of approximation of the Bernstein-Durrmeyer op-
erator in Ly, (S). Here P, (D) is the differential operator that is naturally asso-
ciated to the multivariate Bernstein-Durrmeyer operators with the weight w,. It
is defined by
10 = 0
Po(D) 1= ) wala) ™" o7 (&, 2)wal(z) o7,
0¢ 0¢
§€Es
where Fg is the set of the directions parallel to the edges of S and d(@x) is the
distance introduced by Ditzian [12]
d(&,2) = sup d(z,x+AE) sup d(z,x — \E),
A>0

> A>0
TH+AEES r—AEES

56 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 55-73.



as d(z,y) is the Euclidean distance.
Ditzian [13] proved that there exist positive constants ¢; and ¢y such that for
all f € L,(wy)(S) and all n € N there holds

caKo(f, n_l)p < ||Mn,af - f”p,wa < CQKa(fan_l)p- (1.2)

The direct estimate, i.e. the right-hand side inequality, was established with
¢y = 2 independently by Chen and Ditzian [6] (see also [7, p. 38]) and by Berens,
Schmid and Xu [1, Theorem 2] in the unweighted case, and by Berens and Xu
[2, Theorem 3] in the univariate weighted case. A closer look at the proof of [13,
Theorem 3.3] shows that we can take co independent of the dimension d and the
weight w,. Actually, a slight modification of this argument shows that the direct
estimate holds with c; = 2 in the general case. More precisely, we have

”Mnaf - f”p,wa < 2Ka(f,n71)p~ (1.3)

For the sake of completeness we give its proof in Section 3.

As for the converse estimate, that is, the left inequality in (1.2), Chen, Ditzian
and Ivanov [7, Theorems 6.1 and 6.3] established it in the unweighted case for all
dif 1 <p< oo and for d < 3 if p= 1,00 (a little bit weaker result was verified in
the larger dimensions). Then Knoop and Zhou [18, Theorem 3.1] proved it for all d
and 1 < p < oo in the unweighted case. Both proofs give constants c¢; that decrease
to 0 when d increases. Heilmann and M. Wagner [17, Theorem 1] improved c¢;
for d < 3. Ditzian’s proof of the general weighted case also yields a constant c;
that decreases to 0 when d or max; || increase. All these treatments are based
on the quite general and efficient method developed by Ditzian and Ivanov [14]. It
enables us to derive converse inequalities like the one on the left-hand side of (1.2)
by means of Voronovskaya and Bernstein-type inequalities. These inequalities are
important in themselves but their consecutive application leads to decreasing c;.

The main purpose of this paper is to demonstrate that by means of the mul-
tiplier theory we can derive strong converse inequalities with better absolute con-
stants than the methods previously used. Moreover, the arguments are very short.
The first result we state contains a strong converse inequality of a form that is a
combination of types B and C (according to the terminology introduced in [14]).
Quite similar results were previously established by Berens and Xu [2, Theorem 3]
(see also [2, Theorem 2]).

Set p:=d+ Zfill 0.

Theorem 1.1. Letd € N, 1 < p < 0o and w, be given by (1.1) with a; > —1,
i=1,...,d4+ 1. Then for all f € L,(wy)(S) and all n € N there hold

2
Ka(f7n71)p S <4 + ’I’f)) (HMn,af - f”p,wa + ||M27L,Oéf - f |P7wa)

2n
4
+— D IMiaf = flpw.:

k=n-+1
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Remark 1.2. Let us explicitly note that the constant on the right-hand side
above is asymptotically independent of any parameters unlike the strong converse
inequalities obtained in [7], [13], [18]. More precisely, if n > |p|, then

Ka(fan_l)p < 6(||Mn7af - f”p,wa + ||M2n,ocf - f||p7w<x>

2n
4
£ Miaf = o
k=n+1

However, the inequalities established in [7, 13, 18] are of a stronger type than the
one above.

Let us mention that the K-functional K, (f,t), was characterized by a simpler
one in [8] for 1 < p < oo (see also the references cited there).

It seems quite plausible that the strong converse inequality in (1.2) also holds
with ¢;, which is independent of p, d and w,. We were not able to show that.
However, a short multiplier argument yields a strong converse inequality of that
type in a special case. It is based on a result due to H. Pollard. Let d = 1 and
w, = 1. Let S,f be the n-th partial sum of the Fourier-Legendre series of f.
Pollard [20] proved that if 4/3 < p < 4, then the operators S, : L,[0, 1] — L,[0, 1]
are uniformly bounded on n, that is, there exists a constant ¢ > 1 such that

1Snfllp <<lfllp,  f € Lpl0,1], n € N.

Here || o ||, denotes the standard L,-norm on the interval [0,1]. We will omit
the subscript « in the notation of the K-functional and the Bernstein-Durrmeyer
operator when w, = 1.

We will establish the following result.

Proposition 1.3. Let 4/3 < p < 4. Then for all f € L[0,1] and alln € N
there holds
K(fin™")p < (1+29) [Monf — fllp-

The contents of the paper are organized as follows. In the next section we col-
lect the basic properties of Bernstein-Durrmeyer operator that we will use. Section
3 contains the proofs of the theorems and the proposition stated above. In the last
section we discuss how the same multiplier method can be applied in the general
case of weights w,, with «; > —1/2 for all 4. This proof is not shorter than the ones
previously used; but it has the advantage of using elementary calculus and being
invariant in its technical part on the dimension—it depends only on that how large

p is.
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2. BASIC PROPERTIES OF THE BERNSTEIN-DURRMEYER OPERATOR

Here we shall recall the properties of the Jacobi-weighted Bernstein-Durrmeyer
operator that we need (see [13]).
First of all, it is a contraction on the space Ly 4, (5), that is,

1M, afllpwa < I fllpwa- (2.1)

M, o is a self-adjoint linear operator w.r.t. the inner product

(fs Pwa :Z/Sf(:r)g(ﬂc)wa(x) dz.

Its eigenvalues are

n! (n+p+1)
(mn—O!'T(n+l+p+1)

Hno 1= £=0,...,n, (2.2)

where I' denotes the gamma function and, to recall, we have set p :=d + Zf;rll ;.
For each ¢, to pu, ¢ corresponds the same eigenspace for all n. We denote it by V.
For £ > 1 the space V; consists of those algebraic polynomials of x1, ..., z4 and total
degree { that are orthogonal w.r.t. the above inner product to the polynomials of
degree /—1. The eigenspace Vj, corresponding to ji,, 0 = 1, consists of all constants.
Now, if we denote the projections on V; by P, then M, , can be represented in
the form

Mo = pniPe (2.3)
£=0

The operator P, (D) is also self-adjoint and its eigenspaces coincide with those
of My, «. More precisely, there holds
P,(D)P=—L{l+p)P, PeV, £eNy. (2.4)
Finally, let us recall that M,, , and P, (D) commute on C?(S):

My, Po(D)f = Po(D)Myof, f€C*(S). (2.5)

3. PROOFS OF THE MAIN RESULTS

First, we will prove the direct estimate stated in (1.3) for the sake of complete-
ness of the exposition.

Proof of (1.3). Z. Ditzian’s proof of the direct estimate in (1.2), is based on
the elegant formula (see [13, (3.3)])

> 1

Mn,af—f: Z m

l=n-+1

P,(D)M; o f, (3.1)
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valid for all f € Ly, (S). Using that M, o is a contraction (see (2.1)), we get

||M"l70¢f - f“p,wa S 2 ||f -9 PWq (32)

for any g € C?(S). Next, we apply (2.1), (2.5) and (3.1) to estimate the second
term on the right. Thus we get

|;D7wa + ”Mn,ag -9

> 1
My od—9llpw. < —— _||P(D w. - 3.3
[Mn.a9 = 9llpw. ez% W+ p) | Pa(D)gll p,we (3.3)

It is quite straightforward, to see that
= 1 1
Z o/ s
l=n+1 ( + p) "

Now, substituting (3.3) in (3.2) and taking an infimum on g € C?(S), we arrive at

||Mn70¢f - .f”p,wa < 2Ka(f,n71)p,

Thus the first inequality in (1.3) is verified; the second one is trivial. (|

Proof of Theorem 1.1. The proof is a modification of a very short argument
due to Berens and Xu (see [2, Theorem 3]). Set

2n 2n
1 M, 1
I k/jaf’ = D R )
n o S Rkt p) Wy k(k+p)

Clearly, g, € C%(S) for all n € N and then

Ka(fa n_l)P S ||f —9n

1
pawa T n ”Pa(D)gn”p,wa' (3.4)

We estimate the first term on the right above by means of

2n

1 Mk af
If = gnllpw. = Hf_ . DAY
b Sia REFR) |
2n
tn [y (k+p)
2n
4
< E Z ||Mk,af - f| P, Wa
k=n-+1

In order to estimate the second term on the right in (3.4), we apply (2.3) and (2.4)
to get the representation
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Next, we take into account the remarkable property of the multipliers ji, ¢

L+ p)
Mk — HEk—1,6 = m Hk.e
to arrive at the formula
1 2n
Pa(D)gn = T Z (Mkfl,af - Mk,af)
tn k=n-+1

|~

= (Mn,af - MZn,af)'

~
3

Consequently,

1 2p
IPaDlanll, < (142 ) (oaf = Sl + [Manaf ~ Flp). - (36)

Combining (3.4)-(3.6), we complete the proof of the theorem. O

Let us proceed to the proof of the converse inequality in Proposition 1.3. The
method we use is quite straightforward. It is based entirely on standard techniques
in the multiplier theory and orthogonal series expansions. We will present it in the
general case of the multivariate Bernstein-Durrmeyer operator on the simplex. The
method is based on constructing a family of uniformly bounded operators Q,, such
that

(D)Mo f = Qu(Myaf ~ f)

with some fixed m € N. Then the strong one-term converse inequality in (1.2)
easily follows from

_ m 1 m
Ku(f,n l)p < HMnaf - f”p,wa + n ||P04(D)Mn,o¢f||l7»wa

= H(Mlﬁ?l + MrT;2 +oeee I)(Mn,af - f)”p’wa + ”Qn(Mn,af - f)”p,wa
< (m+q)[[Mnof = flpwa:

where I denotes the identity and ¢ > 0 is such that ||Q, F||p w, < ¢||F|/pw, for all
FeLyy,(S) and n € N.

That approach to converse inequalities has been applied before (see e.g. [14,
(2.13)], and also cf. [p. 32][2]). The proof of the direct inequality, we recalled above,
was realized in a similar way (see (3.1)). There is a general comparison principle
that underlies this technique. It was formulated independently, in two different
settings, by Shapiro [21] (see also [22, Section 9.4]) and Trigub [24, §4] and [25, § 4]
(see also [27, Chapter 7] and [26, p. 4]. The author tried to present systematically
that method of verifying direct and converse estimates in terms of K-functionals
in [15] (see also the references cited there).

The earlier proofs of the converse inequality of the type given in (1.2) for the
Bernstein-Durrmeyer operator also employed orthogonal expansions, but in a lesser
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degree and within the framework in [14]. Berens and Xu [2] also extensively used
multiplier techniques (see also [2, Theorem 2]).

Proof of Proposition 1.53. Let us begin with several observations valid in the
general multivariate weighted case. They will be useful for our discussion in the
next section.

We first note that (2.3) and (2.4) yield

n

Po(D)Myof ==Y €L+ p)incPef.
{=1

We introduce the linear operator on Ly ., (5)

Qnf = Z Vn,ZPZfa

=1
where
by (D) e (3.7)
' n(1 = fin,e)
Note that g <1 for £=1,2,...,n. With that operator we have

% Pa(D)Mn,af = Qn(Mn,af o f)

Thus to establish a one-term strong converse inequality, it is enough to show that

1@nfllpwe < cllfllpwe

for all f € Ly, (S) and n € N.

After this general remark, we proceed to the proof of the proposition. Now,
Sn f coincide with the nth partial sum of the orthogonal expansion of f on Py, that
is,

Suf =Y Pif.
£=0
We use the representation
n—1
Qnf = (Ve — Vni41)Sef + VnnSnf = Vn1Sof-
=1

In Lemma 3.4 below we will show that v, ¢ — vy, ¢41 > 0 for all £. Then, taking also
into account that the v’s are positive and v, ; = 1, we deduce the estimate

[p.wa

n—1
1Qn fllpwa <6 (Z(an ~ Vne+1) + Vnn + Vn,l) IIf

=1
<261 | fllpwa = 25 | fllp,was
hence the assertion of the proposition follows. O
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Lemma 3.4. Let p > —1. For v, defined in (3.7) there holds
Uno > Vngt1, £=1,...,n—1, n=2.3,.... (3.8)
Proof. Relation (3.8) is equivalent to

1- Hn e < 1- Hn,e+1
LlAp) pine — AL+ p+1) pnpgr’

which can be written in the form

1 1 1 1

AP pme W+p) ~ EFDUHp+ Dmens C+ D +p+1)

We group the terms with p’s on the left-hand side and those without on the right-
hand side, and substitute the value of the u’s given in (2.2). After straightforward
calculations, using that p > —1 and

F'n+l+p+2)=n+L+p+1)I'(n+L+p+1), (3.9)
which follows from I'(z + 1) = 2I'(z), z > 0, we deduce that (3.8) is equivalent to
m—0—DITn+L+p+)n—LU+p+1)]<nT(n+p+1)

for{=1,...,n—1, n=2,3,.... To verify this inequality, we shall show that the
quantity on the left-hand side is decreasing on ¢ and it is valid for £ = 1. The latter
is a matter of a direct check—it reduces to (p+1)(p+2) > 0. To verify the former,
we set

npg=n—AL—-—DIT(n+L+p+1)[n—LL+p+1)].

To see that
ot >bnugr, £=12,...n—2 n=34,. .., (3.10)

we again apply (3.9) to deduce that (3.10) is equivalent to
n—L—=1Dn—LUl+p+1)]>n+Ll+p+1)[n—(L+1)+p+2)].
Now, direct computations yield

m=—Cl—=1n—Ll+p+1)]—(n+Ll+p+1)n—L+1)l+p+2)]
=+l +p+1)20+p+2)>0,

which verifes (3.10) and completes the proof of the lemma. O
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4. AN EXTENSION

In this section we will demonstrate that the multiplier method can be used to
verify the one-term converse inequality in (1.2) in a more general situation than
the one considered in Proposition 1.3.

To this end, we represent (J,, as a linear combination of the Cesaro means of

the partial sums of the orthogonal expansion of f on Py (see [4, Theorem 3.2]). We

set
n

~ 1

where
k
Skf = Z P£f~
=0
Then we have
n—2 ~
Qnf =D (+1)(Wnes2 = 2001 + Vn0)Sef
=1

+ (U1 — 20n)Sn-1f + (4 DpnSnf + (Vn2 — 20n1)Sof. (4.1)

As usually, if the range of summation is empty, we set the sum to be equal to zero.

Dai and Xu [9, Theorem 2.8 with 6 = 1] (or see [10, Theorem 13.4.4], as we
also apply the Riesz-Thorin interpolation theorem) showed that if 1 < p < oo,
a; > —=1/2,i=0,...,d+ 1, and p — min; o; < 3/2, then the Cesaro means are
uniformly bounded on n, i.e. there exists a constant x such that

1S f

lpwa < Elfllpwas [ € Lp(wa)(S), n€N. (4.2)

Lemma 3.4 yields vy 2 < vy 1 = 1. Then we have by (4.1) and (4.2)

n—2
HanHp,wa < KJ(ZM + 1)|Vn,€+2 — 2Up p41 + Vn,é|
=1

+@n+ vy pno1 + 3) [ 1lp 2w

We will prove that

n—2

ST+ D) V2 — 201 + vnel S c
=1

and

NVpn-1 <c
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Above and henceforward, ¢ denotes a positive constant, not necessarily the same
at each occurrence, whose value is independent of n.
Thus we will have shown that if 1 <p <oo, a; > —1/2,i=1,...,d+ 1, and

d+1 3

d+ g a; — min o < =,
— 1<i<d+1 2
1=

then for all f € L,(w,)(S) and all n € N there holds
Koe(fvnil)p <c ”Mn,af - f

In order to treat the general case, we can still apply the same method but use
Cesaro means of higher order (see [5, Theorem 7.1] or [23, Theorem 3.3]). Their
uniform boundedness was established by Dai and Xu [9] (or see [10, Theorems
13.2.7 and 13.4.6]).

We proceed to establishing the auxiliary results.

We set for 7 € (0,n]

Tn+1DI'(n+p+1) (r) = (7 + p) pn(7)
Fn—7+D(n+7+p+1)" ™77 n(l—pu(r)
We will make use of the following formula of the derivative of the gamma function
I'(z) = T(2)(2),

where ¥(z) is the digamma function, defined as the logarithmic derivative of the
gamma function

|p7wo¢ .

pn(T) =

.
We have
11 (1) = =i (1) C (7), (4.3)
where

Co(t):=t¢(n+74+p+1)—tp(n—74+1).
We will use the following estimates.

Lemma 4.5. Let p > 0. Then:

G < TEL e (om): (14)
21 +p )
Cy(r) > Mn—r+1) 7€ (0,(n—p)/3), n>p; (4.5)
/ 2n+p .
C(r) < sy r— 7€ (0,n); (4.6)
! (r) > ntpt? e (0,n); (4.7)

m+7+p+1)(n—7+1)
, 202r +p—1)2n+p+1)
>
Culr) 2 n+7+p)2n—7+1)2"

7€ (0,n). (4.8)
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Proof. As is known,

1 > T

where v is Euler’s constant. Therefore

1

Cn (2 4.10
(7) T+p}; n—1t+k)(n+1t+p+k) (4.10)
Interpreting the sum above as a Darboux sum, we arrive at the estimates
2 2
log <1+T+p) < Cy(7) Slog( + T+p) (4.11)
n—1+1 T

To complete the proof of the first two estimates, it remains to take into account
the inequalities

log(l+2) <z, x€R,
2
log(l+a) 22— >3, xeo,1),

[\

In order to estimate the derivatives of C,,, we use that for m > 1 we have

oo

() (z) = (=1)"'m kz o k g ©> 0
Therefore
1 1
Lew < 1o (4.12)
o _2 e < W (x) < —%; (4.13)
(4.14)
for > 1. These inequalities directly yield (4.6)-(4.8). O

Lemma 4.6. Let p > 0,5 >0 and 0 < 6 < 1. Let also n € N be such that
n>3andl <vbn<n-—1. Then

HQVn,g <e¢, m<l<n, (4.15)

Tyt <e, Te[lLn-1], (4.16)
and

Pll(r) <e 7e1,Vom], (4.17)

where the constant ¢ is independent of n.
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Proof. First, we estimate from below the difference 1 — p, ¢.
By means of the property I'(z + 1) = 2I'(2), z > 0, we represent p, ¢ in the
form
nn—1)---(n—04+1)
n+p+1)(n+p+2)---(n+p+4)

Hn,e =
Consequently,

n+p+D)(n+p+2)--(n+p+£) —nt
n+p+L)(n+p+2)---(n+p+¥)

We expand the numerator, take into account that p > 0, and use the well-known

formulas for sums of powers of consecutive positive integers, to arrive at the estimate

1 — Mnye >

m+p+D)n+p+2)---(n4p+€) —n">c(Pn1 4 5n3).
Hence we get the inequalities
6627”/71

n+p+l)(n+p+2)---(n+p+¥

1= fing > ( (4.18)

and

c€6n£—3

n+p+l)(n+p+2)---(n+p+¥)

1- Hn,e > ( (419)

for 3 </ <n.
Inequality (4.15) for £ > 3 follows directly from (4.19) and ¢ > dn:

n€+2

nan’z S CW S C.

For ¢ = 1,2 (4.15) is trivial.
We proceed to the second assertion of the lemma. Making use of (4.3), we

arrive at )
(o) = TR T ) () Calr) w0
(1 = pin (7)) (1 — pin (7))

The function p,(7) is monotone decreasing on 7 for each fixed n. For the rest
of the proof let £ € {1,...,n — 2} be such that £ <7 < ¢+ 1. Then

pn(T) < pin,e, (4.21)
1—pin(7) > 1 — pine. (4.22)
These two inequalities, the property I'(z + 1) = 2I'(z), z > 0, and (4.18) imply the
following estimate of the first term on the right in (4.20)
0< TET P ua(r)  (E+1)(20+p+2) e
T on(l—pa(r)) T n(1 = pin.e)
<. L+1D)20+p+2) n! (4.23)
- 22 nt(n —0)!
<e TE[lL,n-1].

TV,
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To estimate the second term we argue in a similar way, as we also use (4.4).
We have

7T 4 p) (1) nC(7) _ (41D (L4p+ 1)(20+p+2)
(n(l = pa(m)))* 7 ¢
nlin+p+1)---(n+p+¥)
n2-1(n—0)l(n—0-1)

<c _1)_._<1_£—2>(1+p+1>.“<1+p+€>
n n n n
-2 . .
<e[I(1-1)(1+2).
i=1 " "

As usually, we set an empty product to be equal to 1.
Next, we take into account that

. . .2 .
(1—2)(1+Z+p>=1—12+p<1—z>§1+p (4.24)
n n n n n n

and the inequality (1 + p/n)™ < e” to deduce
73(7 + p) (1) Cn(7) <e
n(l—pa(r))?  — 7

Relations (4.20), (4.23) and (4.25) imply the second inequality in the lemma.
In order two prove the last assertion of the lemma, we use the representation

0<

rel,n—1] (4.25)

V(1) = 240 (7) _ 2(27 + p) pn (1) C(7)
(1l = pin (7)) n(l = pn(7))?
T+ pa(T) CL(r) | T(T+ p) A+ (7)) pn(7) Cn(7)?

O 71— in (7)) - 420

Just similarly to (4.23) and (4.25), we establish

72 i (1) c
S STt <© (4.27)
0< 7—2(27- + p)in (T)NCr (7) (4.28)

T (A=) T
for 7 € [1,n —1].
Again, similarly to the proof of (4.25), but this time using (4.6), we get
P74+ ) (1) Calr) (D4 p )
n(l—pn(7))? 7 a
" Cn+p)nl(n+p+1)---(n+p+£—-1)
n2=1(n —O)l(n—£0-1)

2 i i+p
< 1—— 1 <ec.
<c[I(1-5) (1+557) =
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Consequently,

T+ p) p(T) CL(T)
n(l—pa()* 77

In order to estimate the last term in the representation of v}/ we use (4.4) and
tn.e < 1 to deduce

0<

reln—1]. (4.29)

T (T 4 p) A+ (7)) pin(7) Cn(1)? - (E+ 1)+ p+1)(20+ p+2)°
2T — pon (7)) : s
nn+p+1)2--(n+p+L)?
n3=2(n — ) (n—£—1)2

3 i i+p 2
< 1—— 1 .
<eII(1-5) (1+5)

It remains to observe that, by virtue of (4.24) and the inequality (1 + p/n)™ < e”,
we have

(-3 . . 2 n4l/n

l
Il(l—z)<1+z+p) §c[<1++p>} <cet’/m <.
Pt n n n

Lemma 4.7. Let p > 0. There holds

lVng —Vnot1) <c, €=1,...,n—1,
where the constant ¢ is independent of n.

Proof. The inequality follows readily from (4.15) for £ =n — 1. Let £ <n — 2.
Then, by virtue of (4.16), we have

{+1
E(Vn,é - Vn,@-l—l) = _E/ V’:L(T) dr
V4

< sup |y, (7)] <e
1<r<n—-1

Lemma 4.8. Let p > 0. There holds

n—2

Z(f + 1)|Vn,2+2 - 2Vn,€+1 + Vn,[| < c,
(=1

where the constant ¢ is independent of n.
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Proof. Clearly, it is sufficient to verify the lemma for large n. Its assertion for
n < ng, where ng € N is fixed, is trivial.
We split the sum into four parts:

1</l <+van -2,
\/an—2<€§\/%,
ﬂ%<é§g,

%<£§n—2,

where 0 < a < b will be fixed in appropriate way to be indicated in the course of
the proof. We denote these parts with ¥;, i = 1,...,4, respectively.
As is known

042
Un,t42 — 2Upn 041 + Un o = M(r -0V (r)dr, £=1,...,n—2,

n

where

By virtue of (4.17), we have

E2 = Z (E + 1)‘Vn,f+2 - 2Vn,l+1 + Vn,f|
Van—2<£<+/bn

Von+2
§c/ Tl (1) dr < c.
Jan—2

Let m,, be the integer part of n/4. We apply (4.15) to get

¥y = Z (04 D)|vner2 — 2Up 041 + Vnye| < cn21/n7mn <ec.
n/4<<n—2

We proceed to estimating 3. Let vbn < 7 < n/4 4+ 2. Let n be so large that
we have n/4+2 < (n — p)/3. We will show that if b is fixed large enough, then
v)'(1) > 0 for all large n. Hence vy, o142 — 20y 041 + Ve > 0 if Vin < £ < n/4—2.
Let 4,, be the smallest integer greater than v/bn. Then, by virtue also of Lemmas
3.4 and 4.7, we deduce that

Ssi= > (L D)|nir2 — Wi + Vol
Von<t<n/4

=ln(Vn e, — Vnyt+1) + Vnye, — (M + 1)Vn,mn + MpVn,m,+1
<ec.
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Thus, to complete the proof of the estimate of 33 it remains to show that
Ungt2 — 2Un 41 + Vne > 0 if vbn < £ < n/4 — 2 for all n large enough an
appropriately fixed b. By (4.26) we have

1" - Nn(T) -
Vn(T) - n(l _ Mn(T))?)N( )7

where we have set

N(r) = 2(1 = pa(7))? = 2027 + p)Cr(7)(1 = pan(7))
= 7(7+ p)CL(T) (L = (7)) + 7(7 + p)CH(T) (L + (7).

By virtue of Lemma 4.5, we arrive at the estimate

2271+ p)?  T(r+p)(2n+p)  T(T+p) (2T +p)?
N(T)>M”(T)< n—r (n+74+p)(n—7) 4n—7+1)2 )
_20@r4p)?  T(rtp)@ntp) | 7T+ )27+ p)
n—rt (n+7+p)(n—7) An—7+1)2

(4.30)

In order to show that N(7) > 0 it is enough to prove that the quantity on the
right-hand side of the last relation is positive. Using that n — 74+ 1 <n+ 7+ p,
we see that this follows from

1in (T)[8(274p)? (n+74p)* +47(7+p) (2n+p) (n+7+p) +7(T+p) (27 +p)* (n—7)]
> 8274+ p)2(n+7+p)? +47(T+p)2n+p)(n+T+p) —T(T+p) 2T+ p)*(n—T).

To complete the proof it remains to observe that if b is fixed large enough, then the
quantity on the right-hand side of the inequality above is negative for large n. To
see this, we observe that the sum of the terms in the polynomial on the variables
7 and n on the right-hand side that determine its sign for large 7 and n is

400272 4 72073 — 8pnt> — dntt + 470,
Since
400272 4 72073 — 8pnt® — dntt + 47° < 472(10n? + 18nT — 7 4 7°),
to complete the proof it is sufficient to show that
10n2 + 18n1 —nr? + 72 < 0

if vbn < 7 < n/4 with an appropriately fixed b. But this readily becomes clear
from the estimate

9 1
10n2 + 18n7 — nt? + 73 < 10n2 + 5712 —n7? + Snpr?

4
< §n2 - 3—bn2.
2 4
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To estimate 31 we use similar but more lengthy considerations than those for
33. They are based on the inequalities stated in Lemma 4.5 as we have to use
instead of (4.5) its refinement that follows from log(1 + x) > x — 22/2. This time
we show that there exists a € (0,1) such that N'(7) < 0 at least for large n if
1 <7 < /an; hence N(7) < N(1) < 0. Consequently, vy, p12 — 20y o411 + Vpe < 0
if 1 <{¢<./an—2 and n is large. O
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WEIGHTED APPROXIMATION
BY KANTOROVICH TYPE MODIFICATION
OF MEYER-KONIG AND ZELLER OPERATOR

IVAN GADJEV, PARVAN PARVANOV, RUMEN ULUCHEV

We investigate the weighted approximation of functions in Lp-norm by Kantorovich
modifications of the classical Meyer-Konig and Zeller operator, with weights of type
(1—2)%, a € R. By defining an appropriate K-functional we prove direct theorems for
them.

Keywords: Meyer-Konig and Zeller operator, K-functional, direct theorem, moduli of smooth-

ness.
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1. INTRODUCTION

In order to approximate unbounded functions in uniform norm in [0, 1), Meyer-
Konig and Zeller (see [15]) introduced a new operator by the formula

M) = o maste)f (). (1.1)
k=0
where o) = (n + k) (1= g) ! (12)
n, kj . .

But this operator cannot be used to approximate functions in L,-norm because
it is not bounded operator in L,. Some kind of modification is needed. In this paper
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we investigate the weighted approximation of functions in L,-norm by Kantorovich
modifications of the classical Meyer-Konig and Zeller (MKZ) operator.

In 1930, Kantorovich [13] suggested a modification of the classical Bernstein
operator, replacing the function values by mean values. Analogously, Totik [16]
introduced Kantorovich type modification of MKZ operator:

DO EEED [T d

n

3 (Fiw) = 3 el k
k=0

n+k

and proved direct and converse theorems of weak type in terminology of Ditzian
and Ivanov [4] for it. Although this definition looks as the most natural one, the
operator Z\Z[T*L is not a contraction, hence it is not very suitable for approximating
functions in L,-norm for p < oo.

In [14] Miiller defined a Kantorovich modification of MKZ operator in a slightly
different way, so that the resulting operator is a contraction:

fu)du. (1.3)

k

n+k+1)(n+k+2)/nm2

Mn(f;w):Mnf(@”):Zmnvk(x)( n+1
k=0

n+k+1

Recently, in [11] by introducing an appropriate K-functional the first author
proved a direct theorem for the operators Mn( f;2). Our goal in this paper is to
extend this result for the case of weighted approximation of functions in L,-norm
by M, (f;z) operator.

Let us introduce some notations. For the sake of simplicity and brevity of our
presentation we set

n+k+1)(n+k+2 k kE+1
n,k = ( )( ); An,k) = [ 5 ] (14>
n+1 n+k+1'n+k+2
Then, the Kantorovich modification of MKZ operator (1.3) takes the form
W (f52) = 3 s (o) [ fw)do
k=0 Ank
The weights under consideration in our survey are
w(z) = (1 —x)°, aeR. (1.5)

By ¢(x) = z(1 — z)? we denote the weight which is naturally related to the
second derivative of MKZ operator. The usual first derivative operator is denoted
by D = L. Thus, Dg(z) = ¢'(z) and D*g(z) = g¥)(z) for every k € N.

We define a differential operator D by the formula

D= %(g@(m)%) = DeD.
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The space AC,.(0,1) consists of the functions which are absolutely continuous
in [a, b] for every [a,b] C (0,1). For 1 < p < oo and weight function w(z) as in (1.5)
we set

Lp(w) ={f : wf € Ly[0,1)},
{£:J,Df €ACe(0,1), wDFEL,(0,1), lim  ¢(x)Df(x) =0}, a <0,
{f: f.Df€ACIc(0,1), wDfEL,[0,1), lim o(z)Df(x) =0}, >0,
Ly(w) + Wp(w) ={f : f = fr+ fo, f € Lp(w), f2 € Wy(w)}.
Also, we define a K-functional K, (f,t), for t > 0 by

Ko(ft)p = inf {w(f = g)llp + tlwDgll, : f — g € Ly(w), g € Wp(w)}.  (1.6)

plW

Our main result is the following theorem.

Theorem 1. For1l <p < co, w defined by (1.5), M, defined by (1.3), and the
K-functional given by (1.6) there exists a positive constant C' such that for every
n > |al, n € N, and for all functions f € L,(w) + Wp(w) there holds

0 (it = Plly < CRu(£.5) . (17)

Remark 1. Converse theorem remains an open problem even for the non-
weighted case, i.e., for w(z) =1 in (1.5).

Problems on characterization of weighted K-functionals by moduli of smooth-
ness were considered by Draganov and Ivanov in [6, 7, 9]. Particularly, they char-
acterized the K-functional

Kw(fv t)p =
inf{|w(f—g)ll,+t|weD?gll, : g,Dg € AC1oc(0,1), f—g,oD?g € Ly(w)}. (1.8)

In this paper we also show that the same moduli of smoothness can be used
for computing the K-functional K, (f,t),. So, we prove the next statement.

Theorem 2. For 1 < p < oo and w, K,(f, t)p, Kuw(f,t)p, defined by (1.5),
(1.6) and (1.8), respectively, there exists a positive constant C such that for all
f € Ly(w)+ Wy(w) there holds

Ku(fit)p < C(Ky (f,1), + tEo(f)), (1.9)

where Eo(f) = infeer |[w(f — ¢)|lp is the best weighted approxzimation to f by a
constant.

Remark 2. For p = 1 and p = oo new moduli are needed. Also, a problem
on characterization of the K-functional K, (f,t), arises, but it is not the subject of
our survey here.
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Henceforth, the constant C' will always be an absolute positive constant, which
means it does not depend on f and n. Also, it may be different on each occur-
rence. The relation 01(f,t) ~ 05(f,t) means that there exists a constant ¢ > 1,
independent of f and ¢, such that

Cilal(fv t) S 92(fa t) S cel(fa t)

2. AUXILIARY RESULTS

In this section we present some properties of the operators M,,, M, basis
functions m,, i, (see [1, 10, 12]), and prove auxiliary lemmas that we need further.

The operators M,, and M,, are linear positive operators with || M, f|loo < || ]loo
and ||Mn||1 = 1. Moreover,

I, <1, 1<p<s, (2.1)
M,(1;2) =1, M, (t —z;z) =0, (2.2
M,(1;z) =1 2.3
A direct integration yields the identity:
! 1
/ My i (x)de = . (2.4)
0 Tn,k

We shall need the next three properties of the functions {m,, 1 }72, defined by
(1.2) (for proofs, see e.g., [11]).

Lemma 1. If n € N, then

1 1
1—=z n+1

I
M8

(n+k+ L)my, i (2), xz €10,1). (2.5)

b
Il

0

Lemma 2. Ifn € N, then

n

Z 1—w Zm"k Zk+g x €10,1). (2.6)

=1

Lemma 3. There exists an absolute constant C such that for every n € N the
following inequality holds true:

k+1

‘lnl—x Zm”k Z Jlrj’g

=1Q

. zelo). (2.7)
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In [16, Lemma 3] Totik proved that for 1 < p < oo,
It =2)Df@)llp < C(Ifllp + | £D*f1l)- (2.8)

In order to prove our main results we need a few additional lemmas.

Lemma 4. For every integer v there exists a constant C = C(v), such that

i (1- L)an’k(x) <c(l-z7, xel01), (2.9)

— n+k+1
for alln > |v|, n € N.

Proof. We have

> (1 ) @)

k=0
> n+1 n+k n+1
Z(n+k+1) ( 1 )xk(l—m) +
=(1-ux) k;) n—vtl)nntktl)y n—vi(T)
<(1—-2)") CW)mp—pi(z)
k=0
=Cv)(1—x)". _

Lemma 5. For every a € R there exists a constant C = C(«), such that the
following inequality is satisfied:

i (1 - L)amn,k(x) <C(-2)*  zel01), (2.10)

— n+k+1
for alln > |a|, n € N.

Proof. Let v be the smallest positive integer such that v > |a|. Then, by
Holder’s inequality it follows that

S (1 i) e

k=0
> k v sign () el el
§<Z(1_n+k+1) g m"’“”) (Zm"’k@ |
k=0

k=0
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Applying Lemma 4 we obtain

e k v sign(a) ledl/v .
<2 (1-——) mn,k@)) < (C(1—a) @)V = () (1-a).

= n+k+1
Therefore,
(o] k @
177) wi(2) < Cla)(1 — 2)°
> (1= i) el <€) -0)
and the lemma is proved. O

The next lemma is a weighted variant of (2.1).

Lemma 6. Let1 < p < oo and o € R. Then, there exists an absolute constant
C such that for alln > |a|, n €N, and f € L,(w), we have

lwdy fllp < Cllwfll,. (2.11)

Proof. First we prove (2.11) for p = 1 and p = co. Then, by applying Riesz-
Thorin theorem we obtain the estimation for every 1 < p < oo.
The case p = 1. We have

Hanfnl:/ /f 0 dt
< /0 (@) [Z%,kmn,m) /A Wdt] du

/ Z%k ( )mn,k(x)/A I(wf)(t)dt] dzx
n+k+1 n,k
Z < _1 — ) U, M, 1 (T) d,

0 k=0 n+k+1

dx

where we set

ti = [ wh)(0)]at

n,

Let v = [|a|] be the smallest positive integer such that v > |a|. Applying
Hoélder’s inequality twice we obtain

= -z .
> () swsmato

k=0 n+k+1
00 1 v sign(a) lal/v 1 o 1—|a|/v
— X
S [Z (1_k> a7z,kmn,k(x)] [Z afn,kmn,k(x)] 5
k=0 n+k+1 k=0
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thus

lecl /v

0o 1 v sign(a)
> <1k> 7k (2)

k=0 n+k+1

1
1=lal/v

(2.12)

1

Now, we estimate the first nonconstant multiplier in the right-hand side of
inequality (2.12). Let £ = v sign(«). For every integer number ¢ we have

1—e ) k) (1) (4 0)
1 mk(@) = TR D) (k1 D) (g D e (@)

< CO)mnte (@),

__k
n+k+1

hence

-z
Z<1—k> e Mo 1 (T Zankanrék (7).

= 1—x ‘ s
Z <1k> a"vkm”,k(x) <C Zan,k mn+€,k(x)
k=0 - n+k+1 1 k=0 1
G,k
<C a m =C Ll
Z nk” n+€k: ||1 ];)’YnJer
— 7
k
=CX}J*/)IWﬂ@W
k=0 Yn+e,k Ak

gcz/ ()] dt = Clluwf]s.

Since 350 an kM (x) = My, (wf;2) and | M, (wf)|l1 < |wf]i by (2.1), then
for the last multiplier in the right-hand side of (2.12) we obtain the inequality
| > reg an kil < |wf|1. Therefore,

lwM, flly < Cllwf I o f 171 = Cllw i

and the proof of the estimate (2.11) for p =1 is complete.
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The case p = co. We obtain

3 . (wh)(®)]
()3 i) /. RRACKIERIED SRR [ DOl

o Wl

< Cu) S 2k @) [ e ar
I

n,
w(n+é+1)

< Cw(@) Y mp () W
—o n+k+1
o K
= Co@lwfle Y (1= =7

k=0

) M ().
Now, by Lemma 5 we have

i (1 L)W M () < C(1—a)~°.

— n+k+1
Hence,
lwMpflloo < Cw(@)wflloo(l —2)"* = Cllwf o,
which proves (2.11) in the case p = oco.
Finally, the inequality (2.11) follows for all 1 < p < oo by the Riesz-Thorin
interpolation theorem. (]

The crucial result in our investigation is the following Jackson type inequality.

Lemma 7. Let 1 < p < oo and o € R. Then there exists an absolute constant
C, such that for alln > |a|, n € N, and f € W,(w), the following estimate holds
true:

- C, -
(it = 1), < < llwDf]l, (2.13)

(Let us note that the lemma implies that M, f — f € L,(w) for f € Wy(w).)
Proof. Let us set

T " 1
1l—2z 1—2’

qS(x) =1In x € (0, 1),

with ¢'(z) = m = ﬁ > 0, i.e., ¢(x) is an increasing function. Then we have

t ~

f(t) = f(2) + (@)[6(t) — ¢(2)] D f (x) +/ [6(t) = o) Df(u) du, € (0,1).

x
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Applying the operator M, to both sides of the latter equality and multiplying by
w(x) we obtain

w(a) (VM f(x) — F(@)) = w(a)p(e)Df () M) — o)
. ) .
w(m)Mn< / [¢<~>¢<u>]Df<u>du;x>. (2.14)

First we prove the lemma for p = 1 and p = oo. Then we apply the Riesz-
Thorin theorem to obtain (2.13) for every 1 < p < oco.

The case p = 1. In order to prove that

gD (16— 6|, < < D7l (215)

for all weights (1.5), we shall make use of the estimate

[Mng — 9|, < % (2.16)

(see [11, Proof of Theorem 1] for a complete proof).
Let @ > 0 be fixed. Then, for all n > « and f € Wi (w) we have

(@)D f(x) = / (@D (u) du = / Df(u re(0,1).

Hence,

w(a)p(x)Df ()] < wiz) / "\ ()| du < / " (wD f) ()| du < / (wD f)(w)] du,

ie.,

lw(z)p(z)Df(x)| < |lwDfll1, =z € (0,1).
Thus,
|weDf [Mng — ¢]||, < [lwDflly || Mno — 9|,

and (2.15) follows from (2.16).
Similarly, let @ < 0 be fixed. Then, for all n > —a we have —n < a < 0 and
for f € Wi (w), we consecutively obtain

(@)D f(x) = / (oD ) (u) du = / Df(u re(0,1),
(@) (@) Df ()] < w(z) / 1D f ()| du < / (wDf)(u)] du < / \(wDf)(u)| du,

ie.,

lw(x)p(x)Df(z)| < |wDfll, @€ (0,1).
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Hence, (2.16) yields (2.15).

Therefore, for arbitrary a € R\ {0} and f € Wi (w) the estimate (2.15) holds
true for n > |a|. The case o = 0 was considered by the first author in [11].

Now, we estimate the Li-norm of the second summand in the right-hand side
of (2.14). More precisely, we will prove

Jwtont, (| V160 - oD (w) i

= bl @a7)
Having in mind (1.4), for 2 € (0,1) we have

- “) .
ot [ 100 - stDswdui )

(x) kiv mo(e) [ y ( / o) - ¢<u>JW du> dt

< Cw(x) Z Tn,k mn,k(x)

X(w(ni,’zﬂﬁ )/A(/ [6(t) — #(u))|(wDf)(u >|du)dt

< CZ ( + 1) bn,k: mn,k(x)7
(n+k+1)

where

b= [ (/ o) - o) (D)) ) .

Let v be the smallest positive integer such that v > |a|. Applying twice
Hoélder’s inequality we obtain

o0 o 2) v/l lal/v
Z ( ) n kmnk lz (’UJ( )> bn,kmn,k(l‘)‘|

k=0 n+k+1

o 1-|al|/v
X lzbn kmnk ] )

k=0

n+k:+1

thus

Jotori, ([~ by ) |

0o w(z) v/|al
7 L\ bn mpy
Z ( ( k )) klTn,k

k=0 \W\ntrr1

leel /v I—|a|/v

e
E bn,kmn,k
k=0 1

<C (2.18)

1
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For estimation of the last factor in (2.18) we apply the estimate from [11] (see Proof
of Theorem 1, Case 1, therein), by simply replacing Df with wDf. So, we obtain

n,kMMn, k

C -
< ZwDf]s. (219)
1

Next, we focus on the estimating of the other multiplier in (2.18). Clearly,

0 V/Ia\ 0 .
w(x) (1 —x)(n+k+ 1)\ sisn(a)
> (,w(k)> n k1,1 (% ( 1 ) b k10 1 ().

k=0 n+k+1 k=0

[ﬁ

Let us set for simplicity ¢ = v sign(a) = [|a|] sign(a«). We have

(1—z)(n+k+1)\* (4 k+D) (n+1) - (n+0)
( nt 1 ) @) = ikt D k0 k@
< C(O) manyen(z)
< O() T my (@),
Vnk
Observe that the constant C'(¢) depends only on a.
We shall make use of the following operator defined by

oo

W) = Y tnensmnsen(o) [ fw)du (2.20)

k=0

Then,

v/lal
> w(x) ~ ¢) - )
EIQMk)> %me@<CMm(L;WO—¢meDﬂWme)

k=0 n+k+1
(2.21)

In order to estimate the Li-norm of the right-hand side in (2.21) we follow
an approach applied, e.g., in [2, pp. 41-43]. The proof in our case is much more
complicated, because the operator ]\anﬁa does not preserve the constant functions.
More precisely, it has the properties

~ ~ YN
IMnolli =1, Mya(liz) = }j%+7mHu>
k=0 Yn,k

Let us write the operator M, , from (2.20) in the form
1
@=/JQMMﬂ0%
0
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where K, (-, -) is the related kernel. Introducing the functions

¢r(x) =Inz,  do(x) = —In(1-2x),  ¢3(2) = ;

we have ¢(z) = ¢1(x) + da(z) + ¢(z) and for j = 1,2,3,
i [ 16500 — gy B (w) i)
/ Kl t/ — 5 (w))l(wDf)(w)| dudt
/K xt/ — 6;(w))|(wDf)(w)| dudt.
Then, by Fubini’s theorem we obtain:
Vo [ 166) — oDl ]
/ (WD) Z (f o ([65(0) — 650 52) d

# [ W8, - 650 s0) o) (222

|

To estimate the right-hand side of (2.22) we need estimations for the expres-
sions in the sum for each of the functions ¢;, j =1,2,3.

First, for ¢, using

/0 Mo (161 (0) — 61 (Vg 12) di = |V o ([61.) — (V] 52) 1
< é1(w) — dr(@)]4 |1
- / (61(0) — 61 () de

we have

u

/ Mo ([¢1(u) = ¢1()]4 5 2) da +/O My ([61(-) = $1(w))s s ) da

= / My o ([61(u) = 1 ()4 s 2) da — /u Mo ([91(u) = 1))+ 52) de
0 0
b [ Fha116) = 01002 do
0
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/<¢1 dx+/ o1(u)]4+ — [¢1(v) — ¢1(-)]+ 5 2) da

= up(u /q’)l )dx + / a(d1;2) de — ¢1(u /Mnalx)d

=/0 (Vo o613 7) — 61.(2)) d — 61 (u / (VEy (1) — 1) dav. (2.23)
Analogously, for ¢;, j = 2,3, we obtain
/ Mo (5 (w) = 6;(-)] 4 52) do + /Ou Mpo([65() = &5 ()] 52) da

é/ (Mi,o(j; %) —¢j(w))dx—¢j(u)/ (Myo(1;2) — 1) dz.  (2.24)

Since for z,u € (0,1),

oo
~ T2,k C
M, o(1; —12‘ : n _1‘<77
Whyo(tia) = 1) = | 30 L @) <1 < €

lupr(u)| <C, |1 —w)ga(u)| <C, |1 —u)ps(u)] < C,

then
Yo C
¢1(u) My o(L;z) = 1) do| < —,
‘ /01 ( 1 1) ’ <g (2.25)
‘(bj(u)/u (Mn,a(l;f)_l) d-T’ §g7 7 =2,3.

1. Estimation of’fo ( My o(p1;7) — ¢1(x )dm‘ We have

k+1 k+1 k k 1
t)dt = 1 - 1 -
/M(bl() nAk+2 ntk+2 ntktl ntktl g’

and for = € (0,1),

n-+¢ k o) k
(1-2x) (1—x)
¢1(z) = — -
k=1 k=n+4+1
By Lemma 2,
n+¢ k (e n+¢
(1—z)* 1

Z L _Zm”Hk(x) k+i’
k=1 k=0 i=1
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and therefore
‘A (Mo (¢1:2) — ¢1(2)) dx

da:

" n+e
= ‘/ Zmn-l-e,k 77L+ék/ (bl dt+zk d +/
. S 0 k=nten1
u 0 it .
< ‘/O Zanrf,k Wn«kék/ ¢1 dt+zk :| m“i‘g
k=0
For k> 1,
k+1 n+1k+z+1 n+l )
n+k+2 T ;ln(lJrk_H)
ntl ) )
:_;[k+i 2(k+i)2+0((k+i)3)}’
and
n+1 1 n4+1 . )
14(k+”2:g;hk+n@+¢+1f+oQk+@Q}
n+1 ntl
R CEE) +ZO( )
hence
- e o)
nn—l—k‘—l-?__i:lk—i—z 20k +1)(n+k+2) w2)
Since - 1 1
n+k+2 (W)fo(ﬁ>
then

E+1 ) k+1 E+1 41 . n+1 +(’)(1>
n .
n+k+2 n+k+2 n+k+2 “k+i  2(n+k+2)? k2

Similarly,

ko kK =~ 1 L ntl +O(i)
ntk+1"n+k+l ntk+lSk+i 2nt+k+1)2 K2/
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Therefore,

k n 1 k+1 n+1
t)dt = _
~/An,k¢1() n+k+1ek+i n+k+22k—|—z
- [(n+k+1)2_(n+k+2)2}+o(ﬁ)_@
1 « 1 1
= k+i+0(ﬁ)'

Now, we have

n+4
- 1
’Mn,a(¢l; -75) — ¢1(1’)’ < mn+[,0($)’ ln(n + 2) +1— Z ; ‘
i=1
%) ’Y n+4 1 C
n+4,k
+;mn+€,k iZkJrz Z k+z n.
From
n+¢ C
’lnn+2)—|—l—zf‘<c, —,
i=1 n
it follows .
n-+
1 C
HanrZ,O(x)‘ In(n+2)+1-%" g‘ H1 s
i=1
Moreover,
oo ’Y n+/4
In+e,k ‘
mpy
; +E7k Tn,k ;k‘FZ P k+l
o) ’Y n+¢ 1
n+€ k
<D Mgk - ’Zﬁ*ZmnHk [
k=1 i1=n+1
Now, the inequalities
ett af<€ S § < S mito <
—_— = -, My, - < — My, r) < —,
Yn,k -n +ek(® M k+i " n — ok n
yield
[e%) n+4 oo n
’Yn+e k ’ ¢ 1 ¢
;mn+é,k Zk—i—z k:—i—z _n];mn+é,k(ﬂf);k+i+n.
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By Lemma 2 we obtain

n+/

Zmn-i-é,k(x)z k+i SZ 7L+Zk k‘—l— < |lnx|
k=1 1=1 k=1

Therefore,

/ ZmnHk z;

and we conclude that

dx < <C,

1
/ Inz dx
0

/ Inxdr| <
0

‘/Ou (My,.0(6152) — ¢1(2)) dm‘ < % (2.26)

2. Estimation of’f ( My, o(po; ) — do(x )dm‘ We have

/ Go(t) dt = n—+1 N n+1 _ n—+1 N n—+1 n 1
o Tn+k+2 n+k+2 n+k+1l ntk+1 s
1 n-+1
t)dt =1— kE+1)1 (1 7>— _—
7"”“/A $a(t) (n+k+1)In R Y Ay

:lnn;riT*O(nik)’

hence,

%H,k[l n+k+1 (’)( 1 )}
na ¢27 Zmn+fk Tk n I + nik .

Applying Lemma 3 we obtain

k+1

’9252(53) - kzzomn-&-é,k@?) ; m’ < P

and then

k+1

n k+1
7+£,k1 n+Kk+ _Z
Vnk n+1 n+€+z

+ ¢
.

’ n a(¢27 ZanrZ k

Taking into account that

k k k
1%_2_: (1+n—|—2> Zn Z ((n—il—z)2)

=1 =1
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and

I
ke

i .
2
P (n+i
we estimate

7 ke~ 1 = 1 ¢
n+4,k _ —_
‘ na(¢27 Zm”'Mk Y,k ;n—kz §n+€+z’+n
v =1
0,k
<> mpen(a &_1' :
kzzo ()| T 1D
oo k k41
1 1 C
+Zmn+e,k(x)‘zn+i*_ m’*g
k=0 i=1 i=1
Since
M_l’gg’
Tn,k n
it follows that
1E SR S k
n+lk
m _1‘ <— m
Z n+£k Yok ZTL—FZ z:: n+£k z:ln
Eoog k+1 oo kL
B SUAT, Sat D SEMPIE) g
Z nt (@ ;n—kz Zn+€+z T Z nre k(T z;rH—M—z
Observe that
k k+1 1 oo ¢ C
m — m s
Z nttk (T ‘;H—FZ = n+€+1’*2 ek (@ ;” iTn

We recall that ¢ = [|a|]sign (o) and C = C(«), i.e. C is an absolute constant for a
fixed . Then, by Lemma 3 we obtain

= Yn+e,k
kzz()mn+z’k(w - ‘Zn—&—z
c c ©— 1 c
i=1
< c C

ﬁ‘i’ﬁ‘i’g“ll(l*l’”

Therefore,
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3. Estimation of|f (Mn’a(d)g,; x) — ¢3(x )dm‘ The last estimation we need

concerns the function ¢3(x) = —. We have

/An,k¢3(t)dt:1n(1+n+i+1> =n+;+1 +O<(nik)2)’

’Ynk/ #3(t) dt = n+k+2+(9<1).

n+1 n
By Lemma 1,
1 o0
¢3($) = m ;)(n + 12 + k + 1)mn+g7k($),
hence
n—|—k—|—€—|—1 n+k+4+4+2 1
n,o 3 L n -1 -
(Moo (632 Zm L ey ( n+k+1 )+O(n)
- n+k+04+1  L+1 1 1
- k:omn%k(x) ntl+1 ntk+1 +O(ﬁ>_ O(H)'
Then
b c [ C
[ taonio) - a@) ds| < & [ar< (225)
Now, from inequalities (2.22)—(2.28) it follows that
. Q) . C
|t [ 100 - o@D @] dul], < 5. (229)

The estimate (2.17) is a consequence of (2.18), (2.19), (2.21), and (2.29).

Finally, the estimate (2.13) for the case p = 1 follows from (2.14), (2.15) and
(2.17).

The case p = oc.

We proceed similarly to the case p = 1: applying Holder’s inequality for the
smallest integer > «, considering again the operator M,, , and using the following
estimation

W ( / "160) - o) (wD ()| dus x)
< wD fllow e ( / "160) - o(u) du;x)

< |ty o (Inti2) — I JuD oo + (1 - )| (2

1 .
i2) = 7| lwD Sl
+x‘Mn7a(ln(1—t);w)—ln(l—a:)MwaHoo. O

For the proof of Theorem 2 we need a weighted variant of (2.8).
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Lemma 8. Let 1 < p < oo. Then, for all functions f € Ly(w) such that
©D?f € L,(w), there exists a constant C' such that the next inequality is true

lwDeDfllp < Cllwfllp + lwpD?fll,).
Proof. The proof is analogous to the proof of [16, Lemma 3], using the obvious
Dp(@)| = |1 —a) (1 —30)| <2(1—a), O0<w<l,

and w(z) ~w(l —27%) for z € (1 —27% 1 — 27k, 0

3. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. We establish the direct inequality by means of a standard
argument.

Let 1 < p < co. For any g € Wy(w) such that f — g € L,(w) we have, by
virtue of (2.11) and Lemma 7,

lw(f = Muf)llp < Nw(f = 9llp + llwlg = Mag)llp + [l (f = )

c -
< 2lju(f = g)llp + - [wDgll
1 ~
< (s = 9)llp+ - lwDgll, ).

Taking the infimum on g we obtain the inequality (1.7) in the theorem. O

Proof of Theorem 2. For every ¢ € R, by virtue of Lemma 8, we have
[wDeDgllp = lwDpD(g — o)l
< O(|lweD?(g = e)llp + llw(g —o)llp)
= C(lwpD?glly + w(g = )llp)-
Using the latter inequality and the obvious
lwDgll, < [wDeDyll, + [weD?gll,
we have for ¢ > 0
lw(f = g)llp + twDgll,
< lw(f = 9)llp + tlwDypDyll, + tllweD?g],
= w(f = 9)llp + Ct(llweD?gll, + w(g — c)llp) + tlweD?gll,
= C(|lw(f = g)llp + tlweD?gll,) + Ctllw(g — f+ f =)l
< C(llw(f = 9)llp + tlweD?gllp) + Ctllw(g = )l + Ctlw(f = c)ll,
< C(|lw(f = 9)llp + tlhweD?gll, + tllw(f —c)llp)-
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By taking infimum over all functions g € W,(w) and all real constants ¢ we obtain
the inequality

Ku(f,t)p < Cinf {Jw(f — g)llp + tweDgll, : f—g € Ly(w), g € Wp(w)}
+ CtE(f).

To complete the proof in the case @ > 0, it remains to take into consideration
that in the definition of K, (f,t), we can, equivalently, assume that g is in C? in a
neighbourhood of 0 if f € L,(w) (see [3, p. 110]).
To complete the proof for o < 0, we will show that if g, Dg € AC},.(0,1) and
wg, wpD?g € L,[0,1), then
lim ¢(x)Dg(x) = 0.
rz—1—
To this end, we first apply [5, Lemma 1] to get (1 — z)*T'Dg(x) € L,[1/2,1).
Next, we use [8, Lemma 3.1(a)], transformed for a singularity at « = 1, with
G =¢Dgand v =a —1 < —1 to derive
lim G(z) = lim ¢(z)Dg(z) = 0. O

r—1— r—1—
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